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Abstract

We consider the motion of a viscous compressible barotropic fluid in R? bounded by a free
surface which is under constant exterior pressure. For a given initial density, initial domain and
initial velocity we prove the existence of local-in-time highly regular solutions. Next assuming
that the initial density is sufficiently close to a constant, the initial pressure is sufficiently close
to the external pressure, the initial velocity is sufficiently small and the external force vanishes
we prove the existence of global-in-time solutions which satisfy, at any moment of time, the
properties prescribed at the initial moment.
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1. Introduction

We consider the motion of a viscous compressible barotropic fluid in a bounded
domain {2, C R? which depends on time ¢. The free boundary S; of §2; is built
up of the same fluid particles for all time. Let v = v(z,t) be the velocity of the
fluid, ¢ = o(x,t) the density, f = f(z,t) the external force field per unit mass,
p = p(0) the pressure, p and v the viscosity coefficients, py the external constant
pressure. Then the problem is described by the following system (see [7], Chs. 1,
2,7):

o(vy +v - V) + Vp(o) — pAv — vVdive = of  in 27,

o +div(ov) =0 in 7,
(1.1) olt=0 = 00,  V|t=0 = Vo in £2,

Tn = —pon on ST,

v =—¢/|V9| on 57,

where ¢(z,t) = 0 describes S;, 27 = Ut€(07T) 2, x {t}, {2 is the domain of the
drop at time t, {25 = {2 is its initial domain, ST = Ute(o,T) S, T is the unit
outward vector normal to the boundary (n = V¢/|V¢|), p, v are the constant
viscosity coefficients. Moreover, thermodynamic considerations imply v > % w>
0. The last condition (1.1)5 means that the free boundary S; is built up of moving
fluid particles. Finally, T = T(v, p) denotes the stress tensor of the form

(12) fTij = —p5ij + ,u(amivj + &Ejvi) + (I/ — M)(;lj dive = —péij + Dij (’U),
where 4,7 = 1,2,3, and D = D(v) is the deformation tensor. In this paper we
restrict our considerations to the barotropic case, so p = Ap”, A >0, k > 1.

Let the domain §2 be prescribed. Then, by (1.1)5, 2, = {z € R3 : z =
xz(&,t), & € 2}, where z = x(&,t) is the solution of the Cauchy problem

ox
(1.3) Tl v(z,t), xlmo=E€, E=(£H€%6%).
The transformation x = x(&,t) connects the Eulerian x and the Lagrangian &
coordinates of the same fluid particle. Hence
¢
(1.4) =6+ [ ul€s)ds = Xu(61),

0
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where u(€,t) = v(X, (£, t),t). Moreover, the kinematic boundary condition (1.1)5
implies that the boundary S; is a material surface, so if { € S = Sp then X,,(€,t) €
Sy and S; = {x:z = X, (&, t), £ € S}

By the continuity equation (1.1)s and (1.1)5 the total mass M is conserved
and

(1.5) f o(z,t)de =M,
2¢

which is a relation between ¢ and (2;.

DEFINITION 1.1. Let us introduce a constant state which is a solution of (1.1)
for f = 0 such that

(1.6) v=0, o0=0., =10 forallteR', ., 2. are constants,

where the index e denotes the parameters of the state and |{2| = vol £2. Then (1.5)
implies that M = p.|{2.| and (1.1)4 yields that g, is a solution to the equation

(1.7) p(0e) = 1o,

80 pe = p(0e) = po-

The aim of this paper is to prove the existence of global-in-time solutions
of (1.1). It cannot be expected that this can be proved for large data because up
to now even in the case of a fixed domain the global existence of solutions for the
compressible Navier—Stokes equations is known only for small data (see [8-12, 32,
33)).

The paper is divided into six sections. In the second part of Section 1 we
review the previous work on free boundary problems for nonstationary, both
incompressible and compressible, Navier—Stokes equations in the case of the drop
problems only. Moreover, necessary notation is introduced. In Section 2 global
conservation laws are found for sufficiently smooth solutions of (1.1). The most
important result of the section is that under a proper choice of magnitudes of
the parameters (u, v, 0o, vo, 2,5, po, A, k) of (1. 1), varycgl |£2;| is as small as we

need. This is one of the main differences with the incompressible case where [{2;]
is constant (see [23, 25, 27]). This fact implies that [v[/z,(o,) can be sufficiently
small, which is necessary to prove the global existence. Moreover, conservation
laws are found (see (2.2), (2.3)) which are necessary for the proof of the modified
Korn inequalities (see Remark 2.4 and Section 5). The latter are then used to
prove the main differential inequality in this paper (see (4.166)), which implies
the global existence. In the case of constant density the conservation laws reduce
to those shown by V. A. Solonnikov (see [23, 25, 27]) which are also used to prove
the Korn inequalities.

In Section 3 the local existence of solutions of (1.1) is proved. To do this we
use the Lagrangian coordinates so the transformed problem (1.1) is considered
in the fixed domain {2 (see equations (3.1)). Since (1.1); is a parabolic system
for a given p we use the results of V. A. Solonnikov (see [24]) on the existence of
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solutions for linear parabolic systems. Therefore we have to prove the existence
of solutions of the linear problem (3.3) such that v € W2+2H+1(QT) 0 <[ € Z,
r > 3. The condition r > 3 is necessary because otherwise the coefficients by the
lower derivatives in the boundary norm in (3.7) depend on T=%, a > 0 (see [24]),
so we meet difficulties in proving local existence for the nonlinear case where T
must be small. Having proved the existence of v(z(£,t),t) € W2H2H1(QT) by
the continuity equation (1.1)y we have

1/0,0(x(&,t),t) € W2HHE2(QT) n C((0,T); To, ™2 (2))

(see notation below). Finally, by the method of successive approximations the
existence of local solutions (v, ¢) of (1.1) in the above classes and for sufficiently
small time is proved (see Theorem 3.6).

In Section 3 we essentially use papers [22, 24, 30]. During the preparation of
this paper the author obtained a manuscript of V. A. Solonnikov and A. Tani [31]
on the local existence of solutions of the free boundary problem for a compressible
viscous fluid. However, in our paper we need much more regular solutions than
those found in [31].

In Section 4 the differential inequality (4.166) (see Theorem 4.13) is proved
under the following assumptions:

a) there exists a sufficiently regular local solution,

b) the transformation (1.4) together with its inverse exist,

c¢) the Korn type inequalities (see Lemmas 5.1-5.6) are satisfied,
d) the shape of the domain does not change much with time.

In Section 5 the Korn type inequalities are shown. Finally, in Section 6 the
existence of a global solution is proved under the assumptions that the inequalities
3
1) ¢(0) =Y _(10;0(0) 13- ) + 195 (0) [ Fra-se2)) < 7
i=1
2) () = [vl17, 002 + IPoll T 00 <M
hold with v and ~; sufficiently small. The proof is done in the following steps.
First we have to show that the local solution belongs to M(7) with data in 91(0)
(definitions of the spaces 9(T) and MN(0) are given at the beginning of Section 6),
which naturally follows from the differential inequality (4.166) (see the proof of
Lemma 6.1). Assuming that the initial data in 91(0) are sufficiently small implies
that 1) is satisfied. Next Remark 2.3 and Lemma 6.2 imply 2). Then Lemma 6.3
yields that ¢(0) < « implies ¢(T") < =, which enables one to prolong the local
solution to the interval [T, 27" under the assumption that (4.166) holds in [T, 27.
The last fact follows from Lemmas 6.4, 5.7 and (6.56); the latter implies that b),
c¢) and d) are satisfied. In this way the existence of solutions for all ¢ > 0 can be
proved.
The local existence is proved in three steps. First, the existence of local so-
lutions is proved by using the existence of solutions of parabolic equations in
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anisotropic Sobolev spaces W2\! shown in [24] by potential techniques (see The-
orem 3.6). Next, Remark 3.8 shows that the solution is such that

ve Wy(27),  po € W3 (QT) N Loc(0, T3 I55"2(2)), Po =P —po-

Then by the energy inequality (4.166) it follows that the solution belongs to M(¢),
t<T.

The fact that we have to prove global existence by means of the inequality
(4.166) distinguishes our paper sharply from the papers of V. A. Solonnikov [23,
27]; this comes from the fact that the hyperbolic continuity equation is taken into
account.

The inequality (4.166) is proved for so highly regular solutions because the
equations (3.1) written in Lagrangian coordinates are strongly nonlinear and the
coefficients which depend on [ ve(z(€,7), 7)dr should be estimated in L, norm,
so by imbedding theorems v must be estimated in H? norm. Then the structure
of the inequality implies that v is in H*. The inequalities of type (4.166) were
also obtained in [32, 33]. The proof of global existence is very close to the proof
of global existence in [33] but is much more complicated.

The main result of this paper is formulated in Theorem 6.5.

Now we make some comments on the literature concerning free boundary prob-
lems for the nonstationary incompressible Navier—Stokes system. Local existence
of solutions in the case without surface tension is proved in Holder and Sobolev
anisotropic spaces by V. A. Solonnikov in [26, 27] (see also [20]). To prove the
existence of solutions of corresponding linear problems in Hélder and in Sobolev
spaces the potential theory techniques are used (see [28], [29], respectively). Local
existence with surface tension is considered by G. Allain [2]. In a series of papers
V. A. Solonnikov shows the existence of global motions of a viscous incompress-
ible fluid bounded by a free surface, both with surface tension (see [23, 25]) and
without it (see [26]). The latter case is based on the Korn inequality. To prove
the existence of solutions in the case of surface tension V. A. Solonnikov uses the
anisotropic Sobolev—Slobodetskii spaces Wé’l/ ® with noninteger positive [. In all
papers by Solonnikov the Lagrangian coordinates are used. Global existence is
also proved by J. T. Beale [3, 4], where the free boundary is infinite and gravita-
tion is taken into account.

Local existence of solutions for compressible fluids without surface tension is
proved by P. Secchi and A. Valli [19] and with surface tension by V. A. Solonnikov
and A. Tani [31]. In the one-dimensional case there is a result on global existence
by T. Nishida [14], who additionally takes gravitation into account.

Recently, P. Secchi has obtained the existence results for equations describing
motions in viscous gaseous stars (see [16]-[18]).

References to the literature concerning stationary free boundary problems are
given in [15]. Moreover, in [15] K. Pileckas and W. M. Zajaczkowski prove the
existence of stationary motion of a viscous compressible barotropic fluid bounded
by a free surface governed by surface tension. To show the result they have to
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assume that the domain and the external force satisfy some extra symmetry con-
ditions. Moreover, in [15] an a priori estimate necessary for the proof of existence
is found by the energy method.

The author is very indebted to Prof. M. Niezgdédka and Prof. R. Racke for
very fruitful discussions and important comments during the preparation of this

paper.

Now we introduce notation. In this paper we use the anisotropic Sobolev—Slo-
bodetskii spaces W,%’l/2(QT) leRy, 1 <reR (see [5, Ch. 18]), of functions

defined in 27 = 2 x (0,T). In fact, for noninteger I, Wﬁ’l/ % are Besov spaces; the
equivalence between Wl /2 and Besov spaces follows from the considerations in

[1, Ch. 7]. In the case of noninteger | (2 C R3),

e ey = (llyroqgr + lulyoura )"
where
T 1/r
lullweogory = (S lullivraydt)
0
1/2
lullyoirzggry = (S Tl o o)
(]
lulliyiay = Z ID2ull;, (o
a|<[1]
|Du:ct Dyu(y, O
1.8 a
(1.8) - Z |\Dxu||Lr(m+<<u>>l,r,g,
la|<[1]
[1/2]

HUH;VTI.M((O,T)) - Z ”&guuzr((o,T))
j=0

T T 5l /2] ,
10" u(, t) — OF "u(x, 7)|
+ f f 7—|1+r(l/2 /2]) dtdr
0 O

n2
Z 107 ully, 0,7y + €Ul 0.7 -

=0

where DY = 0910952032, 0, = 0/0x, and we use generalized (Sobolev) derivatives.
We also 1ntr0duce

[u(t) — u(t')] [u(§) —u(g)
(Wi a0 = SUp ————  (U)g a0 = SUPp —
te(0.1) tveor) |t —t]* : ceen €=



10 W. M. Zajaczkowski

and

@i = ([ (@inede) "

0
(@irra = ([ @iromdr)
2

Similarly using local coordinates and a partition of unity we introduce the norm
in the space W,{’l/Z(ST) of functions defined on ST = S x (0,7T), where S = 02.
We also use the spaces W!(§2) with norm (1.8)3 for functions defined in 2. We
do not distinguish the norms of scalar and vector-valued functions. To simplify
notation we write

lullire = lullyiiz g, i Q=0T or@=5" 120,
wlle,r@ = lullwq) ifQ=02orQ@=(0,T),1>0,

and WB’O(Q) = Wf(Q) = L.(Q). In the case r = 2 we have WQI(Q) _ HZ(Q) and
lulli,o = llulli,2,¢. Moreover,

lullz, @) = lulpg, 1<p<oo,

lullo.q = lulz.q.  ullrper = llullL,orwie) -

We also introduce the spaces I'}(£2) and T ,iin/ ?(£2) with the norms
lullry @) = > 0fulli—iire = ke, lullrs o) = lulik,2,
i<l—k

HUHFHM(Q) = Z 10iulli—2i.0 = luligro,
o 2i<I—k

where 0 < [, kK € R. We introduce

= >, Y Dol

0<i<l—k |a|=1—i

|u

where | | is the Euclidean norm either of a vector or of a matrix.
Finally, ~we define the spaces C(0,T;I} .(52)), C(0,T; F,i:lr/Z(Q)),
Loo(0, T I, (£2)), Loo(0, T I Y/?(£2)) with the norms
Hu”Loo(O,T;F]im(Q)) = \U\z,k,r,oo,QT )
HUHLOC(O,T;FI?)Z/Z(Q)) = Iull,k,r,oo,QT .
Moreover, we shall use the imbedding (see [5, 13])
(1.9) W2(R2)CLe(R2), QCR® a+3/r-3/p<s,
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and the corresponding interpolation inequality

(1.10) > IDdulpe <€) DYl g + e lulv g,
|B]=a ly|=6

where Kk = a/d 4+ (3/6)(1/r —1/p) < 1, € is an arbitrary parameter and

lull sy = > [DJulpq-
|8]=Fk

2. Global estimates and relations

Similarly to [35] we prove

LEMMA 2.1. For a sufficiently smooth solution of (1.1) we have

(1) [ [ (er® + oh(o)) da + pol 2] + £ Eo,(v)

t

+ (v —pldivel e, = [ of vdr,
2

where
p(o) : 2
h(p) = —>do, FEp(v)= 0yiv! + Opiv")* dx
0= J " (v) Qf ( )
with summation over repeated indices. Moreover,
d
(2.2) dtgfgv-nd:c=éf9f-ndm,

where n = a + b X x, with a, b arbitrary constant vectors, is a vector such that
Eg,(n) =0. Finally,

(2.3) % fgxdac: fgvdx.
2 2

From the thermodynamically justified inequality

1

we obtain (see [35])

I .
(2.5) 5B, (v) + (v = plldivelg o, > 0.
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Hence for f = 0 we obtain from (2.1) the inequality

(2.6) %f@deaz—i— ftp(g)d:c+po\9t|

<3 fgofugdw—i— fap(go)dx—i—po]mzd,
2 Q

where () = %Q“, k > 1, since p(p) = Ap".
In the same way as in [35] we obtain the relations

A M~ 1/(k—1) d
2. < | < —
(27) (Z%) sk
Mpo _ _ ((k—1a\""=

. < < | —
(2.9 rens (U ,
(2.9 (o) M" < < (5 — 1)d/A

where

M A
0, = —— = H t d .
O ‘Qt| ) wt w—1 Qf@ (.’13, ) £

Thus |§2;| and ; are bounded from below and from above for all ¢t € R.
Multiplying (2.6) by |2;]*~!, using (1. 5) and the Holder inequality (fQt odx)"
< 921 th 0" dx we obtain

(210)  y(2) +12"L [ v de

2
+K‘i‘1(|ﬂt|“—1éfgﬁdx(Qfgdx)”) <0,
where
(2.11) y(x) = por™ — da"~! + X:]iw; ,  k>1.

Since the last two terms in (2.10) are positive, (2.10) implies that for physical
motions

(2.12) y([92¢]) <0.

Our aim is to find restrictions on the coefficients of the polynomial y = y(x)
which guarantee that var;cg: [£2¢] is sufficiently small for all [£2| satisfying (2.12).
The function y = y(x) has only one extremum point determined by the equation

d(k—1)

(2.13) Y (z) = [pokr —d(k —1)]2" 2 =0, so xg=—-",
Dok

which is a minimum because y" (z¢) = d(k — 1)558_3 > 0.
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Since y(0) = %M“ and y(oo0) = oo we wish to find where y(z) < 0 and find
conditions implying that —y(x¢) is small. Using (2.13) we examine the quantity

(2.14) —y(zo) = K('ﬁ - 1)d)“ B AM“} Po

kDo po |k—1

In order to show that —y(z¢) is positive and small we consider the difference

- K 1/k K
() () )
K Po Do
By the Holder and Young inequalities we have

A 1/k A 1/k A 1/k 1/k
(2.15) <> M = () [ ovdz < <> IQ\(“’”/”( I ggd:c)
Po Po < Po P

k—14d k—1
K po  2Kpo

k—1

< [ ooid e

2

A
Q1+ = [ ofda=
K RPo P

where the last equality follows from the definition of d.
Using (2.15) in (2.14) yields

(2.16) —y(ro) > [(“”d) _ (“‘ Dd _m=d e dxH o

kDo KDo 2Kpo 5

1 K—2
— (I{ > (d—%:p)“_l f nggdx>0,
1)

Kpo
where z € (0, [, 00§ dz).

Let the initial state be the constant state described by (1.6). Then
(2.17) vo=0, 0o=0p=-const, py=Ag;=Ao..
Hence "T_lp% = |£2] and (2.16) becomes

(A/Po)l/HM = (A/Po)l/ﬁgo\m = |42/,

so y(|42]) = 0. Therefore, (2.15) and (2.16) imply that for a state much different
from the constant state (2.17) the quantity —y(x¢) must be large.

Now we estimate —y(xg) in terms of the quantities which measure the differ-
ence between the constant state (1.6) and the considered initial state. In view of
Definition 1.1 we have py = Apf and M = |£2.]|0.. We write (2.14) in the form

A K K k-1 2 "
—y(zo) = KWH’ f(Qo—Qe)dx‘i‘Tpo ({Qovodl’)

KPpo P
()
Qe k—1
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where 9y = (1/]92]) [, 0o dz = M/|£2|, so using the Taylor formula we have

KPo

Q|+ 5) 1 . k—1
(2.18) —y@o)_("ﬁ_i( f(AQo—po)dx‘i‘T f@o?}gdﬂf
Q Q
T A0 —g5~>|rz|ﬁ) |
where
A k—1
0<§< — g o) dr + —— 2dr.
<5< — [ (of —of)du+ 2 Qf@ovo x

2

Hence in general y(zp) < 0 so the equation y(z) = 0 has two different solutions.
Denote them by wy, we. From y”(z¢) > 0 it follows that there exists an interval
(xo — hs, zo + hy) such that y”(z) > 0 is positive and is separated from zero for
x € (g — h«,xo + hy). Moreover, expanding y = y(z) in a Taylor series in a
neighbourhood of xy we obtain

y(x) = y(zo) + 39" (w0 + Oh)A?,
hence for = € (w1, ws) \ (xo — hs, To + h.) we have
0< y(.’l?) - y(l'()) - %y”(xo + 6h)h2 ) 0= 9(33) ,  To T+ Oh € <w17 w2) 3

so y"(xo + 6h) is bounded from below because y”(zg + 0h) > (v« — y(x0))/h*?,
where y, = min{y(zo—h.), y(xo+h.)} and h* =max{zo—wi, ws—xo}. Therefore,

—2y(xo) \'*
(219) ve (i)

Thus, assuming that —y(x¢) < €2, where ¢ is sufficiently small, the above argu-
ments are valid and y”(x) >y > 0 for = € (xg — h,zo + h) C (w1, w2).

Now we find an explicit bound from below for y”(x), where x € (w1, ws) and
the latter interval is assumed to be small. We also assume that initially the drop
is very close to the constant state, so |09 — gc| < &, [, P 00v¢ dz < €, where € is
small. We have

y'(x) = (k — 1)z" 3[kpox — (k — 2)d].
From the conservation of mass we have

1
92| — 02 =

e

[ (00— 0e)dz.

9]

Moreover, for the constant state xo=|[f2.|. Let h be so small that h <. Hence
y"(|Q2| + 0h) = kpo|2.|"~2 + O(€), so taking g sufficiently small we get y” (|{2| +
Oh) > Lkpo|f2|"~2. Thus

(2.20) supvar [ 2] < e(—y(z0))"/?.
t
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Moreover, since 1y = % J 0, 0" dz is bounded (see (2.9)) we also have
(2.21) sup var ¢ < e(—y(z0)) /2.
t

Thus, we have proved

LEMMA 2.2. Let v, o and {2y be a sufficiently smooth solution of (1.1), for
f=0. Lete > 0. Then there exist oo, vo and €, = e.(e) = O(g) such that
if oo = 0| < exy |A0f — po| < sy |vo] < e then —y(zo) < €2, s0 by (2.20)
and (2.21),

(2.22) supvar || < cie, supvariyy < coe.
t t
Moreover, if the considered drop is initially in the constant state (2.17) then
it remains in the constant state for all time, because (2.10) implies that v = 0

and o must be a constant.
To prove global existence we need

Remark 2.3. Let the assumptions of Lemma 2.2 be satisfied. Then the fol-
lowing minima and maxima are attained:

|02, = mtinmt\, Yy = mtimﬁt; |2%| = mtax\.Qt\, YP* = mtax\wt];

moreover, | |£2°] —|£2,|] < c1e, ¥* — b, < coe. Then writing (2.1) in the form

d .
(223) (3 [ ov?dw+pu +pol]) + £ Ba,(v) + (v = w)|divold o, =0,

dt
we obtain
(224) 5 [ ov?da+h — b+ po(12] — [92])

£2;

t
4 f [gEQT(U)—}—(V—N)”diVUHg,QT dr
0

=3 f 000 dz + ¥ — i + po(|2] — [£2]) < Koeo,

where ¥ = 1y and g = g¢(e) = O(e).
Remark 2.4. Assume f =0 and

(2.25) f@ovg-ndfzo, fgogdgzo.
2 2

Then (2.2) and (2.25); imply

(2.26) f ov-ndr=0.

2
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Moreover, (2.3) and (2.25)2 give

(2.27) f oxdr=0.

