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Abstract

Some generalizations of the approximation theorem of Wong–Zakai type for stochastic differ-
ential equations are examined. One of them deals with functional stochastic differential equations
defined on some spaces of continuous functions. The second one concerns the situations when
the state space and the Wiener process have values in some Hilbert spaces. The comparison of
these results as well as some examples are also included. The correction terms computed here
are then applied to the derivation of the relation between the Itô and Stratonovich integrals.
Other important applications of the above theorems are indicated.



1. Introduction

1.1. The Wong–Zakai theorem and its generalizations. The theorem
on the convergence of ordinary integrals to stochastic integrals was first proved by
Wong and Zakai ([86], [87]) for a one-dimensional state space and one-dimensional
Wiener process. The solution x(t), a ≤ t ≤ b, to the stochastic differential
equation

(1.1.1) dx(t) = m(x(t), t)dt+ σ(x(t), t)dw(t), x(a) = xa ,

is considered, where xa is a random variable independent of w(t) − w(a) and
the functions m, σ satisfy the usual conditions guaranteeing the existence and
uniqueness of the solution x(t) ([86], [2], [40]). Let xn(t) be the solution of the
ordinary differential equation

(1.1.2) dxn(t) = m(xn(t), t)dt+ σ(xn(t), t)dwn(t), xn(a) = xa ,

for some regular approximations wn(t) of the Wiener process w(t). Under suitable
assumptions it is shown that xn(t) converges, as n → ∞, to a process that does
not satisfy the same equation (1.1.1), but it satisfies the equation

(1.1.3)
dy(t) = m(y(t), t)dt+

1
2
σ(y(t), t)

∂σ(y(t), t)
∂y

dt+ σ(y(t), t)dw(t),

y(a) = xa.

The second term on the right hand side is the so-called “correction term”. The
reason for the difference between the two processes x(t) and y(t) is motivated by
the approximate relationship dw(t) ≈

√
dt (compare [2], [85], [86]).

More precisely, we have

Theorem 1.1.1 [86]. Suppose that (Ω,F, P ) is a probability space and

(i) m(x, t), σ(x, t), ∂σ(x, t)/∂x, ∂σ(x, t)/∂t are continuous in −∞ < x <∞,
a ≤ t ≤ b,

(ii) m(x, t), σ(x, t), σ(x, t) · (∂σ(x, t)/∂x) satisfy the Lipschitz condition with
a constant k > 0,

(iii) σ(x, t) ≥ β > 0 (or −σ(x, t) ≥ β > 0) and |∂σ(x, t)/∂t| ≤ kσ2(x, t),
(iv) for each n, wn(t, ω) is of bounded variation, continuous and has a piece-

wise continuous derivative,
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(v) for almost all ω ∈ Ω there exist n0(ω), k(ω), both finite, such that for all
n > n0 and all t in [a, b], wn(t, ω) ≤ k(ω),

(vi) wn(t, ω) converges to w(t, ω) in [a, b] almost surely as n→∞,
(vii) xn(t) and y(t) satisfy equations (1.1.2) and (1.1.3), respectively.

Then xn(t) converges to x(t) in [a, b] almost surely as n→∞.

There have been many generalizations of the above theorem to the case of
several variables (see [26], [27], [44], [67]). If we consider the functions m :
[a, b] × Rd → Rd and σ : [a, b] × Rd → Rd×m then the correction term has
the form

1
2

m∑
p=1

d∑
j=1

∂σip(y(t), t)
∂yj

σjp(y(t), t) for i = 1, . . . , d .

Let us recall one of the main results in this area:

Theorem 1.1.2 [27]. Let X ∈ Rd, m ∈ C1
b(Rd,Rd), σ ∈ C2

b(Rd,Rd×m) (i.e.,
of class C1 and C2 with bounded derivatives, respectively). Suppose Bn(t, w) is
a regular approximation of the m-dimensional Wiener process w(t) on a Wiener
space (W r

0 , P ) and the following equations are satisfied :

xin(t, w) = Xi(w) +
t∫

0

mi(xn(s, w)) ds+
m∑
p=1

t∫
0

σip(xn(s, w))Ḃpn(s, w) ds ,

yi(t, w) = Xi(w) +
t∫

0

mi(y(s, w)) ds+
m∑
p=1

t∫
0

σip(y(s, w)) dw(s)

+
1
2

m∑
p=1

d∑
j=1

t∫
0

∂σip(y(t), t)
∂yj

σjp(y(t), t) dt

for i = 1, . . . , d. Then, for every T > 0,

lim
n→∞

E[ sup
0≤t≤T

|xn(t, w)− y(t, w)|2] = 0 .

Further generalizations deal with problems with more general noises than the
Wiener process. The result due to Protter [61] for continuous semimartingale
differentials can be stated in a simplified form as

Theorem 1.1.3. Consider the equations

dxn(t) = f(t, xn(t), Zn(t)) dZn(t),
dx(t) = f(t, x(t), Z(t)) ◦ dZ(t),(∗)
dy(t) = f(t, y(t), Z(t))dZ(t) + 1

2{f(∂f/∂y)(∗∗)
+ (∂f/∂Z)}(t, y(t), Z(t))d[Zc, Zc](t),

where Zn are piecewise C1 approximations of a continuous semimartingale Z and
◦ denotes the Stratonovich integral. Under suitable assumptions, if Zn tends to
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Z, then xn tends to x satisfying (∗) (and hence satisfying (∗∗) by the well-known
relation between the Itô and Stratonovich integrals).

The Wong–Zakai theorem has extensions in two directions: more general
driven processes are considered or coefficients are allowed to depend on the tra-
jectories of the solutions. In the first case, semimartingales with jumps have been
considered by Marcus [43] and Kushner [38]. Results of this type were also exam-
ined by Bally [4], Ferreyra [20], Gyöngy [22], Mackevičius [41] and Picard [57]. In
the second direction, pioneering work was done in [87] by Wong and Zakai, and
more recently by Doss [19], Koneczny [34] and also by Nakao and Yamato [52].

In the infinite-dimensional case some generalizations are known where the
Wiener process is one-dimensional and the state space is infinite-dimensional ([1],
[7], [15], [19], [23]).

In [1] the following result is stated:

Theorem 1.1.4. Let (Ω,F, P ) be a probability space. Consider the stochastic
problem

(1.1.4) du(t) = (A(t)u(t) + 1
2B

2u(t))dt+Bu(t)dw(t) + f(t)dt, u(0) = u0

in a real separable Hilbert space H, where w(t) is a one-dimensional Brownian
motion. For each t ∈ [0, T ] we assume that A(t) generates an analytic semi-
group and B genarates a strongly continuous group. Let f, fn : [0, T ] × Ω → H,
u0 : Ω → H be given data. Then, under standard assumptions, u(t) is the unique
generalized solution of (1.1.4) and it is the limit of the solutions of the approxi-
mating deterministic problems

(1.1.5) dun(t) = A(t)un(t)dt+Bun(t)ẇn(t)dt+ fn(t)dt, un(0) = u0,

obtained by approaching the white noise dw(t) with a sequence of regular coloured
noises ẇn(t).

We observe that the correction term is there of the form 1
2B

2u(t). Some slight
modifications of the above theorem are given in [7] and [15].

In [23] the noise process is multi(finite-)dimensional and the operators act-
ing on the infinite-dimensional state space are unbounded but again linear. The
correction term introduced there behaves like the Lie bracket of some linear op-
erators.

The assumptions imposed on the operators A and B are such that the con-
sidered equations admit many meaningful physical applications.

These generalizations do not concern stochastic differential delay equations.
The Wong–Zakai type approximation theorems for such equations were proved in
[78] and [79].

1.2. Approximation methods for stochastic differential equations.
As already mentioned, the correction term appears in the Wong–Zakai type
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approximation theorems. However, some types of approximation theorems for
stochastic differential equations are known that do not give any correction term.

For example, the objective of paper [42] was to extend the Cauchy–Maruyama
approximation method to delay stochastic differential equations based on semi-
martingales with spatial parameters. This procedure is also applicable to non-
delay equations.

In [29], [48], [49], [55], [59] and [71], both pathwise and mean-square con-
vergence of some approximation schemes to stochastic differential equations are
examined. These schemes are based on the Euler, Milshtĕın, Monte Carlo and
Runge–Kutta methods. Some standard Monte Carlo techniques with the unbi-
ased estimation of the transition density of the solution process instead of the
approximation of the individual trajectories are also used in [84].

In [53] an efficient approximation scheme is proposed for stochastic differential
equations based on irregular samples taken at the passage times of the driven
process through a series of thresholds. This approximation is asymptotically
efficient with respect to the irregular samples.

A very important contribution to approximation methods for stochastic dif-
ferential equations was made by Kushner in [37], [38]. In [39] Kushner and Yin
consider a class of recursive stochastic algorithms in which parallel processing
methods are used for the Monte Carlo optimization of systems. Weak conver-
gence methods are applied to sequences of iterates that converge to the solution
of either ordinary or stochastic differential equations.

Approximation using the Taylor expansion is considered by Greiner and Stritt-
matter [21] and Platen [60]. The successive approximation can be found in the
papers of Kawabata [32] and Tudor [75].

Summing up, the described approximation methods have followed five di-
rections (see [64], [70]): mean-square approximation ([12], [48], [58]), pathwise
approximation [71], approximation of expectations of the solutions ([49], [70]),
numerical computation of the Lyapunov exponents [69] and asymptotically effi-
cient schemes for minimization of the normalized quadratic mean error ([11], [53]).

In [45] the UT condition is defined for a sequence {zn}n∈N of Fn-adapted
semimartingales and an approximation of the noise in the stochastic differential
equation is introduced. A stability result is proved. This theorem is of a different
kind than the Wong–Zakai theorem. Although a noise approximation is consid-
ered, no correction term appears in the limit equation. This is due to the UT
property. The piecewise linear approximations of the Wiener process used e.g. in
[78], [79] do not satisfy the UT condition so the correction term does appear. On
the other hand, the discrete time approximation of the Wiener process satisfies
the UT condition and the result of [45] can be applied.

A thorough description of numerical problems in this area can be found in [3],
[33], [64].
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1.3. Extensions of the Wong–Zakai theorem and their applications.
The approximation theorem of Wong–Zakai type contained in Chapter 2 and [79]
includes the case of stochastic differential equations with delayed argument. We
use the general theory of functional differential equations ([25], [50], [51]). Mainly,
we base our arguments on the approximation theorems of [27] and [79].

The correction term computed in Chapter 2 is a value of a measure connected
with a directional derivative of the drift term in the stochastic delay differential
equation. The same correction term appears in [18] and [79]. In [18] it was applied
to computing the relation between the Stratonovich and Itô integrals of functions
with delayed argument.

As examples we consider some types of equations with delay constant in time
and with noise being the one-dimensional Wiener process.

In Chapter 3 an extension of the Wong–Zakai theorem to stochastic evolution
equations in Hilbert spaces with the Wiener process with values in another Hilbert
space is examined. The approximands form a sequence of deterministic differential
equations. In the limit equation we obtain an Itô correction term of the form
t̃r(QDBB), understood in the sense described in §3.2 (see also [19] and [78]). Q
denotes here the covariance of the Wiener process, B is an operator acting on
the Wiener process and DB is its Fréchet derivative. The present theorem is a
modification under some weaker assumptions of the result of [78].

We would like to mention at this moment that stochastic evolution equations
in Hilbert spaces are a general model for many different types of ordinary and
partial stochastic differential equations.

In Chapter 4 we compare the results of Chapters 2 and 3. We observe in §4.1
that the general form of the correction term in Hilbert spaces is an extension of the
known correction formula in the finite-dimensional case. The operator t̃r becomes
the trace of a matrix. This extension also includes the case of stochastic delay
equations after their transformation to stochastic evolution equations in a Hilbert
space with an appropriate strongly continuous semigroup. Finally (see §4.2),
the correction term for the stochastic delay equations computed in Chapter 2 is
compared with the correction term computed in Chapter 3 for the more general
case of stochastic delay equations in Hilbert spaces. Although two different models
for stochastic delay equations are assumed, this interesting comparison turns out
to be possible.

The relations between different types of stochastic integrals have been exam-
ined for years (see for example [2], [66]). In [18] the Stratonovich integrals of
functions with delayed argument are considered. A relation between this integral
and the Itô stochastic integral is shown. The correction term computed there is
the same as the term occurring in the approximation theorem of Wong–Zakai type
in [79]. In Chapter 5 we examine the relation between the Itô and Stratonovich
integrals in Hilbert spaces. That is, the Wiener process and the nonlinear oper-
ators under the integral sign have values in some Hilbert spaces. We follow the
same idea as in [80].
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Finally, Chapter 6 indicates some directions of further research as well as
possible applications to some new kinds of problems.

2. Approximation theorem of Wong–Zakai type for
functional stochastic differential equations

2.1. Introductory remarks. In this chapter we study the generalization of
the Wong–Zakai theorem to nonlinear stochastic functional differential equations
with values in the space Rd (d ≥ 1) (see [79]). By piecewise linear approximation
of the m-dimensional Wiener process we obtain an explicit formula for the limit
of a sequence of solutions to certain ordinary differential equations with delayed
argument; this very limit is the solution to the stochastic differential equation
with delayed argument with an additional term called the Itô correction term.
Moreover, we give some examples of the application of the theorem.

