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Abstract

The regression model {X(t), Y (t); t = 1, . . . , n} with random explanatory variable X is
transformed by prescribing a partition S1, . . . , Sk of the given domain S of X-values and speci-
fying

{X(1), . . . , X(n)} ∩ Si = {Xi1, . . . , Xiα(i)}, i = 1, . . . , k .

Through the conditioning

{α(i) = a(i), i = 1, . . . , k} , {Xi1, . . . , Xiα(i); i = 1, . . . , k} = {x11, . . . , xka(k)} ,

the initial model with i.i.d. pairs (X(t), Y (t)), t = 1, . . . , n, becomes a conditional fixed-design
(x11, . . . , xka(k)) model

{Yij , i = 1, . . . , k; j = 1, . . . , a(i)}
where the response variables Yij are independent and distributed according to the mixed condi-
tional distribution Q( · , xij) of Y given X at the observed value xij .

Afterwards, we investigate the case

(Q)E(Y ′ | x) =

k∑
i=1

bi(x)θiISi (x), (Q)D(Y | x) =

k∑
i=1

di(x)ΣiISi (x) ,

which arises when the conditional distribution law of Y given X changes as X passes from a
domain Si to another, whence Y follows a mixture of distributions. Then the general transfor-
mation gives the equivalent reduction to a conditional multivariate Behrens–Fisher model. We
construct conditional generalized least squares estimators of θ′ = (θ′1

... · · · ...θ′k) and predictors of
Y (n+1) given X(n+1) = x ∈ S. Through some condition imposed on the range of θ, the CGLS
estimator and predictor are shown to enjoy local and global optimality.



Preface

There is a class of regression problems based on independent identically dis-
tributed (i.i.d.) bipartite observations

(
X(t), Y (t)

)
on n items (t = 1, . . . , n). One

wishes to estimate the regression function E(Y | X = x) or some other condi-
tional location characteristic and predict the response value Y (n + 1) on a new
item when the random explanatory value X(n+1) is available. An example is the
problem of determining the conditional means of body dimensions as a function
of some main ones (e.g., height, etc.) in the standardization of clothes. Another
one is the problem of predicting the wind direction at a height H, at a certain
place and time, as a function of the wind direction at the level H = 0; in this ex-
ample, the data is directional (see [7]), and the conditional median is an adequate
location characteristic. That the random character of the explanatory variable
may arise from the sampling scheme is exemplified in [6] by cross-sectional data.

In this work, we treat the problem from the parametric view point, which
is reasonable when, by previous studies, the functional form of the regression is
approximately known.

A useful data transformation is introduced by Theorems 1, 2. On the ground
of the transformed data, by adequate conditioning, we manage to reduce the
model with random explanatory variable to a conditional fixed-design model.

By this method, we work out the estimation and prediction problem in case the
regression function is stepwise linear in a matrix parameter and the conditional
dispersion matrix has a variance components structure. Theorem 3 gives the
equivalent reduction of this case to a conditional fixed-design Behrens–Fisher
model. Theorem 4 gives the asymptotic estimability of the regression parameter,
and Theorem 5 the conditional unbiasedness and optimality of the conditional
generalized least squares estimate (CGLSE).

The prediction problem is solved in Chapter 3 in connexion with the CGLS
procedure. Theorem 6 gives the conditional unbiasedness and Theorems 7, 8
the local optimality of the CGLS predictor, whereas Theorem 9 states its global
optimality.

All the results but the conditional estimability are finite sample ones; to attain
the optimality of CGLS estimators and predictors some restriction has to be
imposed on the parameter range (Assumption 2).

The systematic use of mixed conditional distributions allows us to avoid nui-
sance null sets in conditional statements (preceded by the prefix (Q)), whereas
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the use of linear mappings enables us to shorten the reasoning in proving the
optimality of GLSE (Lemma 4).

We hope that this work gives some answer to the question often raised by
practitioners in statistics: how to apply the least squares procedure to random
explanatory variable regression problems and what quality of its own one may
expect in finite samples.

I. A data transformation preserving the conditional distribution

and localizing the explanatory variable

1. Introduction. The conditional probability distribution of a random vari-
able given another one is an object of investigation in a class of regression prob-
lems. By a random variable, abbreviated as r.v., we always mean an F-measurable
function on the basic probability space (Ω,F , P ) to a general Borel space. Con-
sider a pair of r.v.’s (X,Y ). Their range spaces are respectively (H,A), (K, C),
the σ-algebras A, C being generated by the class of open sets in the corresponding
space. We henceforth assume the existence of a mixed conditional distribution
Q(C, x) of Y given X. By definition, Q( · , x) is an A-measurable probability on
C such that for almost all x ∈ H

Q(C, x) = P (Y ∈ C | x) ,

where P ( · | x) is a conditional probability given X at x.

In regression analysis, on the ground of the data

(1) {
(
X(t), Y (t)

)
; t = 1, . . . , n}

consisting of n i.i.d. observations on the pair (X,Y ), the unknown measure-valued
function Q( · , x) is to be investigated. Let S ∈ A be a prescribed domain with
0 < P (X ∈ S) < 1, and

{X(1), . . . , X(n)} ∩ S = {X(T1), X(T2) . . .}, T1 < T2 < . . .

The family

{[X(T1), Y (T1)], . . .}
is obtained from the data (1) by a so-called S-transformation. The range of the
new explanatory variable is now localized in S.

In this chapter we show that, through conditioning on their definition domains,
S-transformations preserve the mixed conditional distribution of Y ( · ) given X( · )
and the independence of the pairs (X( · ), Y ( · )).

By choosing suitably k ≥ 1 disjoint domains S1, . . . , Sk and performing all
Si-transformations, by adequate conditioning, we afterwards build a conditional
fixed-design model in which the new response variables are independent and fol-
low the distributions Q( · , xij) corresponding to observed values xij falling into
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Si. This conditional model enables us to carry out the regression estimation eas-
ier, because in every restricted domain Si, the main characteristics of Q( · , xij),
at least approximately, often have simple parametric representation.

For the role of conditioning in statistical inference, we refer to the comments
in [2].

2. Theorems on data transformation. Let us introduce, once for all,
some notations and conventions, beside the ones used in Section 1.

• N = set of all positive integers;

• t = 1, . . . ; Z(t) = Zω(t) = (X(t), Y (t)) = (Xω(t), Yω(t)) are pairs of r.v.’s;
Z = (X,Y ) = (X(1), Y (1)); S1, . . . , Sm ∈ A, disjoint, m ≥ 1; 0 < P (X∈Si)
< 1 (i = 1, . . . ,m).

• In case of P (X∈S1)+. . .+P (X∈Sm) = 1, we only consider S1 + . . .+ Sm = H.

(2) {Ti1, . . .} = {t ∈ {1, . . . , n} : X(t) ∈ Si}, Ti1 < Ti2 < . . . , i = 1, . . . ,m ;

Tij is called a falling time (in Si).

Zij = Z(Tij) = [X(Tij), Y (Tij)] = (Xij , Yij).

fh( · ) (h = 1, . . .) is a zero-or-one-valued arbitrary function of a certain group of
falling times Tij (i = 1, . . . ,m; j = 1, . . .).

• For fixed x,

I(C, x) =
{

1 when x ∈ C,
0 otherwise

is the probability measure on C degenerate at x.

• Moreover, IB( · ) = the indicator of the set B.

• The prefix (Q) put just before some symbol will emphasize that the object so
symbolized is determined by the mixed conditional distribution Q( · , x).

• PB = the conditional probability measure on (B,F|B) given the event B.

• PB( · | A) = the conditional probability measure given A with respect to the
probability space (B,F|B,PB).

• PB(C | X), EB(F | X) = the conditional probability of C (resp., expectation
of F ) given the function X with respect to the probability space (B,F|B,PB).
It is easy to check that

PB( · | A) = PB∩A( · ) for every B,A ∈ F ,(3)

= PA( · ) when A ⊂ B ,

provided P (A ∩B) > 0.

For fixed positive integers a(1), . . . , a(k), the family(
Z11, . . . , Z1a(1), . . . , Zk1, . . . , Zka(k)

)
has specific distribution features described in the following two theorems. Theo-
rem 1 is crucial for our further investigation.
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Theorem 1. Let Z(1), . . . , Z(n) be i.i.d.,

IΩh
(ω) = fh(. . . , Tij(ω), . . .), h = 1, . . . , u ,

Ω∗ = Ω1 + . . .+Ωu .

Suppose that Ω1, . . . , Ωu are non-empty and , for some fixed a(1), . . . , a(k) ∈ N,
1 ≤ k ≤ m, the family

(T11, . . . , T1a(1), . . . , Tk1, . . . , Tka(k))

is defined on the trajectory {Xω(1), . . . , Xω(n)} for every ω ∈ Ω∗. Let

si = a(1) + . . .+ a(i), i = 1, . . . , k .

Then

(i) (Z11, . . . , Z1a(1), . . . , Zk1, . . . , Zka(k)) is a PΩ∗-independent family and is
PΩ∗-independent of the family

(T11, . . . , T1a(1), . . . , Tk1, . . . , Tka(k)) ,

(ii) the PΩ∗-distribution of Zij coincides with the P(X∈Si)-distribution of Z
(i = 1, . . . , k; j = 1, . . . , a(i)),

(iii) for any given A ∈ Ask , the product measure

(4) R( · ;x11, . . . , xka(k)) =
k×
i=1

a(i)

×
j=1

[I( · , xij)×Q( · , xij)]

(xij ∈ H, i = 1, . . . , k; j = 1, . . . , a(i))

is a mixed conditional distribution of the family (Zij , i = 1, . . . , k; j = 1, . . . , a(i))
given the family W = (Xij , i = 1, . . . , k; j = 1, . . . , a(i)) with respect to the
probability space

{Ω∗ ∩ (W ∈ A),F |Ω∗ ∩ (W ∈ A), PΩ∗∩(W∈A)} ,

provided

P{[X(1), . . . , X(sk)] ∈ A ∩ (S
a(1)
1 × . . .× Sa(k)k )} > 0 .

Later, R( · , · ) is called the (Q)PΩ∗∩(W∈A)-mixed conditional distribution.