024
The last condition guarantees that the barycentre of §2; coincides with the origin
of coordinates.

3. Local existence

To prove local existence of solutions to (1.1) we write it in the Lagrangian
coordinates introduced by (1.3) and (1.4):

nuy — pViu — vV, Vy -u+Veg=1ng in 07,

N +nVy-u=0 in 2T,
(3.1) Ty(u,q)n = —pon on ST,

ult=o0 = vo in (2,

nli=0 = 0o in §2,

where 7(§,1) = o(Xu(§,1),t), q(&:t) = p(Xu(&:1),1), g(&,1) = f(Xu(& 1)),
Vu = E&Vei, Ve = 0gi, Tul(u,q) = —q0 + Dy(u), & = 0,£", 6 = {d;;} is the
identity matrix and

Dy, (u) = {p( I;ivgkuj + flafjvgkui) + (v — p)di;Vy -u}l, Vy-u= f';ivgkui,
where the summation convention is understood. Let A be the Jacobi matrix of the

transformation z = z(§,t) with elements a;; = d;; + fg Ogiu' (&, 7) dr. Assuming
|Vet|oso, or < M we obtain

(3.2) 0<ecri(l—Mt)? <det{Oex} < co(14+ Mt)*, t<T,

where c1, co are constants and T is sufficiently small. Moreover,

detA:exp< j Vu-udT) = 00/7.
0

Let S; be determined at leait locally by the equation ¢(x,t) = 0. Then S is
described by ¢(z(§,t),t) |t=0= ¢(£) = 0 and we have

_ Vo (x,t)
n(z(§,t),t) = V. 0(z.0)]
First we consider the problem

U — uvgu —vVe¢Ve-u=F; in (P
(3.3) D¢ (u)mp = Gy on ST,
Ult—p = U1 in £2,

where D¢ (u) = {u(9giw? + Ogiu’) + (v — p)8;;0ernu®}.

ey = Vedl&)
)= 1Geate)

z=z(&,1t)
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From [24, 36] we obtain

LEMMA 3.1 Let S € W27 uy e IphP2=2/mi 1), By e W2H(0T),
Gy € WATITYnI2=@ gy 3 e R 0< 1 €Z, 1 +1/2—3/(2r) & Z,
T < oo. Then there exists a unique solution to problem (3.3) such that u €
W3l+2,l+1(QT) and
(3.4)  Nullargo,r0r < (M) (1F1 2t + [1Gill2it1-1/mms7 + lurlaya—2/r0.0,0)
where ¢(T') is an increasing function.

The condition r > 3 is assumed to omit coefficients of type T~¢, a > 0, by
the lower derivatives in the boundary norm (see [24], (5.11) and the following
considerations, and [36]).

Remark 3.2. Let (3.3); be written in the form u; = Au + Fy. Then the
compatibility conditions for system (3.3) are

(3.5) D¢ (Ofuli=0)Tio = 9;G1li=o on S, i <s=1[+1/2-3/(2r)],

where Ojuli—o = (Ad *u + 0/ F))|4—o are calculated inductively ([o] is the
integer part of o). The number s is such that 0;/D¢(u)|s =0 is meaningful by
imbedding theorems. Therefore at step s we have a relation between the deriva-
tives

Dguls, lal=2s+1, D{0iFi|si—o, |Bl+2i=25—1, Gl
Now we consider the following problem:
nug — uvgu —vVeVeu=Fy in 0T,
(3.6) De (u) - o = Ga on ST,
u’t:() = U2 in 2.
Lemma 3.1 implies
LEMMA 3.3. Assume that Fy € W2LH(0QT), Gy € Wflﬂ*l/r’lﬂ/z*l/(%)(ST),
L2 (@0)), 1/n € Loo(927), n € C*(27), a € (0,1), (20 + 1)r > 3 and
0<le€Z,3<reR 1+1/2-3/2r)¢Z, T < oco. Let the compatibility condi-
tions up to order s < l+1/2 —3/(2r) hold. Then there exists a unique solution
to problem (3.6) such that u € W2AT2HY QT and
(37) ||u”2l+2,r,.QT < 901(’1/77|OO,QT1 InIQH-l,O,r,oo,QTaT)
X[ Fallor,r,0r + |1Gallait1—1/rr,57 + ualaipa—a/rom0 + lulloror]
where @1 is a positive increasing function of its arguments.

In the sequel we assume the two conditions (20 + 1)r > 3 and r > 3 which
have different origin. The first follows from imbedding theorems used to estimate
the nonlinear terms and the second implies that (3.4) holds for small T with a
constant independent of 7" (see explanation after (3.4)).
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Proof. The existence follows from [24]. The compatibility conditions follow
from the considerations of Remark 3.2 applied to problem (3.6). Therefore we
only have to show the estimate.

Let us introduce a partition of unity {(x(&,t), Qx} (see [22]), Qr = supp (k,
k=1,...,N, such that Zszl (& t) =1, € 2,t e (0,7), A = maxdiam Qy,
Ck Z 07 0< Ho S ngvzl (:]3(5:75) S NO and ‘DatCk(gvt)‘ S C‘)\‘_‘ala where D?yt =
0701005, |al = ap + an + oo + as. Let ug = ulk, Fop = Faly, Gar = Gal,
ugg = uzCx. Thus (3.6) yields a system of problems
Nitike — pV g — vV eVe - Uy = Fa + (qr — n)ure — p[VE, Golu

—v[VeVer, Glu+ nGru = Fyy,
De(ug) - Mo = Gap + ube(Ck) - io = Gy,

Uk |t=0 = uak,

(3.8)

where n, = n(&k, tr), (Ekstr) € Qk, [L,ulv = L(uv) —uL(v) and L is an operator.
Replace t by 7 = n,:lt; then Uy = uk|i—, satisfies
— iV — vV Ve - Uy = Fop + (1 — 71/m0) 1=+ ks
+ ik — u[VE, Gl = v[VeVer, Gl = Fyy.,
D¢ (i) - o = Gax, + WDe(Cr) - o = Gy,

ak|'r:0 = a2I€ ’

(3.9)

where we have used the fact that y = y(&,t)]i=~-
Applying Lemma 3.1 to problem (3.9) we obtain

i) (3 f [ 1Dg i~ 1dfdt)w

2i+|al<2+2 0 02

[( > f J Do F o~ 1d£dt)w

2i+|al<2l 0 2

T
+( oo [ [ IDoiGhy T dg' dt

2i+|a|<2l 0 S

T D& ! ,t _Da[ / /,t r
I e e R L

laj=21 0 S S

T T 1/r
101Gy ( f, t) — 0, Gh, (€, )" Irtr/2—3/2 1¢r /
+ f f f — |t/ N dg’ dt dt

0 0

+ |u2k\2l+2—2/r,0,r,n] .
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Since minn(&,t) and maxn(£,t) are attained, from (3.10) we obtain
(3.11) ukll2ig2,r0r < (T Nloo, 07 11/1co, 1)
X [1Fogllatr0r + [Gopllai41—1/mr 07
+ Iu2k|2l+2—2/r,0,r,QT] .
Now we shall estimate the norms of Fj, and GY,.. First we estimate the second
term in F3,. We have
(3.12) (e — Murtllor,r,0r < A*M| ooy lluntll2r,r0r + 11,
where to estimate I it is sufficient to consider the expression

Z Z Z Cs |D?UD?_BU2M |T,QT

1<s<21l |a—pB|=2l—s5 |B|=s
l— —
+ E cs|8f778t sukt|r7QT =1+ 15.
1<s<l

By the Holder inequality,

‘ 1/r
I2 S Z CS( f |Dgs77 77:p5,9|D22l_5uk:t|::p/879 dt) = 147
1<s<21l 0

where 1/ps+1/p), = 1 and 7, is a multiindex such that |ys| = s. By the imbedding
(1.9) and the interpolation inequality (1.10) we have

T 1/r
Iy < Z Cs( f ||77”72"l+1,r,9(5%_55‘Dzyuktwﬂ +e1 " |urely o) dt) =I5,
1<s<2l 0

provided (3/7)(1—1/ps) < 2l4+1—sand ks = (1/(20))(2l—s+(3/r)(1—1/p})) < 1
so the last inequality holds for 3/r < 21 + 1. Continuing we get

1 —hs
Is < el D uidl o + () (D sup Inlsf 5773 ) el
S

< ellukllairoror + ©1(1/e, sup mll2+1,m0) | ukll2,r, 07 5

where c(e) increases as € decreases and ¢} is an increasing function of its argu-
ments.
Now consider

r 1/r
Is= 3 alopmoy udnor < 32 ol [ 1000l o dt)

1<s<1 1<s<l1 0
r l—s+1 1r
§ s |T - T _
< CS( f |8t 77|p17’,(2‘8t uk’pgr,(l dt) = -[67
1<s<1 0

where 1/p; 4+ 1/p2 = 1. By the imbedding theorem (1.9) we have the estimates
10;Nrpy.2 < cl|OFn||l2141-25,r,0  for 3/r —3/(rp1) <20+ 1 —2s,
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e N upllasr  for 3/r—3/(rpy) <204+2—2(1 —s+1),

which hold for 2/ +1 > 3/r, where p;, = p;(s), i = 1,2. By means of these
inequalities Ig is estimated as follows:

Uklrps,2 < €

Ig < Sup Inl2i11.000

X E ceg(e7™ " D'Y?sal g or +cep e |o) 5!
1<s<l

T’QT) = I7 .

Hence, exactly in the same way as in the case of I5, we obtain
1—ks
I7 < ellukllars2,r0r + cle (Z sup |77|21/J(r1 o Q) llukllor,r, o7
= elluklairo,ror + @2(1/5751213 Inlaii10,m2) lurllonr o7
where ¢} is an increasing function of its arguments.
Assume A in (3.12) is such that

(313) C}\a|n’Ca(QT) =e£.
Then by continuing the above considerations, (3.12) gives
(3.14) |k — Murellar,ror < ellullairoror + @5(1/e, Sup Inlai1.0m0

Mlce@ry L/ nlos,.rs T)I1F2l21r@u + [1ukll2r,07]

where ¢4 is an increasing function. Employing the same considerations for other
terms on the right-hand side of (3.11) we get

(3.15) Huk”21+27r,QT
< ellullate,rg, + ©a(1/e, Sup 17204100, 11lce(0r), [1/N]00, 07, T)

X [HFz”le'f'ka + ||G2||2l+171/T,r7QkﬂST + Iu2k|2l+2—2/r,0,7“,(2
+ ||uk||2l,r,.QT] s

where ¢/ is an increasing function of its arguments.

Summing (3.15) over all neighbourhoods of the partition of unity and assuming
that ¢ is sufficiently small we obtain (3.7). This concludes the proof.

Now we consider the problem
nug — pViu —vVyVy -u=F; in o7,
(3.16) Dy, (u)7 = Gs on ST,
u|t:0 = Uus in .Q,

where 7 = n(X (&, 1), 1).
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LEMMA 3.4. Let F3 € W2U(QT), Gy € Wt t/miri=t/@ngr)
uy € Ly 27rng) s e WY w e WRHRHL(OT) N Loo(0,T;
L2 (o)), 20+ 1) > 3, > 3, 14+ 1/2 = 3/(2r) € Z,T < oo and
suppose n satisfies the same assumptions as in Lemma 3.3. Let
(317)  T*(Jlwllaig2,r,0r + |w|21+2—2/r,0,r,oo,QT)

xpa(T, HwH2l+2,r,QTa Iw|2l+272/r,0,r,oo,QT7 Hn”ZHl,r,QTv

11/0l2041.m 07, Inlai41.0.000.07) < 0s,

where @9 is an increasing function of its arguments, a > 0 and 0 < 0, is suf-

ficiently small. Then there exists a unique solution to problem (3.16) such that
u € W2H2IHL(0T)  and

(3.18) ”UH21+2,T,QT < @3(T, |1/77|oo,QT781ip |77|2l+1,0,r,!27 |77|Ca(QT))

X[|1F3lo1,r, 0 + |G3ll2141-1/r,r 57 + |U3|21+2—2/r,0,r,9 + |lull2r,0r]

where @3 is a positive increasing function.

Proof. To prove the existence of solutions to (3.16) and to find an a priori
estimate we use Lemma 3.3. We write (3.16) in the form

nuy — ,uvgu —vVeVeu=Fy+ pu(Viu— Vgu)
+ (Vi Vi = VeVe-u) = Fs+ F  in 27,
D¢ (w)7io = Gs + (De (u)mmg — Dy, (w)72) = Gs + G on ST,

Ulp=0 = us in (2.

(3.19)

Now we estimate F' and G. By the form of V,,,

(3:20)  [|Fllat,r0r < cll€xVe(€aVeu) — Viulls,,or
< c||(&2 = 0)Viulla,ror + cl|&eVe (&) Veullaror = J1 + Ja,

where &, is the matrix {0,:£7}, 4,7 = 1,2, 3, which can be expressed in the form
& = %—1 = T¢/det{z¢}, where {Z¢} is the matrix of algebraic complements for

{z¢} and z¢ = 0 + fOT we d7, where ¢ is the unit matrix. Hence we can write

E2-5=f(00+ fOT we dr) fOT we d7, so to estimate Jy it is sufficient to consider
the highest derivatives. Therefore we examine

(321) J3= ‘Dg’“ (f(5+ fwglr) jw5d7u5£>’rQT
g :

0
+‘8§<f(5—|— fwng) fwngu&)‘ QTEJ4—|—J5.

T,
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First we estimate Jy. In view of the Leibniz formula,

< ¥ ch,,s<fdt ((D“ fwgdf

Q+a<2l {as}

(63}

as r 1/r
. ’Dg f we dr‘ ’Dgg f we dT’ |Dg"+2u|) df) =Js,
0 0

where the summation is taken over s and oy, i = 1,...,s, such that
(322) ay+...+as=20—p—0+1—-5s, a1+2as+...+sas=2l—p—o0,

0 < s <2l—0—p, and we recall that 7; is a multiindex such that |v;| = i. Using
the Holder and Minkowski inequalities in Jg implies

Z ZCQUS< f dt(f |w§£‘o¢17"r19d7—) lr...

Q+a<2l {as}

(f ]Dgs“w
0
where

(3.23) Uri 4.+ 1/re+1/p+1/g=1.
In view of the imbedding (1.9) we have

Jr <o f at( ft ||w\|21+2,,,79d7)w...(f||w|12[+2,r,9d7>w
0 0

0

st ; Yo+1 Vo+2 1
asrrs,QdT> ( f |D§Q+ Wpr, 2 dT) D¢ ulg,, _Q) =Jr,
0

p r - 1/r
< ([ lwlazrodr) Tulbiyane) = s,
0

provided the following inequalities hold:
i+143/r—3/(arir) <2042, i=1,...,s,

(3.24) o0+1+3/r—3/(pr) <20+2,
o+2+3/r—3/(qr) <2l+2.

Multiplying (3.24); by «;, summing over ¢ = 1,...,s, adding to (3.24)2 3, and
using (3.22) yields

L +1-3/r)) o+ (20 +1-3/r) >

which holds for 2/ + 1 — 3/r > 0, because > a; > 1.
Since w € W22+ by the Holder inequality,

Jg < CT(l_l/T)(ZmH)HngEzOfZTI,QT [ull2142,m07 -
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Now we consider J5. By the Leibniz formula,

T
k<c232)@a(ff0mwwWwfu
0 N

o+o<l {a

Qs

B _ o r\ 1/r
|611/g 1w§ Gf 1w§||8t UEd)) EJQ,

where the summation is taken over s and oy, ¢ = 1,...,s, such that
(325) as+...4as=l—-p—0+1—s, a1+2a+...+sa,=1—p—o0
for 1 < s <1l— po— 0. By the Hblder inequality,

T
Jg <c Z choa (f |w£ zi:r1,9|8t 3 Ot2?“7“27
0

o+o<l {as}

R R S L A R
where
(3.26) 1/ri+...+1/rs+1/p+1/g=1.
Now using the imbedding (1.9) with noninteger J yields (o < {)
J1o < cllwllys o olOwlS gm0 - Hafilw”3112—2(5—1)—2#,7’,9
T 1/r
x9F~ wmam1Mﬁm(IWuMHm”mwu&? £

provided
20— 1)+ 143/r —3/(asrr;) <204+2-2/r, i=1,...,s,
(3.27) 200—1)+1+3/r=3/(pr) <2l+2-2/r,
0=2+3/r—3/(qr))/(2l+2—20) < 1;
the last factor in J1o was estimated by using the interpolation inequality (see [5]).
Here and in the sequel we frequently use the estimate
|wli=tll2s—2/rr0 < c(|Wll2s,r o7 + |wlt=0ll2s—2/rr0), t<T,

with a constant ¢ independent of T' (see Theorem 2 in [30] and (3) in [22]).
Multiplying (3.27); by «;, summing over 4, using (3.27)2 3 and (3.26) we obtain
the inequality
(20+3=5/r)) i+ (21+3—5/r) >0,
which is satisfied for 21 +3 —5/r > 0 since 21+ 1—3/r > —(2—2/r), which holds
because 2l +1—3/r >0 and r > 1,s0 2 —2/r > 0.

Thus we have obtained

_ i 1-6
Jlo < CTl elwlgliLZ—Z/r,O,’r,Q Slip Iul;l+2)—r2/r,0,r,.(2HUHQH‘ZT:QT '
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Let us consider separately the case s =0, o =0, 0 =[. Then

T ! T 1/r T
J<e( [ [| [ wedr| 1Dy ueel ag at) gcsgp‘ J wedr|lullarisror
0 0 0

T
<c f [wll2tt2,r,0 d7 [[ull2i2,m 07
0

for 21 +1 > 3/r, where |y| = [. Finally, by the Holder inequality the above
expression is estimated by
T wll g, o 24,07 -

In the same way the other terms in F and G can be estimated. Summarizing, we
see that (3.17) implies (3.18).

To prove the existence of solutions to problem (3.16) we use the method of
successive approximations. In (3.16), replace u by u,, in the right-hand side, and
by U471 in the left-hand side. Let ug = us. Then by the contraction theorem we
have the existence of solutions to (3.16) for sufficiently small 7. Therefore, the
lemma is proved.

A solution of (3.1)s 5 has the form

t

(3.28) n(€t) = oo exp | = [ Vu-u(,7)dr|.
0

Hence we have

LEMMA 3.5. Assume that oo € W2H1(02), uw € WATZHL(0QT) 21 +1 > r/3,
r>1, T < oo. Then the solution (3.28) of (3.1)25 satisfies the estimate

(3:29)  [Inllait1,ror + [11/0ll2141,r, 07
< T2 (|looll2i1,m02 + 11/ 00l 2041,m,02)
X pa(T, T ([Jull2142,r, 07 + sup luloiro—2/r0.m0))
where @4 is an increasing positive function, and
|77|2l+1,0,r,.(2T

< ||Q0H2l+1,r,9 os5(T, Hu||2l+2,r,.QT + Slzp |U|21+2—2/r,0,r,9) )

(3.30)
HUHC(O,T;F,?Hl(Q)) < [leoll2t+1,r2llull2it2,r, 07

X @5 (T, [|ul

2042,r,0T + Slip luloito—2/r0.0)

where @5 is an increasing positive function and a > 0. Moreover, n € C’O"a/Q(QT),
a/2<1-1/r and

(3.31) Nl caarziory < loolca() po(1 + T ull2i42,r01)

where a =1 —1/r — /2 > 0 and @g is an increasing positive function.
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Proof. First we show that n € Lo (0,7} Foz,lfl(ﬁ)). It is sufficient to consider
the expression

t o
sgp |DZQ£Z“17 ro <c Z Z sgp ‘DZ?+176Q0 (Dt%g f V- udT)
0

7 (o)
Dy [ Vuruar)”

where v; is a multiindex such that |y, = 4, D], = 8?0Dgl, vl = 270 + ||,
Y =v4+v+7, 00 +a+...+as=0c+1—5, a1 +2as+...+sas; =0, and
c1=c1(] foT Ug AT |00,02)-

Since fOT V- udt = fOT & - Ocudt = fOT f(o+ fOT ug d7) - ug dt we have to
apply the Leibniz formula also to the function f(6 + fOT ug d1) (see the proof
of Lemma 3.4). Then the above formula for K; remains similar; however, the
function ¢; will be different. Thus

t (67
(332) Ki<cy Y. sltlp’Dz?ﬂ_oQO(Dzz [ e d¢> b
0

o {as}
¢ o
...(DZE!Ung)

To estimate K5 we shall consider some particular cases. Consider the case
where D] = afthl. Then we examine

(3.33) ¢ Z Slzp ‘Dgl 00 (@ j Ug dT)al (8,:? j Ug dT)aS
0 0

a0y (o0 [ uear)™ (00 [ ucar)™)
0

0

= K1 y
r, 2

= K2 .
r,§2

)

2

where
(334) a1+...+as=l+1-s  a1+2a3+...+sas=1, 1<s<I.

By the Holder inequality the first expression in (3.33) is estimated by

aS
QsTrs,§2

T
C(‘ fusdTLoQ)\Qog\pr,nSgP [uelatpr, - 107 ug
0 bl

where 1/p+1/r1 + ...+ 1/r; = 1. By the imbedding (1.9) this is bounded by

T
Yo
(] / ugdr| Vleollrsrnelul 3 oo,
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provided

143/r—3/(pr) <20 +1,

3.35
(8:35) 20— 1) +1+3/r —3/(asrr) <204+2—-2/r, i=1,...,s, s<I.

Multiplying (3.35); by a;, summing over i from 1 to s, adding to (3.35); we obtain
(2l+3—5/r) > a; > 0, which is satisfied for 20 +3 —5/r > 0 because »_ «a; > 1.
Similar considerations apply to the second term. Consider the second term in the
case s = [, ag = 1. Then it is estimated by

T
c(‘ fu§d7" )|Q0‘w,ﬂsup’ai_lu55|hﬂ
i 00,82 t

T
< C(’ f Ug dT’ )HQO”21+1,r,Q sup lulair2-2/r0,r0
o 00,2 t

where we have used the fact that 21 +1 —3/r > 0.
Consider the expression Ky (see (3.32)) in the case when the &-derivatives
appear only. Then it is estimated by

c(’ j:ug dT)OO’() Z:{E:}Slip’Dg”“_"go( j Dg2ud7)al
...(ngs“udT)aS

0

t t
Sc(‘ E]fungLo’();§sup|Dg”go|pr7Q) Jpg2ud7

7,82

Qg

a17rry,§2

Qs

)
asrrs,§2

t
’ [ DF+iudr
0

where 1/p+1/r1 +...+1/rs=1. By o+ Y ;_, ic; = 20 + 1 and the imbedding
(1.9) this is estimated by

T T T
Y2 Ys+1
c(’ E)ng dT)oo,Q>”Q0H21+1’T’QH !Dg UdTHQl,r,Q”'H 0ng UdTH21—2s,r,Q

T
= c(‘ J e dT‘ )HQOH21+1,T,QT(171/T)5HUHSHM,QT ;
o 00,2

provided o +3/r —3/(pr) <21+ 1,i+1+3/r—3/(curr;) <20+2,i=1,...,s,
s < 21 + 1; these are satisfied if (2l +1 —3/r)> a; > 0, and the latter follows
from the assumptions of the lemma. Thus, we have shown

|77|21+1,0,oo,QT < cllooll2i+1,r.02 <P/1 (T, Hu”2l+2,r,(2T7 Slip |U|2l+2—2/r,o,r,.o) .
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Similarly taking |n(¢) — n(t')| instead of the L., norm we obtain (3.30);.