2.2. Definitions and notation. Let t ∈ [0, T ] and let (Ω,F,Ft, P ) be a
complete probability space with Ft = (Ft)t∈[0,T ] being an increasing family of
sub-σ-algebras of the σ-algebra F. We put J = (−∞, 0] and we introduce metric
spaces C− = C(J,Rd), C1 = C((−∞, T ],Rd) and C0

2 = C((−∞, T ],Rm) = Ω̃ of
continuous functions. The space C− is endowed with the metric

(f, g)C− =
∞∑
n=1

2−n
‖f − g‖n

1 + ‖f − g‖n
for f, g ∈ C−, ‖h‖n = max−n≤t≤0 |h(t)|. Similarly we define the metrics for C1

and C0
2 with ‖h‖n = max−n≤t≤T |h(t)|. Here d is the dimension of the state space

and m is the dimension of the Wiener process; in the space C0
2 all functions are

equal to zero at zero. Below we denote by X one of the above spaces.
Let B(X) denote the topological σ-algebra of the space X. It is obvious that

it is identical with the σ-algebra generated by the family of all Borel cylinder sets
in X. So we construct the Wiener space (C0

2,B(C0
2), Pw), where Pw is the Wiener

measure ([27], Chapter I). The coordinate process B(t, w) = w(t), w ∈ C0
2, is the

m-dimensional Wiener process.
The smallest Borel algebra that contains B1,B2, . . . is denoted by B1 ∪B2

∪ . . .; Bu,v(X) denotes the smallest Borel σ-algebra for which a given stochastic
process X(t) is measurable for every t ∈ [u, v] and Bu,v(dB) denotes the smallest
Borel algebra for which B(s) − B(t) is measurable for every (t, s) with u ≤ t ≤
s ≤ v.

Let Bn(t, w) = wn be the following piecewise linear approximation of B(t, w)
= w(t):

(2.2.1) Bn,p(t, w) = wp
(
k

2n

)
+ 2n

(
t− k

2n

)(
wp
(
k + 1

2n

)
− wp

(
k

2n

))
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for each p = 1, . . . ,m and kT/2n ≤ t < (k + 1)T/2n for k = 0, 1, . . . , 2n − 1.
We introduce the following notation and functions

δ =
1
n

1
2n
, t−n (t) =

[2nt]
2n

, t+n (t) =
[2nt] + 1

2n
, m(t) =

t−n (t)
1
2n

,

where [·] denotes the integer part of the real number.
For further considerations we need the notion of a segment of a trajectory.

Let f be a function of t ∈ (−∞, T ]. For a fixed t ∈ [0, T ], the function ft on
(−∞, 0] defined by the formula

ft(θ) = f(t+ θ)

is called the segment of the trajectory of f on (−∞, t].
For the stochastic process X(t, w) we define

Xt(θ, w) = X(t+ θ, w), θ ∈ J ;

therefore Xt(·, w) is the segment of the trajectory X(·, w) on (−∞, t].

2.3. Description of the model. Now we consider Ω̃ = C0
2. Let X be a

continuous stochastic process X(t, w) : (−∞, T ] × Ω̃ → Rd, that is, X : Ω̃ →
X = C1.

We take some fixed initial constant stochastic processes Xi(0+θ, w) = Xi
0(w)

= Xn,i
0 (w) = Y i0 (w) for θ ∈ J , i = 1, . . . , d. We also consider operators b : C− →

Rd, σ : C− → L(Rm,Rd) (L(Rm,Rd) is the Banach space of linear functions from
Rm to Rd with the uniform operator norm | · |L).

We introduce the condition

(Ã1) for every t ∈ (−∞, T ] the algebra B−∞,t(X)∪B−∞,t(dB) is independent
of Bt,T (dB)

to give a meaning to the stochastic integrals in (2.3.1) below.
We assume

(Ã2) b and σ are continuous operators.

Now we introduce the operators b̃ : C− → C− and σ̃ : C− → C(J, L(Rm,Rd)),
where

b̃ : C− 3 g → (J 3 τ → b(g(·+ τ)) ∈ Rd) ,
σ̃ : C− 3 g → (J 3 τ → σ(g(·+ τ)) ∈ L(Rm,Rd)) ,

that is, using the shift transformation Sτ : J 3 ϑ→ ϑ+ τ for τ < 0,

[̃b(g)](τ) = b(g ◦ Sτ ) = b(g(·+ τ)) ,
[σ̃(g)](τ) = σ(g ◦ Sτ ) = σ(g(·+ τ)) .

R e m a r k 2.3.1. This construction explains why we take (−∞, 0] to be the
domain of the initial function. If we took the interval [−r, 0], r > 0, to be the
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domain it would be impossible to define b̃ and σ̃ correctly (that is, for Xt = Yt it
could happen that σ̃(Xt) 6= σ̃(Yt)).

We consider the following stochastic differential equation with delayed argu-
ment:

(2.3.1) Xi(t, w) = Xi
0(w) +

t∫
0

bi(Xs(·, w)) ds+
m∑
p=1

t∫
0

σip(Xs(·, w)) dwp(s)

for i = 1, . . . , d. By replacing the Wiener process by Bn we obtain the following
approximations of (2.3.1):

Xn,i(t, w) = Xn,i
0 (w) +

t∫
0

bi(Xn
s (·, w)) ds(2.3.2n)

+
m∑
p=1

t∫
0

σip(Xn
s (·, w))Ḃn,p(s, w) ds .

We also introduce another stochastic differential equation:

Y i(t, w) = Y i0 (w) +
t∫

0

bi(Ys(·, w)) ds+
m∑
p=1

t∫
0

σip(Ys(·, w)) dwp(s)(2.3.3)

+
1
2

m∑
p=1

d∑
j=1

t∫
0

D̃jσ
ip(Ys(·, w))σjp(Ys(·, w)) ds

for every i = 1, . . . , d. Further, Dσip is the Fréchet derivative from C− to L(C−,R)
(the necessary assumptions are given below), while D̃jσ

ip(Ys(·, w)) = µipjs,w,Y ({0})
is the jth coordinate of a measure µ = µips,w,Y on C− taken at {0} such that

µ(Φ) =
d∑
j=1

0∫
−∞

Φj(v)µj(dv) .

We have µ(A) = µ(A∩ (−∞, 0)) + µ(A∩ {0}) = µ̃(A) + µ({0})δ0(A), where δ0 is
the Dirac measure, A ∈ B((−∞, 0]). It is obvious that

Dσip(g)(Φ) =
d∑
j=1

0∫
−∞

Φj(v)µipjs,w,g(dv)

is a directional derivative. We shall also use the property of the Dirac measure
that for a smooth function h(·) we have

∫ 0

−∞ h(v) δ0(dv) = h(0). We introduce a
function

Ãjpnt : J 3 τ → σjp(Xn
t+τ (·, w))Ḃn,p(t+ τ, w) ∈ R .

We put Ψ(t, w) = b(Xt(w)) and Φ(t, w) = σ(Xt(w)). The second integral in
(2.3.1) is the Itô integral ([27], [40]).

Let us introduce the following conditions:
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(Ã3) The initial process X0 is F0-measurable and P (|X0(w)| <∞) = 1, where
|X0(w)| =

∑d
i=1 |Xi

0(w)|, B−∞,0(X0) is independent of B0,T (B).

(Ã4) For every ϕ,ψ ∈ C− the following Lipschitz condition is satisfied:

|b(ϕ)− b(ψ)|2 + |σ(ϕ)− σ(ψ)|2L

≤ L1
0∫

−∞
|ϕ(θ)− ψ(θ)|2 dK(θ) + L2|ϕ(0)− ψ(0)|2,

where K(θ) is a bounded measure on J , and L1, L2 are some constants.

(Ã5) For every ϕ ∈ C− the following growth condition is satisfied:

|b(ϕ)|2 + |σ(ϕ)|2L ≤ L1
0∫

−∞
(1 + ϕ2(θ)) dK(θ) + L2(1 + ϕ2(0)) ,

where ϕ2(0) =
∑d
i=1 ϕ

2
i (0).

(Ã6) We have

P
( T∫
0

|b(Xs)| ds <∞
)

= 1, P
( T∫
0

|σ(Xs)|2L ds <∞
)

= 1 .

(Ã7) bi, σip ∈ C1
b(C−), for every i = 1, . . . , d, p = 1, . . . ,m, where C1

b denotes
the space of bounded mappings with continuous first derivative, that is,
for every A > 0 and ε > 0 there exist B > 0 and δ > 0 such that
‖X1

s −X2
s‖[−B,0] < δ implies∣∣∣ 0∫
−∞

Φ(v)µ1(dv)−
0∫

−∞
Φ(v)µ2(dv)

∣∣∣ < ‖Φ‖[−A,0]ε
(‖ · ‖[−B,0] denotes the usual supremum norm on [−B, 0]).

Definition 2.3.1. We say that a d-dimensional continuous stochastic process
X : (−∞, T ]×C0

2 → Rd is a strong solution to equation (2.3.1) for a given process
w(t) if conditions (Ã1), (Ã2), (Ã6) are satisfied and equation (2.3.1) is valid with
probability 1 for all t ∈ (−∞, T ].

The uniqueness of strong solutions is understood in the sense of trajectories:
for any two strong solutions X and X̃ to equation (2.3.1) defined on the same
probability space we have

P ( sup
t∈(−∞,T ]

|X(t, w)− X̃(t, w)| > 0) = 0 .

Definition 2.3.2. An absolutely continuous stochastic process Xn : (−∞, T ]
×C0

2 → Rd is a solution to equation (2.3.2n) if conditions (Ã2), (Ã3) are satisfied
and equation (2.3.2n) is valid with probability 1 for all t ∈ (−∞, T ].
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Notice that conditions (Ã2)–(Ã7) ensure the existence and uniqueness of the
strong solution Y to equation (2.3.3). Indeed (see [28], Sections 5 and 7), under
conditions (Ã2)–(Ã5) there exists a strong solution to equation (2.3.1). The
uniqueness may be derived from the proof of Theorem 11, Section 10 of [28],
for the multidimensional case with an additional remark that measurability is a
consequence of continuous dependence of solutions on the initial condition. Now
we consider the term

(2.3.4) bi(Yt(·, w)) + D̃jσ
ip(Yt(·, w))σjp(Yt(·, w))

in equation (2.3.3). Since D̃jσ
ip is a measure, we have

|D̃jσ
ip(ϕ)σjp(ϕ)| ≤ C|σjp(ϕ)|,

|D̃jσ
ip(ϕ)σjp(ϕ)− D̃jσ

ip(ψ)σjp(ψ)| ≤ C|σjp(ϕ)− σjp(ψ)| ,

where C is a constant. Thus, conditions (Ã4) and (Ã5) are satisfied for the term
(2.3.4). It is obvious that the other conditions are also satisfied and equation
(2.3.3) also has exactly one strong solution.

Moreover, for every n ∈ N, under condition (Ã4) there exists exactly one
solution to the ordinary differential equation (2.3.2n) with delayed argument (see
[25] and [28]).

The following limit Znt is understood in the sense of the locally convex topology
in C−:

Znt (·) = lim
h→0

Xn
t+h(·)−Xn

t (·)
h

,

that is,

max
−r≤θ≤0

∣∣∣∣ 1h (Xn
t+h(θ)−Xn

t (θ))− Znt (θ)
∣∣∣∣→ 0 as h→ 0 ,

for every r > 0.
We have

Znt (θ) =
d

dt
Xn
t (θ) = Ẋn(t+ θ), θ ∈ J .

Putting u = t+ θ we have

Ẋn(t+ ·) : θ → dXn(u)
du

, −∞ < u ≤ t .

Moreover, it is obvious that

dXt(θ)
dt

=
dXt(θ)
dθ

because Xt(θ) = X(t+ θ).
If we view t as a variable we have

Ẋn. : [0, T ] 3 t→ Ẋn
t ∈ C− .
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2.4. Approximation theorem. We have proved in [79] the following

Theorem 2.4.1. Let conditions (Ã2)–(Ã5) and (Ã7) be satisfied. Let Bn(t, w)
be the approximation of type (2.2.1) of the Wiener process. We assume that Xn

and Y are solutions to (2.3.2n) and (2.3.3), respectively , with a constant initial
stochastic process. Then, conditions (Ã1) and (Ã6) are satisfied and , for every
T > 0,

lim
n→∞

sup
0≤t≤T

E[|Xn(t, w)− Y (t, w)|2] = 0 .

P r o o f. The assumptions of the theorem ensure the existence and uniqueness
of the solutions to equations (2.3.2n) and (2.3.3). For every i = 1, . . . , d we
subtract equations (2.3.2n) and (2.3.3):

Xn,i(t, w)− Y i(t, w) = H1(t) +H2(t) +H3 +H4(t) ,

where

H1(t) =
m∑
p=1

t∫
t−n

σip(Xn
s (·, w))Ḃn,p(s, w) ds−

m∑
p=1

t∫
t−n

σip(Ys(·, w)) dwp(s)

− 1
2

m∑
p=1

d∑
j=1

t∫
t−n

D̃jσ
ip(Ys(·, w))σjp(Ys(·, w)) ds

= H11(t)−
m∑
p=1

Hp
12(t)−H13(t),

H2(t) =
m∑
p=1

t−n∫
1/2n

σip(Xn
s (·, w))Ḃn,p(s, w) ds−

m∑
p=1

t−n∫
1/2n

σip(Ys(·, w)) dwp(s)

− 1
2

m∑
p=1

d∑
j=1

t−n∫
1/2n

D̃jσ
ip(Ys(·, w))σjp(Ys(·, w)) ds,

H3 =
m∑
p=1

1/2n∫
0

σip(Xn
s (·, w))Ḃn,p(s, w) ds−

m∑
p=1

1/2n∫
0

σip(Ys(·, w)) dwp(s)

− 1
2

m∑
p=1

d∑
j=1

1/2n∫
0

D̃jσ
ip(Ys(·, w))σjp(Ys(·, w)) ds,

H4(t) =
t∫

0

bi(Xn
s (·, w)) ds−

t∫
0

bi(Ys(·, w)) ds.