R e m a r k 1. Here are two examples of Ω∗: Let

(5) Ω′ = Ω′(a, n) = {ω : a(i) = #Si ∩ {X(1), . . . , X(n)}, i ≤ k} ,

m = k + 1, Sm = H − (S1 + . . .+ Sk), a(m) = n− a(1)− . . .− a(k). Then

IΩ′(ω) = f1(Tij , i = 1, . . . ,m; j = 1, . . . , a(i)) ,

and Theorem 1 applies to Ω∗ = Ω′ and the family (Zij , i = 1, . . . , k; j =
1, . . . , a(i)).

Further, consider the i.i.d. Z(1), . . . , Z(n+ 1). Let

Ωh = {Xω(n+ 1) ∈ Sh} ∩Ω′(a, n), a′(h) = a(h) + 1, h = 1, . . . , k .



Estimation and prediction in regression models 9

Then

IΩh
(ω) = fh(Tha′(h);T11, . . . , T1a(1), . . . , Tma(m)) .

Theorem 1 applies to the sequence Z(1), . . . , Z(n + 1) and Ω∗ = Ω1 + . . . + Ωk
and (Zij , i = 1, . . . , k; j = 1, . . . , a(i)). This Ω∗ will be used in a later chapter
for prediction purposes, when knowing Xn+1 one predicts Yn+1.

Theorem 2. Suppose that the infinite sequence of i.i.d. pairs
(
X(1), Y (1)

)
, . . .

is defined on (Ω,F , P ). Let

(6) (Ti1, . . .) = {t ≥ 1 : X(t) ∈ Si} ,
Ti1 < Ti2 < . . . ; i = 1, . . . , k; k ≤ m;Zij = Z(Tij) .

Then T11, . . . , . . . , Tk1, . . . are P -almost surely finite, and

(i) the infinite family (Z11, Z12, . . . , . . . , Zk1, . . .) is a P -independent family
and is P -independent of the family (T11, T12, . . . , . . . , Tk1, . . .),

(ii) the P -distribution of Zij (i = 1, . . . , k; j = 1, 2, . . .) coincides with the
P(X∈Si)-distribution of Z,

(iii) for arbitrary fixed a(1), . . . , a(k) ∈ N, the product measure (4) is a mixed
conditional distribution of the family (Zij , i = 1, . . . , k; j = 1, . . . a(i)) given W =
(Xij , i = 1, . . . , k; j = 1, . . . , a(i)) with respect to (Ω,F , P ).

R e m a r k 2. If the infinite sequence Z(1), Z(2), . . . is defined on (Ω,F , P ),
Theorem 1 is a consequence of Theorem 2(i),(ii). However, to get full gener-
ality and to explain comprehensively the structure of Ω∗, we shall later prove
Theorem 1 assuming only that the finite sequence Z(1), . . . , Z(n) is defined on
(Ω,F , P ), because there are examples of spaces (Ω,F , P ) on which the infinite
sequence can never be defined.

3. Proofs of the theorems. To prove the theorems we need some lemmas.

Lemma 1. Suppose F (ω), X(ω) are r.v.’s. Let X have the range space (H,A),
let F be extended real-valued and let E(F ) exist. Let S ∈ A, P (X ∈ S) > 0. Then

E(X∈S)(F | x) = E(F | x)

for every x ∈ S − J , where J is some set such that P (X ∈ J) = 0. In particular ,
the product measure I( · , x)×Q( · , x) = (I ×Q)( · , x) is also a mixed conditional
distribution of Z = (X,Y ) given X with respect to the probability measure P(X∈S).

P r o o f. E(F | X) = g(X) P -almost surely, defined by

E[g(X) IB(X)] = E{F (ω) IB [X(ω)]} , ∀B ∈ A .
Upon replacing B by BS,

E[g(X) IB(X) IS(X)] = E[F (ω) IB(X) IS(X)] ,

or

E(X∈S)[g(X) IB(X)] = E(X∈S)[F (ω) IB(X)], ∀B ∈ A .
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Hence, g(X) = E(X∈S)(F | X), P(X∈S)-a.s.
Now, the product measure I( · , x) × Q( · , x) is an A-measurable probability

on A× C, and satisfies the condition I(B,X)Q(C,X) = P{(X,Y ) ∈ B × C | X}
a.s., for every B ∈ A, C ∈ C. By extension to the σ-field A × C, we have
(I × Q)(D,X) = P (Z ∈ D | X) a.s. (modP ) for every D ∈ A × C. Hence,
(I ×Q)(D,X) = P(X∈S)(Z ∈ D | X) a.s. (modP(X∈S)). Lemma 1 is proved.

Lemma 2. Let (F1, G1), . . . , (Fp, Gp) be independent pairs of r.v.’s and let
G1, . . . , Gp be extended real-valued , integrable. Then

E(G1 . . . Gp | F1, . . . , Fp) = E(G1 | F1) . . . E(Gp | Fp) a.s.

P r o o f. E(Gi | Fi), i = 1, . . . , p, are defined by

E[E(Gi | Fi)IBi
(Fi)] = E[GiIBi

(Fi)]

for every Bi ∈ Ai, the Borel field in the range space of Fi. By the independence
of (Fi, Gi)’s we get

E[E(G1 | F1) . . . E(Gp | Fp)IB1×...×Bp
(F1, . . . , Fp)]

= E[G1 . . . GpIB1×...×Bp
(F1, . . . , Fp)] ,

and by extension of signed measures we have

E[E(G1 | F1) . . . E(Gp | Fp)IB(F1, . . . , Fp)] = E[G1 . . . GpIB(F1, . . . , Fp)] ,

for every B ∈ A1 × . . .×Ap. This completes the proof of Lemma 2.

In the sequel, the enumerations such as i = 1, . . . , k; j = 1, . . . , a(i) will be
simply written i ≤ k, j ≤ a(i).

For arbitrary but fixed a(1), . . . , a(k) ∈ N, let

M = {{n11, . . . , n1a(1)}, . . . , {nk1, . . . , nka(k)}}
where n11 < . . . < n1a(1), . . . , nk1 < . . . < nka(k), i.e. M is any collection of k
disjoint sets in N. For Tij defined in (2) or (6), let

(7) A0 = {Tij = nij , i = 1, . . . , k; j = 1, . . . , a(i)} ⊂ Ω .

Lemma 3. A0 ∈ F and , if P (A0) > 0, then for any Bij ∈ A× C

(8) PA0{Zij ∈ Bij , i ≤ k, j ≤ a(i)} =

k∏
i=1

a(i)∏
j=1

P(X∈Si)(Z ∈ Bij).

P r o o f. Let

A′ = {X(nij) ∈ Si, i ≤ k, j ≤ a(i)},

A′′ =
k⋂
i=1

{X(t) /∈ Si, ∀t ∈ {1, . . . , nia(i)} −M} .

Then A′ and A′′ are independent events, P (A′) > 0, A0 = A′ ∩ A′′, P (A0) =
P (A′)P (A′′). For the particular collection

{n11 = 1, . . . , n1a(1) = a(1); . . . ;nk1 = sk−1 + 1, . . . , nka(k) = sk} ,
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P (A0) = P (A′) > 0. When P (A0) > 0,

PA0
{Zij ∈ Bij , i ≤ k, j ≤ a(i)}

= P−1(A′)P−1(A′′)P{A′ ∩ [Zij ∈ Bij , i ≤ k, j ≤ a(i)]}P (A′′) .

By noting that Z(n11), . . . , Z(nka(k)) are independent versions of Z, we get (8).
Lemma 3 is proved.

P r o o f o f T h e o r e m 1. We proceed in several steps.
1o Consider

IΩh
(ω) = fh(. . . , T1t(1); . . . ; . . . , Tmt(m))

where t(i) = max j for all Tij which are arguments of fh( · ), t(i) = 0 if no
such Tij exist. For every ω ∈ Ωh, T1t(1), . . . , Tmt(m) are defined on the trajectory
{Xω(1), . . . , Xω(n)}, and so are T1a(1), . . . , Tka(k) by the assumption. If a(i) > t(i)
for some i, we define

f∗h(. . . ;Ti1, . . . , Tit(i), . . . , Tia(i); . . .) ≡ fh(. . . ; . . . , Tit(i); . . .) ,

and thus we can also consider that all Tij , j = 1, . . . , t(i), are arguments of fh( · );
now also IΩh

= f∗h( · ), and the situation is brought back to the case a(i) ≤ t(i).
Thus, we shall henceforth consider

(9) IΩh
= fh(T11, . . . , T1t(1); . . . ;Tm1, . . . , Tmt(m)) ,

where t(i) ≥ a(i), ∀i = 1, . . . , k.
2o Let us show that P (Ωh) > 0, h = 1, . . . , u. By (9) we have the finite

decomposition

(10) Ωh =
∑

(T11 = n11, . . . ; . . . ; . . . , Tmt(m) = nmt(m)) =
∑

A0

where
∑

extends over all collections (n11, . . . , n1t(1); . . . ; . . . , nmt(m))

∈ f−1h ({1}). Because Ωh is non-empty, there exists an ω belonging to some
summand (T11 = n11, . . . ; . . . ; . . . , Tmt(m) = nmt(m)). Then, on the correspond-
ing trajectory {Xω(1), . . . , Xω(n)}, n11, . . . , nmt(m) are really happening falling
times. Hence by naming

S = S1 + . . .+ Sm,

(n1 < . . . < nm) = {n1t(1), . . . , nmt(m)},
n1 = ni1t(i1), . . . , nm−1 = nim−1t(im−1), . . . ,

M1 = {1, . . . , n1} − {n11, . . . ; . . . ; . . . , nmt(m)},

M2 = {n1 + 1, . . . , n2} − {n11, . . . ; . . . ; . . . , nmt(m)}, . . . ,

Mm = {nm−1 + 1, . . . , nm} − {n11, . . . ; . . . ; . . . , nmt(m)} ,
we have

P (Ωh) ≥ P (T11 = n11, . . . , Tmt(m) = nmt(m))

= P{X(nij) ∈ Si, i ≤ m, j ≤ t(i)} · P{X(t) 6∈ S, t ∈M1} · δ .
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The first and second factors are positive, unless P{X(t) 6∈ S} = 0, but then
H − S = ∅ by our convention, hence M1 = ∅ and the second factor would not
exist. The third factor

δ = P{X(t) ∈ [Si1 ∪ (H − S)], t ∈M2}
× . . .× P{X(t) ∈ Si1 ∪ . . . ∪ Sim−1

∪ (H − S), t ∈Mm}

is positive. Hence P (Ωh) > 0.