Now we show that n € Wfl+1’l+1/2(QT). It is sufficient to consider the highest
derivatives. By the previous considerations the term ||D22’+177H07T7 o7 is estimated
by the right-hand side of (3.29). Hence it remains to estimate

T T )
K3 = ( f dg f dt f dt’ ‘ain(&t) _ 8éfﬁ(§,t/)|r/|t —t’|1+r/2)1/ '
0 0

n

Employing the form (3.28) of n we obtain

T T t

Ky < cloolarsina( [ e [t [t |f( [ uedr)uelt) .. (07 ue(t)
(9] 0 0 0

— f( f Ug dT) u5(t')a1 R (af,_ll%(t,))as

0

")t - t’\1+T/2) i

s T T t
<clloollarsimod ([ de [t [at'|f( [ uedr)
=1 (93 0 0 0

X (1) (0 ue(t)
X (0 ug(£) = (93 uet)™)

. T 1/r
< Ouet) ™ (@5 @) 1) = K

where ¢ = 0 corresponds to the function f. The difference factor in K, can be
written in the form

(01 ue(0)* 1 dlue (o) (t —t'), where o € [t,1].

Then by the Holder inequality we get

T T

T
Ko< of| [uedt|  Vloollovsnra( [ dt [ at'[t =172 ue(®)|217,, 0
0 ’ 0 0

i— i—1 i—1 i
werrre 1,20 ug(@)G T, |0t (0) ey 0

Qi1 s—1 AR Yr —
oo |0 e 0) | = K

e |8272u5(t)

X |Ofue (1)

Qi 1TT41,

where 1/ry +...+1/rs = 1.
Assume that s < [. Then by the imbedding (1.9),

K5 < C(Tl_l/r||u||2l+2,r,.QT)HQO||2H—1,T,Q

A - / rr/2—1 rYo; 1r
X < f dt f dt" |t —t'| Slip |u|21+2’72/r70m9> = Kg,
0 0
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provided
14+3/r—3/(aqrry) <20+2—-2/r,
20 —2)+14+3/r —3/(aj—1rricy) <20l+2—2/r,
(3.36) 20—-1)+143/r—=3/((a; = V)rry) <214+2—-2/r,
20+ 1+3/r—3/((ig1 + V)rrigr) <20+2-2/r,...,
20 —=1)+14+3/r —3/(asrrs) <214+2—-2/r,
and a1 + 20+ ...+ sas =1, a1 +as+...+as=014+1—s.
Inequalities (3.36) are satisfied if 2 ic; +2 —3/r < (2143 —5/r) > a; and
(3.37) 20l —3/r —=3/(rri(c; = 1)) + 3/(rriz1(cyer + 1)) < Z%‘(ﬂ +3-5/r),

where ) «; > 2. Now, the inequality (3.37) is satisfied because 2l +1 —3/r > 0
and r > 3/2. Hence we have obtained the estimate

Ko < (T V" [ullorsa,r,0) 0ol 2 1,m, 0T /2T Sup lal5s om0

Finally, we consider the case s = [, so oy = 1. Then the following term should
be estimated:

[ r 1/r
( f df f dt f dt/ |8£_1u£(t) _ 8iflu£(t/)‘r/|t N t/|1+r/2>
2 0 0

T T
= C( bf dg (.)f dt 6f dt' |3§u§(t + 9 =)t — t/|r/2—1)1/

< CT1/2HUH21+2,r,QT .

In this way we have proved the estimate

T1/2

17]l2141,r, 07 < c |l ooll2141,r,02 QOIQ(HUHZI—',-Z,T,QTaS%p luloiio—2/r00)

which is valid for bounded T and ¢, is an increasing function of its arguments.
Finally, we show that n € C*/2(27), where a/2 < 1—1/r. First we consider

t
< .
[Me.a.2loe. 0.1 < |{00(€) exp f Ve - u(€) dT>g,a,gLo,<o,T>

t
< <QO>£,0¢,Q)€XP f Vu-udT‘
0

00,27

+]Qo\oo,g‘<exp j Vu-u(f)d7> =K.
0

§ .82 ’ooy(OaT)

Using (3.2) and the form of the function &, = £,(d + f(f ug dT), we have
(338)  |looor <A(L+T" " ullpyaper)  for 204+1>3/r,
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T
(339)  [)eaeloo 0 < e+ T ullaryoror) [ (ug(m)eacdr,
0

where h, hy are polynomials. Next using the fact that
(ue(t))e,a,0 < cllullaito,re  for20+1>3/r+a,

we have
T
(3.40) J (e dr < ullorynor
0
From (3.37) we have
t
‘eXp J Vu UdTLO or S explh(1+ TV ullorg o) T ull 22 0] -
0 k)
Similarly, from (3.39) and (3.40) we obtain

‘<exp Of Vo - u(é) d7'>

§a,02 ‘007(0»T)

t t
< cfexp fVu‘udT’m,QT‘ J Vuweaadr|
0 0

The last factor in the above expression is estimated by

t
sup [ (€)e.mnlueloo,2 + [Saloo.0(ue)e 0,0) dT
0

T
< (up(Ea)ean + 5 6elo2) [ ullaisano dr
0
x cha(1 + Tlil/rHU’H21+2,T,QT)T171/THuH2l+2,T’,QT ;

where hs is a polynomial in &, hy and the exponential function.
Summarizing, we obtain

|<77>£,a,9’oo,(0,T) < |QO|CH(Q)h3(1 + Tl_l/THUHsz,r,QT) )

where h3 depends on exp, h, hi.
Now we consider

t
M./, 01)l00.0 < ool ’QKGXP OfV AT ) a/2.0.1) 00,02

t t
< ex \% -udT‘ ‘< Vv 'Ud7_> ‘
> ’QO|00,Q‘ p (,)f u 00,027 6[ v t,a/2,(0,T) loo,f2
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< ¢|00co, 2 exp[h(1 + Tlil/?ﬁ||u||2l+2,r,.QT)T171/THUHQH-Q,T,QT]

X

sup
t,t

t/
[ Vu-udT‘/\t—t'\o‘/2’ .
t b

The last factor in the above expression is estimated by
T 1/r
t= el ([ |Vl g dr )
0

< = VYR T gt )tz
Hence for a/2 <1 — 1/r we have obtained the estimate
|<77>|t,a/2,(o,T)\oo,Q
< T Y02 0o o o ha (L4 TV ullaggo e ot o 07

where h4 depends on exp and h.
We have thus proved (3.31). This concludes the proof of the lemma.

THEOREM 3.6. Let vy € F&lfz_wr’l“_l/r(ﬁ), 00, 1/00 € W2HL(2), f €

C2F2(R3 x (0,T)), S € W22V 2141 >3/r,r>3,1+1/2-3/(2p) € Z.
Let G be defined by (3.64) and suppose that G(v,0,0,A) < §pA, o9 > 0, where ~y
is introduced by (3.62), and

luoll2i42,r,0t + luolaito—2/ro0me <A for t <T,

where ug = ulo and u is a solution of the Cauchy problem (3.44). Let 0. be
sufficiently small. Let Ty be so small that

T Aps(T, A) < 6., 0<c1(1—61AT,)? < det{dex} < ea(1+ 61 ATL)?,

where §1 > 0o and z(&,t) = €+ fg u(&,7)dr, t <T.. Then there exists Ty, with
0 < Ty < T such that for T < T, there exists a unique solution to problem (3.1)

such that u € W2H2IH1(0T), n e WTHTY2(QT) o o((o, 7], 15,2 (92))
and
lull2ig2.r0r < 61A,

(3.41)
7l 2141,r 07 + 11/0l 2141, 07 + 11)2151,0,5,00,07

< (llooll2i+1,r,2 + 11/ 00ll2141,r,02) 07 (T, A),

where @7 is an increasing positive function of its arguments.

Proof. To prove the existence of solutions to (3.1) we use the following
method of successive approximations:
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2
nmatuerl - Hvumum+1 - Vvum v'u,m * Um+1

= —Vu,qd(m) + Mmg  in 2T,

(3.42) B B -
D, (Um+1)0(tm) = (g(0m) — po)(tm) on S”,
Um+1|t=0 = Vo in §2,
and
Ol + MV, ~tum =0 in 27,
(343) tMm im U, m :
Nmlt=0 = 00 in (2,
where m = 0, 1, ... To construct the zero step function uy we calculate from (3.1)
the functions ¢° = djuli—o, i = 1,...,l, because we are looking for solutions of

class W2H241(0OT). Next we extend each ¢’ to a function $; on R™. Then we
construct @ as a solution of the Cauchy problem

(3.44) 0, —VH"u =0, 0Ul—o=¢", i=0,1,...,1,

where @Y = 7y and 7 is an extension of vy to R™. Finally, uy = u|g.
The compatibility conditions for problems (3.42), (3.43) are the same as for
problem (3.1). Namely, they have the form

(3.45) 0D, (Um+1) — q(0m) + po)t(um)]|s,t=0 = 0

fori=0,1,...,[l+1/2 —3/(2r)], where Oitty,, Otiy+1 and Oy, are calculated
from (3.42) and (3.43).
Assume that (3.17) with w = u,,, 1 = 1y, is satisfied with sufficiently small d..

Then by Lemma 3.4 there exists a unique solution to (3.42) such that w,,+1 €
W2H2+1(OT) where T = T(6.) is also small, and using also Lemma 3.5 we have

(3.46)  |umsrllor42,m0r + lums1lairo—2/r0m00,07
< or1nmllais1,r0m, 11/ 0mll2ie1,m,07 s [mlca o))
X [[IVeq(m) ot r.0m + 11mgll2r,r.0r + [[(@(0m) — po)7(um)ll2i41-1/rr 7
+ |U(0)|2l+1—z/r,o,r,9 + umillorr,0r] s

where o < 20 +1 — 3/r.
Now we estimate the particular terms on the right-hand side of (3.46). First
consider

(3.47) N = [V, ¢(m) o, r.0r + 11@(10m) — po)(wm) 2141, 07 -

To estimate (3.47) it is sufficient to consider the norms

[ (st ([ e ar))

where f expresses the functional dependence of m = 7i( [ ug) and & = &, ([ ue).

)

e (ane j‘ ugdr))| =N+ N,
’ 0
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First we examine N;. By the Leibniz formula and the Holder inequality,

N, < Z

0<o<2l+1

t
P2 am o= p ([ uedr)
0

r, 07T

< Cl(|77|oo nT, |1/77|oo QT7T1_1/T”uH2l+2,T,QT)

t
Y1 alr m
><< > fID Marrry,0 - 1D nlat s, 0 ’f“&&dT
0<0o<2l41 0

Bir

Birp1,82
- T 1/r
‘ fD vt udT‘ dt) = N;,
Burpy, L2

where ~; is a multiindex such that |y;| = 4, and

o toag+...+a,=0c+1—p, o1+2a+...+po, =0,
(3.48) i+ P+...+060,=2041—-—0c+1—v,
B1+20+...+vB, =2l+1—0,

where py <o, v <2l+1—-0,and 1/ri1 +...+1/r, +1/p1+...+1/p, = 1.
By the imbedding (1.9) we have

A rSa r36, 1/r
JwSM(fmmMgmxfwt|mwgm) at) =N,
0

provided

i+3/r—=3/(cyrr;) <20+1, i=1,... 4,

(3.49) (U +1)+3/r=3/(Bjrp;) <20+2, j=1,...v

Multiplying (3.49); by «;, summing over ¢ = 1,...,u, and multiplying (3.49);
by 3;, summing over j =1,...,v, we get

Zua# 3/r)1/ri+...+1/r,) < (20+1-3/r) Zau,
> B =GB/ pr+ .+ 1/p) < @+1-3/r)> B,
Employing (3.48) in (3.50) and summing together we obtain

2A+1-3/r< (Zau+2ﬁy)(2l+1—3/r),

which is always satisfied because we have at least either ) o, >1or ) 5, > 1.
Therefore, the Holder inequality yields

(3.50)

— E (L v
(3.51) Ny < CClTl/H(1 L/m)%B. S‘ip HnH2li’1,r,QHu|’§lﬂ+2’r79T .
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For Ny, we consider

N = (@it (Jver) ),
(XD copd g T fo) L (0f )

oV {au} {6y}

% (at Of‘ Ug dT) . . (8;’ Oft Ug dT)ﬁu >>1/2,r,QT,t’

where 0 denotes the derivative with respect to an argument.

To estimate N5 it is sufficient to consider

No = (@ .. @ (o [ uear)™ .. (@ [ uear)” Y
0 0 TR

with

o t+as+...t+oa,=c+1—p, o1 +202+...+ poy, = o,

(3.52)
Br4+fo+...+B=l—c+1-v, [(i+26+...+vp, =1—o0,

u<o,v<l—o,0=1,...,1. We have
T T ' ' '
N5 < Z( f dg [ de [ dt |@m)™ ... (0 m)™ (@)™ — (@hm)™)
i=1 0 0

] ; el v— r — r 1r
O @y eug(t) (0 g e — 04D

T T
Z( f ¢ [ dt [ at'[(0m)™ ... (0fn) ™ (ue)® ... (8] Pug)
=1 0 0

x (9]~ 1%)‘3" — (0 ue) ™) (Bug) e

1/r
(08 )| — t'rmr/?)) = N;.
Using the formula
@)™ — (@pm)™ = (Ot ) 1o n(E)(t —t'),  where t € [t,¢],
a similar one for (8§ _lug)ﬁj and also the Holder inequality we obtain

1Y T T
N6§Z( [ dt [a'|t—¢1 om0 0y
=1 0 0

Qg 1T
Qi—17TTi—1,§2
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Q41T
Qi p1TTip1,82 00

x o)\ D O @), oldi

(ai—=1)rr;, 02 +17

8,u nBLr oV~ 1 r
’ t’77|aur7"# Q|u§(t)|ﬁ17‘p1,(2 | t’ u5|ﬁu7"pu )

v T T
+Z( [at [ dt'|t—t7/2 om|2r, ... |00
j= 0

a,T
aTT 82

Jé] j—2 Bi—1r i—1 (B —=1)r
< Jug ()17, - 100 uel 3700, 010 eI s 0
< 0] Al o o
x |0ue(E)7y, | alOuel F s 0 00 el o) = N

where, for the first integral,

(353) 1/ri+...+1/ri+1/ri  +1/riga+...+1/r,+1/p1+...+1/p, =1,
and for the second

(3.54) 1/ri+.. .+ 1+ 1/py 4. .. +1/p; + 1/Pjy +1/Pjy +...+1/p, = 1.
By the imbedding (1.9) we have the estimate

r/2+1 Say, 36,
N7 < T’ S‘ip |77|21+17o;r,9 Slzp Iu|2l+272/7’,0,r,9

where we have used the fact that
T T
[t [t — 2 = (8l )T

and the following inequalities for the first integral in N7:
(3.55)

243/r—=3/(arrry) <204+1,...,2(i = 1)+ 3/r = 3/(cj—1rric1) <21+ 1,
204+3/r —3/((a; — )rry) <2l+1, 2(i+1)+3/r—3/(rri,,) <2l+1,
204+ 1)+3/r —3/(aiqp1rrizr) <204+1,...,2u+3/r —3/(aprr,) <20+1,
20 —-1)+14+3/r—=3/(Bjrp;) <20+2-2/r, j=1,...,v,
where for a; = 1 the term with «; does not appear.
Similar inequalities must also be satisfied for the second integral in N;. We

restrict our considerations to the first integral in N; only. Employing (3.52) and
(3.53) in (3.55) we obtain

(3.56) 2A+2—3/r<(20+1-3/r) Za, +(20+3-5/r) Zgj’

which is satisfied for > a; > 1, > 3, > 1 and [ > 2, because it leads to the
expression 1 <20l +1—-3/r+(2-2/r)>_ 0.
However, in the above considerations the case o = [, p = [ was not taken into
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account. In this case
Ny < 4 (Tl_l/r‘|u||2l+2,r7.QT)<<8i77>>1/2,r,QT,t
< UUT Y ullaryo o) 02141, 07 -
Moreover, the case 0 =0, v = [, §; = 1 leads to
Ny < ’lz[)é(’n|OO,QT)<<8£71u§>>1/2,7’,QT,t < C¢§T1/2||U”21+2,r,rﬂ .

Finally, in the case [ = 1 we have
¢
No <05 (| [ uedr| )00 amers + 6 (nloo,0m) Cueh 2o
0 ;

< wé(Tlil/THUHQH-Q,T,QT)(”77”3,7",(27" + Tl/QHUH4,r,QT) .

In this way we have shown that

(3.57) N < Taiﬁl(sgp Vm Vois1,0,m, 024 ||um||2l+2,7‘,QT>Slip lum bait2—2/r0.r0)

+ ¢2(T1/2HUH2Z+2,T,QT)||77m”2l+1,r,QT ;

where 11, 12 are increasing positive functions and a > 0.
It remains to consider ||ng||o; - o7, where g(&,t) = f(x(§,t),t). It is sufficient
to consider the highest derivatives. First we examine

1D (ng)lror < Y a|lDInDP g

0<i<2l

r,QT = Ng.

Using the formula

Dltg= Z Z Csar, PPt fagt .. (D x)™

1<s<k {as}

where ; are multiindices such that |y;| = ¢ and the summation is taken over {a,}
such that oy +... +as=k+1—s, a1 +2as + ...+ sas = k, we obtain

Ne< Y Y (fdtfdg‘D%nD'm it1-s f (f%df)
(P

0<i<201<s21-1 {5} 0
as |\ 1/r
< f DgsudT) ) =Ng.
0

By the Holder inequality,

N9<csup|f|021(m Z Z Z(fdt’D pTQ‘ fugd/;— air
0<i<20 1<s5<20—i {a,} arrry, Q2
] vasudTa‘:mQ);Nm,
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where 1/p+ 1/r1 + ...+ 1/rs = 1. To use the imbedding (1.9) we need the
restrictions

i+3/r=3/(pr) <20+1, j+3/r—3/(ajrr;) <20+2
forj=1,...,s, s <2l —1i,1i < 2l, which hold because 1 + (2l +2—-3/r)> as >0

is always satisfied. Therefore,

Nyg < ¢y TH/rri=t/mzes sup | fle2 (o) sup nll21,r, 2 llull5s,, o -
s<2l

Finally, we consider

0t n9)|ror < > cldind; gl or

0<i<l

SDIRDIEDIL

0<i<l1<s<l—i {as}

oD fut L (07 )

where oy + a0+ ... +as=01—i+1—3s, a1 + 200 + ... + sas =1 —i. By the
Hoélder inequality,

N11 < C|f|cl(_QT) Z Z Z ( f latn’pr Q|u 31:7“1

0<i<l 1<s<l—i{as}

oarr.Q

dt) Hr = Nia,

where 1/p+1/r + ...+ 1/ry = 1.
To use the imbedding (1.9) the following restrictions must be satisfied:

20+3/r—=3/(pr) <204+1, 2(j—1)+3/r—3/(rrj) <20+2—-2/r

forj=1,...,50<s<I[l—1,i <, which hold because 0 < 1+ a,(20+4—5/r)
is always valid. Therefore,

Nig < TV flerar sup 1724100 sup |u|221152_2/r,0m9-
Summarizing,
(3.58) ||77mgH2l,r,QT < CTa’f\O%l(Rffx(o,T)) Slip |77m|2l+1,0,r,9
X wS(”umHQIJrQ,r,QT,SLtlp lum loiso—2/r0.m0)

where a > 0.
Let us introduce the quantity

(3-59) ym(t) = Hum||2l+2,r,(zt + |Um|2l+2—2/r,0,r,oo,m .

Then using the above considerations in (3.46) we obtain

(3.60)  ym+1(t) = e1(llnmll2i41,r, 00, 11/ ll2041,r,02¢, T)
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X {ta% (t* Slgp 1 Vot 1,0,m,025 Y (8)) + V2 (Y () |11 |21, 28

+ | flez@s x o,) sup Inmulaii,o,r 003 (ym (1))

t
+ f Ym1 (T) dT + IU(O)I2I+2—2/T,O,T,Q} .
0

By Lemma 3.5 we have

|nm’2l+1,0,7’,oo,(2t < CHQO”ZZ+1,T,Q 905@, Z/m(t)) )

(3.61)
[7mll2001,m, 020 + [11/Tm | 2041,r, 00

< ct'2(lleollar+1,r,0 + 11/ 00ll2+1,r,2)Pa(t, t Y (t)) -
Let us introduce the quantity

(3.62) v = lleoll2i+1,r2 + 11/ oll214 1,02 + | flozti@s x 0,1)) -
Then (3.60) and (3.61) yield

(3.63)  ym41(t) S<P8(%tal/m(t))[9010(%taym(t)) f Ym+1(7) dT
0

+ 0o "y (O + 1O ariz-2/m000] , a>0.
By the Gronwall lemma,

(3.:64)  Ym+1(t) < @s(7,t"ym(t)) expltws (v, t"Ym (1)) p10(V, " Ym (t))]
X (0o (7, tYm (£))t* + yo] = G(7,t,t"Ym, Yo) -

G(7,t,t*Ym, yo) is a continuous increasing function of its arguments. Let yo < A.
Then there exists dp > 1 such that

G(7,0,0,A) = pg(7,0)A = 0o A.
Assume that y,,(t) < d1 A, 53 > dp. Then there exists T, < T such that
G(vy,t,t701 A, A) < 5 A
for t < T. In this way we have shown that

(365) ym+1(t) §(51A, m:O,l,..., tST*

Now we prove the convergence of the sequence {uy,, n,}. To do this we con-
sider the following system of problems for the differences U,, = upy — tm—1
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and Hy, = m — Dm—1:
UmatUm+1 — /LVim Um+1 — vV \%

Um Y Um

' Um+1 = _Hmatum

o M(Vim o v%me1)um - V(vumvum : _vum_1 vum_1')um
(3.66) + Vi, @) = V1 q(m—1) + Himg,
]D)um(Um+l) : 'ﬁ(um) = _[Dum (um) ) ﬁ(um) - Dum71(um) : ﬁ(um—l)]
+ g1 (tn) — q(m—1) T (ttm—1)] — Po (At ) — T(tsm—1)) ,
Un+1lt=0 =0,
and
(367) ath + Hm divum Um = _nm—l(divum Uy — divumﬂ um_l) s
Hm|t:0 =0.