Below, cl, l = 0, 1, . . . , 21, denote some positive constants.
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From (2.3.2n) we have

(2.4.1) |Xn,i(t, w)−Xn,i(s, w)| ≤ c0
( m∑
p=1

t∫
s

|Ḃn,p(u,w)| du+ (t− s)
)
.

From the boundedness of σ we obtain

E[ sup
0≤t<T

|H11(t)|2]

≤ E
[

sup
0≤t≤T

∣∣∣∣ m∑
p=1

(
1
2n

sup
s
σip(Xn

s (·, w))
)2( t+n∫

t−n

(Ḃn,p(s, w))2 ds
)∣∣∣∣]

≤ c1
1
2n
E
[

sup
0≤t≤T

( t+n∫
t−n

|Ḃn,p(s, w)| ds
)2]

≤ c1
1
2n
E
[

sup
k

( (k+1)/2n∫
k/2n

|Ḃn,p(s, w)| ds
)4]1/2

= c1
1
2n

(m(T )∑
k=1

E

[
Bn,p

(
k + 1

2n
, w

)
−Bn,p

(
k

2n
, w

)]4)1/2

≤ c1
1
2n

(
m(T )3

(
1
2n

)2)1/2

≤ c2
(

1
2n

)3/2

.

Therefore

E[ sup
0≤t≤T

|H11(t)|2]→ 0 as n→∞ .

Further, we estimate

E[ sup
0≤t≤T

|Hp
12(t)|2] = E

[
sup

0≤t≤T

∣∣∣ t∫
t−n

σip(Ys−n (·, w)) dwp(s)

+
t∫

t−n

(σip(Ys(·, w))− σip(Ys−n (·, w))) dwp(s)
∣∣∣2]

≤ E
[

sup
0≤t≤T

∣∣∣ t∫
t−n

σip(Ys−n (·, w)) dwp(s)
∣∣∣2]

+ E
[

sup
0≤k≤m(T )

sup
0≤t≤1/2n

∣∣∣ k/2n+t∫
k/2n

(σip(Ys(·, w))

− σip(Ys−n (·, w))) dwp(s)
∣∣∣2] = Ĥ1(t) + Ĥ2(t) .
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From the Hölder inequality, from the well-known inequality for the Itô inte-
grals, the assumptions on σip and (7.32) in [27], we have

Ĥ1(t) ≤ E
[

sup
0≤t≤T

t∫
t−n

σip(Ys−n (·, w))2 ds
]

≤ c3
( t∫
t−n

ds
)2

≤ c4
(

1
2n

)2

→ 0 as n→∞ .

Let w′ be the Wiener process translated in time, i.e., w′(t) = w(t + k/2n) −
w(k/2n). It is obvious that the process Yk/2n+t may be considered as the solu-
tion to (2.3.3) after replacing w by w′ and Y0 by Yk/2n defined by the formula
Yk/2n(θ) = Y (k/2n + θ). Let Bk be the smallest σ-algebra such that Yk/2n is
a stochastic process with respect to it. Let Y ξt be the solution to (2.3.3) with
the initial condition Y ξ0 = ξ. Let E′ denote the expectation and conditional ex-
pectation with respect to w′. Since the increments of the Wiener process are
stationary, we may replace computing the expectation of the original process by
computing E′ for the translated process. Therefore, using (Ã4) we have

Ĥ2(t) ≤
m(T )∑
k=0

E′
{
E
[

sup
0≤t≤k/2n

( t∫
0

(σip(Yk/2n+s(·, w))

− σip(Yk/2n(·, w))) dwp(s)
)2]
| Bk

}
≤ c5

m(T )∑
k=0

E′
{
E
[ 1/2n∫

0

(σip(Ys(·, w))− σip(ξ))2ds
]
| Bk

}

≤ c6(m(T ) + 1)
d∑
i=1

E′
{
E

[ 1/2n∫
0

(
L1

0∫
−∞

|Y iξs (u)− Y ik/2n(u)|2 dK(u)

+ L2

∣∣∣∣Y iξ(s)− Y i( k

2n

)∣∣∣∣2) ds] | Bk

}
,

where ξ(θ) = Y (k/2n + θ) and, as in (7.57) of [27], we get

Ĥ2(t) ≤ c7
1
2n
→ 0 as n→∞ .

From (Ã7) we have

E[ sup
0≤t≤T

|H13(t)|2] =
1
2
E
[

sup
0≤t≤T

∣∣∣ m∑
p=1

d∑
j=1

t∫
t−n

D̃jσ
ip(Ys(·, w))σjp(Ys(·, w))

∣∣∣2 ds]

≤ c8
∣∣∣ t∫
t−n

ds
∣∣∣2 ≤ c9( 1

2n

)2

→ 0 as n→∞ .
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To estimate H2(t) we first represent the integral
∫ t−n
t+n

as
∑m(t)−1
k=1

∫ (k+1)/2n

k/2n .
Observe that for −∞ < u ≤ 0,

Xn,i(t+ u,w) = Xn,i(0) +
t+u∫
0

bi(Xn
s (·, w)) ds

+
m∑
p=1

t+u∫
0

σip(Xn
s (·, w))Ḃn,p(s, w) ds

= Xn,i(0) +
t∫

−u
bi(Xn

s+u(·, w)) ds

+
m∑
p=1

t∫
−u

σip(Xn
s+u(·, w))Ḃn,p(s+ u,w) ds

= Xn,i(u) +Xn,i(0)−Xn,i(0) +
t∫

0

bi(Xn
s+u(·, w)) ds

+
m∑
p=1

t∫
0

σip(Xn
s+u(·, w))Ḃn,p(s+ u,w) ds,

where we have used the assumption that the initial process is constant. Therefore,
for −∞ < τ ≤ 0 we have

(2.4.2)
dXn,i(t+ ·, w)

dt
(τ) = bi(Xn

t+τ (·, w))+
m∑
p=1

σip(Xn
t+τ (·, w))Ḃn,p(t+ τ, w) .

Now consider

H =
(k+1)/2n∫
k/2n

σip(Xn
s (·, w))Ḃn,p(s, w) ds

= σip(Xn
k/2n(·, w))

(
Bn,p

(
k + 1

2n
, w

)
−Bn,p

(
k

2n
, w

))
+ (σip(Xn

(k+1)/2n(·, w))− σip(Xn
k/2n(·, w)))Bn,p

(
k + 1

2n
, w

)
−

(k+1)/2n∫
k/2n

Dσip(Xn
s (·, w))

dXn(s+ ·, w)
ds

Bn,p(s, w) ds

= J1(k) +
(k+1)/2n∫
k/2n

Dσip(Xn
s (·, w))

×
(
b̃(Xn

s (·, w)) +
m∑
p=1

Ãs
pn
)(

Bn,p
(
k + 1

2n
, w

)
−Bn,p(s, w)

)
ds .
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It follows that

H = J1(k) +
d∑
j=1

(k+1)/2n∫
k/2n

0∫
−∞

bj(Xn
s+v(·, w))µipjs,w,X (dv)

×
(
Bn,p

(
k + 1

2n
, w

)
−Bn,p(s, w)

)
ds

+
d∑
j=1

(k+1)/2n∫
k/2n

0∫
−∞

m∑
p=1

σjp(Xn
s+v(·, w))Ḃn,p(s+ v, w) µ̃ipjs,w,X(dv)

×
(
Bn,p

(
k + 1

2n
, w

)
−Bn,p(s, w)

)
ds

+
d∑
j=1

(k+1)/2n∫
k/2n

m∑
p=1

D̃jσ
ip(Xn

s (·, w))σjp(Xn
s (·, w))Ḃn,p(s, w)

×
(
Bn,p

(
k + 1

2n
, w

)
−Bn,p(s, w)

)
ds

= J1(k) +
3∑
r=1

d∑
j=1

Jjr2(k) .

As in [27], we write

J1(k) = σip(Xn
k/2n−δ(·, w))

(
wp
(
k + 1

2n

)
− wp

(
k

2n

))
+ (σip(Xn

k/2n(·, w))

− σip(Xn
k/2n−δ(·, w)))

(
Bn,p

(
k + 1

2n
, w

)
−Bn,p

(
k

2n
, w

))
+ σip(Xn

k/2n−δ(·, w))
(
Bn,p

(
k + 1

2n
, w

)
− wp

(
k + 1

2n

))
+ σip(Xn

k/2n−δ(·, w))
(
wp
(
k

2n

)
−Bn,p

(
k

2n
, w

))
= J11(k) + . . .+ J14(k)

and

H2(t) =
m∑
p=1

(m(t)−1∑
k=1

J11(k)−
t−n∫

1/2n

σip(Ys(·, w)) dwp(s)

+
m(t)−1∑
k=1

J12(k) +
m(t)−1∑
k=1

J13(k) +
m(t)−1∑
k=1

J14(k)



20 K. Twardowska

+
d∑
j=1

(m(t)−1∑
k=1

3∑
r=1

Jjr2(k)− 1
2

t−n∫
1/2n

D̃jσ
ip(Ys(·, w))σjp(Ys(·, w)) ds

))

=
m∑
p=1

(Ĩ1(t) + . . .+ Ĩ5(t))

(for simplicity we ignore the dependence on p in notation). Now we estimate each
of Ĩ1, . . . , Ĩ5, successively. For every t1 ∈ [0, T ], using the martingale inequality,
(2.4.1), (Ã4), and (7.2) in [27], we obtain

E[ sup
0≤t≤t1

|Ĩ1(t)|2] = E
[

sup
0≤t≤t1

∣∣∣ t−n∫
1/2n

(σip(Xs−n−δ(·, w))− σip(Ys(·, w))) dwp(s)
∣∣∣2]

≤ c10
( t1∫

0

E[|Y (s, w)−Xn(s, w)|2] ds

+
t1∫

0

( 0∫
−∞

E[|Ys1(·, w)−Xn
s1(·, w)|2] dK(s1)

)
ds+

n

2n

)
.

Now from (2.4.1) and the Hölder inequality we get

E[ sup
0≤t≤t1

|Ĩ2(t)|2]

≤ E
[m(T )−1∑

k=1

(σip(Xn
k/2n(·, w))

− σip(Xn
k/2n−δ(·, w)))2

m(T )−1∑
k=1

(
Bn,p

(
k + 1

2n
, w

)
−Bn,p

(
k

2n
, w

))2]

≤ c11
(
m(T )

m(T )−1∑
k=1

E

[
L1

( 0∫
−∞

|Xn
k/2n(θ)−Xn

k/2n−δ(θ)| dK(θ)

+ L2

∣∣∣∣X( k

2n
, w

)
−Xn

(
k

2n
− δ, w

)∣∣∣∣)4]
×m(T )

m(T )−1∑
k=1

E

[∣∣∣∣Bn,p(k + 1
2n

, w

)
−Bn,p

(
k

2n
, w

)∣∣∣∣4])1/2

≤ c12
(
m(T )

m(T )−1∑
k=1

E

[∣∣∣∣Xn

(
k

2n
, w

)
−Xn

(
k

2n
− δ, w

)∣∣∣∣4]

×m(T )
m(T )−1∑
k=1

E

[
Bn,p

(
k + 1

2n
, w

)
−Bn,p

(
k

2n
, w

)]4)1/2
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≤ c13
(

(m(T ))2
(

1
n

1
2n

)2

(m(T ))2
(

1
2n

)2)1/2

≤ c14
1
n
→ 0 as n→∞ .

Let

ηl(w) =
l∑

k=1

σip(Xn
k/2n−δ(·, w))Bn,p(0, θ(k+1)/2nw) ,

where θtw(s) = w(t + s) − w(t). It is obvious that ηl is an Fl-martingale for
Fl = B(l+2)/2n .

Since Ĩ3(t) as well as Ĩ4(t) written as ηl(w) are Fl-martingales, from the mar-
tingale inequality we have

E[ sup
0≤t≤T

|Ĩ3(t)|2] ≤ c15
1
n
→ 0 as n→∞

and

E[ sup
0≤t≤T

|Ĩ4(t)|2] ≤ c16
1
n
→ 0 as n→∞ .

We write Ĩ5(t) =
∑d
j=1 J

j
5 (t), where

Jj5 (t) =
m(t)−1∑
k=1

3∑
r=1

Jjr2(k)

− 1
2

m(t)−1∑
k=1

(k+1)/2n∫
k/2n

D̃jσ
ip(Ys(·, w))σjp(Ys(·, w)) ds .