3o For every Bij ∈ A× C, from (10) and (3) it follows that

PΩh
{Zij ∈ Bij , i ≤ m, j ≤ t(i)}

=
∑

PΩh
(A0)PA0{Zij ∈ Bij , i ≤ m, j ≤ t(i)} ,

where
∑

extends over those terms of (10) with P (A0) > 0. Because of
∑
PΩh

(A0)
= 1, (8) entails

(11) PΩh
{Zij ∈ Bij , i ≤ m, j ≤ t(i)} =

m∏
i=1

t(i)∏
j=1

P(X∈Si)(Z ∈ Bij) .

Now, consider arbitrary qij ∈ {1, . . . , n} and the event

Aq = {Tij = qij , i ≤ m, j ≤ t(i)} .

Let us prove that

(12) PΩh
{Zij ∈ Bij , Tij = qij , i ≤ m, j ≤ t(i)}
= PΩh

{Zij ∈ Bij , i ≤ m, j ≤ t(i)} · PΩh
{Tij = qij , i ≤ m, j ≤ t(i)} .

This is trivial if P (Ωh ∩Aq) = 0. In the case P (Ωh ∩Aq) > 0, from (9) it follows
that there exists an ω such that

1 = IΩh
(ω) = fh[T11(ω), . . . , Tmt(m)(ω)] = fh[q11, . . . , qmt(m)] ,

i.e. Aq ⊂ Ωh; from (3) we have PΩh
( · | Aq) = PAq

( · ), and by (8) and (11) we
have

PΩh
{Zij ∈ Bij , i ≤ m, j ≤ t(i) | Aq} = PΩh

{Zij ∈ Bij , i ≤ m, j ≤ t(i)} .

Thus (12) holds. (12) means that the families {Zij , i ≤ m, j ≤ t(i)} and {Tij , i ≤
m, j ≤ t(i)} are PΩh

-independent one of another, hence so are their subfamilies
{Zij , i ≤ k, j ≤ a(i)} and {Tij , i ≤ k, j ≤ a(i)}. Thus we get

(13) PΩh
{Zij ∈ Bij , Tij = qij , i ≤ k, j ≤ a(i)}

= PΩh
{Zij ∈ Bij , i ≤ k, j ≤ a(i)} · PΩh

{Tij = qij , i ≤ k, j ≤ a(i)} .

Now, in (11) let Bij = H ×K unless i ≤ k, j ≤ a(i); we get

(14) PΩh
{Zij ∈ Bij , i ≤ k, j ≤ a(i)} =

k∏
i=1

a(i)∏
j=1

P(X∈Si)(Z ∈ Bij) ,
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and after multiplying both sides by P (Ωh) and summing up over h = 1, . . . , u,
we have

(15) PΩ∗{Zij ∈ Bij , i ≤ k, j ≤ a(i)} =

k∏
i=1

a(i)∏
j=1

P(X∈Si)(Z ∈ Bij).

Considering (14) and (15), the same multiplication and summation performed
over (13) entails

(16) PΩ∗{Zij ∈ Bij , Tij = qij , i ≤ k, j ≤ a(i)}
= PΩ∗{Zij ∈ Bij , i ≤ k, j ≤ a(i)} · PΩ∗{Tij = qij , i ≤ k, j ≤ a(i)} .

(15) and (16) prove parts (i) and (ii) of Theorem 1.

4o For any fixed point w = (x11, . . . , x1a(1); . . . ; . . . , xka(k)) in the range space
Hsk of the family W = (X11, . . . , Xka(k)) the function R( · , w) in (4) is a proba-
bility measure on the product σ-field (A× C)sk .

From (4) it follows that, for any fixed D belonging to the semi-algebra

(17)
{
D : D =

k×
i=1

a(i)

×
j=1

(Aij × Cij) ; Aij ∈ A, Cij ∈ C
}
,

R(D,w) is an Ask -measurable function in w satisfying

R(D,W ) =

k∏
i=1

a(i)∏
j=1

I(Aij , Xij)Q(Cij , Xij)(18)

=

k∏
i=1

a(i)∏
j=1

PΩ∗{Zij ∈ Aij × Cij | Xij} a.s.

Indeed, by (15), the PΩ∗ -distribution of Zij coincides with the P(X∈Si)-distribu-
tion of Z; hence a mixed conditional distribution of Zij given Xij with respect
to PΩ∗ is specified by the same function as that of Z given X with respect to
P(X∈Si), which is I( ·, x) × Q( · , x) by Lemma 1. Thus (18) is justified; it is
rewritten, by Lemma 2, as

(19) R(D,W ) = PΩ∗{
(
Z11, . . . , Zka(k)

)
∈ D |W} a.s.

Now, the class of sets D of (A × C)sk such that R(D,w) is an Ask -measurable
function in w satisfying (19) is monotone, closed under countable disjoint unions,
and contains the semi-algebra (17), hence it coincides with (A × C)sk . Fur-
ther, by applying Lemma 1, we can in (19) replace PΩ∗ by PΩ∗∩(W∈A) pro-
vided PΩ∗∩(W∈A) > 0. Thus R(D,w) is a mixed conditional distribution of
(Z11, . . . , Zka(k)) given W with respect to PΩ∗∩(W∈A), and part (iii) of Theo-
rem 1 is proved. To finish the proof of Theorem 1 we should check that

PΩ∗(W ∈ A) = P{[X(1), ..., X(sk)]∈Sa(1)
1 ×...×Sa(k)

k
}{[X(1), . . . , X(sk)] ∈ A} .
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This follows from Theorem 1(i), (ii) by noting that the PΩ∗ -distribution of W
coincides with the conditional distribution of {X(1), . . . , X(sk)} given

{X(1) ∈ S1, . . . , X(s1) ∈ S1, . . . , X(sk−1 + 1) ∈ Sk, . . . , X(sk) ∈ Sk} .

Theorem 1 is proved.

P r o o f o f T h e o r e m 2.

1o It is simple to prove

P (Tij <∞, i = 1, . . . , k; j = 1, 2, . . .) = 1 .

2o When considering the infinite sequence Z(1), Z(2), . . . we have, for arbitrary
but fixed a(1), . . . , a(k) ∈ N,

1 = P (T11 <∞, . . . , Tka(k) <∞) =
∑

P (A0) ,

where the sum is extended over all sets A0 as in (7) with P (A0) > 0 that corre-
spond to all possible collections M in Lemma 3. Then, with the same summation
range we have

P{Zij ∈ Bij , i ≤ k, j ≤ a(i)} =
∑

P (A0)PA0
{Zij ∈ Bij , i ≤ k, j ≤ a(i)} .

From (8) we get

P{Zij ∈ Bij , i ≤ k, j ≤ a(i) | Tij = nij , i ≤ k, j ≤ a(i)}

= P{Zij ∈ Bij , i ≤ k, j ≤ a(i)} =

k∏
i=1

a(i)∏
j=1

P(X∈Si)(Z ∈ Bij) ,

which proves parts (i) and (ii) of Theorem 2.

3o Reconsider step 4o of the proof of Theorem 1; there we used the probability
space (Ω∗,F |Ω∗, PΩ∗). Here, in view of assertions (i) and (ii) of Theorem 2, we
have to use the probability space (Ω,F , P ). This is the only change needed to
produce the proof of part (iii) of Theorem 2; except this change, this proof copies
word by word step 4o of the proof of Theorem 1.

4. Interpretation of the theorems. The subdomains Si, . . . , Sk being
suitably prescribed, now let

a(i) = #Si ∩ {X(1), . . . , X(n)} = #{Xi1, . . . , Xia(i)} ,

and let (xi1, . . . , xia(i)) be the observed value of (Xi1, . . . , Xia(i)) corresponding
to the data (1), i = 1, . . . , k.

The point a = (a(1), . . . , a(k)) and the observed value

w = (x11, . . . , x1a(1); . . . ;xk1, . . . , xka(k)),

corresponding to a definite data (1), are called respectively an elementary data
situation and an instantaneous data state.
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Theorem 1, applied to Ω∗ = Ω′ in (5), now states that on the ground of any
elementary situation a, at any instantaneous state w, the transformed model

(Y11, . . . , Y1a(1); . . . ; . . . , Yka(k))

is a fixed-design (x11, . . . , xka(k)) model, with the response observations Y11, . . .
. . . , Yka(k) being independent and distributed according to Q( · , x11), . . .
. . . , Q( · , xka(k)), respectively.

In particular, the random explanatory variables model (X(1), Y (1)), . . .
. . . , (X(n), Y (n)), with f [X(t), θ] as parametric conditional location function (me-
dian, expectation, . . . ) of Y (t) given X(t) (t = 1, . . . , n), now becomes the fixed-
design model Y11, . . . , Yka(k) with f(xij , θ) as location characteristic of Yij (i =
1, . . . , k; j = 1, . . . , a(i)).

Indeed, e.g., let (K, C) = (Rr,Br), Y ′ = (y1, . . . , yr). Let fh(x, θ) (h =
1, . . . , r) be the conditional median of yh with respect to the mixed conditional
distribution Q( · , x), which depends on a matrix parameter θ. The vector function

[f(x, θ)]′ =
(
f1(x, θ), . . . , fr(x, θ)

)
is called the marginal median row-vector of Y ′ according to Q( · , x). Then, by
Theorem 1(iii), with respect to the (Q)PΩ′ -mixed conditional distribution given
w, the variables Y11, . . . , Yka(k) are independent and Yij has the marginal median
vector f(xij , θ) (i = 1, . . . , k; j = 1, . . . , a(i)).

In particular, at least approximately, for x ∈ S1 + . . .+ Sk, f(x, θ) may have
the polygonal structure

[f(x, θ)]′ =

k∑
i=1

bi(x)θiISi
(x) ,

where the row-vector functions bi( · ) are known, the unknown matrix parameter
θ′ = (θ′1

... . . .
...θ′k) may be subject to linear constraints, e.g., in order to ensure the

junction of the zones f(x, θ) = [bi(x)θi]
′ corresponding to several Si, if one would

wish to have a continuous, or smooth to some order, regression surface (or curve).