Integrating (3.67) with respect to time one obtains

H,,(&,t) = —exp {— ft divy,, U, dt’
0

t/
(nm_l(divum Uy, — divy,, | Um—1) €XP f divy,, Um dt”) at’,
0

X
S |

S0 we get

(3.68) [ Hull2t11,m,20 + VHm l2i41,0,0,00,20 < @11(t, At Unil|2142,r, 20 -
Applying Lemma 3.3 to problem (3.66) and using (3.61) we obtain
(3.69)  |Ums1ll2i42,r,00 + |Um+1|2l+2—2/r,0,oo,m
< @3(t, D[\ Um+1ll2t,r,0t + [|Fll2t,r,0t + 1Gllois1-1/rr.5t]
where F and G are the right-hand sides in (3.66). By the form of F and G,
(3.70)  [[Fllotr0t < c(|HmOpumllor00 + (Ve = Ve, _ 2,00
+ IVu,,@(1m) = Va1 @(m—1)ll2t,r, 0t + | Hmgll21,r,0t) 5
and
(3.71)  1Gllart1-1/rr st

< ¢(||Dy,, (um) - W(tm) — Dy, (um) 'ﬁ(um—l)HQl—i—l—l/r,r,Sf
+ lg(Mm) 7 (um) = q(m—1)(Um—1) |2141-1 /r,r, 5

+ 17(um) — Aum—1)ll241-1/rr.5¢) -

Now we estimate the terms on the right-hand side of (3.70). For the first term,
we consider the highest derivatives only. We have

IDF (Hantmt)lre < 3 il DEF Hn D™t
0<i<2l
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f _ 1/r
< Yl [ IDEHuliy ol DE g0 dt) = Av
0<i<2! 0

where 1/p; +1/g; = 1. To use the imbedding (1.9) we need the inequalities
i+3/r—=3/(rp;)) <204+1, 20—i+2+3/r—3/(rq;) <20+2

for i = 0,1,...,2l. Summing the inequalities together we obtain 3/r < 2[ + 1,
which is always satisfied. Therefore

(3.72) A < csup [ Hll2041,r, 2| um 2042, 0t -

Considering the time derivatives we have

lai(Hmumt)’r,Qt S Z Ci‘aZHmai_i—i_lum‘r,Qt
0<i<l

¢ . . 1/r
< Y il [ 10l 0 Tl o dt) = As
0<i<l 0

where 1/p; +1/q; = 1, ¢ = 1,...,l. By the imbedding (1.9), holding under the
conditions 2i + 3/r — 3/(rp;) < 20+ 1, 2(0l+ 1 —1) + 3/r — 3/(rq;) < 20+ 2,
i=1,...,1, which are satisfied if 2/ + 1 > 3/r, we obtain

(3.73) Ay < csup VHo 241,00 01| wml| 202,00t -

Therefore, (3.72) and (3.73) imply

(3.74) | Ho it || 20,0, 02t < CSl;p VHo loi41,0,0, 01 wm || 2042, 02t -

Now we consider the second term on the right-hand side of (3.70):

B=|(Vy, = Vi  Dumlorer < &3 (um) — & (um—1))tmee ll21,r, 20
+ ”(faz(um)aégac(um) - fa:(um—l)affa:(“m—l))umEHQl,r,Q" =B+ Bs.

Since &2 () — E2(Um—1) = g1 (0 + f(;‘ Ug dr) fot Upme d7, where g; is some function
and U € U, Upm—1], We obtain

t t
B:H (5 ~d) Umde .
1= || +6[u£76f g dmtmee ||, o,

Considering the &-derivatives only we see that Bj is bounded by an expression
which contains the factor t'~1/7; this follows by applying the Holder inequality
to f(f Upme dr. Considering the t-derivatives we have bad terms when the factor

f(f Upe dr is differentiated. One of the worst terms is

t
‘gl (5 + (')f ﬂg dT) 8£71Um5um55 2t .
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The first factor in the above expression is estimated by ¢(t, A) which is an in-
creasing polynomial. Hence we consider

t
’82_1Um5um55’7,79t = ‘ f 8£Um§(7') dr um5’ = Bg,
o r, 2t

where we have used the fact that Bi_lUm]tzo = 0. By the Holder inequality and
the imbedding (1.9),

t t r 1/r
By < [ [ 101002 d7| Jtom ()50, )
0 0

<t VU llots2,r 0t 1 um |l 242,00 -
Summarizing, we have shown that
(3.75) By < ct'Mo(t, A)|Unllary2.rr -
Now we examine B;. We have
By < |[(€x(tm) = §o(tm—1))0¢&a (tim ) tme |21,r, 00
+ (1€ (um—1) (O¢€a(tm) — Olu(Um—1))ume ||21,r, 0t

EHgg((S—i— fﬁdv‘) fUmng fumggdrumg‘

—|—Hgg<5—|— fﬂdT) fUmgngumgH

Therefore, repeating the above considerations we obtain (3.75) for By. In this way
we have shown

(3.76) B < et o(t, AU 2142,
Next we examine the third term on the right-hand side of (3.70):
C =V, d(m) = Vauy, 1 qm—1) 2120 <N (Vup = Vi 1)@(0m) 21,0
F Vs (@) = qOim-1))ll2t,r 20 = C1 + Ca.

20,7, 02t

21,r, 02t '

Write Cy in the form

C = Hg4(5—|— jﬂng) fUmEqu/(nm)nmEHerm'
0 0 Y

Let us examine the 2[th derivative with respect to £ of the expression within
the norm signs. Using the fact that n € L (0,7} F&TI’HI/Q(Q)), the algebra

properties of the space Wy and the fact that some &-derivatives of

fot Unme dm will always appear we obtain the estimate
(3.77) C1 < tp(t, A) sup [nmll2+1,r,2 | Unll2i+2,r, 00 -

Next write Cy in the form

= o+ J et ], .
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where 7 € [, Nm—1]- To estimate this expression it is sufficient to consider
|DZ (q(n)He)l .0 + 104 (q(n) He)|r, 20 = Cs + Cy .
By the Leibniz formula
Cs < > ci| D q(n)DP' " Hely e
i<2l

_ Z Z Cza5|a q D’Yl ) i (Dgsn)angzlfinT’Qt 7

i<2l {a,}

where a; +as+...+as=1+1—3s, a1 + 2a9 + ... + sas = i, so by the Holder
inequality,

Cs<e) Z(f DE 03t 1D

i<2l {a.} 0

V21— 1/r
|D ZH£| det> )

[e% rrg,

where 1/r1 +...+1/rs+1/p = 1. For the imbedding (1.9) to hold the following
inequalities have to be satisfied: 1+ 3/r — 3/(aqrry) < 20+ 1,...,s + 3/r —
3/(asrrs) <20+1, s <i,2l—i+3/r —3/(rp) < 2l, i < 2[, which hold because
(2l+1—3/r)>  as > 0. Therefore

Cs < cp(A)]

For C4 we have the estimate
Ca <Y cildia(n)o; " Hely,or

1<l

=2 ) ci

i<l {as}

0La(n)(0em)™ ... (05n)** 0} Helr e ,

where a; +as +...+as=1+1—3s, a1 + 2a9 + ... + sas = i, so by the Holder
inequality

C(4 < CZ Z ( f latn’alrm, ‘as

i<l {as} 0

I—i 1/r
a TTQ,Q’at Hﬁ’Tp,Q dt) ’

where 1/r1 +...+1/rs+1/p = 1. To use the imbedding (1.9) we have to impose
the restrictions 2 + 3/r — 3/(aqrry) <204+ 1,...,25s 4+ 3/r — 3/(asrrs) < 20 + 1,
2(l —4)+3/r —3/(rp) < 2l, s < i, i < I, which are satisfied because (21 + 1 —
3/r) > as > 0. Hence we have shown that

Cy < cp(A)

Summarizing, we have obtained

(3.78) C <cp(A)] ].
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Finally, we consider D = | H,,9||21,r0t- The highest derivatives yield the ex-
pression

> |0;' D" Hyd' D gl 0t
2(i1+j1)Fiz+j2=21
which by the Holder inequality is less than

4 . ) . ) 1/r
S ([ 10Dl 0l0 Dl g dt) = Dy,
2(i1471)+ia+j2=21 0
where 1/p + 1/g = 1. By the imbedding (1.9) we have
¢

T IS l/r
D, < C( f | Hon 551,00 l9l50..0 dt) =D,
0

provided that 2iy +i2+3/r —3/(rp) <2041, 2j1 + jo +3/r —3/(rq) < 2l, where
2(i1 + j1) +i2 + j2 = 2l. Adding these we obtain the inequality 3/r < 21 4 1,
which is valid by the assumptions of the theorem. Hence

(3.79) D < csup VHo lois1.0.0 0119|200t -

Summarizing, we have shown the estimate

(3.80) || Fllat,r00 < ct' =Y o(t, A)|Unllaipo,mar + cp(t, A) SUp |2 l2i1,0.0 -

Finally, we estimate the terms on the right-hand side of (3.71). First we recall

that 7(u) = gg( fot ug d7), where gg is a vector-valued function. Hence by extension
theorems we can estimate the right-hand side of (3.71) by

t

t t
el fretr) [ tncarine o]
s C\ ||97 6/‘u§7'0f caT U E(‘)/‘uéT%—&-l,r,Qf

214+1,r,02t

| s f e

t t
Yot | v
+ gg(!l% T Q(n 1)! ¢ T 21+1,r, 02t

t

+ 910(!“&‘”) OftUmﬁdTHmH,r,Qt)

EE1++E4

By the algebra properties we have
E2 < C(p(t’A)HHmHQlJrl,r,Qt .

In the other expressions, we bound the ¢-derivatives with the factor t!~1/" because
the term [ Up,e dr always appears. Considering time derivatives we obtain the
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factor t'/2. Summarizing, we have
(381) Hé||2l+1—1/7’,7‘,5't
< E <cpt, A)([|Hnll2t+1,r,0t + N Unll2t42,r,0t) s  a>0.
Using (3.80) and (3.81) in the right-hand side of (3.69) we obtain

(382) N Ums1ll2i42,r,0t + W1 larr2—2/r0,00, 02t
< 12t At | U || 214-2,r, 02t + IUm|2l+2—2/T,O,oo,Qt]

+ cp1a(t, A) [ Hum 2041, 00 -
Therefore by (3.68) and (3.82) for ¢ < T.., where T, is sufficiently small, the
sequence {Uy,, Ny, converges to a limit
{u,n} € W2THHL(QT) s WRHLE2(0f) 0 0(0, T3 172 (02)),

t < min{T}, T..}, which is a solution to (3.1). Uniqueness can be proved in the
standard way. Hence the theorem is proved.

To consider the global existence we need

Remark 3.7. Assume that ¢ = ¢ — po and g = 0. Then the problem (3.1)
can be written in the form
nuy — pNV2u — vV Vy - u+ Vugs =0,
qgt+nvu'u:0’
Tu(uv qo)ﬁ =0 )
ult=0 =vo,  Qolt=0 = qo0
where ¢,0 = (¢(1) — po)lt=0-

Let the assumptions of Theorem 3.6 be satisfied and let u, n be the corre-

sponding local solution of problem (3.1). Then for solutions of (3.83) the following
estimate holds:

(3.83)

(3.84)  Nullarso,r0r + 190 ll2t41,r07 + Vo loi41,r.0,00,07
< (T, A)[||U0H2l+272/r,r,!2 + ||qUoH2l+1,r,!?] .
Remark 3.8 (see [37]). For a sufficiently regular solution of (3.83) such that

(3.85) (lulls,or + llgolls,0r)T < 4,

where 9§ is sufficiently small, the following estimate holds:

(3.86)  |lulls,or + llgolls,or < (T [vollz,2 + IPoolls,2)([volls,e + [Ipoolls,2)

where u(&,t) = v(z(€,1),1), ¢, (&, t) = po(x(&,t),t). Therefore the following result
can be proved.
Let vg € H3(R), pyo € H3*(R2), S € H*~/2. Then for sufficiently small §

there exists a solution of (3.83) such that u € W,*(27), ¢, € W§’3/2(QT) N
C(0,T; Iy3"*(£2)) and (3.86) holds.
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4. Global differential inequality

Assume that we have proved the existence of a sufficiently smooth local solu-
tion. First we find a special differential inequality which enables us to prove the
existence of solution by energy estimates and then to prove global existence.

To show it we consider the motion near the constant state v, = 0, p. = po, Oe
is a solution of the equation p(o.) = pp. Therefore, we examine the system

Q(Uz_‘_v'vvi)_amjzﬂij(vapo‘) :sz in Qtv te [OaT]v
(4.1) ot +div(pv) =0 in 2, t€[0,T7,
T(v,ps) =0 on Sy, t€ 10,77,

where T = {T;;} = {u(9psv* + 0,iv?) + (v — p)di; divo — psd;;+ and py = p — po.
Using the barotropic law p = p(p) we write (4.1)3 in the form

(42) Dot + V- Vs —|—py—/(g) dive =0,

where V(o) = p,0/p-

Set 0. = ming, o(z,t), o* = max gz, o(z,t).

Now we point out the following facts concerning the estimates in Lemmas
4.1-4.12 and Theorem 4.13:

1. The numbers §; are assumed to be small and are separately numbered in
each lemma.

2. We distinguish absolute constants, denoted by ¢, which may depend on such
parameters of the problem as u, v, k, A and which are coefficients in those terms
in the right-hand sides of the inequalities which contain the highest derivatives
only and which are finally balanced by the left-hand side terms after appriopriate
summing.

3. We distinguish the coefficients by the lower order terms, nonlinear terms
and also by the force terms which depend on ¢., ¢*, T,b = ||S|4-1/2, a =

fOT |lv]|3,0, dt', on the parameters which guarantee the existence of the inverse
transformation to x = z({,t), and also on the constants of imbedding theo-
rems considered over (2. Generally, the coefficients are increasing functions of
the parameters. In the statements of the lemmas, we denote such coefficients

by Py, P,,... (common numbering for all lemmas) and independently in each
lemma by a1, as,... Moreover, P;, a; are positive and increasing functions of a
and b.

4. We have to underline that the estimates in this section are obtained under
the assumption that there exists a local solution of (1.1) so all the quantities g,
o*, T, a, b are estimated by the data functions. Moreover, the existence of the
inverse transformation to x = z(,t) is guaranteed by the estimates for the local
solution. Generally, the quantities are large.
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LEMMA 4.1. Let v, p, be a sufficiently smooth solution of (4.1). Then

¥ (0)

< eillpo g 0, + Piles, " e0)llvl3 o, s |IF o, + P20l f13 0, -

11 1 [ .
9 g ) (o0 + it ) do+ GlolE o, + (v = )laiv ol o

where Pj(e1) behaves as 7%, a >0, and &1 € (0,1).

Proof. Multiplying (4.1); by v, integrating over {2, and using (4.1)2 3 implies

1d
(44) -—— f ov? dx + %Egt(v)—i—(u—,u)Hdivag,Qt - fpa divodz
.Qt Qt

= f of ~vdx.
2
Equation (4.2) yields
— fp divvdzr = f L(at —i—v-V)p—‘Q’d:ﬂ

o G PP 2

and
2

(4.5) [Fy + div(Fv) + (Fyo — F)div U]% —0,
where F'=1/(p()¥(¢)), so

. d 1 1, L Ps
(4.6) Jpgdlvvdx:—cﬁéfw2dw+J(F—FQQ)d1vv2dx

d 1 p? .
< T (}[ mf dx +51Hpaﬂam +ai(os,0 751)HpGH%,QtHUH§,Qt :
t

From Lemma 5.2 and the relation p(¢) —pg = p—p(0e) = p(0)(0— 0¢), 0 € [0, 0¢),
we have

(4.7) []1% .0, < c2(0™)(Ba, (v) + llpo 5., I0115,2,)
By the Hélder and Young inequalities the right-hand side of (4.4) is estimated by
S1llvllf,c, + )zl f15.q, -

Hence taking 07 sufficiently small and using (4.6) and (4.7) in (4.4) we obtain
(4.3). This concludes the proof.

LEMMA 4.2. For a sufficiently smooth solution v, p of (4.1) we have

1d 1 I .
49 3 J (e84 v ot Sl + - ldiveli

< e2llpoellf. 0, + Ps(ox, 0 ,€2) X7 + Pl fl7 0.0, -
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where P3(e2) behaves like e5*, a > 0, g2 € (0,1), and

(4.9) X1 = |pa|§,1,9t + |U|§,1,Qt .

Proof. Differentiating (4.1); with respect to ¢, multiplying by v; and inte-
grating over {2; yields
1d

(4.10) 3% fQU?diE“‘%EQt(’Ut)
2

+(v — p)||div Ut||gﬂt - f Dot divuy de = Ny,
o

where

Ny < 81llvell§ o, + c(@)IIfIT o, + XT] + (01, o) fel5 2, -
From (4.2) and (4.5) with p,; in place of p, we obtain

(4.11) f Dot div vy dx
24
1d

1

<—53 ) spraperdr+2lpall . 05, 02) X7 .

o2 f}[ (g Dot 42+ 02llpatllo o, +clex, 7, 02) X
t

Finally, from (4.10), (4.11) and Lemma 5.3 we obtain (4.8) for sufficiently small ;.
This concludes the proof.

From Lemmas 4.1 and 4.2 we have

LEMMA 4.3.
1d 1 7
(412) 5o [ [g<v2+v§>+<pi+pit> dz + ([l0ll} g, + o]} )

p¥(0)
+ (v — ) ([[divol§ o, + ldive[§ o,)

t

< e3(llpotlls,e, + I ll3.,) + Ps(ow 0*,e3) X7 + Pol f7 0.0, -
where €3 € (0,1).
To obtain an inequality for x-derivatives we write (4.1) in Lagrangian coordi-

nates, so we can introduce a partition of unity in the fixed domain §2. Therefore,
we have

nui — Vi Ty (u, 4o) = ng’
(4.13) ot + q¥(N)Vu-u=0,
Tu(uaqzr)ﬁ = 0)
where 7(&,t) = o(z(£,1),t), u(§,t) = v(x(&,1),t), g(&,t) = f(z(&,1),1), q(&,t) =
p(x(&,1),t), o = q— po, Vi = £ 01, ¥(n) = qm/q and
(4.14) Tu(u,qr) = {T7 (1, qo)} = {06 +11(V it +V i)+ (v —11)0;; Vo -} .
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Next we introduce a partition of unity ({£2:},{¢}), 2 = U, ;. Let 2 be
one of the £2,’s and C(&) = (&) the corresponding function. If (2 is an interior
subdomain, then let & be such that & C {2 and ¢(&) =1 for £ € w. Otherwise we
assume that 2N S #0, aNS#0, o C 2. Let BewnScN2nNS, S=02nS.
Introduce local coordinates {y} connected with {£} by
(4.15) y'=ak(E =6, o =nf), k=123,

where o*! is a constant orthogonal matrix such that S is determined by y? =
F(y',y?), F € H*/? and
Q={y:ly'l<d, i=1,2, Fy) <y’ <Fly)+d, v = v',v")}.
Next we introduce functions v’ and ¢’ by
(4.16) u'(y) = o (Ole—ewy s 0 W) = 1()le=eqw) -

where £ = £(y) is the inverse transformation to (4.15). Further, we introduce new
variables by

(4.17) A=y, i=1,2, z3zy3—ﬁ(y), yeﬁ,

which will be denoted by z=®(y), where F is an extension of F to {2 with F €
H* (). Let Q= ®(2) = {z: || <d, i=1,2, 0 < 22 < d} and S=&(S). Define
(4.18) u(z) =u' (Y)ly—o-102),  U2) = ¢ W)ymd-1(») -

Introduce Vj = §ik(§)zglvzi e=x—1(z), Where x(§) = @((§)) and y = ¥(§) is
described by (4.15). Introduce also the following notation:

(4.19)  WE) =u(€)C(©), (&) = (6)CE), €€, 2nS=0,

(420) (=) = @(=)0(2),  @(2) = @ (2)C(z), zE€R=B(), 2N £0,

where ((z) = ((§)le=x—1(»)-
Under the above notation problem (4.13) has the following form in an interior
subdomain:

ity = Vi T, (0, G0) = 19" = Vs B (u, Q) = T (4, 40) Vs C = 09" +
Got + @MV U= q¥(n)u-Vyu( = ko,
and in a boundary subdomain:

ity — VT (0,4,) = 7§ — V;B9(@,0) — T9(@.3,)V,C =g + ks
(422) G+ QPHV U= @R - VC = ky,

~

T(ﬂa aa')/ﬁ = k5 ;

(4.21)

where

~

ks = BY(@, O
By (u,Q) = p(u'V i ¢ + 0 Vi €) + (v = m)diju - Vil
and T, B indicate that the operator V,, is replaced by v.

(4.23)
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In the next considerations we denote z!, z2 by 7 and 23 by n.

LEMMA 4.4. Let the assumptions of Lemmas 4.1 and 4.2 be satisfied. Then

1d

1 0
4.24 - 2 — pel?, ) d o2 12
( ) 2 dt (}I; <Q|U|1,O + pw(g) |p |1’0> T + 9 |/U|2717~Qt + ‘p ‘1,0,975

< P7(||f||3,9t + ||U”(2),Qt + ||pa||(2),rzt) + P XY,
where Py is a positive increasing function, Pr = Pr(a,b) and

Xo = X(t) = [v[31.0, + IPo %,1,@ ;

(4.25)
Yo = Ya(t) = Xao(t) + [v]12 o,

0

Proof. First we consider interior subdomains. Differentiating (4.21); with re-
spect to &, multiplying the result by u¢ A (A is the Jacobian of the transformation

x = z(£)) and integrating over {2, we obtain
1d nil? ~i\2
(426) 5o J Ad§+ f Vil + Vi) 2 A dé
Q
+<v—u>|rvu-ﬂg\|§,5— [ e - VaiicAde
Q

< 01(Jlueelll 5+ laoell ) + ar(ull? 5 + laollf 5+ llgllf )

2 2
s (lul? | [ wdr|| S +lal? g2, 5)
0 b

where |[h]l, 5= (/5 |n|2A d€) /2.
By the continuity equation (4.21)2 we have
1d 1
4.27 — q. cUcAdE = = Ad N
( ) A‘[Qvau ’U,é' 5 th f qlp( )qof §+ 1
Q
where
N1 < Balldoel2 5+ aallul? 5

[ I 5+ 0ol )+ 10k 5| ] ]

Consider the Stokes problem in 2
uV2u — vV, Ve - U+ VG, = ng — ntiy + k1,
(4.28) Vu-u=V,- u,

il,5=0.
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Hence, we have

(429) 2 5+ 131 5 < a (G2 5+ 1ul? 5+ laol2 5)

2
+mmw;ﬁw%ﬁyufuwm5+ﬂvmmﬁ5
0 ’ ’

Using Lemma 5.1 in the case G = 2, v = ug, from (4.26), (4.27), (4.29) for
sufficiently small §; and ds we obtain

1d 1
as0) g [ (e i) Ads+ bl ;
Q

+ (v — )|V - ﬁgllz ~+ H?Iasllf);2
<51(Hu5£|! +ans|| 5)

+as(H§H2 +lul? 5+ llaoll? 5) + s Xa(2)Y2(92).

10.(2

t
where X (£2) = |u|§19+]q0|2 ~, Ya(02) = X2(9)+||u|y§’5+f0 Huﬂiﬁdr.