It follows that

Jj5 (t) =
m(t)−1∑
k=1

(k+1)/2n∫
k/2n

(D̃jσ
ip(Xn

s (·, w))σjp(Xn
s (·, w))

− D̃jσ
ip(Xn

k/2n(·, w))σjp(Xn
k/2n(·, w)))Ḃn,p(s, w)

(
Ḃn,p

(
k + 1

2n
, w

)

−Bn,p(s, w)
)
ds+

m(t)−1∑
k=1

(k+1)/2n∫
k/2n

0∫
−∞

bj(Xn
s+v(·, w))µipjs,w(dv)

×
(
Bn,p

(
k + 1

2n
, w

)
−Bn,p(s, w)

)
ds

+
m(t)−1∑
k=1

(k+1)/2n∫
k/2n

D̃jσ
ip(Xn

k/2n(·, w))σjp(Xn
k/2n(·, w))
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×
(
Ḃn,p(s, w)

(
Bn,p

(
k + 1

2n
, w

)
−Bn,p(s, w)

)
− cp

(
1
2n
, n

))
ds

+
1
2

m(t)−1∑
k=1

(k+1)/2n∫
k/2n

(D̃jσ
ip(Xn

k/2n(·, w))σjp(Xn
k/2n(·, w))

− D̃jσ
ip(Ys(·, w))σjp(Ys(·, w))) ds

+
m(t)−1∑
k=1

1
2n
D̃jσ

ip(Xn
k/2n(·, w))σjp(Xn

k/2n(·, w))
(
cp

(
1
2n
, n

)
− 1

2

)

+
m(t)−1∑
k=1

Jj22(k)

= I51(t) + . . .+ I55(t) + I56(t) ,

where

cj(t, n) = (1/t)E
[ t∫
0

Ḃn,js (·, w)(Bn,j(t, w)−Bn,j(s, w)) ds
]

and limn→∞ cj(1/2n, n) = 1/2 (see [27], Lemma 7.1).
Since Xn is uniformly continuous on every finite interval, Xn

s is continuous as a
function of the variable s with functional values and we may estimate (analogously
to [27])

E[ sup
0≤t≤T

|I5j(t)|2]→ 0 as n→∞, for j = 1, 2, 3, 5, 6 .

Further, using (Ã4) and (7.68) of [27], for every t1 ∈ [0, T ], we obtain as in [79]

E[ sup
0≤t≤t1

|I54(t)|2] ≤ c17
( t1∫
0

E[|Y (s, w)−Xn(s−n , w)|2] ds

+
t1∫

0

( 0∫
−∞

E[|Ys1(·, w)−Xn
s−1,n

(·, w)|2] dK(s1)
)
ds
)

≤ c18
( t1∫

0

E[|Y (s, w)−Xn(s, w)|2] ds

+
t1∫

0

( 0∫
−∞

E[|Ys1(·, w)−Xn
s1(·, w)|2] dK(s1)

)
ds+

2n
2n

)
.

It is obvious that |H3| ≤ sup0≤t≤T |H1(t)|, hence

E[|H3|2]→ 0 as n→∞ .
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For every t1 ∈ [0, T ], using the Hölder inequality and (Ã4) we obtain

E[ sup
0≤t≤t1

|H4(t)|2] ≤ c19
( t1∫
0

E[|Y (s, w)−Xn(s, w)|2] ds

+
t1∫

0

( 0∫
−∞

E[|Ys1(·, w)−Xn
s1(·, w)|2] dK(s1)

)
ds
)
.

Now we shall use the general Gronwall lemma ([40], Lemma 4.13).

Lemma. Let k0, k1, k2 be nonnegative constants, let u be a bounded function
on (−∞, T ] and v be a nonnegative integrable function. We assume that K is a
nondecreasing nonnegative right-continuous function such that 0 ≤ K(s) ≤ 1 and
that

u(t) ≤ k0 + k1

t∫
0

v(s)u(s) ds+ k2

t∫
0

v(s)
0∫

−∞
u(s1) dK(s1) ds .

Then

u(t) ≤ k0 exp
(

(k1 + k2)
t∫

0

v(s) ds
)
.

We use this lemma for u(t) = E[sup0≤s≤t |Y (t, w)−Xn(t, w)|2] and v(t) = 1.
We obtain

E[ sup
0≤t≤t1

|Xn(t, w)− Y (t, w)|2]

≤ o(1) + c20

( t1∫
0

E[ sup
0≤s≤t

|Xn(s, w)− Y (s, w)|2] ds

+
t1∫

0

( 0∫
−∞

E[ sup
0≤s≤t

|Xn
s1(·, w)− Ys1(·, w)|2] dK(s1)

)
ds
)
,

with o(1) uniformly convergent for t1 ∈ [0, T ]. Consequently, we have

E[ sup
0≤t≤t1

|Xn(t, w)− Y (t, w)|2] ≤ o(1) exp(c21T )→ 0 as n→∞ .

This completes the proof.

R e m a r k 2.4.1. Instead of the interval J = (−∞, 0] we can consider J =
[−r, 0], r > 0. Then, instead of considering Xi(tni +s)−Xi(tni−1 +s) on the whole
interval of definition (tni−1, tni are certain points of a partition of the time axis),
we observe that
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Xi(tni + s)−Xi(tni−1 + s)

=



Xi
0(tni + s)−Xi

0(tni−1 + s) for tni + s ≤ 0,
Xi

0(0)−Xi
0(tni−1 + s) +

∫ tni +s

0
bi(Xu(·)) du

+
∑m
p=1

∫ tni +s

0
σij(Xu(·)) dwp(u) for tni−1 + s ≤ 0 ≤ tni + s,∫ tni +s

tn
i−1+s

bi(Xu(·)) du+
∑m
p=1

∫ tni +s

tn
i−1+s

σij(u,Xu(·)) dwp(u)
for tni−1 + s > 0,

and we estimate each part separately by expressions converging to zero.
Instead of the constant initial condition X0(·) we can take a function satisfying

the Hölder condition

‖X0(t)−X0(s)‖2 ≤ Z(ω)|t− s|β , β > 0 .

Then
‖X0(tni + s)−X0(tni−1 + s)‖2 ≤ Z(ω)|tni − tni−1|β ,

and we obtain convergence to zero. Under suitable assumptions on the random
variable Z(ω) we can prove the convergence in the mean-square sense or with
probability one.

2.5. Examples

Example 2.5.1. Consider the equation

dX(t) = Σ(Xt) dw(t), X0(θ, w) = η(w) for θ ∈ J ,
where Σ : C− → R, Σ(ϕ) = ϕ(−1), that is, ϕ(−1) = Xt(−1) = X(t− 1). Then

dX(t) = X(t− 1) dw(t), X0 = η ,

and equation (2.3.3) is of the form

dY (t) = Y (t− 1) dw(t), Y0 = η ,

because the measure µ is concentrated on the set {−1} only and hence µ({0}) = 0.
Therefore, there is no difference between the initial and limit equations.

Using the step-by-step method of solving delay equations we take, for example,
the equation

dX(t) = X(t− 1)dw(t) for t ≥ 0 ,
X(t) = 1 for t ∈ [−1, 0]

and
dXn(t) = Xn(t− 1)ẇn(t) dt for t ≥ 0 ,
Xn(t) = 1 for t ∈ [−1, 0] .

We obtain in the first step for t ∈ [0, 1],

dX(t) = dw(t), X(0) = 1

and
dXn(t) = ẇn(t) dt, Xn(0) = 1 .
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After integrating we get

X(t) = X(0) +
t∫

0

dw(s) = 1 + w(t)

and

Xn(t) = Xn(0) +
t∫

0

ẇn(s) ds = 1 + wn(t) .

In the second step we consider for t ∈ [1, 2],

dX(t) = (1 + w(t− 1))dw(t), X(1) = 1 + w(1)

and

dXn(t) = (1 + wn(t− 1))wn(t) dt, Xn(1) = 1 + wn(1) .

We obtain

X(t) = 1 + w(t) +
t∫

1

w(s− 1) dw(s)

and

Xn(t) = 1 + wn(1) +
t∫

1

wn(s− 1)ẇn(s) ds .

It is easy to observe that Xn(t) → X(t) = Y (t) as n → ∞ (in the mean-square
sense).

Example 2.5.2. Now we consider the equation

dX(t) = B(Xt) dt+Σ(Xt)dw(t), X0(θ, w) = η(w) for θ ∈ J ,

where for some constants b0, b1, σ0 and σ1, we define B,Σ : C− → R,

B(ϕ) = b0ϕ(0) + b1ϕ(−r), Σ(ϕ) = σ0ϕ(0) + σ1ϕ(−r) .

We note that ϕ(0) = Xt(0) = X(t), ϕ(−r) = Xt(−r) = X(t− r) and

dX(t) = (b0X(t) + b1X(t− r)) dt+ (σ0X(t) + σ1X(t− r))dw(t) ,
X0 = η .

Then equation (2.3.3) is of the form

dY (t) = (b0Y (t) + b1Y (t− r))dt+ (σ0Y (t) + σ1Y (t− r))dw(t)
+ 1

2σ0(σ0Y (t) + σ1Y (t− r))dt ,
Y0 = η

because σ0X(t) is the only term for which the support of the measure contains
zero. Therefore, µ({0}) = σ0.
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3. An extension of the Wong–Zakai theorem
to stochastic evolution equations in Hilbert spaces

3.1. Introductory remarks. In this chapter we examine an approximation
theorem of Wong–Zakai type for stochastic evolution equations in a Hilbert space
with the noise being the generalized derivative of the Wiener process with val-
ues in another Hilbert space. As a consequence of the approximation of the
Wiener process we get in the limit equation the Itô correction term for the
infinite-dimensional case. The result obtained includes the case of stochastic
delay equations. The uniqueness and existence of solutions are guaranteed by
known theorems for mild solutions. The model considered here is more compli-
cated than that examined by the author in [78]; also, the approximation theorem
is proved under weaker assumptions than in [78]. Namely, a nonlinear term with
a nonlinear operator C is added, assumption (Ã5) is weakened. Moreover, the
proof is performed from the very beginning for the infinite-dimensional Wiener
process while in [78] it was done for the one-dimensional Wiener process and then
the necessary changes were indicated.

3.2. Definitions and notation. Let H and H1 be real separable Hilbert
spaces with the norms ‖·‖H , ‖·‖H1 and the scalar products 〈·, ·〉H , 〈·, ·〉H1 . Let
(Ω,F, (Ft)t∈[0,T ], P ) be a filtered probability space on which an increasing and
right-continuous family (Ft)t∈[0,T ] of complete sub-σ-algebras of F is defined.
L(H,H1) denotes the space of bounded linear operators from H to H1. Let
L2(H,H1) be the space of Hilbert–Schmidt operators with the norm ‖·‖HS.

We take an H-valued Wiener process w(t), t ∈ [0, T ], with nuclear covariance
operator Q ∈ L(H) = L(H,H).

It is known [14] that there are real-valued independent Wiener processes
{wi(t)}∞i=0 on [0, T ] such that

w(t) =
∞∑
i=0

wi(t)ei

almost everywhere in (t, ω) ∈ [0, T ] × Ω, where {ei}∞i=0 is an orthonormal basis
of eigenvectors of Q corresponding to eigenvalues {λi}∞i=0,

∑∞
i=0 λi < ∞, with

E[∆wi∆wj ] = (t−s)λiδij for ∆wi = wi(t)−wi(s) and s < t (δij is the Kronecker
delta).

Let (see [10])

ΛT (w,H,H1)

=
{
Ψ : Ψ : [0, T ]×Ω → L(H,H1) is a progressively measurable process,

E
[ T∫
0

‖ΨQ1/2‖2HS ds
]

= ‖Ψ‖2ΛT
=
∞∑
i=0

E
[ T∫
0

‖Ψ(s, ω)ei‖2H1
ds
]
<∞

}
.
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It is known that for Ψ ∈ ΛT the stochastic integral
∫
Ψ dw is well defined and

it can be represented by

(3.2.1)
t∫

0

Ψ(s, ω) dw(s) =
∞∑
i=0

t∫
0

Ψ(s, ω)ei dwi(s) .

The convergence in (3.2.1) is in L2(Ω) for each t > 0.

3.3. Description of the model. We consider the stochastic differential
equation

(3.3.1)
dz(t) = Az(t)dt+ C(z(t))dt+ B(z(t))dw(t) ,
z(0) = z0 ,

where
(A1) (z(t))t∈[0,T ] is an H1-valued stochastic process, (w(t))t≥0 is an H-valued

Wiener process with the covariance operator Q, A : H1 ⊃ D(A)→ H1 is
the infinitesimal generator of a strongly continuous semigroup (S(t))t≥0,
C : H1 → H1 and B : H1 → L(H,H1) are bounded nonlinear operators.
Moreover, we assume that (S(t))t≥0 is a semigroup of contraction type,
i.e., there exists a constant β ∈ R+ such that ‖S(t)‖H1 ≤ exp(βt) for all
t ∈ [0, T ],

(A2) z0 ∈ D(A) is an H1-valued square integrable F0-measurable initial random
variable.

