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77 7 x . ,
Si Fon avait y)/(x) EZ—( ) dans un intervalle x'<ax<<x”,
P (x) ()

on aurait par suite p(x)=ay(x)-F8 et les fonctions y(x) et y(x)
seraient également convexes en logarithme dans cet intervalle.
Cela prouve que la condition est nécessaire.

Admettons maintenant que linégalité (5) a lieu dans un
cnsemble partout dense. En intégrant cette inégalité deux fois,
il vient

v(x) —plx;) _ alx) —x(xy)
. =~ ’
¥ () (1)

Remarquons que si les dérivées y'(x) et x'(x) sont positives et
Ton a plx)=7z(x,) et plx)=z(xs) ol 2, << xp, alors (o)) <y'(xy),
ce qui entraine p(x) << gz(x) au voisinage gauche de x; et y(x)<<yp(x)
au voisinage droit de ce point. Cette remarque mnous sera utile
tout & Pheure.

Fixons arbitrairement deux points x;,x, (00 x,<<x,) et dé-
signons par P(x) et %(x)} les fonctions correspondantes, mormées
dans ces points (voir N'4). Il suffit de mountrer que
©) ‘ 7 (x)<p(x)
entre x; et x,. Or, d’'aprés la remarque que nous venons de faire,
cette inégalit€ est vraie au voisinage droit de x,. Désignons par
(xy,x7) le plus grand intervalle, ot I'inégalité (6) est encore satis-
faite. En vertu de la continuité des fonctions considérées on
a (Fx)=p{x). Si x{<<x,, on aurait, en appliquant aux points
x| et x, la remarque précédente, §(x)-<<7(x} au voisinage gauche
de ', ce qui est impossible. On a donc x;==x, et la suffisance
de la condition est aussi démontrée.

pour x > x.

(Re¢u par la Rédaction le 1. 12. 1947).
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On certain methods of summability associated
with conjugate trigonometric series
by ’
A. ZYGMUND (Chicago).

1. A number of methods of summability of numerical series

1) L e o e e

have their origin in the theory of trigonometric series. The most
familiar of these methods is the method of Riemann. It consists
in treating (1) as the series

2) U+ Dun cosnx
n=1

at the point x=0. If we integrate (2) termwise k times and
take the generalised k-th symmetric derivative at the point x=0
of the resulting function, the value of this derivative, if it exists,
equals

C(3) lim [uo —|—§1un(5in na)h].

a0 n= nia

Correspondingly, we say that the series (2) is summable by
the method (R,k), k=1,2,3,..., to sum s, if the series in (3} con-
verges for |a| small encugh, and if the limit (3) exists and equals s.
The cases k==1,2 are the most familiar ones.

Tn this note we are going to discuss another method of sum-
mability suggested by trigonometric series. As in the Riemann
case, we have a whole sequence of methods corresponding to
k=1,2,..., but in this note we shall confine our attention to
the cases k==1 and k==2 only.

Studia Mathematica. T. X. 7
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98 A Zygmund
Given a trigonometric series

) &0—[-2 (an cosnx—{— b, sinnx) = Y1A (),

we also consuler its conjugate series

oo

5) 0~i—__,(ansmnx by cosnx) _Z,B

If (4) is the Fourier series of a function f, the series (5) re-
presents under certain conditions the conjugate function
© @ Foe—ijletiofeshg Ly g

"4 .Ztanfé— t Tt

The existence of this (improper) integral can be interpreted
as a method of summability of the series (5). If we replace f in
{6) by its Fourier series and observe that Fourier series can be
integrated term by term after having been multiplied by any
function of bounded variation, we see that the existence of f(x)
is equivalent to the existence of

@ lim j B,.(x)—: . f,,,-v_,_ dt.

edton=t T & 2tan—t

If (4) is a Fourier-Lebesgue series, the series in (7) converges
for every 0 <<a<{=.