Further, we suppose every component yh has a probability density under
Q( · , x), which takes a positive value ϕh(x) at the median fh. Then setting

δgh = [(Q)P{yg ≤ fg, yh ≤ fh | x} − 1
4 ]/(ϕg(x)ϕh(x))

as the Q( · , x)-conditional association coefficient between yg, yh, we can consider
the conditional association matrix

Γ (x) = (δgh(x))g,h=1,...,r

(see also [8]). We suppose Γ (x) equals a constant unknown matrix Γi for every
x ∈ Si. We can then state that with respect to the (Q)PΩ′ -mixed conditional
distribution given w, the r.v.’s Yij are independent and have marginal median
vectors θ′ib

′
i(xij) and association matrices Γi (i = 1, . . . , k; j = 1, . . . , a(i)). Here
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b′i(xij) = [bi(xij ]
′. We shall frequently use the notations:

U ′i = (Yi1
... . . .

...Yia(i)), U ′ = (U ′1
... . . .

...U ′k),

B′i = (b′i(xi1)
... . . .

...b′i(xia(i))),

B = B(w) = diag(B1, . . . , Bk) (block diagonal matrix),(20)

Ia(i) = unit a(i)× a(i)-matrix,

U = (upq)sk,r,
−→
U = (u11 . . . usk1 . . . u1r . . . uskr)

′.

Let (Q)MΩ′(U |w) be the matrix whose (p, q)th element is the (Q)PΩ′( · | w)-
conditional median of upq (p = 1, . . . , sk; q = 1, . . . , r). Let (Q)AΩ′(U |w) be the

(Q)PΩ′( · | w)-conditional association matrix of
−→
U . We proceed to its computa-

tion. Write

Y ′ij = (yij1, . . . , yijr) .

Then Ui = (Ui1
... . . .

...Uir), where Uig = (yi1g, . . . , yia(i)g) (i = 1, . . . , k; g = 1, . . .
. . . , r). For i, t = 1, . . . , k, we denote by (Q)AΩ′(Uig, Uth | w) the a(i) × a(t)-
matrix whose (j, v)-element (j = 1, . . . , a(i); v = 1, . . . , a(t)) is the (Q)PΩ′( · | w)-
conditional association coefficient between the components yijg, ytvh of Uig, Uth
respectively. We also use this notation for other couples of vectors, e.g. we define

Agh = (Q)AΩ′(U(g), U(h) | w), (g, h = 1, . . . , r) ,

where U(g) is the gth column vector of U . From the conditional association

matrix definition, considering (
−→
U )′ = (U ′(1), . . . , U

′
(r)), we get (Q)AΩ′(U | w) =(

Agh
)
g,h=1,...,r

. Moreover, noting that U ′(g) = (U ′1g, . . . , U
′
kg), we have

Agh = {(Q)AΩ′
(
Uig, Uth | w

)
}i,t=1,...,k.

From the definition of (Q)AΩ′
(
Uig, Uth | w

)
and by the (Q)PΩ′( · | w)-condi-

tional independence of U1, . . . , Uk according to Theorem 1(iii), we see that

Agh = diag(Fgh(i), i = 1, . . . , k)

where Fgh(i) = (Q)AΩ′
(
Uig, Uih | w

)
; also by Theorem 1(iii), Fgh(i) is diagonal.

On the other hand, by Theorem 1(iii)

(Q)AΩ′
(
Yij | w

)
= (Q)A

(
Y | xij

)
= Γi;

let us write Γi =
(
γgh(i)

)
g,h=1,...,r

. Because Ui =
(
Ui1

... . . .
...Uir

)
, we have

(Q)AΩ′
(
Ui | w

)
=
(
Fgh(i)

)
g,h=1,...,r

.

Considering U ′i = (Yi1
... . . .

...Yia(i)), we see that

Fgh(i) = diag(γgh(i), . . . , γgh(i)) = γgh(i)Ia(i).

Finally, we get

(Q)MΩ′(U | w) = Bθ ,

(Q)AΩ′(U | w) = (diag[γgh(1)Ia(1), . . . , γgh(k)Ia(k)])g,h=1,...,r .
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This means that, so to speak, U follows a generalized conditional linear model.
This enables us to use the LAD method (see [8]) for estimating θ.

II. Conditional linear models

and estimation of regression parameters

5. Introduction. In Section 4, by performing all Si-transformations (i =
1, . . . , k), the original data (1) are transformed into the set

{(Xi1, Yi1), . . . , (Xiα(i), Yiα(i)); i = 1, . . . , k}
where α(i) is the random number of occurrences of X-value in Si in the course of n
observations. The new model is one with random numbers of observations α(i).
In [1] a conception of treatment of such a set of observations was presented.

In this chapter, on the basis of this transformed model, we study the estimation
of the regression parameter in the following case:

(K, C) = (Rr,Br), E(Y ′Y ) = E‖Y ‖2 <∞ ,

Q( · , x) is previously chosen so that (Q)E(Y Y ′ | x) =
∫
Rr yy

′ Q(dy, x) exists and
is finite for every x ∈ H; S1, . . . , Sk being prescribed, for every x ∈ S1 + . . .+ Sk

(21)

{
(Q)E(Y ′ | x) =

∑k
i=1 bi(x)θiISi

(x) ,

(Q)D(Y | x) =
∑k
i=1 di(x)ΣiISi

(x) ,

where di( · ) ≥ 0, bi( · ) are known functions, the li × r-matrices θi and positive
semidefinite Σi =

(
σgh(i)

)
r,r

are unknown, there may be linear constraints on

θ′ = (θ′1
... . . .

...θ′k) for the reason explained in Section 4.
The first mean structure (21) arises when we approximate the unknown re-

gression function (Q)E(Y | x) by linear parametric functions in every domain Si.

Example 1. X,Y are real-valued, k = 2, S1 = [u0, u1], S2 = (u1, u2], and
(Q)E(Y | X) is approximated by two segments of parabola with common tangent
at their common point:

(Q)E(Y | X) = bi(X)θi for X ∈ Si, i = 1, 2 ;

b1(X) = (X2, X, 1) , b2(X) = (X2, 1) ,

θ′1 =(a1, b1, c1) , θ′2 = (a2, c2) .

The constraints are

a1u
2
1 + b1u1 + c1 = a2u

2
1 + c2 ,

2a1u1 + b1 = 2a2u1 ,

which can be written in the form Cθ = 0 or θ ∈ Θ = KerC, where

C =

(
u21 u1 1 −u21 −1
2u1 1 0 −2u1 0

)
.
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The structure (21) may also arise in case the conditional distribution form of
Y changes when X passes from a domain Si to another. Indeed, for simplicity
consider S1 + . . .+ Sk = H; then Y is represented by

Y =

k∑
i=1

YiI(X∈Si), Yi = Y I(X∈Si) ,

where Yi is the representative of Y when X stays in Si. For example (see [6]),
Y is average foot length, X is age of a boy; (X,Y ) is a bivariate measurement
made one time per child within a group of children of different ages; S1, . . . , Sk
are different growth periods, Yi is the average foot length of a boy in the ith
growth period. Set

P (Yi < y | X ∈ Si) = Fi(y) , y ∈ Rr, i = 1, . . . , k .

Then Y follows the mixture of distributions

P (Y < y) =

k∑
i=1

qiFi(y), where qi = P (X ∈ Si) .

If every representative Yi has the distribution structure

(Q)E(Y ′ | X) = bi(X)θi , (Q)D(Yi | X) = di(X)Σi ,

when X stays in Si (i = 1, . . . , k), Y will follow (21).
The proof of existence of the model (21) can be outlined as follows: let ξ be

a r.v. Then there exists an Rr-valued random function ζi(ξ, x), x ∈ H, satisfying

Eζi(ξ, x) = 0,

Dζi(ξ, x) = Eζi(ξ, x)ζ ′i(ξ, x) = di(x)Σi (i = 1, . . . , k).

Let ξ be independent of X. Then there exist determinations of E(ζi(ξ,X) | X)
and E{ζi(ξ,X)ζ ′i(ξ,X)|X} respectively, such that

E{ζi(ξ,X) | X = x} = Eζi(ξ, x) = 0 ,

D{ζi(ξ,X) | X = x} = E{ζi(ξ,X)ζ ′i(ξ,X) | X = x}
= Eζi(ξ, x)ζ ′i(ξ, x) = di(x)Σi.

Let Y ′i = ζ ′i(ξ,X) + bi(X)θi (i = 1, . . . , k). We get

E(Y ′i | x) = bi(x)θi, D(Yi | x) = di(x)Σi .

Then Y =
∑k
i=1 YiI(X∈Si) satisfies (21).

Hereafter, all notations already introduced in Section 2 and (20), §4, are to
be kept in mind; moreover, the following standard matrix notations will be used
throughout:

• Ms×r = the linear space of all real s× r-matrices,
• f ′( · ) = the transpose of a matrix-valued function f( · ),
• B− = an arbitrary g-inverse of a matrix B,
• ‖C‖2 =

∑
i,j c

2
ij , |C| =

∑
i,j |cij | for any real matrix C = (cij),
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• ‖Y ‖2F = Y ′FY for any r × 1-vector Y and positive semidefinite (PSD) r × r-
matrix F,

• M(B) = the vector space generated by the column vectors of a matrix B,

• Mr
L = the set of all s× r-matrices with r columns belonging to L ⊂ Rs,

• −→η = (η′1 . . . η
′
r)
′ for η = (η1

... . . .
...ηr) ∈Ms×r,

• Dη = D−→η for any random matrix η,

• B ⊗ C = the Kronecker product of matrices B, C,

• B ≥ C means B − C is a PSD matrix,

• pβ1,...,βl = the probability distribution of the family of r.v.’s β1, . . . , βl.

Finally, set

(22)
A∗ = {w : RankB(w) = l1 + . . .+ lk} ,
Ω∗ = the general event in Theorem 1.

6. Conditional generalized least squares estimators (CGLSE)

Theorem 3. The domains S1, . . . , Sk being prescribed ,

(i) if the underlying distribution of (X,Y ) satisfies (21), then U follows the
conditional linear model

(23)

{
(Q)EΩ∗∩(W∈A)(U | w) = Bθ ,
(Q)DΩ∗∩(W∈A)(U | w) = {diag(σgh(1)V1, . . . , σgh(k)Vk)}r,r

for every w ∈ A ⊂ Sa(1)1 × . . .× Sa(k)k , where

Vi = diag[di(xi1), . . . , di(xia(i))] (i = 1, . . . , k) ,

(ii) conversely , if the basic probability space (Ω,F , P ) is the sample probability
space of a sequence Z(1), . . . , Z(n′) with n′ ≥ n, or of an infinite one, and if (23)
is fulfilled for every A as in Theorem 1(iii), then (21) follows, i.e. we have

(Q)E(Y ′ | x) =

k∑
i=1

bi(x)θiISi
(x) , (Q)D(Y | x) =

k∑
i=1

di(x)ΣiISi
(x) .