Apart from (3.3.1) we consider the equation

(3.3.2)

dẑ(t) = Aẑ(t)dt+ C(ẑ(t))dt+ B(ẑ(t))dw(t)

+ 1
2 t̃r(QDB(ẑ(t))B(ẑ(t)))dt,

ẑ(0) = z0 ,

where t̃r(QDB(ẑ(t))B(ẑ(t))) is defined below.
We observe that the Fréchet derivative DB(h1) ∈ L(H1, L(H,H1)) for h1 ∈ H1

and we consider the composition DB(h1)B(h1) ∈ L(H,L(H,H1)). We view the
Fréchet derivative of B(h1) as DB(h1, h2) since h2 → DB(h1, h2), h2 ∈ H1, is
linear and belongs to L(H1, L(H,H1)). Let Ψ ∈ L(H,L(H,H1)) and define (see
[19]) Bh̃1

(h, h′) := 〈Ψ(h)(h′), h̃1〉H1 ∈ R for h, h′ ∈ H. From the Riesz theorem
for the form Ψ on H we conclude that for every h̃1 ∈ H1 there exists an operator
Ψ̃(h̃1) ∈ L(H) such that for every h, h′ ∈ H

(3.3.3) Bh̃1
(h, h′) = 〈Ψ̃(h̃1)(h), h′〉H = 〈Ψ(h)(h′), h̃1〉H1 .

Now, the covariance operator Q has finite trace and therefore the mapping

ξ̃ : H1 3 h̃1 → tr(QΨ̃(h̃1)) ∈ R
is a linear bounded functional on H1. Therefore, using the Riesz theorem we find
a unique ˜̃h1 ∈ H1 such that ξ̃(h̃1) = 〈˜̃h1, h1〉H1 .
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Define ˜̃h1 = t̃r(QΨ) .

We observe that 〈˜̃h1, h̃1〉H1 is the trace of the operator QΨ̃(h̃1) ∈ L(H) but
t̃r(QΨ) is merely a symbol for ˜̃h1.

Since

tr[QΨ̃(h̃1)] =
∞∑
j=0

〈Ψ̃(h̃1)ej , ej〉H =
∞∑
j=0

〈Ψ̃(h̃1)ej , Q∗ej〉H

=
∞∑
j=0

〈Ψ̃(h̃1)ej , Qej〉H =
∞∑
j=0

〈Ψ(ej)(Qej), h̃1〉H1

=
∞∑
j=0

〈Ψ(ej)(λjej), h̃1〉H1 ,

taking in particular Ψ = DB(h1)B(h1) we get

(3.3.4) ˜̃h1 = t̃r[QΨ ] =
∞∑
j=0

Ψ(ej)(Qej) =
∞∑
j=0

[DB(h1)B(h1)(ej)](λjej) .

R e m a r k 3.3.1. In particular, if H = R1, then w(·) is the one-dimensional
Wiener process, t̃r(QΨ) = Ψ . Equation (3.3.2) including the correction term is
now of the form

(3.3.2′) dẑ(t) = Aẑ(t)dt+ B(ẑ(t))dw(t) + 1
2DB(ẑ(t))B(ẑ(t))dt .

We actually use w(t) =
√
λw(t) in the one-dimensional case to simplify the no-

tation in the correction term. Then
√
λ does not appear in the correction term

as it does in the infinite-dimensional case when
√
λ is present owing to the defi-

nition of Q. Let us observe from (3.3.4) that for the infinite-dimensional w(·) the
correction term is the series of correction terms derived for the one-dimensional
Wiener processes.

Moreover, we assume

(A3) there is a constant K > 0 and a positive definite symmetric nuclear oper-
ator R which commutes with S such that P (R−1z0 ∈ H1) = 1 and

(i) ‖R−1C(h1)‖2H1
+ ‖R−1B(h1)Q1/2‖2HS + ‖R−1 tr(QDB(h1)B(h1))‖2H1

≤ K(1 + ‖h1‖2H1
) ,

(ii) ‖C(h1)− C(h̃2)‖2H1
+ tr((B(h1)− B(h̃1))Q(B(h1)− B(h̃1))∗)

≤ K‖h1 − h̃1‖2H1

for h1, h̃1 ∈ H1, where ∗ denotes the adjoint operator,

(A4) the operator C is of class C1 and the operator B ∈ C1
b, i.e., is of class

C1 with bounded derivative, and this derivative is assumed to be globally
Lipschitzean,
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(A5) the operator DB(h1)A : H1 ⊃ D(A) → L(H,H1) can be uniquely ex-
tended to a bounded operator from H1 to L(H,H1), so there exists a
positive constant k such that for h1 ∈ H1

(3.3.5) ‖DB(h1)Ah1‖L(H,H1) ≤ k‖h1‖H1 .

R e m a r k 3.3.2. The mapping (h1, h) → DB(h1)Ah has domain H1 ×D(A)
and is linear in the second variable. If assumption (A5) is satisfied, this mapping
can be extended to H1 ×H1. Now DB(h1)Ah is equal to DB(h1,Ah).

R e m a r k 3.3.3. In the present paper the assumptions are rather strong.
Assumptions of this kind are also used in [63], [74], [76].

Assumption (A5) here is weaker than in [78]. That is, we assume there instead
of inequality (3.3.5) that

(3.3.6) ‖DB(h1)Ah1‖L(H,H1) ≤ k .
We can weaken it because of a localization property. Namely, we observe that for
every ε > 0 there exist n0 ∈ N and r > 0 such that we have

P (un(t) = unr (t)) ≥ 1− ε for t ∈ [0, T ], n ≥ n0 .

Here unr (t) denotes the solution to equation (3.3.11) below with

Br =
{
B̃ in Kr,
0 for h1 6∈ K2r,

instead of B, where Kr = {h1 ∈ H1 : ‖h1‖H1 ≤ r} and B̃ satisfies (3.3.6).

We now define the nth approximation to the Wiener process (w(t))t≥0 as
follows:

wn(t) =
∞∑
j=0

wnj (t)ej ,

where 0 = tn0 < . . . < tnn and for tni−1 < t ≤ tni ,

(3.3.7) wnj (t) =
t− tni−1

tni − tni−1

wj(tni ) +
tni − t

tni − tni−1

wj(tni−1) .

For Ψ ∈ ΛT (w,H,H1) we have

(3.3.8)
t∫

0

Ψ(s, ω) dwn(s) =
∞∑
j=0

t∫
0

Ψ(s, ω)(ej) dwnj (s) ,

where the integrals on the right-hand side are the classical Stieltjes integrals.
We rewrite (3.3.1) in the mild integral form

(3.3.9)
z(t) = S(t)z0 +

t∫
0

S(t− s)C(z(s)) ds+
t∫

0

S(t− s)B(z(s)) dw(s) ,

z(0) = z0 .
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Similarly, from (3.3.2) we get

(3.3.10)

ẑ(t) = S(t)z0 +
t∫

0

S(t− s)C(ẑ(s)) ds+
t∫

0

S(t− s)B(ẑ(s)) dw(s)

+ 1
2

t∫
0

S(t− s)t̃r(QDB(ẑ(s))B(ẑ(s))) ds ,

ẑ(0) = z0 .

Consider now the sequence of integral equations

(3.3.11)

un(t) = S(t)z0 +
t∫

0

S(t− s)C(un(s)) ds

+
t∫

0

S(t− s)B(un(s)) dwn(s) ,

un(0) = z0,

n = 1, 2, . . . First observe that under our assumptions the integrals are well de-
fined.

Definition 3.3.1. Suppose we are given an H1-valued initial random vari-
able z0 and an H-valued Wiener process (w(t))t≥0. Moreover, assume that an
H1-valued stochastic process (z(t))t∈[0,T ] has the following properties:

(i) (z(t))t∈[0,T ] is progressively measurable,
(ii) B(z(·)) ∈ ΛT (w,H,H1),
(iii) for every t ∈ [0, T ] there exists Ωt with P (Ωt) = 1 such that for every

ω ∈ Ωt equation (3.3.9) is satisfied.

Then (z(t))t∈[0,T ] is called a mild solution to (3.3.1) with the initial condi-
tion z0.

The uniqueness of solution is understood in the sense of trajectories.
The existence and uniqueness of solution to (3.3.1) under hypotheses (A1)–

(A3) is obtained from Theorem 2.1 of [74].

Definition 3.3.2. Let n ∈ N. We say that a mapping un : [0, T ] → H1

is a mild integral solution to equation (3.3.11) if un is continuous and equation
(3.3.11) is satisfied for all 0 ≤ t ≤ T .

For each n ∈ N the existence and uniqueness of solution to equation (3.3.11)
follows from [35], [56]. Indeed, for each n ∈ N and almost every ω ∈ Ω we write
(3.3.11) on (tni−1, t

n
i ], i = 1, . . . , n, in the form

(3.3.12) dun(t) = Aun(t)dt+ Bai(u
n(t))dt,

where Bai
(·) = B(·)ai for ai ∈ H. Here Bai

= B∆wi
.
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We know ([56], Ch. VI, Th. 1.5) that a sufficient condition for the mild solution
to (3.3.11) to be continuously differentiable on [0, T ] is B ∈ C1 and z0 ∈ D(A).
It is easy to observe that equation (3.3.12) satisfies these assumptions.

Notice that (A1)–(A4) ensure the existence and uniqueness of a mild solu-
tion to equation (3.3.10). Indeed, under condition (A4) we see that the term
t̃r(QDB(ẑ(t))B(ẑ(t))) satisfies condition (A3) because the series in (3.3.4) con-
verges. It is obvious that conditions (A1), (A2) are also satisfied and that equation
(3.3.10) has exactly one mild solution.

3.4. The main theorem. We shall prove the following

Theorem 3.4.1. Let (wn(t))t≥0 be the n-th approximation of the Wiener pro-
cess (w(t))t≥0 as given in (3.3.7). Let (un(t))t∈[0,T ] be the solution to equation
(3.3.11) and ẑ(t) to equation (3.3.10). Assume that hypotheses (A1)–(A5) are
satisfied and E[‖R−1z0‖2H1

] <∞. Then, for each T , 0 < T <∞ and given ε > 0

(3.4.1) lim
n→∞

P ( sup
0≤t≤T

‖un(t, ω)− ẑ(t, ω)‖H1 ≥ ε) = 0 .

P r o o f. In order to prove the theorem we need a finite-difference approxima-
tion scheme for equation (3.3.1). We take a sequence of partitions {tn0 , . . . , tnn} of
[0, T ] such that 0 = tn0 < . . . < tnn = T .

Let hn = sup{tni − tni−1 : i = 1, . . . , n}. Define the process ξ̃n by ξ̃n(0) = z0
and

ξ̃n(t) = S(t− tni−1)ξ̃n(tni−1) +
t∫

tni−1

S(t− tni−1)C(ξ̃n(tni−1)) ds(3.4.2)

+
t∫

tni−1

S(t− tni−1)B(ξ̃n(tni−1)) dw(s)

for tni−1 < t ≤ tni .
Now we introduce two operator-valued functions on {(t, s) : 0 < s < t < T}

as follows:

Cn(ξ̃n, t, s) =

{
S(t− tni−1)C(ξ̃n(tni−1)) on (tni−1, t

n
i ],

S(t− tnm−1)C(ξ̃n(tnm−1)) on (tnm−1, t],
(3.4.3)

Bn(ξ̃n, t, s) =

{
S(t− tni−1)B(ξ̃n(tni−1)) on (tni−1, t

n
i ],

S(t− tnm−1)B(ξ̃n(tnm−1)) on (tnm−1, t],
(3.4.4)

where tnm−1 < t ≤ tnm, 0 < m ≤ n and i = 1, . . . ,m − 1. The values of Cn are in
H1 and those of Bn are operators from H to H1. Therefore, for any t ∈ [0, T ] we
have

(3.4.5) ξ̃n(t) = S(t)z0 +
t∫

0

Cn(ξ̃n, t, s) ds+
t∫

0

Bn(ξ̃n, t, s) dw(s) .
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We may state the following

Lemma 3.4.1. Assume that (z(t))t∈[0,T ] is the mild solution to equation (3.3.1),
the hypotheses (A1)–(A3) are satisfied and E[‖R−1z0‖2H1

] < ∞. Then for every
ε > 0

(3.4.6) lim
n→∞

P ( sup
0≤t≤T

‖ξ̃n(t, ω)− z(t, ω)‖H1 ≥ ε) = 0 .

To prove this lemma we apply a similar argument to the proof of Lemma 2.6
of [74].

To prove the theorem we further transform equations (3.3.10) and (3.3.11). In
analogy to equation (3.4.5) corresponding to (3.4.2) we derive from (3.3.10) the
equation

ξ̂n(t) = S(t)z0 +
t∫

0

Cn(ξ̂n, t, s) ds(3.4.7)

+
t∫

0

Bn(ξ̂n, t, s) dw(s) + 1
2

t∫
0

Gn(ξ̂n, t, s) ds ,

where Cn and Bn are defined similarly to (3.4.3) and (3.4.4). Moreover, Gn is an
operator-valued function on {(t, s) : 0 < s < t < T} with values in H1, defined
by

(3.4.8) G(ξ, t, s) =

{
S(t− tni−1)t̃r(QDB(ξ̂n(tni−1))B(ξ̂n(tni−1))) on (tni−1, t

n
i ],

S(t− tnm−1)t̃r(QDB(ξ̂n(tnm−1))B(ξ̂n(tnm−1))) on (tnm−1, t],

where tnm−1 < t ≤ tnm, 0 < m ≤ n and i = 1, . . . ,m− 1.
By Lemma 3.4.1, for every ε > 0 we obtain

(3.4.9) lim
n→∞

P ( sup
0≤t≤T

‖ξ̂n(t, ω)− ẑ(t, ω)‖H1 ≥ ε) = 0 .