Now we consider subdomains near the boundary. Differentiating (4.22); with

respect to 7, multiplying the result by u,J and integrating over 9 yields (J is
the Jacobian of the transformation x = z(z))

(4.31) - fnu sz+— J Vad + Va2 T dz+ (v = IV a2 5
Q
- faaTv'aTsz_ f(ﬁﬁ(ﬁaaa)),TaTszl
2 g

< O3([|@aaIf 5+ 10213 5) + aro (1912 5 + 1all? 5+ 1212 5)

2 2
+anal)? (a2 +mw19+HfquQ)
where we have used the inequalities

[ (VT @,8)) » = VT (r, Gor )i T d2’

2

+H%ﬂ2)+am@ﬂﬁ Hfudﬂ 5+ 5+ .12 ).

and
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[ (AT, G0)) r — BT (@, Gor )Jiir J d2' < 5;’(|yazz||§’§ + IIZJ}z\Iﬁﬁ)
g

j 2
~112 ~ 12 TP ~
s (I 5+ 115 5 + 191G 5| [ @], ).

and the fact that VF can be expressed in terms of fot ug dr.
Consider the boundary term in (4.31). Using the boundary condition (4.22)s3
we obtain

432) - [ (AT(@,G)).-ti-J d2’
g

t 2

<Al I 5 + anal |2 g + ansl@l 5| [ war]

: :

¢ 2
< B[ 2 5 + ass (12 5 + 2 5| [ @dr|| ),
O b

where in the last inequality we have used the interpolation inequality
112 5 < 81+I2 5 + c@llarI2 5.

From the continuity equation (4.22)2 we get

1d 1
4. - ~O’T u'~T dz = - — = A~2 d N)
(4.33) qu Vo irddz = 5 qug/(n)qm,] z+ N
Q Q
where

Vo < 86132 5+ clal? 5

2
np
2,02

)

t
@, 012 5+ @2, o)+ Plal? ]| [ war
0

and P = P(| [{ @, dt|__ 5). lInlly 5 = (f [h[2T d2)1/2.
From (4.31)(4.33) and Lemma 5.1 in the case G = {2, v = @i,, we have

1 d P 1 ~9 Mo~ 2 o ~ (2
sy g (4 sl ) Jds SIa R o+ - I T
N

< 57(||azz||(2)7§ + ||C]Aaz||(2)7§) + a18(||17||i§ + ||€JA<7H(2)75 + H?Hiﬁ)

~ ~

+ angg(Q)Yg(Q),
AN ~ ~ AN AN ~ t |~
where X5(2) = |82 =+ [G[2 | 5, Ya(R2) = Xo(2) + [[al]? 5 + [y 1a])? 5"

Applying the operator (1 + )V to (4.22)s, dividing the result by q¥(7) and
adding to (4.22); gives
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PtV

4. =77~ Vio ido = A2~i_AiA'~_Mi ng"
(4.35) quI,(n)VthrVq u(V ViV ) — g 419

HHVs o~ SR i
—— V(¥ Mu-V() + k5.

Multiplying the normal component of (4.35) by ¢y and integrating over 0
implies

PtV o
U (n)

Vi(@¥(n ))V U+

1d w4+ v
2ai | )
Q

< el l2 5 + a0 ([Tl 5+ 312 5+ 118 12 5 + 1312 5)

(4 36) QJn‘]dZ +5 ||C.70n||(2)7§

~

(05 + ed) (|12 5 + o= 2 ) + 0o (172 5 Hfuﬁfg

2
I,2))
2.0

)

t
162 | 5 (1312 5+ a2 5 + || [ @
0

We write (4.22); in the form
(4.37) Wil — pAU — vV - = Vigo + 1§ + ki — ki,
where ki = (uAG +vV,;V - ) — R SAVAVET

Multiplying the third component of (4.37) by u3,J and integrating over 9]
yields

Q.‘g‘

(4.38)

N | =

prv, .
g J AT e S NG g < el 5+ ol o)
n

a1 5+ 1312 5+ 1712 5+ W2 ) + S5 (1Tl 5 + 1-e11 )

)
3,0/

i1 =1,2, and ¢,, we write (4.37) in the form

+az3<\%|2

t

2 4 ~2 ~ 1

2 S sl s e | [ ad
0

To estimate u’,,,,
(4.39)  — pAw +V.iq,
=0 — Tl + K — K+ V,iGo — Vige + vV, divi
= f+ vV, diva,
and the boundary condition (4.22)3 as
ou’ ou? out ot 1~
(4.40) 5= o <8z3+azi_u )

1 ~ _ T .
+—ks-m=ht, =12 22=0,
1
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where we have also used the fact that 7;-n = 0, i = 1,2. Considering the problem
(4.39), (4.40) in £2 we have to add the boundary conditions

(441) =g =0, Tlps—a=0, =12, Gljwj=a=0, Go|ss=a=0.

Multiplying (4.39) by @?, summing over i = 1,2, integrating over 0 and using
boundary conditions (4.40) and (4.41) yields

(142) VI 5 < 8oll@ol2 5+ elIFIZ 5+ IR o+ llaival? ).
where the prime denotes that only two components (i = 1,2) are taken into
account.

We look for a function w € H'(£2) such that

divw =gy, w3|s_9=x(2) f Godz ,
(4.43) 5

w’&a\gzo, w'|pm_0=0, i=12,

where x(z’) is a smooth function such that [5x(2')dz’ = 1, x(2') > 0,
Xl||z|=a = 0. Moreover, 1 < 4d2])doo s solxl g > 1/(4d?). Finally, assuming
that x vanishes only in a neighbourhood of the boundary of S , we require that
min ./ <q/2 x(2') > 0. Hence

1= Af x(2') dz" > f x(2) dz' > d? ‘Z,rlnsig/zx(z'),

s |2'|<d/2

s0 miny,/j<a/2 x(2') < 1/d?. Therefore, we can assume that x(z') < ¢/d>.
We look for solutions of (4.43) in the form w = Vi + «, where ¢ is a solution
to the Neumann problem

A‘P = E]Va ) 62390‘23:0 = X(Z/) f E]va dz = ©o , 62390‘23:d =0,

(4.44) °
0uiplizij—a=0, i=12, [@dz=0,
Q
and
(4‘45) diva =0, a’a§\§:_v90’aﬁ\§7 Oc-ﬁ’g:zo,
a-Tilg=-Ti-Vylg, =12,

where 7, T;, i = 1,2, are normal and tangent vectors to S.
Since the compatibility condition for (4.44) is satisfied there exists a unique
solution to (4.44) such that ¢ € H?({2) and

(446)  lell, g < ell@lly 5+ Ivolly 5+ Ioll, p.8) < e +d) Gl 5.
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because

1/2 _
Iollyz < | WP ) < ed g, 5,

Q)
QL

o
Wy

Ioll, o5 < |

x(@') = x(y)? 2
I e
GG

1/2
fc],dz’( f |x'—y'\*1d:v'dy')
%) S
<ed?| [ G dz| < el
%]

where we have used the fact that |Vy| < ¢/d®.

Similarly, the compatibility condition for (4.45) is satisfied because
n- Vgo|a§\§ = 0. Hence, there exists a solution to (4.45) such that a € H'(2)
and

0,02°

(4.47) lall, 5 < clIVel, o5 < cllell, 5 < clldlly 5
Summarizing, there exists a solution of (4.43) such that w € H 1(ﬁ) and

(4.48) loll, 5 < el 5-

Now we estimate ||g || 0.5+ Multiplying (4.39) by w and integrating over Q
yields
(4.49) —p f Au-wdz + f Vo -wdz = f frwdz+v f Vdivu - wdz.

9] 9] 9] 2

The boundary term which follows from integration by parts in the first term of
(4.49) is estimated in the following way:

< elfsl Il

1/2,8

’u fﬁ.Vﬂ-wdz” Sc’ fﬁgaw?’dz’ 1/27§Hw
S S

< ey sl 5-

The second term on the left-hand side of (4.49) is equal to

quU-w?’dz/— qu(,divwdz
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SCd_l/QHaUHU,ﬁ’ f{jo(z/)dz/
S
< 320G g 3131l 5 < T2 5 + clBr0)d |2
and
J @ divwdz = |3} 5

Q
Finally, the last term in (4.49) can be expressed in the form

deiVﬂ-wdz: f divaw? dz’ — f divu divwdz,

7 S 0
where
‘f divﬂw?’dz":‘ fZ],,dz f diva x(2") dz’ Scd*1/2HZJ}HO§ f\div%ﬂdz'
S o S S

< cd1/2||aGHOﬁ||div ﬂ”o,:@\ < d||?]vGH§ﬁ + ¢||div ﬂ||i§
Summarizing, we obtain for sufficiently small d the estimate
(450) Nl 5 < duolldrel?
eI o+ B2 5+ (]2 o+ vl o)
Now instead of problem (4.39), (4.40) we consider the problem
— PAT, +VoiGow = fL + Vadivie, i=1,2,3,
(451) HAUs + Vailos f P
Opuy =hy, i=1,2.
Multiplying (4.51); by @¢,, summing over i = 1,2, and integrating over 2 yields
(052 [l 5 < ol |2 5+ eI o+ IR 2 5+ vl ).
Finally, let us introduce a function w; € W%(ﬁ) such that
(4.53) divwi = Goor,  wi|,5=0.
By fﬁ Joz dz = 0 there exists a solution of (4.53) such that wy € Hl(ﬁ) and
(4.51) Junll, 5 < elldoslly -
Multiplying (4.51); by w; and integrating over 9 gives
(4.55) o2 5 < e1FI2 5+ livl? 5 + liew |2 ).
From (4.42), (4.50), (4.52) and (4.55) we have
~1 2 ~ 2 ~ 12 ~ 2
(4.56) [y 5+ 1y 5+ 1olly 5 + o5 5

< clllF12 5+ 112 5+ Idivall? 5+ 11all? 5) + drolldoss I 5-
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From the form of f' and h' we have

1FI2 5 < Qg2 o+ Gl 5 + 112 5+ 1312 )

¢
(4.57) +C(H Efﬁdt’

2
~ 112 ~12
oot B3 5+ 113 5)

¢ 2
T2 ~3 |12 ~ g4 ~112 ~112
IR 5 < (1 G 5+ (| [ a5+ )G 5+ 11 o)

Finally, from (4.39) we obtain

~ 2 ~ 2 2 . ~12
(4.58) [0al2 5 < elloel2 5+ IFI2 5+ vl ).
Now, (4.56)—(4.58) imply

(4.59) (I 5 + G0 1} 5 < cClT2 I} 5+ lldiva]? 5)

0,2 —
+an(|g2 5+ 132, 5+ 1311 o)

2 2

~ 14/ ~ |12 ~2 ~ 2
+ s St G031 5+ 1 ) + b donl -

Now (4.34), (4.36), (4.38) and (4.59) yield

1d
4 1a ~~2 | ~32
ao) g J[aaE e+
2

L, Hyi~p2 ~ 2
|+ IR o+ e

< a%(“?”éﬁ + |a|f,o,§ + ||chrH§’5) + a7 X2(£2)Y2(£2) .
We also have
d e _ _ ~ ~
(4.61) o f nuzJ dz < 612||unt||37§ + c||u]|f§ + ass Xo(2)Ya2(02) .
9}

We use (4.61) in (4.60), and next we go back to the variables £. From the resulting
estimate and (4.30), after summing over all neighbourhoods of the partition of
unity and finally going back to the variables x and using (4.12) we obtain (4.24).
This concludes the proof.

Now we obtain an inequality for the third derivatives.

LEMMA 4.5. For a sufficiently smooth solution v, p of (4.1),
1d 1
(4.62) Sd éf (Qvix + pW(g)pi”> dz + |[vl|3, 0, + IPo113,0,

< eallvaatl§ o, + Po(IFI o, + 10310, + Polio.0)

+ P1pX3(1+ X3)Y3,
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where

Xz =olia + P31 + vl e, + [ 050, dr,

(4.63) 0

t
Ys =il + Ipoll3.a + o310, + [vilio, + [ I0lie, dr.
0

Proof. We use the introduced partition of unity. First we consider interior
subdomains. We differentiate (4.21) twice with respect to &, multiply the result
by ﬂggA and integrate over {2 to get

~j ~i \2
Q
~ 2 ~ ~
+ V=Wl Vu -t 5 = J Goee V- Tge Ade
7]
§51(II3§’UII§’5+II3§QUH2 )+a1(IIUIIZ~+Ilan2 +H§Hi;)
+aa X3(2)(1+ X3(2))Y3(92),
where
X5() = Jul? 5+ laol2 | 5+ el 5+ f Jull2 5,
(4.65)

V(@) = ul®? 5+ lao 2 5 + lao

2 sl 5+ f 2 5.
0

From the continuity equation (4.21)2 we obtain
(4.66) - ! Goce Vi - lge Adg = 5 dt f !I/ qU&A dé + Ny,
Q
where
N0 < Balldneel? 5+ clull2 5+ asXa(D)(1 + Xa(D)Va(0)
Using the form of k; (see (4.21)1) from (4.28) we obtain

(467) 2 5+ 112 5 < as(lF2 5+ ul? 5 + llao 2 5 + 17l )

+ a5 (llao |12 5 + anugﬁumufﬁ

§<1+ H judt’

+ ||V - ﬁHgﬁ

2 2
Dl ;)
3,2 )

t 2
dt’
o f o]
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Applying Lemma 5.1 in the case G = 2, v = uge and (4.64), (4.66), (4.67) we get

1d

1
L a ~2 2~ 2
(468) 5 :[ (n Uge + !p(n)qagg>f4d§-% [ull; 5 + o3 5
(9}

< 03([102ullf 5+ 102405 5) + as(lall; 5+ lul; | 5+ laoll; 5)

2,1 .Q
+ ar Xs(2)(1+ X3(02))Y3(9) .

Now we consider a subdomain near the boundary. Differentiating (4.22); twice
with respect to 7, multiplying the result by u,,J and integrating over {2 yields

1d 1
4. 9 q¢ ANTT d TT 2
(4.69) 5 j(n + gp(n)qm)J 2+ Sl ?
n

- f (ﬁﬁ‘(ﬁ, E]Va)),ﬂ' : ﬁTTJ dzl
S
< 0a(@o=elly g + =2zl 5) + as(Nll; 5 + 13017 5 + 113117 5)
+ a9 Xs(2)(1+ X3(02))Y3(12),

where Xg(ﬁ), Yg(ﬁ) are defined by (4.65) with 2 in place of 2, and @,q, in
place of u,q,, and where we have used Lemma 5.1 in the case G = 2, v = U,
moreover,

JdZ+N2,

where
V2| < 85l[Gorr |12 5 + arol|@2 5+ a11 Xs(2)(1 + Xs(62))Y3(42).

Considering the boundary term in (4.69) we obtain the estimate

(470) ’ f ’LL qcr TT HTTJdZ, < (56H7/L\ZTTH§ 5 + a12HﬂH; 5

t
a2 5| [ @
0

4,0

Summarizing, we have
1d 1
4.71) = — Nz + —— Jd U |I? &
( ) 2 dt /‘[ (n TT + zﬁp(n) q07'7'> Z+ 5 Hu THLQ
9

< G (Beel2 5 + 1o 2 ) + ara(12 5 + 1112 5 + 1312 5)

+ a15X3((2)(1 + Xg(Q))Yg(ﬁ) .
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Differentiating the third component of (4.35) with respect to 7, multiplying
the result by ¢on-J and integrating over 9] yields
1d LFV
2at @@t
19

~ 2
(4.72) Jdz + |Gonr |} 5

< C”ﬁzTTHgﬁ + (08 + Cd)(‘mzzzuaﬁ + HZJ\azzHaﬁ)HFHi_l/zg

+ars([@l | 5+ 11217 5+ 1912 5) + a7 Xs(2)(1 + X3(2))Ya(22).

Differentiating the third component of (4.37) with respect to 7, multiplying the

result by 2, J and integrating over {2 gives
1d P wtv -
473) 5o !77|u?n|2<]dz+ THuinT”é’ﬁ

0

< C(HaZTTHE,ﬁ + II%nTHﬁﬁ)

+ (B + ed) (1Tesa 2 5 + G2 IFIZ 5

+aws([G@ll? 5+ 1all} 5 + 12112 5 + 1917 5)

~ ~ ~

+ angg(Q)(l + Xg(Q))Yg(Q) .
Differentiating (4.39) twice with respect to 7, multiplying by u’ .J, integrating
over {2 and using the boundary condition (4.40) we get

(474) ’ a{z“r'r||(2)7§_’— HZJVUTTHaﬁ

< (010 + cd)([@s 2 5 + oo 12 DIFN 5

+ a20(”diVﬁTHi§ + Hﬂtuiﬁ + Hﬁlljﬁ + H@a”iﬁ + Hﬁ”iﬁ)

~ ~

+ a21X3(Q)YEg(Q) .
Moreover, from (4.39) we obtain
~ 2 ~ 2 ~ 2 o2
@T5) T2 5 < el 2 g+ o2 5+ v 2 5)

(011 + ) ([l 5+ 1os- 12 IPI

+ a2 5+ 1317 5 + 1312 5+ 1317 5)

+ a3 X3(02)(1 + X3(92))Y3(£2).
Summarizing, inequalities (4.71)—(4.75) yield

ld i~ ~3 12 L ~ 12 ~ 2
(476) 5% :[ |:n(u’r7' + ’U’nﬂ" ) + (/ﬁp(ﬁ) Q527 Jdz + HUTHZ@\ + anTHl,fl\
(9}
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< 01z + cd)([Ts 2 5 + oo |2 DIF |, 5

T 24 ’“‘3 1,0

59

5+ 1Tl 5411512 ) + a2 Xa(2)(1+ X3(2))Ys(82).

Differentiating the third component of (4.35) with respect to n, multiplying the

result by qNMnJ and next integrating over (2 implies

+ v
(4.77) f” <z 42+ ol 5

2 dt
< CHUTH;EZ\ + (013 + Cd)(”azzznf)’ﬁ + ||atrzz||§7§)” H
+ass(@l? 5+ 112 5 + 132 5+ 1312 )

+ 437 X3(2)(1 + X5(2))Y5(02) .
We write (4.22); in the form
(4.78)  (u+v)Vyidivu = —pu(AU" — V. diva) + nus — 79" — kb

— (V2 + vV, diva — pV2E — vV diva) —

Differentiating the third component of (4.78) with respect to n gives
(4.79) (v @all? 5 < el 5+ Nrmnl2 )
+ (8a + ed)all? 51 FI2

+azs([il,, 5

4-1/2,5
2 2
a2 5+ 1317 )
+ agng(Q)(l + Xg(Q))Yg(Q) .
Finally, differentiating (4.39) with respect to n yields
(4'80) Hannn”aﬁ < C(HHTTHQ 5t HaanHQ 5t H(diVﬁ)nHiﬁ)

(615+cd>HuH2AH FII> /2.8

2 1@l 5+ 11 )
+ a5 Xs(2)(1 + X3(9))Y3(Q) :
From (4.76), (4.77), (4.79) and (4.80) we obtain
1d

+a30<‘u’

(4.81) PV o

9}

(516 + Cd)(”uzzz”2 B + ”quzHO Q)

+ a32(!U|§ 1.0

— (a2 3 ~N2 A2
2 dt :[ |:77(u7'7' + |un ) + a\w(n) Gozz Jdz+ ||u||379 + ||QU||27Q

4-1/2,8

viaa .

51117 5+ 118113 5) + ass Xa(2)(1+ X5(R2))Y3(2).

To obtain the full second derivative of v under the time derivative we examine
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the expression

/\~2 _
482 th fnuzzjdzi Af(’?“zz uzth+ 77t J+ nuzth> dz

< 517(Huzth2 5t HuzzH 5+ a34HuH HUH2 5
where we have used the relations
(4.83) m+nV-i=0 and J,=JV-

Applying (4.82) in (4.81) and using the fact that 17 is Sufﬁmently small we obtain

ld ~np | MtV ~12 ~ 112
(484) 5% ;[ <77uzz + a\w(n) qazz) Jdz + ||UH3’§ + HqUHZﬁ
(9}

(518 + Cd)(Huzzt”2 =+ ”u222”2 =+ ”qUZZHO Q)

+ a35(\u|§ 1,0

+ a3s X3(2)(1 + X3(£2))Y3(2).

Now going back to the variables £ in (4.84), summing over all neighbourhoods of
unity (for the interior neighbourhoods we use (4.68)) and then going back to the
variables  we obtain (4.62) for sufficiently small §; and d. This concludes the
proof.

To estimate the first term on the right-hand side of (4.62) we need

5@ 5+ 11915 5)

LEMMA 4.6. For a sufficiently smooth solution v, p of (4.1),

1d 1
(485) 5% r}[\ < Vet + y'/( )pazt) dxr + HthZ 2 + HthHl $2

< e5llvaulld o, + Pra(vf30,0, + 1Pelio0 + /0.0,

+ PioX4(1 4 X4)Ya,

where

Xy = |U|i2’>,1,(2t + ‘pa‘%,o,nt + f ||UH:2>>Q, dr,

(4.86) 0

¢
Yi=vlizq, + pol3,0 + f [v]l3,e, dr-
0

Proof. We use our partition of unity. First we consider interior subdomains.
Differentiating (4.21); with respect to ¢ and &, multiplying the result by u: and

integrating over {2 yields

(4.87) 2d f NgAder—f Vailige + Vsl ) > A dé
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+ = IV U} 5 = [ GtV TreAdg
Q

< Sl 5+ an(lwll? 5+ laotl2 5 + (312 ) + @ Xa(@)Ya(2),

where

~ ¢ 2
X4 (2) = \u|§7175+]qa\;0ﬁ+H [t .
J ,

2

t
Ya(@) = [ul? , 5+ 1a 2 5+ ] [ war
0

S q¥(n)
(]

4,2,0 3,1,02 4,0
By the continuity equation (4.21)2 we have
- - 1d 1
(4.88) — [ eV T AdE = 2dt J o AdE + Ni

9]

where
N1 < 0llGoe? 5+ aslul? | 5+ asXa(2)(1+ X4(£2))Ya(2) .
From (4.28) we obtain

(4.89) ||ﬂtH§5 + H@It“iﬁ < cll(Vu - ﬂ)t“?ﬁ

Sontlal s

2
5T |q“|1,0,9 1,0,02

+as([Tul 5+ 12, 5

+ CL6X4(.Q)Y4(Q) .

Applying Lemma 5.1 in the case G = 2, v = Uge and (4.87)—(4.89) we obtain for
sufficiently small §; and d9

w(n)

< ar ([t 5 + lul

1d . 1 - -
@s0) g5 J (1t e ) Ade + Tl 5+ 12
(9}

2 2 ~12
21,02 - |q"‘1,0,5 - ‘g|1,0,!~2)

+as X4(2)(1 4+ X4(02))Y4(£2).

Now we obtain an estimate in a subdomain near the boundary. Differentiating
(4.22); with respect to ¢t and 7, multiplying the result by wu.J and integrating

o~

over {2 yields
1d 1 i~
491 - nuz ey 2 Jd - T 2/\
sy g J (W4 e )Tds+ Sl
2

— [ (AT, 8)) 4r - Thgr J d2’
S
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=+ g7

5+ 05

< B ([Tant 2y + 112 5) + o (12 2 s

2,0,02
+ a10X4(§)(1 + X4(§))Y4(§) )

where X4(£2), Y4(£2) are equal to X4(£2), Y4(£2) with u, ¢, {2 replaced by @, , £2,
respectively. Moreover, to obtain (4.91) we have used Lemma 5.1 in the case
G =12, v="1u and

1 ~2
<45 TJdZ + N-
fawm ' ’
2
with

[No| < 8allGoc])? 5+ an A2 | 5+ a2 Xa(R)(1+ Xa(2)Ya(R2).