P r o o f. (i) For any random matrix F ′ = (F ′1
... . . .

...F ′k) where Fi = (Fi1
... . . .

...Fir)
are a(i)× r-matrices (i = 1, . . . , k), we can check

(24) DF =
(
Cgh

)
g,h=1,...,r

with Cgh = {Cov
(
Fig, Fjh

)
}i,j=1,...,k. Then, recall U ′i = (Yi1

... . . .
...Yia(i)) and write

Y ′ij = (yij1, . . . , yijr). We have

(Q)DΩ∗∩(W∈A)(Ui | w) =
(
Ggh

)
r,r

where

Ggh = {(Q)CovΩ∗∩(W∈A)(yijg, yiph | w)}j,p=1,...,a(i) (i = 1, . . . , k) .
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By (21) and Theorem 1(iii) we have

(Q)DΩ∗∩(W∈A)(Yij | w) = di(xij)Σi,(25)

Ggh = diag{di(xij)σgh(i); j = 1, . . . , a(i)} = σgh(i)Vi .

On the other hand, write Ui = (Ui1
... . . .

...Uir). Then we have

(Q)DΩ∗∩(W∈A)(Ui | w) = {(Q)CovΩ∗∩(W∈A)(Uig, Uih | w)}r,r
whence

(Q)CovΩ∗∩(W∈A)(Uig, Uih | w) = Ggh = σgh(i)Vi .

By applying (24) to U ′ = (U ′1
... . . .

...U ′k), Ui = (Ui1
... . . .

...Uir), we get

(Q)DΩ∗∩(W∈A)(U | w) =
(
Dgh

)
r,r

where

Dgh = {(Q)CovΩ∗∩(W∈A)(Uig, Ujh | w)}i,j=1,...,k

and by Theorem 1(iii), from the above, it follows that Dgh = diag{σgh(i)Vi, i =
1, . . . , k}, i.e. the second relation (23); the first one is immediate.

(ii) Define (Q)D(Y | X) = v(X). Then by Theorem 1(iii) we have

(Q)DΩ∗∩(W∈A)(Yij |W ) = v(Xij) .

Let U satisfy (23). The matrix identification process in (i) entails (25), i.e.

(26) v(Xij) = di(Xij)Σi .

Now, the range of W when ω varies over Ω∗ contains the one when ω varies
over any set A0 as in (10), §3, in particular, when ω varies over the set

A1 = (T11 = 1, . . . , T1t(1) = t(1); . . . ; . . . , Tmt(m) = t(1) + . . .+ t(m)) .

For ω ∈ A1,

(X11, . . . , X1t(1); . . . ; . . . , Xmt(m))

≡ {X(1), . . . , X(t(1)); . . . ; . . . , X(t(1) + . . .+ t(m))} .

When ω varies over A1, the range of this family is S
t(1)
1 × . . .×St(m)

m if (Ω,F , P )
is the sample probability space of the sequence

(X(1), Y (1)), . . . , (X(n′), Y (n′)) (n′ ≥ n)

or of an infinite one. Since (see Section 3) a(i) ≤ t(i), i = 1, . . . , k, k ≤ m,

W = (X11, . . . , X1a(1); . . . ; . . . , Xka(k))

is a subfamily of the preceding family; hence when ω varies over Ω∗ the range of
Xij is Si (i = 1, . . . , k; j = 1, . . . , a(i)). By assumption, (23) is fulfilled for every

A as in Theorem 1(iii); we take A = S
a(1)
1 × . . .× Sa(k)k . Then in (26) the range

of Xij is Si, i.e. v(x) = di(x)Σi for every x ∈ Si, i = 1, . . . , k. Thus the second
equality (21) follows. We get the first one by the same reasoning. Theorem 3 is
proved.
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By this theorem, the estimation of the parameters θ,Σi (i = 1, . . . , k) in (21)
is brought back to the one in the conditional linear model (23). We shall first
seek the best estimator of θ in the following fixed-design model.

Definition 1. The random s× r-matrix η is said to follow an r-multivariate
Behrens-Fisher model if E‖η‖2 <∞ and

(27)

{
Eη = Bθ ,
Dη = {diag(σgh(i)Vi, i = 1, . . . , k)}g,h=1,...,r,

where

θ′ = (θ′1
... . . .

...θ′k), B = diag(B1, . . . , Bk) ,

s = a(1) + . . .+ a(k), l = l1 + . . .+ lk .

Here the a(i) × li-matrices Bi and positive semidefinite a(i) × a(i)-matrices Vi
are known, whereas the li× r-matrices θi and PSD Σi =

(
σgh(i)

)
r,r

are unknown

(i = 1, . . . , k); the range of θ being any given set Θ ⊂Ml×r.

When r = 1 and Θ = Ml×1, we get the model already examined in [3].

The generalized least squares estimator for θ will be given in Lemma 4. For
further considerations we introduce the following notations and assumptions. Let
D be the range of Eη in (27) and

D0 = {µ− µ̂ : µ, µ̂ ∈ D}.

Assumption 1. Either

(a) there exist linear subspaces Li ⊂ M(Bi) (i = 1, . . . , k) such that
Mr
L1×...×Lk

is the linear hull of D0 in Ms×r, or

(b) Σ1 = . . . = Σk and there exists a linear subspace L ⊂ M(B) such that
Mr
L is the linear hull of D0 in Ms×r.

Let V1, . . . , Vk be positive definite and G the orthoprojector on Mr
L1×...×Lk

of Ms×r endowed with the scalar product

(28) (ζ1, ζ2) =
−→
ζ1 [Ir ⊗ diag−1(V1, . . . , Vk)]

−→
ζ2 , ζ1, ζ2 ∈Ms×r .

Let Φ : Ms×r → Mp×q, Ψ : Ml×r → Mp×q be linear operators into some space
Mp×q. We say that Ψθ is estimable in the model (27) if there exists an ILUE
or LUE for Ψθ (inhomogeneous linear unbiased estimator, resp. linear unbiased
estimator).

Then, using G under Assumption 1(a) and again denoting by G the orthopro-
jector of Ms×r on Mr

L under Assumption 1(b), we have the following lemma.

Lemma 4. (i) In (27), a BILUE (best inhomogeneous linear unbiased estima-
tor) for ΦEη exists and is given by

ΦGη + Φ(Is −G)µ0

where µ0 is any fixed element of D.
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(ii) If B is injective as a linear mapping Ml×r →Ms×r, then Ψθ is estimable
and

ΨB−Gη + ΨB−(Is −G)Bθ0 ,

where θ0 is arbitrarily fixed ∈ Θ, is a BILUE for Ψθ.

(iii) θ is estimable in (27) if

RankB = l1 + . . .+ lk , or RankBi = li (i = 1, . . . , k) .

When k = 1, Lemma 4(i) gives a result of Theorem 2.1.3 in [4] (Band I). By
abuse of notations, we use e.g. ΦGη to designate the image by Φ of the element
obtained either by the product matrix Gη or by G acting on η. Similarly B−Gη is
the image of η by the product mapping of G and the mapping B− : Ms×r →Ml×r.

P r o o f. (i) We proceed in several steps. First let us prove (i) under Assump-
tion 1(a).

1) Let Gi be any a(i)×a(i) projection matrix of Ra(i) endowed with the scalar
product

(y1, y2) = y′1V
−1
i y2 , y1, y2 ∈ Ra(i) .

Then GiGi = Gi, G
′
iV
−1
i = V −1i Gi (i = 1, . . . , k). Let G = diag(G1, . . . , Gk).

Then

(29) GG = G, G′ diag−1(V1, . . . , Vk) = diag−1(V1, . . . , Vk)G .

We have GiViG
′
i = GiVi, hence

Giσgh(i)ViG
′
i = Giσgh(i)Vi (i = 1, . . . , k) ,

which entails

(Ir ⊗G)Dη(Isr − (Ir ⊗G))′ = 0 ,

for Dη has an expression as in (27).

2) Let Tη + c be any inhomogeneous linear function Ms×r →Mp×q, where T
is any linear operator; then

−→
Tη = L−→η , L ∈Mpq×sr .

Write η = Gη + (Is −G)η. We have Tη + c = TGη + T (Is −G)η + c, or

L−→η +−→c = L(Is ⊗G)−→η + L(Isr − (Ir ⊗G))−→η +−→c .

Further,

Cov{L(Ir ⊗G)−→η , L(Isr − (Ir ⊗G))−→η }
= L(Ir ⊗G)D−→η (Isr − (Ir ⊗G))′L′ = 0 .

Now, if γ1, γ2 are two random vectors in the same space, with E||γ1||2 < ∞,
E||γ2||2 <∞, we have the elementary formula

D(γ1 + γ2) = D(γ1) +D(γ2) + Cov(γ1, γ2) + Cov(γ2, γ1) ,
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and, when Cov(γ1, γ2) = 0, we have

D(γ1 + γ2) = D(γ1) +D(γ2) ≥ D(γ1) .

Applying this, we get

D(L−→η +−→c ) = D(L−→η ) ≥ D
(
L(Ir ⊗G)−→η

)
.

We can also obtain this inequality by applying the well-known Lehmann–Scheffé
lemma ([5]; see also [4], Band III, Satz A.3.2, p. 329). Equivalently, we have

(30) D(Tη + c) ≥ D(TGη).

3) Moreover, let Tη + c be any ILUE for ΦEη. Then E(Tη + c) = TEη + c =
ΦEη for every value of Eη in its range D, which entails Tλ = Φλ, ∀λ ∈ D0, and
hence by Assumption 1(a),

(31) Tλ = Φλ, ∀λ ∈Mr
L1×...×Lk

.

4) Now, choose for an orthoprojector Gi the a(i) × a(i) projection matrix of
Ra(i) on Li (i = 1, . . . , k). G, satisfying (29), is an s× s projection matrix of Rs
endowed with the scalar product

(y, z) = y′ diag−1(V1, . . . , Vk)z, y, z ∈ Rs .