Now we put (3.3.11) in another form which may be easily compared with the
solutions to (3.4.7). On (tni−1, t

n
i ] we have

un(tni ) = S(hn)un(tni−1) +
tni∫

tni−1

S(tni − tni−1)C(un(tni−1)) ds(3.4.10)

+
tni∫

tni−1

S(tni − s)(C(un(s))− C(un(tni−1))) ds

+
tni∫

tni−1

(S(tni − s)− S(tni − tni−1))C(un(tni−1)) ds
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+
tni∫

tni−1

(S(tni − s)− S(tni − tni−1))B(un(tni−1)) dwn(s)

+
tni∫

tni−1

S(tni − s)(B(un(s))− B(un(tni−1))) dwn(s)

+
tni∫

tni−1

S(tni − tni−1)B(un(tni−1)) dwn(s) =
7∑
l=1

Il .

We transform I6 as follows:

I6 =
tni∫

tni−1

S(tni − s)
( s∫
tni−1

d

dτ
B(un(τ)) dτ

)
dwn(s)(3.4.11)

=
tni∫

tni−1

S(tni − s)
( s∫
tni−1

DB(un(τ))
dun(τ)
dτ

dτ

)
dwn(s) .

It follows that

I6 =
tni∫

tni−1

S(tni − s)
( s∫
tni−1

DB(un(τ))Aun(τ) dτ
)
dwn(s)

+
tni∫

tni−1

S(tni − s)
( s∫
tni−1

DB(un(τ))C(un(τ)) dτ
)
dwn(s)

+
tni∫

tni−1

S(tni − s)
( s∫
tni−1

(DB(un(τ))B(un(τ))

−DB(un(tni−1))B(un(tni−1))) dwn(τ)
)
dwn(s)

+
tni∫

tni−1

(S(tni − s)− S(tni − tni−1))
( s∫
tni−1

DB(un(tni−1))

◦ B(un(tni−1)) dwn(τ)
)
dwn(s)

+
tni∫

tni−1

S(tni − tni−1)
( s∫
tni−1

DB(un(tni−1))B(un(tni−1)) dwn(τ)
)
dwn(s)

= H̃1 + H̃2 + (H̃3 − H̃4) + (H̃4 − H̃5) + H̃4 .

We recall that

(3.4.12) ∆n
i wj = wnj (tni )− wnj (tni−1) = wj(tni )− wj(tni−1) .
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Now we use (3.3.8), (3.4.12) and assumptions on B to deduce that

H̃4 =
∞∑
j=0

∞∑
k=0

(S(tni − tni−1)DB(un(tni−1))B(un(tni−1))(ej))(ek)(3.4.13)

×
tni∫

tni−1

( s∫
tni−1

dwnj (τ)
)
dwnk (s)

=
1
2

∞∑
j=0

∞∑
k=0

(S(tni − tni−1)DB(un(tni−1))B(un(tni−1))(ej))(ek)

× ẇnj ẇnk (tni − tni−1)2

=
1
2

∞∑
j=0

∞∑
k=0

(S(tni − tni−1)DB(un(tni−1))B(un(tni−1))(ej))(ek)

×∆n
i wj∆

n
i wk ,

because ẇnj (tni − tni−1)ẇnk (tni − tni−1) = ∆n
i wj∆

n
i wk, where ẇnj , ẇnk are constants;

they are derivatives of wnj and wnk , respectively, on (tni−1, t
n
i ]. Further,

E[H̃4] =
1
2

∞∑
j=0

(S(tni − tni−1)DB(un(tni−1))B(un(tni−1))(ej))(λjej)(3.4.14)

× (tni − tni−1)

=
1
2

∞∑
j=0

tni∫
tni−1

S(tni − tni−1)DB(un(tni−1))B(un(tni−1))(ej)(λjej) ds

=
1
2

tni∫
tni−1

S(tni − tni−1)t̃r(QDB(un(tni−1))B(un(tni−1))) ds ,

because

(3.4.15) E[∆n
i wj∆

n
i wk] = (tni − tni−1)λjδjk .

Notice for further reference that by (3.4.12),

(3.4.16)
tni∫

tni−1

S(tni − tni−1)B(un(tni−1)) dwn(s)

=
tni∫

tni−1

S(tni − tni−1)B(un(tni−1)) dw(s) .

Applying the (by now standard) discretization to equation (3.3.11), for 0 <
m ≤ n, with the help of (3.4.11), (3.4.13), (3.4.16), we obtain the following
equation:
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un(tnm) = S(tnm)z0 +
tnm∫

0

Cn(un, tnm, s) ds(3.4.17)

+
m∑
i=1

tni∫
tni−1

S(tnm − s)(C(un(s))− C(un(tni−1))) ds

+
m∑
i=1

tni∫
tni−1

(S(tnm − s)− S(tnm − tni−1))C(un(tni−1)) ds

+
m∑
i=1

tni∫
tni−1

(S(tnm − s)− S(tnm − tni−1))B(un(tni−1)) dwn(s)

+
m∑
i=1

tni∫
tni−1

S(tnm − s)
( s∫
tni−1

DB(un(τ))Aun(τ) dτ
)
dwn(s)

+
m∑
i=1

tni∫
tni−1

S(tnm − s)
( s∫
tni−1

DB(un(τ))C(un(τ)) dτ
)
dwn(s)

+
m∑
i=1

tni∫
tni−1

S(tnm − s)
( s∫
tni−1

(DB(un(τ))B(un(τ))

−DB(un(tni−1))B(un(tni−1)))dwn(τ)
)
dwn(s)

+
m∑
i=1

tni∫
tni−1

(S(tnm − s)− S(tnm − tni−1))
( s∫
tni−1

DB(un(tni−1))

◦ B(un(tni−1)) dwn(τ)
)
dwn(s)

+
1
2

m∑
i=1

∞∑
k=0

∞∑
j=0

S(tnm − tni−1)DB(un(tni−1))B(un(tni−1))(ej)(ek)

×∆n
i wj∆

n
i wk +

tnm∫
0

Bn(un, tnm, s) dw(s) =
11∑
l=1

Îl .

We shall prove that Î3–Î9 in (3.4.17) converge to zero. We shall also show that
Î10 gives the correction term occurring in (3.3.2). Moreover, Î1, Î2 and Î11 yield
our initial equation (3.3.1). Below, L1, . . . , L18, L̃, ˜̃L denote positive constants.

First we estimate

E[ sup
tn
i−1<s≤t

n
i

‖un(s)− un(tni−1)‖2H1
] = E[ sup

tn
i−1<s≤t

n
i

‖(S(s− tni−1)− I)un(tni−1)‖2H1
]

+ L̃(tni − tni−1)2 + ˜̃LE[ sup
tn
i−1<s≤t

n
i

‖wn(s)− wn(tni−1)‖2H1
] .
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Notice that by Lemma 4.1 of [76] the family of processes {un} is relatively
compact in C([0, T ], H1). We denote by C(K̃) the complement of the set K̃. If
we choose a compact set K̃ ⊂ C([0, T ], H1) such that P (un ∈ C(K̃)) ≤ ε and we
define the compact set K̂ = {f(t) : t ≤ T, f ∈ K̃}, then we have ([74], p. 193)

Î = E[ sup
tn
i−1<s≤t

n
i

‖(S(s− tni−1)− I)un(tni−1)‖2H1
](3.4.18)

≤ P (un ∈ C(K̃)) + sup
y∈K̂

sup
t≤hn

‖(S(t)− I)y‖2H1

so Î → 0 as n → ∞. Since each wn is linear on any interval (tni−1, t
n
i ], for

t ∈ (tni−1, t
n
i ] we have

wn(t) = wn(tni−1) + αni (t)(wn(tni )− wn(tni−1))
= w(tni−1) + αni (t)(w(tni )− w(tni−1)) ,

where αni (t) = (t− tni−1)/(tni − tni−1) is monotonic and 0 ≤ αni (t) ≤ 1. Therefore,
using (3.4.18) we have

(3.4.19) lim
n→∞

E[ sup
tn
i−1<s≤t

n
i

‖un(s)− un(tni−1)‖2H1
] = 0 .

Now, we estimate Î3 using (A1), (3.4.18), a Chebyshev type inequality and
the Schwarz inequality:

‖Î3‖H1 ≤ L1

m∑
i=1

tni∫
tni−1

‖S(tnm − s)(un(s)− un(tni−1))‖H1 ds

≤ L2 sup
tni−1<s≤t

n
i

i=1,...,m

‖un(s)− un(tni−1)‖H1

∣∣∣ m∑
i=1

tni∫
tni−1

ds
∣∣∣

= L2T sup
tni−1<s≤t

n
i

i=1,...,m

‖un(s)− un(tni−1)‖H1 .

Therefore, for each ε > 0,

E[ sup
tnm≤T

‖Î3‖H1 ] ≤ L3E[ sup
tnm≤T

sup
tni−1<s≤t

n
i

i=1,...,m

‖un(s)− un(tni−1)‖H1 ]

≤ L3(E[ sup
tnm≤T

sup
tni−1<s≤t

n
i

i=1,...,m

‖un(s)− un(tni−1)‖H1 ]2)1/2

and so

P ( sup
tnm≤T

‖Î3‖H1 ≥ ε) ≤
1
ε
E[ sup

tnm≤T
‖Î3‖H1 ]→ 0 as n→∞ .
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Similarly, we estimate

‖Î4‖H1 =
∥∥∥ m∑
i=1

tni∫
tni−1

(S(tnm − s)− S(tnm − tni−1))C(un(tni−1)) ds
∥∥∥
H1

≤
m∑
i=1

tni∫
tni−1

‖(S(s− tni−1)− I)S(tnm − s)C(un(tni−1))‖H1 ds

≤ L4 sup
tni−1<s≤t

n
i

i=1,...,m

‖(S(s− tni−1)− I)un(tni−1)‖H1

∣∣∣ m∑
i=1

tni∫
tni−1

exp(β(tnm − s)) ds
∣∣∣ .

Therefore, for each ε > 0,

E[ sup
tnm≤T

‖Î4‖H1 ] ≤ L4E[ sup
tnm≤T

sup
tni−1<s≤t

n
i

i=1,...,m

‖(S(s− tni−1)− I)un(tni−1)‖H1

≤ L5(E[ sup
tnm≤T

sup
tni−1<s≤t

n
i

i=1,...,m

‖(S(s− tni−1)− I)un(tni−1)‖H1 ]2)1/2

and therefore

P ( sup
tnm≤T

‖Î4‖H1 ≥ ε) ≤
1
ε
E[ sup

tnm≤T
‖Î4‖H1 ]→ 0 as n→∞ .

Further, we apply the fact that

E

[
ẇnj (s)

√
hn√

λj

]2
= 1 .

To estimate Î5 we use (A1), (3.4.18), a Chebyshev type inequality and the
Schwarz inequality to get

‖Î5‖H1 =
∥∥∥∥ 1√

hn

m∑
i=1

∞∑
j=0

√
λj

×
tni∫

tni−1

(S(s− tni−1)− I)S(tnm − s)B(un(tni−1))(ej)
√
hn√
λj
ẇnj (s) ds

∥∥∥∥
H1

≤ L6
1√
hn

sup
tni−1<s≤t

n
i

i=1,...,m

‖(S(s− tni−1)− I)un(tni−1)‖H1

×
∞∑
j=0

√
λj

∣∣∣∣ m∑
i=1

tni∫
tni−1

exp(β(tnm − s))
√
hn√
λj
ẇnj (s) ds

∣∣∣∣ .
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Therefore, for each ε > 0,

E[ sup
tnm≤T

‖Î5‖H1 ]

≤ L7
1√
hn
E

[
sup
tnm≤T

sup
tni−1<s≤t

n
i

i=1,...,m

‖(S(s− tni−1)− I)B(un(tni−1))‖H1

× sup
tnm≤T

∣∣∣∣ m∑
i=1

tni∫
tni−1

√
hn√
λj
ẇnj (s) ds

∣∣∣∣]

≤ L8
1√
hn

(E[ sup
tnm≤T

sup
tni−1<s≤t

n
i

i=1,...,m

‖(S(s− tni−1)− I)un(tni−1)‖H1 ]2)1/2 → 0

as n→∞. Thus, for each ε > 0,

P ( sup
tnm≤T

‖Î5‖H1 ≥ ε) ≤
1
ε
E[ sup

tnm≤T
‖Î5‖H1 ]→ 0 as n→∞ .

Also using (A1), (A5), (3.4.15), a Chebyshev type inequality and the Schwarz
inequality we get

‖Î6‖H1 =
∥∥∥∥ 1√

hn

m∑
i=1

∞∑
j=0

√
λj

tni∫
tni−1

S(tnm − s)
( s∫
tni−1

DB(un(τ))

◦ Aun(τ) dτ
)

(ej)
√
hn√
λj
ẇnj (s) ds

∥∥∥∥
H1

≤ L9
1√
hn

∣∣∣∣ m∑
i=1

tni∫
tni−1

exp(β(tnm − s))
( s∫
tni−1

dτ
)√hn√

λj
ẇnj (s) ds

∣∣∣∣ .
Therefore,

E[ sup
tnm≤T

‖Î6‖H1 ]

≤ L10
1√
hn

(
E

[
sup
tnm≤T

∣∣∣∣ m∑
i=1

tni∫
tni−1

exp(β(tnm − s))

×
( s∫
tni−1

dτ
)√hn√

λj
ẇnj (s) ds

∣∣∣∣]2)1/2

≤ L11
hn√
hn
→ 0
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as n→∞, because for v = (s− tni−1)/hn we get

β̃ =
m∑
i=1

tni∫
tni−1

exp(β(tnm − s))
( s∫
tni−1

dτ
)
ds(∗)

= hn

m∑
i=1

tni∫
tni−1

exp(β(tnm − s))
s− tni−1

hn
ds

= hn

m∑
i=1

1∫
0

exp(β(tnm − tni−1)) exp(β(−hn)v)vhn dv

≤ h2
n

m∑
i=1

exp(β(tnm − tni−1))

≤ h2
nm exp(βT ) ≤ L12hn.