Let us now identify (3) with (2). We may say that the series
(1) is summable by the method (K, 1) to sum s, if

(i) the series

w2 f— sinnt dt
n=1 T -

“ 2tan 7t

converges for a positive and small enough ;
(i) the limit of

® gt Ju, = [0t g
n=={ 1

Ta dtan-—
anzt

for & —» 0. exists and equals s.
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The Second Mean-Value Theorem shows that the coefficient
of uy in (8) is O(l/na), which suggests that the range of appli-
cability of the method (K, 1) may resemble that of (R, 1). In par-
ticulgr, the convergence of (1) need not imply its summability (K, 1).

ince

©) f_SE}_“_: dt—f( +cost+cos2t .. —i-—écosnt)dt:é_n,

02 tanT t U

the coefficient of every u, in (8) approaches 1 as a—~--0.

It must be added that summability (K, 1) is implicit in Harpy
and Lirtiewoop [1]. Their result (although it was given for a
slightly different definition of summability (K, 1)) can be stated
as follows:

If (1) is summable (K, 1) to sum s, and if u,>—4/n, then (1)
converges to sum s.

Let us merely assume that (1) has terms tending to 0.

Integration by parts gives

T - 7t
smnf di—_Sosna . f cosr1Lt di—
@ 2tan—-1 n2tan—a @ (‘.25111—24)2

cosn
=—a—-——-}—0 n2a?),

2 tan-—
n2 tau 3¢

and since trigonometric series with coefficients o(1/n) converge
almost everywhere, the series (8) converges for almost every o
in the interval 0 <<a<<m. Let us consider any « for which (8
has meaning. Summing by parts and {aking into account that
sn=o0{n), we find that the sum of (8) is

2 7 t
]1111 [SO+2 Sn— Sn—1) — = f _sinnf dt]

Noyeo ¢ 9 el
2ian— t

&=

=lim [~»- (a-+sina) ~—2'qn ""J Slnnf*—su; n—l‘i)tdt]

Noyea] 7 “tan'—t

Neyos | T

N E
= lim [ a-sina) Z,lsn%f(cosnt—]—cos(n—f—l] t)dt}

7*
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or is .

S ; w_si[sinna i]'l(n—l—l]a]'
(10) ~ (a—l—sma)—|—£]n e += T

If all the s» are replaced by s, the last sum is identically s.
Let us now assume that (1) converges to sum s. By the last
remark we may assume without loss of generality that s=0, i.e.
that s,->0. It is howerer, known that in this case the expression

sin(n—+1)a ,

Ems smrng and so also ;s
smna . smy
" n 2 n1

n=1

tends asymptotically to 0 as a—0 (See Rajcmuany and ZyGuuND [3])-
This means that the expressions tend to 0 as « approches 0 re-
maining in a set having 0 as a point of density 1. Hence,

Theorem 1. If the series (1) converges to sum s, it is also
summable (Kas, 1) to sum s.

In particular,

Theorem 2. If (5) is the series conjugate to the Fourier
series of a function f, and if it converges at the point x fo sum s,

then -
_ b (it —fle—1 4
Ta 2tan-2-t
tends to s as a tends to +0 trough a set of values having] den-
sity 1 at 0.

2, Let us consider a trigonometric series (4) with constant
term a, equal to 0, and let us assume that the series
fancosnx—i—b,,sinnx_ Z“’?An(x)

At n _n:_— n

(1)

is the Fourier series of a function F(x). Thus (4) is the conju-
gate of the termwise differentiated Fourier series of F. It is well
known (see e. g. Zyomunp [4], p. 62, Ex. 13) that under certain
conditions the sum (ordinary or generalized) of the series conju-
gate to the formally differentiated Fourier series of a function
Fix) is '
(2 ___1n_ fF(x—]—-t)—]—F(x-—ﬂ—QF(x)

¢ @ sin%-t)2

Ed

dt=—L1 lim f R

T a—>4+-0

@
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and the existence of this integral will, by definition, mean sum-
mability (K,2) of the series (4). Substituting for F into the second
integral (12) its Fourier series, we obtain the expression