Consider the boundary term in (4.91). Using the boundary condition (4.22)s5
we obtain

@%)}—lfm@m%»”ﬂwm4=\—jwmmamﬁ4Mwa
S S
< b5 (lirl? 5+ e 12 ) + s [[al2 u+uﬂulmg
4 2
+ ! u+uFm1mS-+rg2J\f S+ a2 )] -
Applying (4.92) in (4.91) yields
1d =2 L Hi~ 2
s g5 [ (74 g ) T+ Sl
(9}
< 5= 2 5+ 1Gois 2 ) + ana (1 | 5+ 1812 5+ 131 5)

+an49x1+X49»na%.
Differentiating the third component of (4.35) with respect to ¢, multiplying
the result by ¢,:J and integrating over {2 yields

Ld pptves
2at ) qu(m) Lo
2

(4.94) Jdz + [|@ontll; 5

< Gr+ I FIP ol 5+ [Tl ) + el 5
+maMﬁog+mmw +mﬁmg

Differentiating the third component of (4.37) with respect to ¢, multiplying
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the result by u2,,,J and integrating over 2 implies

1d e w4,
(95) g g J ATz EEE 2
19
< (58 =+ Cd)||FHZ_1/27§(Hﬂzth§7§ + H?iathﬁﬁ) + 59Hfdztt”(2)’§
~ 2 ~ 2 ~|2 ~ |2 ~12
+ C(||Umt||0f2 + ||q0nt||07§) + a18(|u|2’07§ el g5+ |9|1’07§)

~ ~ ~

+ a19X4(2)(1 4+ X4(02))Y4(2).
Differentiating (4.39) with respect to ¢t and 7, multiplying by u},.J, integrating
over (2 and using (4.40) gives
(496) HathHaﬁ + HE]VUtTH?)’ﬁ

< Gro+ )P, (el 5+ 1Gome]2 )

+ el @iV il 2 5+ azo(l2 ) 5+ 1dol? o 5+ 117 5)

+as0 Xa(2)(1+ X4(2))Ya(£2) .
Moreover, from (4.39) we obtain

(A97)  Woutl2 5 < Grr ) IFI2_ ) (Tl 5+ [outl2 )

+ C(Hﬂzt’rHi,ﬁ + ||aat7|‘§’5)

- a21(m|§,0,§ + 140 io,?z\ - |§|?o§)

~ ~

+ a2 X4(2)(1 + X4(02))Ya(2).

Finally, we have

498) G [ AT < oalal? g+ Tl 5+ Tl I ).
From (4.92), (4.;24)(4.98) we obtain for sufficiently small §’s
199 g5 [ (T + et ) T+ sl 5+ sl
0
< 613||ﬂztt||3,5 + (614 + Cd)(”@n”iﬁ + ”@mﬁ”iﬁ)

+ a23(|a|;07§ + @ﬁyoﬁ + |§|ioﬁ)

+ 424 X4 (2)(1+ X4(02))Ya(92).
Going back to the variables £ in (4.99), summing over all neigbourhoods of the
partition of unity (where we use (4.90) for the interior subdomains) we obtain
(4.85) for sufficiently small ¢’s and d. This concludes the proof.
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To estimate the first term on the right-hand side of (4.85) we need

LEMMA 4.7. For a sufficiently smooth solution v, p of (4.1),

1d 1
(4.100) > & f <Qvt2t + MP?;H) dr + ||Utt”%,(zt + ||patt|’3,9t
2

< dlvil3.0, + Pus(lfulld.o + 117 0.0,) + PraXs(1 4+ X5)Y5,
where

(4.101) X5 = |v

g,l,Qt + ’pU’%,D,Qt ? Y5 = ‘U’iﬂ,ﬂf + |p0’|§’179t °

Proof. Differentiating (4.1); twice with respect to ¢, multiplying by v;; and
integrating over {2; yields

1d

1 %
2 2 2
(4.102) 2 dt é/‘ <9Utt + pw(g)pott> dx + §HUtt”1,Qt
t

- f (T (v, o)) 4t - viy ds
S,

< 01(lveel? 0, + IPosell 2,)
+a1(If13.0.0, + 1 feellf.0,) + a2 Xs5(1 + X5)Y5,

where we have used

. 1d 1,
- f Pott div vy dor = Sd f I)T@pttdw-l-f\ﬁ,
2 2
Lemma 5.4 and
IN1| < Gallporellf o, + asXs(1 4+ X5)Ys.

Using the boundary condition (4.1)3 we see that the boundary term in (4.102)
vanishes. Moreover, by the continuity equation (4.2) we have

(4.103) poetllf, 2, < cllvellf o, + aaXs(1+ X5)Ys.
Hence, (4.102) and (4.103) imply (4.100). This concludes the proof.

Summarizing, from Lemmas 4.5-4.7 we obtain

LEMMA 4.8.

1d 1
(4.104) Sdi f <Q|Di,tu2 + M’Dg,tpa’2> dr + |U|§,1,Qt + ‘po‘g,o,(zt

2
< Pis([vl3 0.0, + Pl 0.0,

+ (|3 0.0, + 1feellg.0,) + PreXe(1 + Xg)Ys ,
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where

Xe = [vl3 1,0, + IPe30.0, + [ W30, dr,
(4.105) 0

Yo = vfis 0, + [Pol31,0, + f [v]l% o, dr -
0

Finally, we obtain inequalities for the fourth derivatives.

LEMMA 4.9. For a sufficiently smooth solution v, p of (4.1),

1d 1
4.106) —=— — d 2 |12
( ) 2 dt (}/‘ ( Vyxx + pgp( )po'www> T+ ”’UH4791, + Hp s

)

+ llpo I3

< 56‘|Umaft|’g,(zt + Pi7(|v 2, ,

+ P X7(1 + X2)Y7,
where
X7 =03 2,0, + IPol3 2,0, + f [0[|3 ¢, dr,
0

(4.107)

Yy = [vl3s.0, + polin + [ I0llig, dr.
0

Proof. We use the partition of unity. First we consider interior subdomains.
Differentiate (4.21); three times with respect to &, multiply by @¢e¢ A and integrate

over {2 to get
1d 1
(4108) 5% :[ <T] 55'5 + W(?’]) qa€$5>Ad§
19
L ~
Py :[ (V u7ug§5 +Vu]u££§) Adg+ (v —p)||[Vy - U£££||(2)’5

< b1(Tecell? 5+ I@oeeel2 5) + an (el 5+ llaw 2 5+ IG1° 5)

- a2X7(9)(1 + X?(Q))Yﬂf?) ;
where

/

Xe(0) = lul?, 5+ laol2, 5+ f lul? 5

V(@) = Juf? | 5+ 1aol2, 5+ f||u|12 2
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We have also used

1d 1
= [ GoeeeVu tiecedde = 2L L G2 agesn
~f€15§5V Ugee AdE = 5 ;fqg,(n)qags& d€ + N1,
(] (]

where
M| < Balldoeeell? 5 + asllull? 5+ aaXe()(1 + X2(2)¥7(8)

Moreover, the following relation has been employed:

‘ [ UVuVuieee = ViuVaulicee] - Ueee AdE + [ [(Vaio)ece — Vadoeee] - Tieec A dS

2 2
< B3l[Tece 2 5 + as X7 () (1 + XF(2))Yr(2).

From (4.28) we obtain

(4.109) ||17”Z’5 + ”@70”;5 <[V - ﬁllﬁﬁ + a6(|u‘§’2’5 + an\ljﬁ + Hﬁ\liﬁ)

+arX7(2)(1+ XF(2))¥2(92).
From (4.108) and (4.109) for sufficiently small ; we have

1d o I ~112 ~ 112
@n0) 34 [ (e + it JAde+ 1l 5+ 1@l
2

< a8(|u|§7275 + ||%||;5 + ||§||;5) +ag X7(2)(1+ X7(2))Y7(2),

where Lemma 5.1 in the case G = 2 and v = Ugee has been used.
Now we consider a subdomain near the boundary. Differentiating (4.22); three

~

times with respect to 7, multiplying by u,..J and integrating over {2 yields

1d ~ 1 _ W~
4.111) = — nuz — G2 __|Jdz+ S |? &
( ) t J |:nuTTT+q!p(n)qUTTT:| Z+ 2”“’ Hl,.Q

+ (= IV T} 5= [ OT@G0)) rrr - trerd d2'

S
< Ba([[Terrrl2 5+ [Torr 2 ) + aro(( , 5+ 112 5 + G2 )

+anX7(2)(1+ X2(2)Y7(2),

where X7(f\2), Y7(f\2) have the form of X7((~2), Y7(_(~2) with @, ., Qin place of u,
4o, {2, respectively. Moreover, we have used

1d
g% __Jdz+ Ns,

o 1
- /[ QUTTTV‘UTTTJdZ: 5% /[ (’J‘T(n")qUTTT
2

2
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where
N2 < 05 lorrr|2 5 + aralll2 5 + a1 X7 (2) (1 + XH(D)Y2(2).
We have also employed the following estimates:
| [ 1V rer = V] T dz 4 [ (V) e = Vigrre] Tireed da
Q 9]
< Gorr? 5+ 1Toerel2 5+ ara(IA12 5 + 13112 5)
+a13X7()(1+ XF(2))¥7(2),
and

‘ f TLT u QJ STTT ﬁT(ﬂTTT’ Z]JO'T’TT)} : ﬂ’TT’TJ dZ/

9]

< (57(“62777“(2)76 + anzq—THaﬁ)
+an(al 5+ 1312 5)

+as X7 (2)(1+ X3 (2)Y(2),

where dg and §7 have been assumed to be sufficiently small.
Finally, Lemma 5.1 in the case G = {2 and v = U, has been used.

Using the boundary condition (4.22)3 we estimate the boundary term in
(4.111) as follows:

(4.112) ‘ — [ BT(@,G)) rrr - Trprd d2’

< Gg[haaz |2 5 + @162 5 + arr X (2)(1+ X2(62))Y7(82).

Assuming dg to be sufficiently small, from (4.111) and (4.112) we obtain

1d 1
4113) -2 [ (5@ d St
@13 55 [ (et sy )Tde+ Sl
2

+ @ -w|V- ﬂTTTHi 5
S 59(Haz7'7'7'H2 5 + H&azﬂ'”i 5)

+as([al}, 5+ HQJ||2,§+ ||§||;§)

3,2, .(2
+ a10X7(2)(1 + X2(02))Y+(2).

Differentiating the third component of (4.35) twice with respect to 7, multiplying
the result by ¢onr-rJ and integrating over {2 gives
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(4.114)

N =
QU

d 1, 1,

. ~ ~ Jd o llYonTT 2 =

t :[ qu/(n) donrr z+ 2||q ||07_Q
2

< (610 + ed) ([azrr 12 5 + [Goner | 5)

t ell@rrr |2 5+ ax(lall, 5+ llaoll} 5+ 13113 5)

+ a1 X7(2)(1 + X2(2))Y+(2).
Differentiating the third component of (4.37) twice with respect to 7, multiplying

the result by 3, .. J and integrating over 2 implies
1d

e u+v
5% f 77|Umr‘2JdZ + Tuui
9]

2
(4115) nTTH07§

S (511 + Cd)(HﬂZZTTHE ﬁ + H@fzﬂ'”i 5) + 512H77n7'7'tH§ 5
+ C(”aﬂwuéﬁ + ”aon'rTHaﬁ)

+an((A, 5+ @12 5+ G2 5)

+assX7(2)(1+ X2(2)Y2(02).

Differentiating (4.39) three times with respect to 7, multiplying by @’ .. J, inte-
grating over {2 and using the boundary condition (4.40) we obtain

(4‘116) HaszH(Q)ﬁ + HZIVUTTTH;f} < (512 + Cd)(HazzZZHaﬁ + Haazzznﬁﬁ)

teldiv e | 5+ a2, 5+ 1312 5 + 1312 )

+ ags X7 (2)(1 + X2(02))Y7(R2).
Moreover, from (4.39) we find

(A7) o |2 5 < o+ ) (el 5+ [Toec )

+ C(Hag—TTTH(Q),fZ\ + H(dlva)""”THi’ﬁ + HaO’TTTH;ﬁ)

Va2, 5+ 1312 5+ 1312 5) + an Xr (@)1 + XED)Vo(D).
Summarizing, from (4.114)—(4.117) we obtain

1d ~~3 2, MtV o ~ 2 ~ 2
(4118) /‘[ <n‘un'r’r’ + (I\W(ﬁ) Qonrr Jdz + HqUZ‘I'THQﬁ + HUZZTTHO’_@\
(9]

2.dt
S (614 + Cd)(HazzzzHE 5 + “aazzz”§ 5) + 515H77n7'7'tH§ 5

+ ltarrely 5+ a3 , 5+ 1315 5+ 1911 5)

~

+ ago X7(2)(1 + X2(2))Y+(12).
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Differentiating the third component of (4.35) with respect to n and 7, multiplying
by GonnrJ and integrating over {2 yields

1d v

4.119 ——
( ) 2 dt J W(ﬁ)qannT
2

Jdz =+ ||(Ajzrnn’r||§ _(’5

< (B16 + cd)([zzar [ 5 + Gozr 12 5)
+ clfizar|I? 5 +aso(ll2, 5+ @12, 5+ 1512 5)
+ a31X7(fAZ)(1 + X?(!AZ))YA@) :

Differentiating the third component of (4.78) with respect to n and 7 gives

(4.120) (v @hnnrl[§ 5 < (B17 + ed) (1zzzzllg 5+ 102217 5)
+ C(Hﬂzwr\\a@ + H‘?oan?)’@)
+as (Al , 5+ 1@ 15 5+ 1915 5)
+ ags X7(2)(1+ X2(2))Y7(9).

Next we differentiate (4.39) with respect to n and 7. Hence we get

(4.121) Hanwnﬁﬁ < (618 + cd)(||azmuﬁf2 + H%zzzllﬁﬁ)
ot (lTasrr 2 5 + iV ) e I 5 + lonr 2 5)
+ a34(\ﬁ|§727§ + Hzl\o”;ﬁ + ”§||;§)

+azs X7 (2)(1+ X2(2)Y7(02).

From (4.118)—(4.121) we obtain

(4.122)

N

d s n+v
a /[ (n‘unw’2+mqa2znr)‘]dz
02
—+ Hﬂzzm.”z ﬁ + |’aazz7“§ _6
< (519 + Cd)(HazZZZHi,ﬁ + ||(Ajcrzzz||(2)7§) + 520||ﬁnfr7t||(2)7§
ot ellitarer |2 5 + ass (112, 5+ 13112 5+ 1312 5)

+agr X7(2)(1 + X2(2)Y7(2).

Differentiating the third component of (4.35) twice with respect to n, multi-
plying the result by GynnnJ and integrating over (2 yields
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L

N =
&.‘Q‘
@>

< (621 + Cd)(||uz222||2 s+ ||qUzzzH2 ) + C”uzzzTHO o

5+ Gl 5+ 11815 5)

+ ass (1l 210

3,2,02
+aso X7(2)(1+ X2(02))Y7(£2).
Differentiating the third component of (4.78) twice with respect to n implies
(4.124)  [[(div ) mnnlly 5 < (022 + cd) ([Tzzzlly 5+ 1222 1] 5)
T c<||umu2 5+ [l ) + a4o<ru|§ o H 12 5+ 1612 5)

+an X7 (2)(1+ X2(2))Y7(R).

We differentiate (4.39) twice with respect to n. Hence after integrating over 2 we
obtain

(4.125) Hﬂnnnnnﬁﬁ < (023 + Cd)(”ﬁzzzz,‘aﬁ + H?fmzllﬁﬁ)
+ C(HﬂzznTHQ 5+ H(divm,znnnaﬁ + Hq~aznn‘|(2)§)
+ a2 5+ 1312 5+ 1312 )

T+ anXr(2)(1+ X7<9>>Y7<fz> .

Finally, note that
(4126 12 f 2T dz < Soa([Tasael2 5 + esss 2 5)

@2 5+ @12, 5+ A1 IR 5.

From (4.122)—(4.126) we obtain

qu () 7

S 625”Uzzth2 ~+ (526 + Cd)(Hazzzz||2 ~+ ||E]\azzzH2 A)

1d o +u~
(4127) oo f< 2 L 2 >sz+||uZZZZ!2A+anzzzll
%)

t clTrerl2 5+ assl(@2, 5+ 182 5+ 512 )

32.(?

~

+ ass X7 (2)(1+ X7(2)Y2(2).

From (4.113) and (4.127) it follows that
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(4.128)

N
&‘Q‘

Py +v o
ﬁf ( zzz Ml_ﬁ(n) o?zzz)‘]dz + ”UzzzZHQ 5+ H%zzz”

S CdQ'?H“zzthQ 5 + (528 + Cd)(”azzZZHQ ~ + Hqg'zzzHO 0

| 2

2
2 S+ IG5

+ass([al}, 5+ [Gs

3,2, Q
+air X7(2)(1+ X2(2)Y7(02).

Going back to the variables ¢ in (4.128), summing the result and (4.110) over
all neighbourhoods of the partition of unity, using the fact that dog and d are
sufficiently small and finally going back to the variables = we obtain (4.106). This
concludes the proof.

To estimate the first term on the right-hand side of (4.106) we need

LEMMA 4.10. For a sufficiently smooth solution v, p of (4.1),

1d w+
@120) 3% [ (o2t ) ot Boaanl g, + st B,
2
)

+ P19(|U’§,1,_Q + ‘ptf‘%,l,ﬂt + |f’§,1,9t)
+ Py Xs(1+ X2)Ys,

< 57(“”%%”%,&

where e7 may be assumed arbitrarily small and

t
Xs = [vf 0.0, + IPol3rc + [ 0[50, dr.

(4.130) 0

Ys = [vfis.0, + lpolin + [ ol g, dr.
0

Proof. We use the partition of unity. First we consider interior subdomains.
Differentiating (4.21); twice with respect to & and once with respect to time,

multiplying by ue¢ A and integrating over {2 yields
1d o 1
(4.131) S I <77 Upee + lp(n)qatgg)Adﬁ
Q
B [ (Ve + Virliiee) P Adé + (v — )|V - Tree?
9 J ut Uiee ui Ugeg 1% u 1734 0,07

~+|g|?

5+l 215

§51(|!17t5§|! +||Qat§€” ) +ai(luf

32.(2 21(2

+ asz(Q)(l + XsQ(Q))Ys(f?) ;
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where

Xs(D) = [ul?, 5+ lao? | 5+ f lull 5

Yo(@) = 2, 5+ a2 | 5+ f Jull? 5

Moreover, the following has been used:

~ ~ 1d 1
~ S eV e dde = 550 [ e T de N,
2

i S UVuVail) ee — VauVaiisee] - tree A d€

2

Q

+ f Vulo) tee — Vulotee| - Uree A d§

< @H%Hf <+ s Xs(D)(1+ X2(@)Va(D).
and

M| < 03l @oecely 5+ aaluly, 5+ a5 Xs(2)(1 + X3(£2))Ys(02).

3,2,2
From (4.28) we obtain

(4132) 2 5+ @onl? 5 < ell VTl 5+ as(ul? , 5

T arXs(D)(1+ X2(2)Y(2).

~+ g2

+ 405 o5

21_(?

Now by applying Lemma 5.1 for G = 2 and v = Ugee, from (4.131) and (4.132)
for sufficiently small ; we have

1d

1 ~ 12 ~ 12
@138) 35 [ (et s ) Ade + Tl 5+ 1l
2

< ag(|ul?

3,1,0 =)+ aoXs(2)(1 + XZ(12))Ys(£2) .

5+ a5,

21(2

Now we consider boundary subdomains. Differentiating (4.22); with respect
to ¢t and twice with respect to 7, multiplying by u;,,J, integrating over {2 and
applying Lemma 5.1 for G = 2 and v = uy,, gives

1d _
134) S [ [nufﬂ+

~ 2
9 dt J JdZ + HutTTHLﬁ
2

1, ]
=57~ 4otrr
qw(n)

= (VD) err |2 5= [ AT(@G0)) rr - Trrr ] d'

S
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=+ g]?

512 010

< Ba(|[Teartl2 g+ [Boere2 5 + anoffal2 2 5

3,1, Q
+anXs(2)(1+ X2(02)Ys(9),

where we have used the following relations:

~ S o~ 1d 1
- quTTtv'uTTtszzii f 7/\q37—-,—t<]dz+N2,

J 24t < q¥(n)
2
‘ f u QU ,TTE T §7]/f(a7"rtaaa"r7't)]ﬂ7'7t<] dz‘
Q2
< O ([Teartl2 5+ [Toert2 ) + aro((@R | 5+ 132, 5)

+aXs(2)(1 + X§<9>>Y8<fz>
and

4 a5 Xs(2)(1 + Xs(2))Ys(2).

|N2’ é 5 qu'T’Tt” A+a14|u|32 %)

Moreover, XS(Q) Ys(£2) are obtained from Xg(£2), Ys(£2) upon replacing u, ¢,
02 by U, Gy, Q respectively.

In view of the boundary condition (4.22)3 the boundary term in (4.134) can
be estimated in the following way:

(4135) ‘ f (ﬁ’ﬁ‘(a7 aa)),t’r'r . atTT‘]d’z/‘ = ‘ f (B\(a7 E)ﬁ),t’r’r : atm—t] dZ,
5 5
< Ss@rral? 5+ arsl@ll? 5+ arr Xs(2)(1 + X3(2)Ys(22).

From (4.134) and (4.135) for sufficiently small d5 we obtain
1d 1
4.1 —— | U+ d
( 36) 2 dt :[ |:77 Utrr + Z]\Lp(n) qgtr'r:| Jdz
+ eI} 5+ (v = wll(div @) 4 [0 5

< Gs([ttrrellf 5 + Gotrrlly o) + ars(lly | 5+ 1G5 | 5+ 1815

31.(2 21(2 21.(2

+ algxg(mu + Xg(rz))yg(ﬁ) .

Differentiating the third component of (4.35) with respect to 7 and ¢, multiplying
the result by ¢ n-+J and integrating over {2 implies

1d u+y~2

(4137) 5% J AW( ) Aonrt
(9]

sz + qu'nTtH
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< (07 + Cd)(”azzﬁHQ =+ ||aazﬁH2 =)+ C||ﬂzTTt||2 ~
- 0,2 0,2 0,2

+ azo(\m;Qﬁ + @\;175 + |§|§7175)

+as1 Xs(2)(1 + X2(2))Ys(2).

Differentiating the third component of (4.37) with respect to 7 and ¢, multiplying

~

the result by u3,_,J and integrating over {2 gives

1d
2 dt

(4.138) = ‘; e

f ﬁ|an‘rt‘2‘]dz+ nnﬂ'tHi,ﬁ
Q
S 58Hﬁzztt”§ 5 + (59 + Cd)(“ﬂzzzt‘|§ 5 + HZ]vathHg 5)
t cl[[Trnel? 5+ lFoneil2 5)

o st ek, o)

+an([if | 5 +1d 2,1,0 2,1,0

3,1,02
+ 023 Xs(2) (1 + XF(12))Y5(2).
From (4.39)—(4.41) we have

(4-139) ||ﬁ;wvt‘|§ﬁ =+ HZJVGTTtH;ﬁ < (510 + Cd)(Hﬁzzthéﬁ + Haazztuaﬁ)

+ e[ @mrellg 5+ Mzrrtll; 5)

~|2 ~ |2 ~12
+az(ful | 5+1l,, 5+191, 5)
+ a5 Xs(2)(1 + X35 (02))Ys(£2)

where the prime denotes that only components u!, u? are taken into consideration.
Moreover, from (4.39) we get

(4.140) [nrellf 5 < @iV @) el 5+ Nt 5)
+ (811 + cd)(1Tezatl? 5+ 1222 5)
+ GQG(W\;lﬁ + @’;175 + ’5\;1’5)

+asr Xs(2)(1 + X2(2))Ys(2).