Thus, for each ε > 0,

P ( sup
tnm≤T

‖Î6‖H1 ≥ ε) ≤
1
ε
E[ sup

tnm≤T
‖Î6‖H1 ]→ 0 as n→∞ .

In a similar way we estimate Î7.

Further, using (A1), (A4), (∗), (3.4.15), the Schwarz inequality and a Cheby-
shev type inequality, we obtain

‖Î8‖H1 =
∥∥∥∥ 1√

hn

1√
hn

∞∑
j=0

√
λj

∞∑
k=0

√
λk

×
m∑
i=1

tni∫
tni−1

S(tnm − s)
( s∫
tni−1

(DB(un(τ))B(un(τ))

−DB(un(tni−1))B(un(tni−1)))(ej)

×
√
hn√
λj
ẇnj (τ) dτ

)
(ek)
√
hn√
λk
ẇnk (s) ds

∥∥∥∥
H1

≤ L13
1
hn

sup
tni−1<τ≤t

n
i

i=1,...,m

‖un(τ)− un(tni−1)‖H1

×
∣∣∣∣ m∑
i=1

tni∫
tni−1

exp(β(tnm − s))
( s∫
tni−1

√
hn√
λj
ẇnj (τ) dτ

)√
hn√
λk
ẇnk (s) ds

∣∣∣∣ .
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Thus

E[ sup
tnm≤T

‖Î8‖H1 ]

≤ L14
1
hn
E

[
sup
tnm≤T

sup
tni−1<τ≤t

n
i

i=1,...,m

‖un(τ)− un(tni−1)‖H1

× sup
tnm≤T

∣∣∣∣ m∑
i=1

tni∫
tni−1

exp(β(tnm − s))
( s∫
tni−1

√
hn√
λj
ẇnj (τ) dτ

)√
hn√
λk
ẇnk (s) ds

∣∣∣∣]

≤ L15
hn
hn

(E[ sup
tnm≤T

sup
tn
i−1<τ≤t

n
i

‖un(τ)− un(tni−1)‖H1 ]2)1/2

→ 0 as n→∞,

and hence for each ε > 0,

P ( sup
tnm≤T

‖Î8‖H1 ≥ ε) ≤
1
ε
E[ sup

tnm≤T
‖Î8‖H1 ]→ 0 as n→∞ .

Finally, using (A1), (A4), (∗), (3.4.15), the Schwarz inequality and a Cheby-
shev type inequality, in the same way as for Î5 we have

‖Î9‖H1

=
∥∥∥∥ 1√

hn

1√
hn

∞∑
j=0

√
λj

∞∑
k=0

√
λk

×
m∑
i=1

tni∫
tni−1

(S(s− tni−1)− I)S(tnm − s)
( s∫
tni−1

DB(un(tni−1))B(un(tni−1))(ej)

×
√
hn√
λj
ẇnj (τ) dτ

)
(ek)
√
hn√
λk
ẇnk (s) ds

∥∥∥∥
H1

≤ L16 sup
tni−1<s≤t

n
i

i=1,...,m

‖(S(s− tni−1)− I)un(tni−1)‖H

×
∣∣∣∣ m∑
i=1

tni∫
tni−1

exp(β(tnm − s))
( s∫
tni−1

√
hn√
λj
ẇnj (τ) dτ

)√
hn√
λk
ẇnk (s) ds

∣∣∣∣ .
Therefore
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E[ sup
tnm≤T

‖Î9‖H1 ]

≤ L17
1
hn
E

[
sup
tnm≤T

sup
tni−1<s≤t

n
i

i=1,...,m

‖(S(s− tni−1)− I)un(tni−1)‖H1

× sup
tnm≤T

∣∣∣∣ m∑
i=1

tni∫
tni−1

exp(β(tnm − s))
( s∫
tni−1

√
hn√
λj
ẇnj (τ) dτ

)√
hn√
λk
ẇnk (s) ds

∣∣∣∣]

≤ L18
hn
hn

(E[ sup
tnm≤T

sup
tn
i−1<τ≤t

n
i

‖(S(s− tni−1)− I)un(tni−1)‖H1 ]2)1/2 → 0 ,

and for each ε > 0,

P ( sup
tnm≤T

‖Î9‖H1 ≥ ε) ≤
1
ε
E[ sup

tnm≤T
‖Î9‖H1 ]→ 0 as n→∞ .

Now we consider a slight modification of (3.4.17):

(3.4.20) ũn(t) = S(t)z0 +
t∫

0

Bn(ũn, t, s) dw(s) +
t∫

0

Cn(ũn, t, s) ds

+
1
2

∞∑
j=0

∞∑
k=0

m∑
i=1

S(t− tni−1)DB(un(tni−1))B(un(tni−1))(ej)(ek)∆n
i wj∆

n
i wk .

By (3.4.13), (3.4.14) and the definition of Gn(ξ̂n; t, s), for every ε > 0 we get

(3.4.21) lim
n→∞

P ( sup
0≤t≤T

‖ũn(t, ω)− ξ̂n(t, ω)‖H1 ≥ ε) = 0 .

By the above estimates and by the continuity of un (comparing ũn in (3.4.20)
with un in (3.4.17)) we conclude that for every ε > 0,

(3.4.22) lim
n→∞

P ( sup
0≤t≤T

‖ũn(t, ω)− un(t, ω)‖H1 ≥ ε) = 0 .

Therefore, by (3.4.9), (3.4.21) and (3.4.22) the proof is complete.

3.5. Examples

3.5.1. Equations satisfying the assumptions of Theorem 3.4.1. Let us observe
that inequality (3.3.6) is satisfied if we take H = R, B : H1 → H1 such that
B(h1) = b ·f(〈c, h1〉H1) (Lurie type), b ∈ D(A∗A), c ∈ D(A∗) is an eigenvector of
A∗, A has a compact resolvent and a real eigenvalue λ ∈ σ(A∗), f(x) = tanh(x),
x = 〈c, u〉H1 , for example. Then DB(h1)A(h1) = b · f ′(〈c, h1〉H1)〈c,Au〉H1 =
b(1/(cosh(〈c, u〉H1))2)〈A∗c, u〉H1 and ‖DB(h1)Ah1‖L(H,H1) ≤ k. We may define
R = (A−1)(A∗)−1 to deduce that assumption (A3) is satisfied.

Now, let us take H = H1 = L2([0, 1]) with an orthonormal basis {ei}∞i=0

and let A : H1 ⊃ D(A) → H1 be the infinitesimal generator of a semigroup of
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contraction type, that is, Aϕ = dϕ(θ)/dθ, D(A) = {ϕ ∈ W 1,2([0, 1]) : ϕ(0) = 0}.
We consider a Hammerstein operator C : H1 → H1 such that

C(h)(s) =
1∫

0

K(s, t)f(t, h(t)) dt ,

where K(s, t) = K1(s)K2(t) with K1(s) ∈ C4([0, 1]), K2(t) ∈ C([0, 1]), and f ∈
C1([0, 1]×R) with |f(t, x)| ≤ a(t) + b|x|. Similarly we define B : H1 → L(H,H1)
as a Hammerstein operator on H1, putting

B(h)(ei)(s) =
1∫

0

Ki(s, t)f(t, h(t)) dt ,

where Ki(s, t) have similar properties as K(s, t) and they are uniformly bounded.
We take an operator R : H1 → H1 such that R = (I −∆)−1, where ∆ = d2/dx2.
Clearly, R is positive definite, symmetric and nuclear. Let us compute

DBx0(h)(ei)(s) =
1∫

0

Ki(s, t)f ′x(t, x0(t))h(t) dt .

Then assumptions (A1)–(A5) are satisfied. For example, let us verify (A3)(i) for
K̃, K > 0:

‖R−1C(h1)‖2H1
=
∞∑
n=0

|〈R−1C(h1), en〉H1 |2

=
∞∑
n=0

∣∣∣∣〈C(h1),
(

1− d2

dx2

)
en

〉
H1

∣∣∣∣2
= K̃

∞∑
n=0

|〈C(h1), (1 + n2)en〉H1 |2

≤ K̃
∞∑
n=0

(|〈C(h1), en〉H1 |2 + n4|〈C(h1), en〉H1 |2)

≤ K̃‖C(h1)‖2H1
+ K̃(1 + ‖h1‖2H1

) ≤ K(1 + ‖h1‖2H1
)

because

|〈C(h1), en〉H1 |2 =
∣∣∣ 1∫
0

1∫
0

K(s, t)f(t, h1(t)) dt en(s) ds
∣∣∣2

≤
∣∣∣ 1∫
0

K1(s)en(s) ds
1∫

0

K2(t)(a(t) + b|h1(t)|) dt
∣∣∣2

≤ K̃

n4

(
1 + b

( 1∫
0

|K2(t)|2 dt
)
‖h1‖2H1

)
≤ K̃

n4
(1 + ‖h1‖2H1

) .
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Now we verify (A5) under a suitable definition of the function f(t, x):

(DB(h1)Ah1(ei))(s) =
1∫

0

Ki(s, t)f ′x(t, h1(t))h′1(t) dt

= Ki(s, 1)f ′x(1, h1(1))h1(1)−Ki(s, 0)f ′x(0, h1(0))h1(0)

−
1∫

0

K ′it(s, t)f
′
x(t, h1(t))h1(t) dt

−
1∫

0

Ki(s, t)f ′′tx(t, h1(t))h1(t) dt

−
1∫

0

Ki(s, t)f ′′xx(t, h1(t))h′1(t)h1(t) dt

and ‖DB(h1)Ah1‖L(H,H1) ≤ k‖h1‖H1 if, for example, f ′x(t, h1(t)) = f ′′xx(t, h1(t))
× h1(t).

Finally, let us take H = L2([0, 1]) with an orthonormal basis {ei}∞i=0. Let H1

be a real separable Hilbert space. For example, our assumptions are also satisfied
by a linear operator B : H1 → L(H,H1) such that B(h1)(ei) = b〈ci, h1〉H1(ei)
(〈ci, h1〉H1 are uniformly bounded) for a given b ∈ H1 and fixed ci ∈ H1. Set
A = ∆α, α > 1

2 , R−1 = (−∆)α, b ∈ D(−A)α, ci ∈ D(A∗). We observe that

Bh1(h1)Ah1(ei) = b〈ci,Ah1〉H1(ei) = b〈A∗ci, h1〉H1(ei) ,

and assumption (3.3.5) is satisfied.

3.5.2. Stochastic delay equations. We first introduce the space M2. For fixed
r ∈ R+ we put I = [−r, 0] and M2 = Rn × L2(I,Rn). The elements of M2 are
denoted as follows: (

a

ϕ

)
∈M2 for a ∈ Rn, ϕ ∈ L2(I,Rn) .

In M2 the natural inner product is used:〈(
a1

ϕ1

)
,

(
a2

ϕ2

)〉
M2

= 〈a1, a2〉+ 〈ϕ1, ϕ2〉L2(I,Rn) .

Equation (3.3.1) can be a model for stochastic delay equations of semilinear
type:

(3.5.1)
dx(t) =

( m∑
i=0

Aix(t− ri) +
0∫

−r
A(θ)x(t+ θ) dθ

)
dt+Σ(xt)dw(t) ,

x0(θ) = ψ(θ) ,

where t ∈ [0, T ] and ri ∈ R+ are fixed, 0 = r0 < . . . < rm = r.
The following hypotheses are assumed:
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(B1) (x(t))t∈[0,T ] is an Rn-valued stochastic process and (w(t))t≥0 is an H-
valued Wiener process, xt(θ) = x(t+ θ) for θ ∈ I, t ∈ [0, T ], and Ai, A(θ)
are n × n matrices, the elements of A(θ) being square-integrable on I,
Σ : L2(I,Rn)→ L(H,Rn) is an operator,

(B2) ψ : I ×Ω → Rn is B(I) × F0-measurable and such that(
ψ(0)
ψ(·)

)
∈M2 and E[‖ψ‖2M2 ] <∞ ,

where B(I) is the σ-algebra of Borel sets on I,

(B3) the operator Σ satisfies the growth and Lipschitz conditions analogous to
(A3) in §3.3,

(B4) Σ ∈ C1
b and its derivative is globally Lipschitz (see §3.3),

(B5) the operator Σ satisfies the condition analogous to (A5) in §3.3.

It is known from [5], [77], [81] that there is exactly one solution (x(t))t∈[0,T ]

to equation (3.5.1) in the sense of Definition 3.3.1.

R e m a r k 3.5.1. The linear term in equation (3.5.1) is sufficiently general
([5]) to include most linear autonomous functional differential equations arising
in applications.