Hence G is also an orthoprojector of Ms×r endowed with the scalar product(28).

Let z′ = (z′1
... . . .

...z′k), zi ∈ Ra(i). Considering the range Li of Gizi when
zi varies over Ra(i) (i = 1, . . . , k), the range of Gz when z varies over Rs =
Ra(1) × . . . × Ra(k) is L1 × . . . × Lk, hence the range of Gζ when ζ varies over
Ms×r is Mr

L1×...×Lk
. Thus (31) is equivalent to TG = ΦG. Therefore, by (30),

for any ILUE Tη + c for ΦEη we get

D(Tη + c) ≥ D(ΦGη) .

5) Because G projects Ms×r on Mr
L1×...×Lk

⊃ D0, Gλ = λ, ∀λ ∈ D0. Hence
for any fixed µ0 ∈ D, an ILUE for ΦEη is the function ΦGη+Φ(Is−G)µ0 because

E[ΦGη + Φ(Is −G)µ0] = ΦG(Eη − µ0) + Φµ0

= Φ(Eη − µ0) + Φµ0 = ΦEη .

Moreover, it is a BLUE because

D(Tη + c) ≥ D(ΦGη + Φ(Is −G)µ0)

for every ILUE Tη + c.

We have thus proved (i) only by means of Assumption 1(a) that the linear
hull of the translate of the range of Eη has the form Mr

L1×...×Lk
where Li is

any subspace of Ra(i); neither the representation Eη = Bθ nor the particular
assumption B = diag(B1, . . . , Bk) is needed.

Now consider k = 1. Then L1 = L is a linear subspace of Rs such thatMr
L is

the linear hull of D0; set Σ1 = Σ =
(
σgh
)
r,r

, V1 = V ; we get the assertion (i) in



24 Nguyen Bac-Van

the case

Dη =
(
σghV

)
g,h=1,...,r

= Σ ⊗ V ,

G = the orthoprojector on Mr
L of Ms×r endowed with the scalar product

(ζ1, ζ2) =
−→
ζ1(Ir ⊗ V −1)

−→
ζ2 , ζ1, ζ2 ∈Ms×r .

Therefore (i) follows under Assumption 1(b), because in that case

Σ1 = . . . = Σk = Σ say,

Dη = {diag(σghVi, i = 1, . . . , k)}r,r = Σ ⊗ V

by renaming diag(V1, . . . , Vk) = V .

(ii) The equation Bθ = Eη is consistent in θ for Eη ∈ {Bθ : θ ∈ Θ}.
The solution θ = B−Eη is unique for B is injective. Thus any g-inverse B−

is a linear mapping Ms×r → Ml×r which is a linear extension on Ms×r of the
inverse mapping of B, and Ψθ = ΨB−Eη. Then, by (i), for any fixed θ0 ∈ Θ

ΨB−Gη + ΨB−(Is −G)Bθ0

is a BILUE for Ψθ, and (ii) is proved.

(iii) The following assertions are successively equivalent:

1) B is injective as a linear mapping Ml×r →Ms×r,

2) B is injective as a linear mapping Rl → Rs, or, equivalently, Ker B = 0l×1,
or dimM(B) = l or RankB = l,

3) KerBi = 0li×1 (i = 1, . . . , k),

4) dimM(Bi) or RankBi = li (i = 1, . . . , k).

This completes the proof of Lemma 4. From Lemma 5 it will follow that the
BILUE in Lemma 4 are just the generalized least squares estimates.

We consider a random s× r-matrix η and linear operators Φ : Ms×r →Mp×q,
Ψ : Ml×r →Mp×q; we have the following lemma.

Lemma 5. Consider a general model η in which the range of Eη is some set
D ⊂ Ms×r, D0 = {µ − µ̂ : µ, µ̂ ∈ D}, and E is any linear subspace of Ms×r
containing D0. Let Ms×r be endowed with a scalar product q(y, z), and let ‖ · ‖q
be the induced norm. Let µ0 be any fixed element of D. Then

(i) for given Y ∈ Ms×r, there exists a unique element p = p(Y ) of the affine
manifold E + µ0 such that

‖Y − p‖q ≤ ‖Y − µ‖q
for every µ ∈ D, and more generally , for every µ ∈ E + µ0,

(ii) if Ge is the orthoprojector of Ms×r on E , we have p(Y ) = GeY +(I−Ge)µ0

where I is the identity mapping Ms×r →Ms×r,

(iii) Φp(η) = ΦGeη + Φ(I −Ge)µ0 is an ILUE for ΦEη,
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(iv) when Eη has a parametric structure Eη = Bθ, θ ∈ Θ ⊂ Ml×r, and the
s× l-matrix B defines an injective mapping B : Ml×r →Ms×r, then

ΨB−p(η) = ΨB−Geη + ΨB−(I −Ge)µ0

is an ILUE for Ψθ. By abuse of notation, e.g., ΨB−Ge denotes the product of
the mappings Ge, B

−, Ψ .

P r o o f. (i) For Y ∈Ms×r,

Y = Y0 + Z0, Y0 ∈ E , Z0 ⊥q E

(i.e. Z0 is orthogonal to E with respect to the scalar product q). For µ0 arbitrarily
fixed ∈ D,

µ0 = e0 + f0, e0 ∈ E , f0 ⊥q E .
For µ arbitrarily chosen in D, or more generally, in E + µ0, we have

µ = e1 + f0, e1 = e0 + (µ− µ0) ∈ E , f0 ⊥q E .

Now, Y0 + f0 = (Y0 − e0) + µ0 ∈ E + µ0 and

Y − µ = (Y0 − e1) +
(
Y − (Y0 + f0)

)
,

Y0 − e1 ∈ E , Y − (Y0 + f0) = Z0 − f0 ⊥q E .

Hence, by setting p(Y ) = p = Y0+f0, we have ‖Y −µ‖q ≥ ‖Y −p‖q, with equality
iff e1 = Y0, i.e. iff µ = Y0 + f0 = p. Thus (i) is proved.

(ii) Y0 = GeY, e0 = Geµ0, f0 = µ0 − e0 = (I − Ge)µ0, p = p(Y ) = GeY +
(I −Ge)µ0.

(iii)

EΦp(η) = ΦGe(Eη − µ0) + Φµ0 = Φ(Eη − µ0) + Φµ0 = ΦEη .

(iv) θ = B−Eη, and Ψθ = ΨB−Eη if B is injective. This completes the proof
of Lemma 5.

Lemmas 4 and 5, applied to the conditional linear model (23), will give con-
ditional generalized least squares estimators for θ. Besides, we must ensure the
conditional estimability of θ.

7. Conditional estimability. In connection with the conditional linear
model (23), following the corresponding definitions in fixed-design models (see
[4]), we introduce the following

Definition 2. A function L(w)
−→
U +c(w), where L( · ), c( · ) are matrix-valued

and Ask -measurable in w, is called a conditionally inhomogeneous linear unbiased
estimator (CILUE) for

−→
θ if

(Q)EΩ∗∩(W∈A){L(w)
−→
U + c(w) | w} =

−→
θ
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for every w ∈ A and every underlying distribution of (X,Y ) fulfilling (21). When
c(w) ≡ 0 this estimator is symbolized by CLUE. θ is called conditionally estimable

in the model (23) if
−→
θ has a CILUE or CLUE.

By Lemma 4(iii), whether there are constraints on θ or not, θ is conditionally
estimable when RankB(w) = l1 + . . . + lk. By (5), §2, with A∗ as in (22), after
letting Ω∗ = Ω′ in (23), consider

(32) Ωn =
∑

li≤a(i),i=1,...,k; a(1)+...+a(k)≤n

Ω′(a, n) ∩ (W ∈ A∗) .

Ωn is the conditional estimability domain for θ on the ground of n observations
on (X,Y ).

In this section we shall prove that when the number of observations is suf-
ficiently large, it is practically sure that θ is conditionally estimable. We begin
with the following

Lemma 6. Let β1, . . . , βl be i.i.d. random l× 1-vectors, and C ′l = (β1
... . . .

...βl).
Then detCl = 0 a.s. iff the probability distribution of β1 is concentrated in some
proper subspace of Rl.

P r o o f. Write f(β1, . . . , βl) = |detCl| ≥ 0. Then detCl = 0 a.s. iff
Ef(β1, . . . , βl) = 0, or, iff E{f(β1, . . . , βl) | β2, . . . , βl} = 0 a.s. This is equivalent
to

E{f(β1, . . . , βl) | z2, . . . , zl} = 0

or to

Ef(β1, z2, . . . , zl) = 0

for P β2,...,βl -almost all values (z2, . . . , zl). This, in turn, is equivalent to

f(β1, z2, . . . , zl) = 0 or det(β1
...z2

... . . .
...zl) = 0 P β1-a.s.

for P β2,...,βl -almost all values (z2, . . . , zl).

The sufficiency part of the lemma is evident. Let us prove the necessity part.
We reason by induction. For l = 1, the assertion is true. Suppose it is true for
l − 1; let detCl = 0 a.s. There are two possibilities:

1) P{Rank(β2
... . . .

...βl) = l − 1} > 0. Then there exists (z2, . . . , zl) such that
both

Rank(z2
... . . .

...zl) = l − 1 and det(β1
...z2

... . . .
...zl) = 0 P β1-a.s.,

hence β1 lies a.s. in the subspace generated by z2, . . . , zl.

2) P{Rank (β2
... . . .

...βl) < l − 1} = 1. Then all (l − 1) × (l − 1)-submatrices
of (β2

... . . .
...βl) are a.s. degenerate. By the induction hypothesis the projection of

β2 on any coordinate hyperplane is a.s. focussed in some proper subspace of this
hyperplane, hence β2 lies a.s. in some (l − 2)-dimensional subspace of Rl.

Lemma 6 is proved.
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Corollary 1. We have P (Ω∗ ∩ (W ∈ A∗)) > 0 for every set Ω∗ as in
Theorem 1 provided a(i) ≥ li (i = 1, . . . , k) and the P(X∈Si)-distribution of b′i(X)

is not concentrated in any proper subspace of Rli (i = 1, . . . , k).

The last assumption is equivalent to the following: There exists no constant
non-null li×1-vector γi such that bi(x)γi = 0 for PX -almost all values x ∈ Si (i =
1, . . . , k). Such a requirement is practically always fulfilled.