Summarizing, from (4.137)—(4.140) we obtain

1d e wE+v_ - ~
(4141) 5% /‘[ <n‘un'rt|2 + (/]w('ﬁ) qgnﬂ%)‘]dz + HUZZTtHab\ + HQUZTtHaﬁ
(9]

< Srallill2 5 + clliirrill? 5+ (s + ed)(1aat2 5+ [Gonsell? 5)

a2, 5+ @12, 5+ 132, o)+ an Xs(@)(1+ X2(2)¥s(D).
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Differentiating the third component of (4.35) with respect to ¢ and n, multi-
plying the result by ¢,nn:J and integrating over {2 yields

1d L+

4.142 - —
( ) th J Zﬂp(ﬁ)Q(}'nnt
2

1,
Jdz + §||QUnnt||(2)7§

S c||ﬂzz7’tH§ [’2\ + (614 + Cd)(”'ﬂzzzt”z 6 + ||aozth§ !’2‘)

+ aso(’m;lﬁ + 1% ;175 + \5\;175)

+ ag1 Xs(2) (1 + X2(02))Ys(2).

Differentiating the third component of (4.37) with respect to n and ¢, multiplying

~

the result by u3,,,,J and integrating over (2 implies

1d e W+,
(4143) S [ AP s+ 2

2

< C(Hazzrtuﬁ B + quvanntuﬁ 5) + 515Hatt‘|; B
4 (Guo ) ([Tasat 2 5 + [ )

stk 5)

+as (il | 5+1d 2,1,0 21,0

3,1,0
+ a33 Xs(2) (1 + X3 (2))Ys(22).
Finally, from (4.39) we get

(4.144) [#nnellg 5 < cUl(diva) mrellg 5+ ldonsel; )
+ 0(517 + Cd)(”azzztuf) 0 + anzztnz ﬁ)
+ 6134(|a|§71f2 + \qu|§717§ + |§|§717§)

+ ags Xs(2) (1 + X2(02))Ys(2).

Hence, from (4.141)—(4.144) it follows that

ld ~~3 2, MV .o ~ 2 ~ 2

(4145) 5% :\/‘ <n|uznt| + mqaznt Jdz + ||un2t||07§ + ||chzzt|‘07§
2

é 618||ﬂzztt||§7§ + CHaZTTtHaﬁ + (519 + Cd)(“azzztnaﬁ + ||aa'zzt||§7§)

FasalA2, 5+ 1312, 5+152, o)+ as Xa(@)(1+ X2(@2)¥s(D2).

To obtain the full derivative u,,; under the integral over 2 and under the time
derivative we need the following:
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(4.146)

N =
&‘g‘

f zthdZ < 520”&22#”3’5 + CHazth;ﬁ
5

el 5+ 132 IR, 5

From (4.136), (4.145) and (4.146) we obtain for sufficiently small § and d

1d o u+v
aan) o [ (A% B )T b e+ el
< 521(HuzzzzH A + HuzzttH2 ~+ Huzzzt||2 =+ ||qazth )
2 ~12

+ a39X8(~Q)(1 + Xs (Q))YS(Q) .

Going back to the variables £ in (4.147), next summing over all neighbourhoods
of the partition of unity and using (4.133) and the smallness of 1, we finally
obtain (4.129) after going back to the variables x. This concludes the proof.

To estimate the first term on the right-hand side of (4.129) we need the fol-
lowing result.

LEMMA 4.11. For a sufficiently smooth solution v, p of (4.1),
1d w+v
(4.148) > f < Vet + 0 )QUztt> dz + ||lvg )3 0o, T |Poet |3 Kol
2

< 58(””%%”(2),@ + Hvxtttng,m)

+ Pou(vl3 0.0, + Pol30.0, + 1f5.0.0,) + P2 Xo(1 4+ X3)Yo,

where

X9 = ”U|§,0,Qt + \pa@,o,fzt + f HUHZZ’),QT dr,

(4.149) 0

Yo = ’U|z217179t + \po@,o,nt + f ”’UH?L.QT dr .
0

Proof. We use the partition of unity. First we consider interior subdomains.
Differentiating (4.21); twice with respect to ¢ and once with respect to &, multi-
plying the result by u4¢A and integrating over {2 yields

1d 1
(4.150) 2 dt ~f <77 tt§+ W(ﬁ)‘]att{)Adg
2

H ~i o
+§ Nf (V uluttf + Vuﬂuttg)zAdf + (v =)V - Uttf”iﬁ
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< u([Tueel? 5 + 1Goucl? )+ ar (| 5+ lao 2 5+ 1, 5)
+asXo(2)(1 4 X3(2))Yo(92),
where
Xo(2) = [u?> ~+lg 2 5+ f lull? 5
3,0, 3,0,02
5 2 2
xun>|m“9+mgwg+tfmn
We have used the facts that
1d 1
_ 0o w - Upe AdE = = — [ Ad Ny,
!q tt{v utt§ g 2 dt ! qW(n)thtf £+ 1
Q 7]
‘ f [(vuvuﬂ),ttﬁ - vuvuﬁttf] : attiAd‘g
Q
+ f qu e — Vu%ttg] : 'Etth dg
ng@ﬁﬁwma@m+Xa®mﬂh
and

5+ as Xo(£2)(1 4 X3(£2))Ys(£2) .

[Ny | < 53”%&5” +a4|u\319

From (4.28) we obtain

~+ g2

(4151) [l 5+ 1Goul? 5 < cllussul? 5+ asful? 2 3

1,2 — 3OQ

+ar Xo(2)(1 + X2 (!2))Y9(Q) .

Now from (4.150) and (4.151) for sufficiently small J; and from Lemma 5.1 for
G = {2 and v = uye we get

1d 1 ~ 12 ~ 2
(4.152) 5 ~f (n Upye + lp(ﬂ)qattg>Ad£+HuttHQﬁJrquHlﬁ
2

<as(jul | 5+l | 5+19] + a9 Xo(2)(1 + X35(£2))Yo(92) .

30(2 20(2 20(2)

Consider now boundary subdomains. Differentiating (4.22); twice with respect
to t and once with respect to 7, multiplying the result by w,J and integrating
over {2 gives
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(4.153)

N
&‘Q‘

1
~~2 ~ N2
f [ N Uir + qo’tt‘r:| Jdz+ HuttTH1 o
b ¥ (1)

+ (v = @V aer 1} 5~ [ AT @) bt - Trer T d2

S

< 0a(|@oeer ] R ||~zzttH 5) +a([al? ~+ g1

o+l 209)

309 20(2

+m%mm+%WWWW

where we have used Lemma 5.1 in the case G = 2, v = Uy, and

‘ f T(u, ¢o)) ttr — ﬁﬁ(ﬂttn Jottr)|UterJ dz

S 54/1(Hazztt||(2)7§ + ||aaztt||§’§)
T a12]ﬂ|2 5+ a13Xo(2)(1 4+ X2(02))Yy(£2),

UttrGottrJ dz = 42, Jdz + No,

thfw

Q) —
<

where

[N2| < 8} [|@oter |12 A+CL14\U\ A+@15X9(f?)(1+X§(§))Y9(§)~

Moreover, Xg((}) Yo (£2) are obtained from Xo(£2), Yy(£2) upon replacing u, ¢o,
02 by u, q,, Q respectively.

By using the boundary condition (4.22)3 the boundary term in (4.153) can be
estimated in the following way:

4 154 ‘ f TLT u qg R 7o 'dttTJ dZ/’

< 35| zir |12 5 + arslliul|? 5+ a17Xo(2)(1 + X5(2))Yo(2).

From (4.153) and (4.154) we obtain for sufficiently small J5
@wm(1f@%rAmwmww+mm%+wWwwmmﬁ§

S 56(Haztt’r||2 ~+ ||aattTH2 ’\)

=+ 9|2

+as([tl] | 5+ 160 2.0.0)

2,0,02
+ 419X (2)(1 + X5(2))Yo(2)).
Differentiating the third component of (4.35) twice with respect to ¢, multiplying
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the result by gonstJ and integrating over 0 implies

1d
(4.156) =& [FtVae

1
=5~ Jd N2 2
2di J qu/(n)QJntt z+ 2”(1 mt\lm
2

< lfariel2 5+ @r 4 cd) ([Tl 5+ [Fostell? )

+ a20(\m§7075 + |@a\§707§ + @;075)

+ ag1 Xo(2) (1 + X2(02))Yo(2).

Differentiating the third component of (4.37) twice with respect to ¢, multiplying
the result by u

ot and integrating over 2 one has

1d e w+v,
(4.157) Sdq I 77|U§Ltt|2jdz + TIIUinttHﬁﬁ
Q
< C(HﬂZ’rttHi’ﬁ + ”@mtt”iﬁ) + 58||azttt||(2)7§
+ (59 + Cd)(”azzttHaﬁ + HEJVO'zttHE’ﬁ)

+ a22(|m§,0?§ + @!;0’5 + @’;,075)

+ 423 Xo () (1 + X3(92))Y5(2).
From (4.39)—(4.41) we have

(4158)  (Treell2 5+ NGorial 5

< (0w + ed) (et 5 + 1Gozuelly 5) + lllnmeelly 5 + Nzt 5)

+an([il] | 5+ Gl 541905 ) 5) + a2 Xo(2)(1 + X3(92))Vs(£2).

Moreover, from (4.39) it follows that

(4.159) | ’d;mtuﬁﬁ < e(||(div ﬂ)’TttH(zJ,ﬁ + H@vtt”ﬁﬁ)

+ (011 + cd)(HazzttH(Q)ﬁ + Haazttnf)’ﬁ)

+ aza(\m;()ﬁ + |‘/J\a|;’0’§ + |§|§05)

+ agr Xo(2)(1 + X2(2))Ye(2) .
Summarizing, from (4.156)—(4.159) we have

1d o ptv ~ ~
(4.160) 2 dt Af <n‘untt‘2 + 7@\‘17(;7\) q(72ntt>‘]dz + ”%ztt”éﬁ + H%ztt”iﬁ
)
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< 512”@%”?’?2 + (013 + Cd)(”azzttH?)ﬁ + Hqczttnaﬁ)
+ellzrully 5+ aas(l] | 5+ 1601 ) 5+ 1615, 5)
+ az0 Xo(2)(1 + X3(2))Ya(82).
Finally, using the inequality

1d e ~ ~
(4161) 5@ f nuittjdz S (514HutttHi§ + cHuttHiﬁ
Q
el 5+ @I, lEul? 5

from (4.155) and (4.160) we obtain

1d e ntv_ ~ ~
(4162) 5% ! (77 ugtt + /qw(ﬁ) qutt)‘]dz + Hutt‘|;§ + HqO'ttHif?
(9]

< 515(Hazzthg7§ + Hﬁztttuéﬁ + HazzttHgﬁ)

+aso([af} | 5+ 1815 5+ 1915, 5)
+ a3 Xo(Q) (1 + X3(2))¥5(2).

Going back to the variables £ in (4.162), next summing the result and (4.153)
over all neighbourhoods of the partition of unity we finally obtain (4.148) after
going back to the variables x and upon assuming that d15 is sufficiently small.
This concludes the proof.

Finally, to obtain an estimate for the second term on the right-hand side of
(4.148) we have to show

LEMMA 4.12. For a sufficiently smooth solution v, p of (4.1),

1d 1
(4.163) 2 dt f <Qvt2tt + ppittt> dz + [vee
2

%,Qt + HpatttH%,nt

V(o)
< cllvanell§, o, + Pos(l fuelld. o, + 115.0.0,) + PeaX10(1 + X3)) Y10,
where X190 = |v[30.0, + 1Pel3.0.0,» Y10 =[vI3 1.0, +1Pe3.0.0,

Proof. Differentiating (4.1); three times with respect to ¢, multiplying the
result by vy, integrating over §2; and using Lemma 5.5 one obtains

1d 1
(4.164) S di (}f <Qvt2tt + MPittt) dx + HUttt”iQt

_ f (niTij(U,po)),ttt‘Ugtt ds
St

< Oullveell§. o, + (| feael

6.2, F1f15.0.0,) + cX10(1 + X75) Y10,
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where by the boundary condition (4.1)3 the boundary term vanishes.
By (4.2) we have

(4.165) 1Potellf. 0, < cllvaelld,o, + cX10(1 + X75) Y10 .-
Therefore, from (4.164) and (4.165) we obtain (4.163). This concludes the proof.
From the above lemmas for sufficiently small €’s we obtain

THEOREM 4.13. For a sufficiently smooth solution v, p of (4.1),
d
(4.166) GrTes aP(X)X(14+ X®)Y + coF + c3¥

where c;, i =1,2,3, depend on 9., 0%, T, ||S][4—1/2, fOT |v]|3,0, dt', and

¢
X = [vl3 0,0, + IPol3 0,0, + f [0][3,0,, dt’,
0

t
(4.167) Y =0} 0+polbon + [ Iv3a,d
0

p(t) = 30,0, + Pol30,0,,  ¥)=IIEq + P
P(t) = |U|421,1,Qt + [po g,o,nt » o F@) = | feael

|2
0,82¢ >

g,Qt + ’f‘%,O,Qt :

5. Korn inequality

In this section we show Korn type inequalities which are necessary to prove
global existence of solutions. We follow the ideas from [26]. First we show

LEMMA 5.1. Let G C R3 be a given bounded domain. Let v € La(G) be such
that

(5.1) Eg) = [ (9p07 + 0p5v')?dx < 0.
G

Then there exists a constant ¢ such that
(5.2) [0l ¢ < c(Ba () + ||v]l§ o) -

Proof. Introduce a function u by

3
(5.3) uw= Zbigoi(x) + v,

where

(5.4) pi=(z—T) xe,
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with z = (2%, 2%, 23), 7 = \(1;| fG xtdx, fG 22 dx, fG 23 dzx) and e; = (81,042, 6:3),
1= 1 2 3. Define b = (bl,bg,bg) by

1
(5.5) = 3G f rot v dz .
G
Since rot p; = —2e;, i = 1,2,3, equations (5.3) and (5.5) imply
(5.6) f rotudr =0.
G
From (5.4) we have [, p;dz =0, i=1,2,3, so
(5.7) fudac: fvdx,
G G

and also Fg(p;) =0, i =1,2,3, so

(5.8) Eg(u) = Ec(v).

By Theorem 1 of [26] we have

(5.9) O0piW; = €ij10,x Sy, 1=1,2,3, w=rotu, 8; = it 4 Oput

so by (5.6) and Lemma 2.4 of [6] it follows that
3

(5.10) Irotullg. < ¢ > 11Sill.¢ = cBa(u) = cEq(v).

i,j=1
Employing the identity
Dpiu’ = %(ijui + Ogiu) + %(&Djui — Oyiu?)
and (5.10) we have

(5.11) IVullg. < c(Ba(u) + [rot ull§ o) < cEg(u) = cEe(v).
Using (5.3) we obtain
(5.12) HVUH%G < cEg(v) + 0]6]2 .

To estimate the last term we consider the system of equations

(5.13) Zb fcpl x)dx = f(u—v)gpj(x)d:c, j=1,2,3,

G

which follows from (5.3). Since det I' # 0, where I' = {I};}, I; = [, ¢i(x)
@;(x) dz, we can calculate b from (5.13), so

(5.14) b1 < e(l[ullé.e + lvl5.c) -
Now by the Poincaré inequality and (5.7), (5 8) we obtain
2
1
(5.15) lulld o < 2|lu— —- udﬂs -l— QH udx
e |G J Gl 0.6

G
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9 1
<cl[[Vull} ¢+ @ [ vdx
G

2
O,G>
< c(Ea(v) + vl o) -
Using (5.14) and (5.15) in (5.12) we obtain (5.2). This concludes the proof.
Assuming the relations (which hold by Remark 2.4)

(5.16) [ ovdx =0,
£2¢
(5.17) [ ov-pidz=0, =123,
£2¢

where ¢; is described by (5.4), we have

LEMMA 5.2. Let £2; C R? be a bounded domain. Let v € Lo(§2;) satisfy (5.16),
(5.17) and

(5.18) Eg,(v) = f (0407 4 Oyiv') da < 0.
2
Then there exists a constant ¢ such that
2
(5.19) 0l g, < e|Ba, )+ ([ lo—ellolde) ],
024

where p. is a constant density of the equilibrium state.

Proof. We repeat the proof of Lemma 5.1 up to (5.12) with G = (2;. Next,
to calculate b we write (5.16) and (5.17) in the form

(5.20) f (0 — 0c)vdx + 0. fvdx:O,
Qt Qt
(5.21) f(g—ge)v-goidac—l—ge fv-goidx:O, 1=1,2,3.
Qt Qt

Calculating v from (5.3) and inserting it in the second term in (5.21) we obtain

3
1
(5.22) Zbk f«pk‘cpid:c: fu-apidx—i-— f(g—ge)v-%-dx
k=1 0, 2 e o
SO
(5.23) bl < c(llullo.c, + [ lo—ecl vl de)
2

and (5.12) yields

2
(620) Vol < oo, @)+ cluldg, + o [ o ocllo]dz)

2,
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From (5.3) and (5.23) we have

2
(5.25) loll g, < clluli g, + ([ lo= ellvld)”,
24

so (5.24) and (5.25) imply

2
(5:26)  [vld g, < cBa, () +clluld o, +e( [ lo— el lvldr)
2

Employing (5.7) in (5.20) we get

1
(5.27) f udr = —— f (0 — 0e)vdx
2 e @
SO
1 2 2 2
(5.28) ullg.o, <2||lu— 5 | udz + = ud:c‘
0.0 |92: ({ 0,2, |12l ({

< c(||VuH§7Qt + ( [ 1o = cellv] dﬂf)2)
2

< e(Ba )+ ( [ lo-adllbldr)’).
2

Hence, (5.26) and (5.28) imply (5.19). This concludes the proof.

LEMMA 5.3. Let £, C R3 be a bounded domain. Let (5.16) and (5.17) be
satisfied. Let v € T'2(£2;), ps € TE(£2;) and

(5.29) Eq,(v;) = [ (0pev] + 0p0})* da < 0.
2

Then there exists a constant ¢ such that

(5.30) [vellf o, < c(Ba, (ve) + ZE(1+ Z1)),

where Zy = ’v@,l,ﬂt + ‘pa‘%,l,rzt-

Proof. We use the proofs of Lemmas 5.1 and 5.2 with v, G replaced by v,
(2, respectively. Moreover, u = 2?21 big; + v;. Differentiating (5.20) and (5.21)
with respect to time gives

(5.31) fvtda:: - [ f(v~Vv+vdivv)d:v
2 2
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(5.32) fvt-gpid:c: —[f(v-Vv—i—vdivv)wpidx—i- fv-goitdx
Qt .Qt Qt
1
+— [llee+v-Vo)u-gi+ (0= o) (v +v-Vv)-
eQt

+ (0 — 0e)v - @; div ] d:n} = Ny, .

Using the Hélder inequality and Sobolev imbedding theorems we have

3
(5.33) NP+ N3 < cZi(1+ Zy).
i=1
Next following the proofs of Lemmas 5.1 and 5.2 we prove the lemma. This
concludes the proof.

LEMMA 5.4. Let £2; C R3 be a bounded domain. Let (5.16) and (5.17) be
satisfied. Let v,p, € T'2(2;), and
(5.34) Eg,(vy) = f (Dyiv], + Dpivl,) dx < 00.
2
Then there exists a constant ¢ such that
(5.35) o[} @, < c(Ba, (vir) + Z3(1 + Z3)),
where Zy = [vf3 4 o, + [Pol3,0,0,-

Proof. Let w = vs;. Introduce the function

3
(5.36) u=y bipi+w,
=1

where the @, are described by (5.4). The rest of the argument is as in Lemmas
5.1 and 5.2, with (5.20) and (5.21) replaced by

(5.37) [ onde =Ny, [ pide=Ny, =123,
24 2
and | Ns| + 37 |Nus| < ¢Za(1 + Za).
LEMMA 5.5. Let £2; C R3 be a bounded domain. Let (5.16) and (5.17) be
satisfied. Let v,p, € I'$(£2;) and

(5.38) Eq, (v) = f (D10l + Opivly,)? dax < o0
2
Then there exists a constant ¢ such that

(5.39) [oelT.0, < (B, (o) + Z3(1 + Z3)),

where Zz = ’U|§,O,Qt + ‘po‘g,o,(zt'
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Proof. Let w = vy, G = 2 and

3
=1

and proceed as before with (5.20) and (5.21) replaced by

(540) f Vttt der = N5, f Uttt - N61a 1= 172737
Qt Qt
and |Ns| + | 327, Nei| < cZs(1 4 Z2).

Remark 5.6. The expressions (5.37) and (5.40) are obtained from (5.20) and
(5.21) by going to the variables &, differentiating with respect to time and going

back to the variables z. Similar considerations have been used in (5.31) and
(5.32).

In Lemmas 5.1-5.5 we have proved Korn type inequalities (5.2), (5.19), (5.30),
(5.35), (5.39) for a given moment of time. Hence, in general, the constants in these
inequalities depend on time. To prove the global existence (see Theorem 6.5) we
have to show that the constants in (5.2), (5.19), (5.30), (5.35), (5.39) do not
depend on time. Therefore, we show

LEMMA 5.7. Assume that v € H*(£2;), t € RL, and

(5.41) Sup‘ f x(&,7) dT‘ < f [v(2, T)|oo,0, dT < €,

where € is suﬁ‘iczently small. Then the constants in (5.2), (5.19), (5.30), (5.35)
and (5.39) do not depend on t.

Proof. For sufficiently small ¢ the invertible transformation (1.4) exists for
all ¢, because

t t
| Juemnydr|  <laelaor [ a7, dr <z,
00,82
0 0
and

1= [zeloo, 0] < 757 192] = [£2:] | <

IQI IQI

(see Remark 2.3). Consider first Lemma 5.1. Assume that it holds for G = {2 and
v = u. Therefore,

(5.42) lullf o < e(Bo(u) +[|ullg o) .

where v(£,0) = u(&).
Now we want to prove (5.42) for £2; and v, where x = z(¢,t) and ¢ € R}, We
have

(5.43) Wllf e, = [ (0 +|oal?) do = [ (Jul® + Jug&a ) |ae| d€
24 2
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< max(1, |63, o)lzelo,2llulli o < alluliq.

where in view of (5.41) and the properties of the transformation x = z(¢,t)
(see (1.4)) the constant ¢; does not depend on ¢.
Next we consider

(544)  Eo(uw)= [ (uf+ul)?dé= [ (vieals +vl afi)?(C] do
(9} $2¢

, . t 2
<l [ (W +0l) detc| [ucdr| [ ol da,
Qt 0 o Qt

where ¢ is an absolute constant and [€;|c,, < c2, which does not depend on ¢
for sufficiently small €.
Finally,

(5.45) lul2 o < [ Pl de < eollol g,
2

where c¢3 is a constant also independent of t.
Hence, from (5.41)—(5.45) for sufficiently small ¢ we obtain
(5.46) [0]1% .0, < ca(Bo, (v) + V)5 0,)

where ¢4 does not depend on t.
Now we consider (5.19). Assume that the following inequality holds (it can be
proved in the same way as (5.19)):

(5.47) ulf o < e(Batw + ([ In— o lulde) ).
9}

where ¢ does not depend on t and n(§) = o(z(£,0),0). In view of the previous
considerations it is sufficient to examine the last integral. We have

[ 1n=cellulds = [ o= eellv]|&ldr < |&uloon, [ |0 cel|v]do
(9} 24 24

<cs [ lo— ool de.
2

Therefore, (5.19) holds with a constant independent of ¢.