To write (3.5.1) in the form (3.3.1) we denote by Ã the infinitesimal generator
of a contraction semigroup (T (t))t≥0 on L2(I,Rn). Let

D(Ã) = {ϕ ∈W 1,2(I,Rn) : ϕ(0) = 0}, Ãϕ =
dϕ

dθ
and

[T (t)ϕ(·)](θ) =
{
ϕ(t+ θ) for t ≤ −θ,
0 otherwise,

where t > 0, θ ∈ I.
In case Σ ≡ 0 we define a family (S̃(t))t≥0 of operators acting on M2 by

S̃(t)
(
a

ϕ

)
=
(
x(t)
xt(·)

)
for
(
a

ϕ

)
∈M2 .

The family (S̃(t))t≥0 is a C0-semigroup of bounded linear operators. Following
the idea used in [5], p. 500, we can introduce an equivalent norm in M2 such that
(S̃(t))t≥0 becomes a semigroup of contraction type.

Now we rewrite (3.5.1) in the following form for z(t) =
(
x(t)
xt(·)

)
:

(3.5.2)
dz(t) =

 m∑
i=0

Aix(t− ri) +
0∫

−r
A(θ)x(t+ θ) dθ

Ãxt(·)

 dt+ Σ̂(xt(·)) dw(t) ,

z(0) = z0 ,
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where for arbitrary ξ ∈ L2(I,Rn) we define Σ̂(ξ) : H →M2 by

Σ̂(ξ)h =
(
Σ(ξ)h

0

)
for every h ∈ H .

We now define the operators A and B of (3.3.1) for our example. Let

D(A) =
{(

ϕ(0)
ϕ(·)

)
: ϕ ∈W 1,2(I,Rn)

}
,

A
(
ϕ(0)
ϕ(·)

)
=

 m∑
i=0

Aiϕ(ri) +
0∫

−r
A(θ)ϕ(θ) dθ

Ãϕ


and

B
(

a

ϕ(·)

)
=
(

b

ψ(·)

)
≡ Σ̂(ϕ(·)) ,

therefore for h ∈ H

B
(

a

ϕ(·)

)
(h) =

(
Σ(ϕ(·))(h)

0

)
.

Here A : M2 ⊃ D(A) → M2, B : M2 → L(H,M2). We take H1 = M2 and now
(3.5.1) has the form analogous to (3.3.1).

We observe that the term which is needed for the construction of the correction
term in (3.3.2) is in this case

DB(h1)B(h1) = DB
(

a

ϕ(·)

)(
b

ψ(·)

)
=
(
DΣ(ϕ(·))(ψ(·))

0

)
for
(

a

ϕ(·)

)
= h1 ∈M2 .

3.5.3. Stochastic wave equations. Consider (see [14], [17], [56]) the initial
value problem for the wave equation in Rn:

∂2z

∂t2
= ∆z + η(t, ξ) for ξ ∈ Rn, t > 0 ,

z(0, ξ) = z0(ξ),
∂z

∂t
(0, ξ) = z1(ξ) for ξ ∈ Rn ,

where η(t, ξ) represents a noise disturbance.
In the Hilbert space H = H1(Rn)×L2(Rn) we define the operator A as follows

(Hi(Rn) are the usual Sobolev spaces for i = 1, 2):

D(A) = H2(Rn)×H1(Rn)

and for z = (z1, z2) ∈ D(A) let (∆ denotes the Laplacian)

Az =
(

0 I
∆ 0

)(
z1
z2

)
.
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The operator A is the infinitesimal generator of a C0 group T (t) of operators on
H satisfying (compare [56], p. 219)

‖T (t)‖H1 ≤ exp(2|t|) .
We obtain the model(

z
∂zt

∂t

)
= T (t)

(
z0
∂z0
∂t

)
+

t∫
0

T (t− s)
(

0
I

)
dw(s) .

4. Comparison of the results

4.1. Finite-dimensional case. We consider the case (see Chapter 3) where
H = Rd, H1 = Rn (see [27], [67]). Let x, z ∈ Rn. Then B : Rn → L(Rd,Rn),
DB(z) ∈ L(Rn, L(Rd,Rn)) and DB(z)(x) ∈ L(Rd,Rn) is given by a matrix

Â(z)(x) =

 DB11(z)(x) . . . DB1d(z)(x)
. . . . . . . . . . . . . . . . . . . . . . . . . . .
DBn1(z)(x) . . . DBnd(z)(x)

 .
We put

Rd 3 X =

 ξ1
...
ξd

 , Rd 3 Y =

 η1
...
ηd

 .

Let DB(z)B(z)X = Ψ(X). Then for i = 1, . . . , n,

Ψ(X)Y =
d∑
j=1

( n∑
l=1

∂Bij(z)
∂zl

( d∑
k=1

Blk(z)ξk
))

ηj

and for p ∈ Rn

〈Ψ(X)Y, p〉Rn =
n∑
i=1

d∑
j=1

n∑
l=1

d∑
k=1

∂Bij(z)
∂zl

Blk(z)ξkηjpi .

We omit X and Y in the last sum and obtain the matrix( n∑
i=1

n∑
l=1

∂Bij(z)
∂zl

Blk(z)pi

)
jk

= (Ψjk)j,k=1,...,d = Ψ̃(p) .

Consider its trace

tr Ψ̃(p) =
d∑
j=1

Ψjj =
d∑
j=1

n∑
i=1

n∑
l=1

∂Bij(z)
∂zl

Blj(z)pi .

We rewrite it in the form of the inner product of two vectors in Rn (cf. (3.3.3)):

tr Ψ̃(p) =
n∑
i=1

( d∑
j=1

n∑
l=1

∂Bij(z)
∂zl

Blj(z)
)
pi .
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The first vector ( d∑
j=1

n∑
l=1

∂Bij(z)
∂zl

Blj(z)
)
i

, i = 1, . . . , n ,

is exactly the correction term ˜̃h1 obtained in [27], [67] for the finite-dimensional
case.

4.2. Stochastic delay equations. Now we would like to compare two types
of correction terms derived for stochastic delay equations in §2.3 and in §3.5 for
the different spaces occurring in these two models. In §3.5 we have

(4.2.1) B(h1) =
(
Σ(ϕ(·))

0

)
=
(
ψ(0)
ψ(·)

)
for h1 =

(
ϕ(0)
ϕ(·)

)
,

and hence for the one-dimensional Wiener process

(4.4.2) DB(h1)
(
ψ(0)
ψ(·)

)
=
(
DΣ(ϕ(·))ψ(·)

0

)
=

αψ(0) +
0∫

−r
ψ(s)u(s) ds

0

 ,

(4.2.3) DB(h1)B(h1) =
(
αΣ(ϕ)

0

)
.

The last equality holds because the second coordinate in (4.2.1) is zero. We
observe that if α = µ({0}) and u(s) is the density of the measure µ̃ (µ and µ̃ are
defined in §2.3), then the term

αψ(0) +
0∫

−r
ψ(s)u(s) ds

is the correction term in Chapter 2.

5. On the relation between the Itô and Stratonovich
integrals in Hilbert spaces

The correction term introduced in Chapter 3 is the same as the one obtained
in the course of transition from the Itô integral to the Stratonovich integral in [80].

As is well known, the Itô stochastic integral is convenient in some problems
because it is a martingale. However, the Stratonovich integral is particularly
suitable for applications to problems described by stochastic differential equations
because it does not give any correction term in the approximation theorem of
Wong–Zakai type. Also, the rules of classical calculus apply to that integral.

For this reason, the Stratonovich integral has been much discussed in the
literature ([2], [18], [66]).

In the sequel, we use the notation of Chapter 3.
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Definition 5.1 (see [80]). We define the Stratonovich integral for an operator
φ : [0, T ]×H1 → L(H,H1) by

(5.1) (S)
b∫

a

φ(t, z(t)) dw(t) = lim
n→∞

Sn

= lim
n→∞

n∑
j=1

φ

(
1
2

(tnj + tnj−1),
1
2

(z(tnj ) + z(tnj−1))
)

(w(tnj )− w(tnj−1)) .

The limit is in the P -a.s. sense and a = tn0 < tn1 < . . . < tnn = b is a partition
of the interval [a, b]. Set hn = tnj − tnj−1 for j = 1, . . . , n. We assume that the
sequence of partitions is normal and the limit does not depend on the choice of
the partition. The operator φ is continuous with respect to the first variable and
it has the same properties as the operator B in §3.3 with respect to the second
one.

We recall the definition of the Itô integral:

(I)
b∫

a

φ(t, z(t)) dw(t) = lim
j→∞

In(5.2)

= lim
n→∞

n∑
j=1

φ(tnj−1, z(t
n
j−1))(w(tnj )− w(tnj−1)) ,

with the same assumptions as in Definition 5.1.
Moreover, this integral is a continuous, square-integrable H1-valued martin-

gale (see [17], [46]).
The following theorem is proved in [80]:

Theorem 5.1. Consider an operator φ : [0, T ] × H1 → L(H,H1) satisfying
the assumptions of Definition 5.1 and Lipschitz with respect to the first variable.
Let (z(t))t∈[0,T ] be the mild solution to the stochastic differential equation (3.3.1).
Then the Stratonovich integral (5.1) exists and

(S)
t∫

0

φ(s, z(s)) dw(s) = (I)
t∫

0

φ(s, z(s)) dw(s)(5.3)

+
1
2

t∫
0

t̃r(QDzφ(s, z(s))B(z(s))) ds .

R e m a r k 5.1. If we put φ(t, z(t)) = B(z(t)) then the correction term in (5.3)
has the form

1
2

t∫
0

t̃r(QDB(z(s))B(z(s))) ds .

It is the same correction term that occurs in the approximation theorem of Wong–
Zakai type.
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R e m a r k 5.2. Our original problem in this chapter was to establish the
transformation rule for the above types of integrals. In [80] it is pointed out that
if we evaluate the integral as the limit value of approximating sums then the type
of the result depends on the choice of intermediate points.

We can now define (see [2]) the stochastic differential equation in terms of the
integral

(S)
t∫

0

(0,B(z(s))) d
(
z(s)
w(s)

)
= (S)

t∫
0

B(z(s)) dw(s) .

Then the Stratonovich equation can be symbolically written as

(S) dz(t) = Az(t)dt+ C(z(t))dt+ B(z(t))dw(t), z(0) = z0 .

In our case, where Φ = (0,B) and the driven process is
(
z(s)
w(s)

)
, the transition

formula (5.3) yields the Itô equation

(I)

dz(t) = Az(t)dt+ C(z(t))dt
+ 1

2 t̃r(QDB(z(t))B(z(t)))dt+ B(z(t))dw(t),
z(0) = z0

corresponding to the above Stratonovich equation in the sense of coincidence of
solutions.

6. Conclusions

A new form of the correction term was computed for functional stochastic dif-
ferential equations defined on some spaces of continuous functions (see also [79]).
A new form of the correction term was also introduced for semi-linear stochastic
evolution equations in Hilbert spaces. In the latter case the Wong–Zakai type
theorem was proved for the first time in [78] with this correction term although
the term itself had already appeared in the literature [19].

As already mentioned, these correction terms also appear in formulas giving
the relations between the Itô and Stratonovich integrals ([18], [80]), as was to be
expected from the one-dimensional case.

Another important application of the Wong–Zakai theorems is that they con-
stitute an important part of the proofs of theorems on the support of mea-
sures connected with solutions of the appropriate stochastic differential equations.
Namely, our future aim will be to describe the topological support of a measure
connected with the solution. We expect that it equals the closure of a set of so-
lutions to differential equations obtained when the noise process is approximated
by a sequence of smooth functions. The correction terms considerd here also
give some indications for computing the Itô formulas for stochastic differential
equations considered in this paper.
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Finally, one of the most important applications of new correction terms may
be in filtering theory when their application can simplify the filtering equations in
models with coloured noises. When the input and measurement noise in a model
are not white noises but they are independent of each other, the construction of
a filter is possible but it has a more complicated character. A standard way is
to model these noises as the output of another model driven by the white noise.
After the Kalman filter is constructed, it may turn out to be only suboptimal.
The question arises how to design the filter equations by applying to coloured
noise the approximation procedure and the correction term of the Wong–Zakai
type approximation theorem.

More exactly, it is well known that the signal process x(t) and the observation
process y(t) are governed by stochastic differential equations. The best estimate
of x(t), when y(s) is known for any s ≤ t, is given by the conditional expectation
E(x(t) | Fyt ), where Fyt is the σ-algebra generated by y(s) for 0 ≤ s ≤ t. The
filtering problem consists in comparing, under general assumptions, the condi-
tional distribution of x(t) given {y(s) : s ≤ t} with a density p(t, x). This can be
obtained by normalizing the solution of the Duncan–Martenssen–Zakai equation
([15], [24]). As was already mentioned, applications of the stability results can be
obtained by adding the correction term to the filter equations when the coloured
noises appear in the model ([22], [24]). It is likely that one can obtain similar
results for the models described by the equations considered in this paper.
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Poincaré 13 (2) (1977), 99–125.

[20] G. Ferreyra, A Wong–Zakai type theorem for certain discontinuous semimartingales, J.
Theoret. Probab. 2 (3) (1989), 313–323.

[21] A. Gre iner and W. Str i t tmatter, Numerical integration of stochastic differential equa-
tions, J. Statist. Phys. 51 (1–2) (1988), 95–108.
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