P r o o f. By Lemma 4(iii), (20), §4, and because a(i) ≥ li, we have

(W ∈ A∗) = {Rank
(
b′i(Xi1)

... . . .
...b′i(Xia(i))

)
= li; i = 1, . . . , k}

⊃ {det
(
b′i(Xi1)

... . . .
...b′i(Xili)

)
6= 0; i = 1, . . . , k} .

By Theorem 1(i) and (ii), the events on the last right-hand side are PΩ∗ -independ-
ent for i = 1, . . . , k, the r.v.’s b′i(Xi1), . . . , b′i(Xili) are PΩ∗ -i.i.d., and their com-
mon PΩ∗ -distribution coincides with the P(X∈Si)-distribution of bi(X). Hence by
Lemma 6, it follows that PΩ∗(W ∈ A∗) > 0, i.e. P (Ω∗ ∩ (W ∈ A∗)) > 0.

Corollary 2. Let β1, β2, . . . be a sequence of i.i.d. random l× 1-vectors and
C ′n = (β1

... . . .
...βn). Then

(i) P{RankCn = l} ↑ 1 as n ↑ ∞, if the probability distribution of β1 is not
concentrated in any proper subspace of Rl,

(ii) P{RankCn = l} = 0 for every n ≥ 1 otherwise.

P r o o f. (i) By Lemma 6, under the assumption of (i), P (detCl = 0) < 1. For
every k = 1, 2, . . .

{RankCkl ≤ l − 1} ⊂ {RankCl ≤ l − 1, Rank(βl+1
... . . .

...β2l) ≤ l − 1, . . .} .
Hence P{RankCkl ≤ l−1} ≤ [P (RankCl ≤ l−1)]k, and P{RankCkl ≤ l−1} → 0
as k →∞. But P (RankCn ≤ l − 1) decreases as n increases, and (i) is proved.

(ii) Note that if n ≥ l then

{RankCn ≤ l − 1} =
⋂

1≤i1<...<il≤n

{Rank(βi1
... . . .

...βil) ≤ l − 1} .

Hence P (RankCl ≤ l− 1) = 1 entails P (RankCn ≤ l− 1) = 1. Thus (ii) follows.

Theorem 4. If n increases along the infinite sequence of i.i.d. r.v.’s X(1), . . .
. . . , X(n), . . . , then the sequence {Ωn} given by (32) is non-decreasing. Moreover ,
if the P(X∈Si)-distribution of b′i(X) is not concentrated in any proper subspace of

Rli (i = 1, . . . , k), then

P ( lim
n↑∞

Ωn) = 1 .

P r o o f. In view of Lemma 4(iii), we see that in (32)

w ∈ A∗ means Rank(b′i(xi1)
... . . .

...b′i(xia(i))) = li

for i = 1, . . . , k. Hence, for known a = (a(1), . . . , a(k)), A∗ = A∗(a) is a known
set.
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Consider any ω ∈ Ωn and the corresponding trajectory Xω(1), . . . Define

a(i) = #Si ∩ {Xω(1), . . . , Xω(n)} = #{Xi1, . . . , Xia(i)} .

Then we must have a(i) ≥ li (i = 1, . . . , k), and ω ∈ Ω′(a, n), (X11, . . .
. . . , Xka(k)) = W (ω) ∈ A∗(a). Hence

Rank
(
b′i(Xi1)

... . . .
...b′i(Xia(i))

)
= li (i = 1, . . . , k) .

Set

a′(i) = #Si ∩ {Xω(1), . . . , Xω(n+ 1)} .
Then a′(i) ≥ a(i), a′(i) ≥ li (i = 1, . . . , k), and a fortiori

Rank
(
b′i(Xi1)

... . . .
...b′i(Xia′(i))

)
= li (i = 1, . . . , k) .

Hence ω ∈ Ω′(a′, n + 1) and (X11, . . . , X1a′(1); . . . ; . . . , Xka′(k)) ∈ A∗(a′), i.e.
ω ∈ Ωn+1. Therefore Ωn ⊂ Ωn+1. To prove the second part of Theorem 4 note
that for given a(1), . . . , a(k), the PΩ′(a,n)-distribution of W = (X11, . . . , Xka(k))
by Theorem 1 coincides with the P -distribution of W by Theorem 2, hence
PΩ′(a,n)(W ∈ A∗) = P (W ∈ A∗). By Corollary 2 we have

P (W ∈ A∗) =

k∏
i=1

P{Rank
(
b′i(Xi1)

... . . .
...b′i(Xia(i))

)
= li} ↑ 1

as a(i) ↑ ∞ (i = 1, . . . , k), provided the P -distribution of b′i(Xij) (j = 1, . . . , a(i))
or the P(X∈Si)-distribution of b′i(X) is not concentrated in any proper subspace

of Rli (i = 1, . . . , k). Hence

∀ε > 0, ∃(41, . . . ,4k), ∀a = (a(1), . . . , a(k)) ≥ 4 = (41, . . . ,4k) ,

PΩ′(a,n)(W ∈ A∗) ≥ 1− ε .

But, with the same summation range as in (32), we have

P (Ωn) =
∑

P (Ω′(a, n))PΩ′(a,n)(W ∈ A∗) ,

hence as a ≥ 4 we get the inequality

P (Ωn) ≥ (1− ε)P
(∑

Ω′(a, n)
)
.

By (5), §2, we have∑
Ω′(a, n) = {ω : #Si ∩ {X(1), . . . , X(n)} ≥ li; i = 1, . . . , k} ,

accordingly P (
∑
Ω′(a, n)) → 1 as n → ∞. Thus lim infn→∞ P (Ωn)≥ 1−ε,

∀ε > 0, hence limn→∞ P (Ωn) = P (limn→∞Ωn) = 1. Theorem 4 is proved.

R e m a r k 3. For the conditional estimability domain Ωn of θ, always Ωn ⊂∑
Ω′(a, n). If the P(X∈Si)-distribution of b′i(X) has a density with respect to the
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Lebesgue measure in Rli , then

PΩ∗{det
(
b′i(Xi1)

... . . .
...b′i(Xili)) = 0} = 0 , (i = 1, . . . , k) .

Then, for the reason explained in the proof of Corollary 1, we have PΩ∗(W ∈
A∗) = 1, in particular PΩ′(a,n)(W ∈ A∗) = 1 if a(i) ≥ li (i = 1, . . . , k), and thus
P (Ωn) = P (

∑
Ω′(a, n)), i.e. in this case θ is conditionally estimable in almost

the whole
∑
Ω′(a, n).

8. Properties of the CGLSE. Si-transformations acting on the data (1)
split the initial model {(X(t), Y (t)), t = 1, . . . , n} satisfying (21) into a system
of conditional models (23), or, roughly speaking, into a system of “infinitesimal”
models. In this section, we show that, by joining together instantaneous states
w, several data situations a to recover the most part of Ω, from the properties of
CGLSE in “infinitesimal” linear models we arrive at global properties.

Consider the model (23) in which the range of θ is some fixed set Θ ⊂Ml×r,

θ′ = (θ′1
... . . .

...θ′k), Θ0 = {θ − θ̃ : θ, θ̃ ∈ Θ},

∆ = the linear hull of Θ0 in Ml×r ,

Θ1 = {θ1 : ∃(θ2, . . . , θk), θ ∈ Θ}, . . . ,
Θk = {θk : ∃(θ1, . . . , θk−1), θ ∈ Θ} ,
Θi0 = {θi − θ̃i : θi, θ̃i ∈ Θi} ,
∆i0 = the linear hull of Θi0 in Mli×r (i = 1, . . . , k) ,

D = D(w) = {Bθ : θ ∈ Θ} ,
D0 = {B(θ − θ̃) : θ, θ̃ ∈ Θ} = {Bδ : δ ∈ Θ0} .

Like Assumption 1, we shall here make use of

Assumption 2. For every w ∈ A∗, either

(a) there exist linear subspaces

Li = Li(w) ⊂M(Bi) ⊂ Ra(i) (i = 1, . . . , k)

such that Mr
L1×...×Lk

is the linear hull of D0 in Msk×r, or

(b) Σ1 = . . . = Σk and there exists a linear subspace L = L(w) ⊂ M(B) ⊂
Rsk such that Mr

L is the linear hull of D0 in Msk×r.

When there are no constraints on θ, i.e. Θ = Ml×r, or, more generally, when
there are only constraints separately on each θi of the form

∆ = {(δ′1
... . . .

...δ′k)′ : δi ∈ ∆i0, i = 1, . . . , k} ,
−−→
∆i0 = {−→δi : δi ∈ ∆i0} =

r×
h=1

Λi ,

where Λi is a linear subspace of Rli (i = 1, . . . , k), Assumption 2(a) is satisfied.
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Indeed, write δi =
(
δi1

... . . .
...δir
)
∈ ∆i0 or δih ∈ Λi (∀h = 1, . . . , r), and Li =

{Biδih : δih ∈ Λi}. The linear hull of D0 is then

{Bδ : δ ∈ ∆} = {Bδ : δ = (δ′1
... . . .

...δ′k)′, δi ∈ ∆i0, i = 1, . . . , k}
= {Bδ : B = diag(B1, . . . , Bk), Biδih ∈ Li, i = 1, . . . , k;h = 1, . . . , r}

=Mr
L1×...×Lk

because the hth column of Bδ is B(δ′1h . . . δ
′
kh)′ = ((B1δ1h)′ . . . (Bkδkh)′)′ and

varies over L1 × . . .× Lk (h = 1, . . . , r).
Further, consider constraints imposed on θ to ensure in (21), §5, the junction

of the zones (Q)E(Y ′ | x) = bi(x)θi for several Si (i = 1, . . . , k). Write

θi = (λi1
... . . .

...λir) (i = 1, . . . , k) ,

θ = (λ1
... . . .

...λr) , λ′h = (λ′1h . . . λ
′
kh) (h = 1, . . . , r) .