> -1-siuzént

3 4L 2
P T e
4sin®—5-1

converging (if (11) does) for every 0-<a<Ja. One notices a resem-
blance of the last integrand to Fejér's kernel Kn defined by the
formula .

sinzé(n—ki]t

it = 1
F e VD)= ———
K0 n+1£0D() n—1 "Siuﬂ_l_f
- 2
where {
5111(117%—7)15
D,,{t)——=—'——~~1;
3 sin —F
2sin~

is Dirichlet’s kernel. . _
In accordance with this, we say that the series (1) is sum-
mable (K,2) to sum s, if:
(i) the series

= g nsin’-'int P
13) uu—hgun S — ”1 dt=uu~1"—,§lln;z-fKn—x(ﬂ dt
=t Ao g +t = @

converges for a positive and small enough;

{ii) the expression (13) tends to s as a— 0.

Thus summability (K,2) of the series (2), which for x=0
reduces to (1), consists in treating it as the conjugate of a term-
wise differentiated, Fourier series. Sineer the integral of K(t} over
(0, ) is @/2, the factor of each un in (13) tends to 1 as a—>4+0.

One easily sees that

7T Ed

o1
sin® -t { —cosnt P EAY
(14 ——dt= | A= +0 (na’*’)
2sin®5-1 (2sin 5 1)? 2 tanfz a

«
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Since the mere condition u,=o0(1) need not imply the con-
vergence of Dun/'n, condifion (i) need not be satisfied by the
general series X u, with terms tending to 0.- Nevertheless.

Theorem 3. Every series convergent to sum s is summable
(K,2) to s.

In particular,

Theorem 4. If the series (4) converges at a point x, to
sum s, and if (11) is the Fourier series of a function I, then the
integral (12) exists and equals s.

Proof Since the convergence of ) u, implies that of En—‘un,
condition (i) for summability (K,2) is satisfied (see (14)). Moreover,

. Yogmo )
lim { -2 Kot =

—tim fuy + 3o - 2 (Ks(t)dt) =
—Niriluu (Sn—"sn~1);aj ﬂ—l() }”"

n=1
2 9= T .
= un-(i —= af La(t)dt) +;n§s,,af Koy —K,)dt.

Thus we get a linear transformation of {s,}, and it is enough
to verify the three conditions of Toeplttz. That the elements in
each column tend to 0 is obvious. It is also immediate that the
sum of elements in each row is 1. Tt is therefore enough to show
that the sum of the absolute values of the elements in each row
remains bounded as a—>--0. Let 4 denote a positive obsolute
constant not necessarily always the same, and let 4,=K,_;—K..
From the formula for K, we get

(t3) Ay Koot Dn

Since Dn(f)=O(n), Ku(t)=O(n), uniformly in f, we imme-
diately obtain

(16) Lfg,@tj:fofdndtKAa 0<a<a).

icm
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Also, from (15) and from the Second and First Mean-Value
Theorems we obtain

ks
P | 4 .
{0 || dndt | <
o
Using (16) and (17) we see that
oo 7 VLYY,
2 Jadt| =52 =2
A
"< D "oy L<A.
2 \\{;§;’1(I<A, Z \ﬁ;‘a I'L“U.\

Thus the required condition of Toeplitz is satisfied and Theo-
rem 3 follows.

5. Theorem 5. If (1) is summable (C,—§). 0<6<"1, to
sum s, it is also summable (K. 1) to s.

Theorem 6. If (1) is summable (C,1—8). 0<<o<Tl, to
sum s, it is also summable (K,2) to s.

Theorem 7. If (1) is summable (C,1) to sum s, it is also
summable (Kas,2) to s.

These results are stated without proofs since, though 1'10t
immediate, these are similar to the proofs of the corresponding
resulis for summabilities (R, 1) and (R,2). See Haroy ar{d LirTie-
woop [2] (Theorem 2 there) and Rajcmman and Zyomunp [3] bl

To the problem of summabilify (K.r) for r=>2 we sha
return on another occasion.
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