For (5.30), we repeat the proofs of Lemmas 5.1 and 5.2 in the case G = (2
and v = v, where we control all constants by employing the assumption (5.41).
Introduce the function

3
(5.48) u = Z bigi(z) + vt ,
i=1

where

(5.49) i =(r—7) xei,
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with e;, i = 1,2,3, defined in (5.4), and

T = |Qt<fa;da: f:cdac fa:da:)

Define b = (b1, ba, b3) by

(5.50) f rot vy dz .

1
2102 o

Since rot ¢; = —2e;, i = 1,2, 3, equations (5.49) and (5.50) imply
(5.51) f rotudr =0.
2

By (5.49) we have [, ¢; dx =0, so

(5.52) fudac: f vy dx
2

2
and also Fp,(p;) =0, i=1,2,3, so
(553) EQt (u) = EQt (Ut) .
Since (5.9) holds, by (5.51) and Lemma 2.4 of [6] we have

2
(5.54) lrotullg o, < ¢ D 1546, = cBo,(u) = cEa, (v),

i,j=1

where ¢ does not depend on t because the volume |£2;| and in view of (5.41) also
the shape of {2; change very little for all ¢.

Using (5.54) we have (see also the decomposition before (5.11))
(5.55) IVullg 0, < 5(Eq, () + [lrot ull§ o,) < cEq, (u) = cEq,(v:) ,

where ¢ also does not depend on ¢.
From (5.48) and (5.55) we obtain

(5.56) IVvel§ o, < c(Eq, (ve) + [b),
where ¢ is independent of t. The coordinates of the vector b are calculated from
3
(5.57) Zbk fgok'goidznz fu-goidx—Ngi(go),
k=1 24 2

where Na;(¢) is determined by (5.32). Hence

3
(5.58) by = Z G,;.l[ f u-p;dr — NQi(SO)] ;

2y
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and Gy; = th ok - p; dr. We have det G # 0 and |p;| < cR, where R = max{R;}
and || = 47R}//3. By (5.41) the maximum is attained. Therefore

3

(5.59) b2 < e(lullf o, + > N3
i=1

with ¢ independent of ¢. Hence

(5.60) IVurll g, < e(Ba, () + llul o, szzz) .

From (5.48) and (5.59) we obtain

(5.61) Jorll3.c, <

3
i=1
with ¢ independent of ¢t. Moreover, (5.52) and (5.31) imply

(5.62) [ wdz =Ny,
£2¢
therefore (see (5.28))
(5.63) lullg o, < (e, (ve) + NP)

where the constant ¢ does not depend on f, because it depends on the constant
from the Poincaré inequality and |£2;|, but under our assumptions these quantities
can be bounded by constants independent of ¢. From (5.60), (5.61) and (5.63) we
obtain the conclusion in the case of the inequality (5.30). The proofs for (5.35)
and (5.39) are similar. This concludes the proof.

6. Global existence

To prove global existence we assume that the external force vanishes, so

(6.1) f=0.
Let ¢(t) and &(t) be defined by (4.167). Then we introduce the spaces

N(t) = {(v,po) : @(t) < 00}, Dﬁ(t):{(vpa. )+ [ o d7'<oo}
0

LEMMA 6.1. Let the initial data vy, poo, S of the problem (1.1) be such that
(v(0), o (0)) € N(0) and S € Wy /> Let

fQUUOdCCZO, fgoxdaz:(].
Q Q
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Let the initial data vg, pso satisfy
(62) ()0(0) <er )

where 1 is sufficiently small. Then there exists a local solution v, p of (1.1) such
that (v(t),ps(t)) € M(t), t < T, where T is the time of local existence and

(6.3) o(t) + f O(7)dr < 167 .
0

Proof. Take (v(0),ps(0)) € M(0), S € W;_lm. Then (v, pyo) € H3(£2), so
by Theorem 3.6 and Remark 3.8 there exists a solution of (1.1) such that

we Wy(QF), ¢ e WQTYNC0,T; Iy (92)),
and
6.4)  Jul? gr + lgo 12 or + lao12 5.0 o 0r
< e([lvolZ.0 + Ipol12.0) < cp(0) < cer

where u = v(z(&,t),1), ¢@o = po((&, 1), 1).
Writing (4.2) in Lagrangian coordinates we have

Got + q¥(n)div,u=0

S0
t
(6.5) 4o = 4-(0) — f q¥(n) div, udr.
0
Using the estimate (6.4) for the local solution we obtain the following estimates
for the solution (3.28) of the continuity equation:
(6.6) Sgp(Hth%,o + 3.0+ 11nl3,0) + 193 2,007 + [0ell3 2.2, 07
< @1(T, (0)p(0) < cex,

where we have used the imbedding

(6.7) Ny = Sgp(IIUIlg,n +luell? )

< c(|lull gr + [u(0) |32 + [u(0)[3 0,) -
Similar considerations can be applied to ¢,, so we have (the inequality (6.6) must
be used)

(6.8) No = S‘tlp(”%tt 5.0+ llaotll3.0 + llaoll3,0) + lgon
< cp2(T, 9(0))(0) < ce1.

In the above considerations we have also used the fact that
t

[ el dr < T 2|jully gr < TV2p(0).
0

Po20r t ”%t||§,2,2,QT

144y
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Repeating the proof of Lemma 4.10 we obtain

d
(6.9) %(vatﬂg,nt + ||pamrt||g,(lt) + vaﬂctnint + ||pcraczt||(2),!2t

< (&) + eN)([vateellf 2, + Vaaatlls 0,) + M (14 N)?,
where N = N1 + Ny and M is such that

T
f M dr < cp(0)
0

in view of the estimates for the local solution.
Similarly, Lemma 4.11 yields

d
(6.10) ﬁ(HvzttH(Q),m + IPoatelld,2,) + lvetelli o, + IPozelld, o,

< (g5 + eN)(lvareelI5 2, + lveatelld o, + 1voaatlld o,) + M1+ N)?.
Finally, Lemma 4.12 implies

d
(6.11) ﬁﬂvtttﬂg,nt + [loeel|T 0, < ¢(N + M) |[vael§ o,

+ eN(Jvatell§. 0, + lvateell. 0, + IPotelld.0,) + cM(1+ N)?,

where by virtue of the continuity equation (4.2) we have

(6.12) HpatttHaQt < CHU:vtt”(%,Qt +ceM(1+ N)2 .

From (6.9)—(6.12) for sufficiently small €}, ¢5, N and fOT M dt we deduce that
v, po € M(T). Of course to prove the last statement the standard technique of
mollifiers or differences should be used. This concludes the proof.

LEMMA 6.2. Assume that there exists a local solution to problem (1.1) which
belongs to IM(T). Let the assumptions of Lemma 2.2 be satisfied. Then there
exists § = 0(0',¢) € (0,1) such that
(6.13) 1Pt < 20,

where 0" € (0,1) and 6 = 0" + ¢(8")eo(e), ¢(d) is a decreasing function of 6’ and
co depends on c1e1 (see (6.3)).

Proof. Let
_ 1 _
Po, = W fpdﬂ? and pg, =P —Pn,-
tl,
Then
(614) HpUHQQt < ||p9t”0,-ot + Hﬁ()t _pUHQQt .

Introduce a function ¢ as a solution of the problem
divd =pgo, in (2,

6.15
( ) ¥=0 on S;.
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In view of Lemma 2.2 of [6] the solution exists, with ¢ € Vf@l(()t) ={ueWi(2):
u|s, = 0} and

(6.16) 19][1,2, < cllpa, o, -

Multiplying (1.1); in the form pv;+ov-Vv+Vpg, —divD(v) = 0 by ¢, integrating
the result over §2; and performing integration by parts we have

fpgtdivﬂdx: fID)(v)~V19dm+ fg(vt—i—v-VU)-vﬂdx.
2 24 24

Taking into account (6.16) and the estimates

t t
rmaxnts\gaaxgemplzf<ﬁvuuerszgrgaamgf(E[ruga%QdT)

< loear (172( [ o(ryar)”).
0

[v]so,2, < cllvllz,0, < ep'/?,

we obtain

(6.17) Ipe. 1152, < cllvalld,c, + lvell3.0,)-
Finally, by the interpolation inequalities we have

(6.18) Ip2.II6., < illullf or + clel) sup 19118, 2, »

where t < T and €} € (0,1).
To estimate the second term on the right-hand side of (6.14) we use

(6.19) f P, — pol* dz = [2] [P, —pol*,
2

so the boundary conditions (1.1), imply

— C
(6.20) [Py, —pol® < m(l!l)ml\asﬁ +lval3,s,)

< &5(Ipalg, 2, + lvaalld ,) + c(e2) (P16 o, + 10116 ,) -

Now from (6.14) and (6.18)-(6.20) it follows that

(6.21) sup [

6.0, < es(lIvll3 or +Slgp(HpazH3,nt + [|vaallf 2,))

+ 0(63)831) 01150,

T
<< [ e(r)dr +sup () +e(ch) sup ol o,
0
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Finally, from the existence of local solutions it follows that the minimum (p,) and
maximum (o*) of the density ¢ are attained. Hence (2.24) yields

(6.22) HUH(%,Qt < (1/04) f ov? dx < 2kge0/ 0+ -
24

Now from the assumption that the local solution is in 9t and for sufficiently small
et we get (6.13). This concludes the proof.

LEMMA 6.3. Assume that there exists a local solution of (1.1) in IM(t), 0 <
t <T. Assume that the initial data are in MN(0) and

(6.23) p(0) <7y, ~€(0,1/2],

where 7y is sufficiently small. Assume also that ¥ (t), t€[0,T), is sufficiently small
(see Remark 2.3 and Lemma 6.2). Then the solution att € (0,T] belongs to N(t)
and

(6.24) o(t) < 7.

Proof. First we find a differential inequality which enables us to prove (6.24).
From the notation in (4.167), differential inequality (4.166) and (6.3) with suffi-
ciently small €, it follows that

X(@t) <o)+ | &(r)dr <cT f/lgzw(t’) +¢(0),
(6.25) -
Y(t)<P(t)+ | &(r)dr < P(t)+ T f}gw(t’) + ¢(0).

S O

Using (6.25) in (4.166) gives
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and that the right-hand sides of (6.25) are so small that
t ¢
ci@[( f@ dT) —gp}¢+cl[1+<<p+ f@ ) }@f@ Ydr < D/2,
0 0
from (6.26) we obtain

(6.27) dtgo+ —& < c1[p(1 4 )P + ©*(0) + sup¥(7)].

d <t

We have @ > cop and ¢; > 1. Let ¢(0) < v/(2¢1), v € (0,1/2]. Assume that
te = inf{t € [0,T] : p(t) > v/(2¢1)}. Let ¢ < gg. Consider (6.27) in the interval
[0,t,]. From the definition of ¢, we have ¢(t.)=+/(2c1). Then for ¢t <t. we have
©2(0)+1 < 4?/(4c?)+ep. Assume that v and gy are so small that 42 /(4eq)+cre9 <
(c2/(16¢1))7y. Then from (6.27) we obtain

pi(ts) < —P[1/2 — 1 (v/(2¢1) +7°/(8¢1))] + (c2/(16¢1) )y

so since @ > cop and 7y is sufﬁciently small we have

C2
<=1 _
pi(ts) 2 L[1/2— (v/2+4°/(8¢D)] + Toc. "
and hence because ¢; > 1 and v < 1/2 we get
w(ty) < ——[1/84—7/64] + —<0.

16

Hence ¢;(t.) < 0, a contradiction. Therefore, (6.24) holds. This concludes the
proof.

Lemma 6.3 suggests that the solution can be continued to the interval [T, 277,
but to do this we need the following facts:

(6.28) (a) The existence of the transformation x = z(,t) and its inverse for
te[T,2T).
(b) The validity of the Korn inequality with the same constant for the
whole interval [0, 27.
(¢) The variations of the shape of £2; for ¢t € [0,27] are so small that the
constants in the imbedding theorem (1.9) can be chosen independently
of t.

Generally to prove global existence we need these facts for all ¢. Lemma 2.2
implies that the volume of {2, does not change much but we have not shown yet
any restriction on the variations of its shape. In the case of surface tension such
a restriction follows from the global conservation laws (see [35]).

It is sufficient to show (c), because then (a) and (b) follow.

LEMMA 6.4. Assume that there exists a local solution of (1.1) in 9M(t), 0 <
t < T, with initial data in N(0) sufficiently small (see (6.2)). Then there exists a
constant jo > 0 such that
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(6.29) p(t) <e ™p(0), t<T,
and T 1is the time of local existence.

Proof. Multiplying (1.1); by v, integrating over {2; and using the continuity

equation (1.1), we obtain
1d
(6.30) % f ov?dx + %Egt (v) + (v — u)||divv|](2)19t - f podivvodr =0.
Qt Qt

In the case of the barotropic fluid ¥ (o) = p,0/p = K, so (4.2) takes the form
1
—(pot +v-Vpy) = —divo.
Kp
Multiplying (6.31) by p., integrating over {2; and using (4.5) with F' = 1/(kAg")
one obtains

(6.31)

. d 1 P2 kbl o1 .
(6.32) —(}fpgdlvvd:z:dt(}f /{Ag”?dx_ 5 A p Edlvvpadaz.

Using (6.32) in (6.30) and applying the Holder and Young inequalities in the last
term of (6.32) one gets

d Lo, Lo, H V=, . 2
(6.33) pn (}f <2QU + Mp,,) dx + §E9t (v) + THle v[|5.0,

(k+1)2
T 8k (v — p)A%o2"
Differentiating (1.1); with respect to ¢, multiplying by vy, integrating over §2; and
using the continuity equation (1.1); implies
1d o .
(6:34) 5 [ ovtdx+ 5 Ba,(v) + (v = p)divedlg.q,

24

Ipsll o, < ().

< [ pordiverde + &) orf o, + e (B) (1 + (1)
2¢

Differentiating (6.31) with respect to ¢, multiplying the result by p,: and inte-
grating over {2, yields

(6.35) [ divviporde < — [
.Qt Qt
+ e (1) (1 + (1)) -
Using (4.5) with F' = 1/(pk) and with p, replaced by p,: in (6.35) implies
. 1d 1
(6.36) [ diveiporde < — - [ ;pp?,t dx + &4 |[potll? o,

2dt
24 £2¢

+ ()1 + o(1)).

S

2
by
- (O +v- V)Tt dx + 5/2”patH(2),.Qt
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Lemma 5.3 gives

(6.37) lvellf o, < €5(Ba, (vr) + @*()(1 + o(1))) -
From (6.34), (6.36) and (6.37) for & sufficiently small we have
1d 1 I .
(6.38) Mh;@@+@@)m+4Mﬁm+@—mmw%@

< &5]1Polld 0, + o (1) (1 + (1)) -
The continuity equation (4.2) yields
(6.39) lpotlld 2, < cr(lldivoll§ o, +¢*(t)) -
Now from (6.33), (6.38), (6.39) and Lemma 5.2 for sufficiently small €, we obtain
d 1 I
(6.40) f@%+@+wﬁ+@ﬂm+wwmﬁmmﬁ>

dt
2

vV—,, . .
+ =5 (ldivol|§ g, + [ldivedig,q,) < e @)1+ ¢(#).

Repeating the proof of inequality (4.166) we see that it can be written in the form
d t
(6.41) S+ @< PO (ot [ v}, dr) L+ X7+ clou,
0

because the factor f(f HUHZ . d7 appears only as a coefficient of the derivatives of
v and p, which determine @. From the assumption that the data are sufficiently
small we deduce that ¢ + f(f [v]|3, o, d7 is also small (see (6.3) and the proof of
Lemma 6.1). Therefore, for sufficiently small data, from (6.41) we get

d
(6.42) o+ 0 < (ol o, + Ipo )

Similarly to the proof of Lemma 6.2 we obtain
(6.43)  lIpolle,c, < €5(llpoull .o, + lvsall§ 0,) + clen)(I0l5 o, + lvells,q,) -
From (6.42) and (6.43) we have

d
(6.44) PTG cra(llvlig 2, + llvell§ 2,) -

Multiplying (6.40) by a sufficiently large constant ¢4, adding the result to (6.44)
and using the fact that ¢(0) is sufficiently small we obtain

d .~
where

_ 1
F=p+cs [ [0(02+v3)+ﬁp(p§+p3t) dz
@
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V=i

= [ : :
¢ =@+ S(Illle, + lvlie,) + (ldivvll§ g, + ldivedls o,) -

There exist constants ¢, ¢ such that ¢’ < ¢ < o, /P < b <P, Moreover,
@ < ¢d. Hence we obtain the inequality

d -
(6.46) SF+ G0,

which implies (6.29). This concludes the proof.
Finally, we prove the main result of this paper.

THEOREM 6.5. Assume that f =0, (v(0),p,(0)) € M(0) and
(6.47) ©(0) <oy,

where 51 € (0, 1) is sufficiently small and p,(0) = p(0) — po = Aol — po. Assume
also that the initial data are chosen in such a way that

k—1
5 J 00vd dx+ k|21 (po — Agh) < 6.
2

(6.48) 0 < A = f (Aog — po) dz +
9]

where 63 € (0,1) is sufficiently small, and o, = (1/|92]) [,, 00 dz. Assume more-

over that there exist positive numbers 1., |{2.| such that

(6.49) 0<Ay=1% [ oovdde+¢— . +po(|2] - |[92.]) < 62,
2

where ¢ = = [, Aol dx. Assume finally that S € W;‘fl/z and

(6.50) fgovo-nd:U:O, fgoxdx:O, fggd:c:M,
Q Q2 2

where n = a+bXxx, a, b are arbitrary constant vectors. Then there exists a global
solution of (1.1) such that (v(t),ps(t)) € M(t), t € Ry, and

0 < 227 [ 0ovd da + pol 2| 71(|92] — |£2])

Q
Al [ f o]
2 24
and
0< 3 [ ov?de+ 1 —hu + pol|92:] — [£2.])

+

I
/

50,0+ 0= el g, | dr < s
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where Y, = ﬁ fflt Aot dx, and

f@v~ndm=0, fgxdm:O, fgdx:M.
2 2 2

Proof. The theorem is proved step by step using local existence in a fixed
time interval. Under the assumption that

(6.51) (v(0), p5(0)) € N(0),
Theorem 3.6 and Remark 3.7 yield local existence of solutions of (1.1) such that

(6.52) we Wi2(02T), g, e WS N C(0,T; rgjﬁ/?(g)),

where T is the time of existence. To show this we needed Lagrangian coordinates.
By (6.51) and (6.52) Lemma 6.1 implies that the local solution belongs to M(¢),
t < T. For small d; the existence time T is correspondingly large, so we can
assume it is a fixed positive number.

To prove the last result we needed the Korn inequalities (see Section 5) and
imbedding theorems (see (1.9), (1.10)). The constants in those theorems depend
on (2; and the shape of S, so generally they are functions of .

But in view of (6.3) with sufficiently small ¢; (0; replaces €1), we obtain

t
(6.53) } [ UdT‘ <cdy, telo,T].
0
Hence from the relation
t
(6.54) v=¢+ [ulgndr, £€8,t<T,
0

for sufficiently small d; and fixed T, the shape of (2, t < T, does not change too
much, so the constants from the imbedding theorems can be chosen independent
of time.

By taking d2 from (6.48) and (6.49) sufficiently small, Remark 2.3 (see (2.24))
yields that sup; [|[v||§ 5, < ceo and next Lemma 6.2 implies that sup, [ps||3 g,
< ¢d, with g and ¢ as small as we need (g9 and § depend on the choice of the
parameters of problem (1.1) (see Lemma 2.2 and Remark 2.3)). Then from the
definition of 1 (t) (see (4.167)) we have

(6.55) sup(t) <ecleg+90), t<T.
t

Hence (6.47) and Lemma 6.3 imply
(6.56) @(T) < o1,

for sufficiently small §; and ds.
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Now we wish to extend the solution to the interval [T',27]. Using (6.56) we
can prove the existence of local solutions in M(¢), T < t < 2T. To prove

(6.57) 0(2T) < &

we need inequality (4.166) where the constants depend on the constants from the
imbedding theorems and Korn inequalities for ¢ € [T,2T]. Therefore we have to
show that the shape of S;, t < 2T, does not change more than for ¢t < T'.

For this we need the following (see the condition (6.28)). Assume that there
exists a local solution in the interval [0, kT]. Then in view of Lemma 6.4 we have,
for t € [0, kT7,

k—1(i+1)T
(6.58) ‘fvdx‘+’fvxdx’<c1 fuv\gg dr<e, S [ ol dr
=0 T
(t+1)T (+1)T

<CT1/2Z( f [ ) <cT1/2Z< f )1/2

k—1 (i+1)T ' 12
< dTY? Z (go(iT) f e Ho(t=iT) dt)
=0 iT

k—1
< AT —e ) o] ? Y (i)'
=0

< AT = e7T) [ pop(0) (1 + e7HoT/2 4 e72m0T/2 4 | )}1/2
= AA[T(1/po)p(0) (1 — e 0T (1 — emoT/2)1]1/2
= A [T(1/p0)p(0)(1 + e H /)2 = ey (T(0)/? < T/, 72

Taking k& = 2 and ¢; sufficiently small we see that | f(f u(x, 7)dr| is small for any
t € [T,2T1, so (6.54) implies that the shape of S; changes no more than in [0, 7],
and then the differential inequality (4.166) can also be shown for this interval with
the same constants. Hence in view of Lemma 6.1 the solution of (1.1) belongs to
M(t), t € [T,2T]. Next Lemmas 6.1-6.3 imply (6.57).

Repeating the above considerations for the intervals [kT, (k + 1)T],k > 2, we
prove the existence for all £ € R;. This concludes the proof.

Remark 6.6. We proved the existence of a global solution such that its bound-
ary shape does not change much for all € R... Moreover, we have some freedom in
the choice of an initial domain (see (6.50); 2). However, the freedom is restricted
in that the initial domain must be chosen in such a way that the boundary of the
drop does not intersect in time after small variations permitted in Theorem 6.5

Remark 6.7. Lemma 6.4 implies that ¢(t) — 0 as t — co. Hence the consid-
ered motion converges to the constant state.
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