Let Lij be the common boundary of the domains Si and Sj ; the junction require-
ments are

bi(x)θi = bj(x)θj , ∀x ∈ Lij ,
or, equivalently,

bi(x)λih = bj(x)λjh , h = 1, . . . , r, ∀x ∈ Lij .
We can analogously impose conditions that several shreds y = bi(x)θi (i =
1, . . . , k) of the regression surface have common tangent hyperplane at every point
of their common boundaries. Thus these constraints are imposed in exactly the
same manner on every λh (h = 1, . . . , r), i.e., to sum up, the junction constraints
are λh ∈ Γ (h = 1, . . . , r), where Γ , independent of h, is some linear subspace
of Rl. Therefore, when the junction constraints are imposed, Θ has the property
that the linear hull ∆ of Θ0 is of the form

−→
∆ = {−→δ : δ ∈ ∆} =

r×
h=1

Γ

where Γ is some linear subspace of Rl. Let Θ have this property. Consider

δ = (δ1
... . . .

...δr) ∈ ∆ , L = {Bδh : δh ∈ Γ} .
Then the linear hull of D0 in Msk×r is

{Bδ : δ ∈ ∆} = {(Bδ1
... . . .

...Bδr) : δh ∈ Γ, h = 1, . . . , r} =Mr
L .

Hence, in the case Σ1 = . . . = Σk, when θ is subject to the junction constraints,
Assumption 2(b) is satisfied.

Let d1( · ), . . . , dk( · ) in (21),§5, be positive functions, let V1, . . . , Vk be defined
in Theorem 3, and let Msk×r be endowed with the scalar product

(33)
−→
ζ1 [Ir ⊗ diag−1(V1, . . . , Vk)]

−→
ζ2 , ζ1, ζ2 ∈Msk×r .

Let Ge = Ge(w) be the orthoprojector of Msk×r on an arbitrary linear subspace
E of Msk×r containing D0. By the same symbol G = G(w) we denote the ortho-
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projector of Msk×r on Mr
L1×...×Lk

or Mr
L according as Assumption 2(a) or 2(b)

is used. Let θ0 be some fixed element of Θ, and I the identity mapping of Msk×r.
Consider

θ(U,w) = B−(w)Ge(w)U +B−(w)(I −Ge(w))B(w)θ0 ,

where the products are those of the mappings B−, Ge, I − Ge, B; moreover,
B−GeU, e.g., is the image of U ∈Msk×r by the mapping B−Ge; and let

θ̂(U,w) = B−(w)G(w)U +B−(w)
(
Isk −G(w)

)
B(w)θ0 ,

where the products are simply those of the matrices B−, G, U, . . . By applying
Lemmas 4, 5 to the model (23) for every fixed w ∈ A∗, we see that θ(U,w), θ̂(U,w)
are ILUE for θ. Now, in Theorem 1, W = {X11, . . . , X1a(1); . . . ; . . . , Xka(k)}, the

pair (U,W ) is defined on Ω∗, the functions θ(U,W ), θ̂(U,W ) are defined on
Ω∗ ∩ (W ∈ A∗). In particular, letting Ω∗ = Ω′ (see (5), §2), we have (see §4)

W = {Si ∩ {X(1), . . . , X(n)}, i = 1, . . . , k} .

U being paired with W, the functions θ̂(U,W ), θ(U,W ) are defined on Ωn (see
(32), §7), they are the CGLSE of θ; their nice properties in finite sample are
stated in

Theorem 5. Suppose the conditions of Corollary 1 are satisfied.

(i) θ(U,W ) is locally and globally unbiased , i.e.

(Q)EΩ∗∩(W∈A∗){θ(U,W ) |W} = θ , EΩnθ(U,W ) = θ for every θ ∈ Θ .

(ii) Under Assumption 2, θ̂(U,W ) is locally and globally optimal , i.e. for every

Ml×r-valued function ϕ(U,W ) such that −→ϕ (U,w) = λ(w)
−→
U + δ(w) is an ILUE

for
−→
θ in the model (23) (see Definition 2)

(Q)DΩ∗∩(W∈A∗){ϕ(U,W ) |W} ≥ (Q)DΩ∗∩(W∈A∗){θ̂(U,W ) |W} ,

DΩnϕ(U,W ) ≥ DΩn θ̂(U,W ) .

These properties are valid provided for every sk ≤ n the following regularity con-
ditions are fulfilled for some particular g-inverse B−:

Setting ν = {1, . . . , sk}, X(ν) = {X(1), . . . , X(sk)}, S = S
a(1)
1 × . . . × Sa(k)k ,

let

1) E‖Y ‖2 <∞,

2) E{X(ν)∈S}‖B−(X(ν))G(X(ν))‖2 ·
k∑
i=1

‖Y (si)‖2 <∞,

3) E{X(ν)∈S}‖B−(X(ν))G(X(ν))B(X(ν))‖2 <∞,
4) E{X(ν)∈S}‖B−(X(ν))B(X(ν))‖2 <∞,

5) E{X(ν)∈S}‖λ(X(ν))‖2 ·
k∑
i=1

‖Y (si)‖2 <∞,
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6) E{X(ν)∈S}‖δ(X(ν))‖2 <∞,

7) E{X(ν)∈S}|[Ir ⊗B−(X(ν))]Ge(X(ν))| ·
k∑
i=1

|Y (si)| <∞,

8) E{X(ν)∈S}|[Ir ⊗B−(X(ν))]Ge(X(ν))[Ir ⊗B(X(ν))]| <∞,

where, by abuse of notation, the symbol Ge in 7), 8) also denotes the skr × skr-
matrix associated with the linear operator Ge : Msk×r →Msk×r.

P r o o f. (i) By Lemma 5, at any instantaneous state w ∈ A∗, θ(U,w) is
unbiased for θ in (23), i.e.

(Q)EΩ∗∩(W∈A∗){θ(U,w) | w} = θ

or, by Theorem 1(iii),

(Q)EΩ∗∩(W∈A∗){θ(U,W ) | w} = θ, or

(Q)EΩ∗∩(W∈A∗){θ(U,W ) |W} = θ, ∀θ ∈ Θ .

Hence for every set Ω∗ in Theorem 1

EΩ∗∩(W∈A∗)θ(U,W ) = θ .

Letting Ω∗ = Ω′ = Ω′(a, n), then multiplying both sides by P (Ω′ ∩ (W ∈ A∗))
and summing up over the range as in (32), §7, we get EΩn

θ(U,W ) = θ, ∀θ ∈ Θ.

(ii) By Lemma 5, at every w ∈ A∗, under Assumption 2, θ̂(U,w) is a BILUE
for θ in (23), i.e.

(Q)DΩ∗∩(W∈A∗){ϕ(U,w) | w} ≥ (Q)DΩ∗∩(W∈A∗){θ̂(U,w) | w} .

Then, by the same reason as above,

(Q)DΩ∗∩(W∈A∗){ϕ(U,W ) |W} ≥ (Q)DΩ∗∩(W∈A∗){θ̂(U,W ) |W} .

Moreover, we get as in (i)

EΩ∗∩(W∈A∗)ϕ(U,W ) = θ , EΩ∗∩(W∈A∗)θ̂(U,W ) = θ , ∀θ ∈ Θ .

The conditional dispersion matrices of ϕ(U,W ) and θ̂(U,W ) are the conditional

expectations of the expressions (−→ϕ − −→θ )(−→ϕ − −→θ )′ and (
−→̂
θ − −→θ )(

−→̂
θ − −→θ )′

respectively. Then, by proceeding as in (i) we get

DΩ∗∩(W∈A∗)ϕ(U,W ) ≥ DΩ∗∩(W∈A∗)θ̂(U,W ) ,

and DΩn
ϕ(U,W ) ≥ DΩn

θ̂(U,W ) because EΩn
ϕ(U,W ) = θ,EΩn

θ̂(U,W ) = θ,
∀θ ∈ Θ.

To make the reasoning rigorous, we must check the existence and finiteness

of the expectations of
−→̂
θ
(−→̂
θ
)′

, −→ϕ (−→ϕ )′, θ. Because Z(si−1+1), . . . , Z(si) are i.i.d.
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with respect to P{X(ν)∈S}, the regularity condition 2) entails

E{X(ν)∈S}‖B−(X(ν))G(X(ν))‖2 ·
sk∑
t=1

‖Y (t)‖2 <∞ ,

hence by Theorem 1(i),(ii)

EΩ∗‖B−(W )G(W )‖2 · ‖U‖2 <∞ ,

a fortiori

EΩ∗∩(W∈A∗)‖B−(W )G(W )U‖2 <∞ .

Similarly, 3) and 4) entail

EΩ∗∩(W∈A∗)‖B−(W )B(W )θ0‖2 <∞ ,

EΩ∗∩(W∈A∗)‖B−(W )G(W )B(W )θ0‖2 <∞ .

Therefore

EΩ∗∩(W∈A∗)‖θ̂(U,W )‖2 <∞, EΩ∗∩(W∈A∗)

∣∣∣−→̂θ (−→̂θ )′∣∣∣ <∞ ,

for every Ω∗, in particular for Ω∗ = Ω′(a, n), a = (a(1), . . . , a(k)) ≥ (l1, . . . , lk).
Hence

EΩn

∣∣∣−→̂θ (U,W )
(−→̂
θ
)′

(U,W )
∣∣∣ <∞ .

Similarly, EΩn
|−→ϕ (U,W )(−→ϕ )′(U,W )| < ∞, EΩn

|θ(U,W )| < ∞. Thus all expec-
tations, variances and covariances involved exist and are finite. Theorem 5 is
proved.

Theorems 4, 5 show that the CGLSE θ, θ̂ are unbiased, θ̂ has the smallest
(in the PSD ordering sense) dispersion matrix on the domains Ωn that enlarge to
become almost the whole original space Ω when the sample size n increases.

R e m a r k 4. Let G0 and G∗ be respectively the orthoprojectors of Msk×r
and of the subspace E , endowed with the scalar product (33), on the linear hull
T of D0 in Msk×r. It can be checked that G0 = G∗Ge. Consider two CGLSE of
µ = EΩ∗∩(W∈A∗)(U | w), µ ∈ D, based respectively on Ge, G0 :

τ = GeU + (I −Ge)µ0, τ0 = G0U + (I −G0)µ0 ,

where µ0 = µ0(w) is arbitrarily chosen in D = D(w). Since µ0 − µ ∈ D0 ⊂ T ⊂
E ⊂Msk×r, we have

τ − µ = Ge(U − µ0) + µ0 − µ = Ge(U − µ0) +Ge(µ0 − µ) = Ge(U − µ) ,

τ0 − µ = G0(U − µ) = G∗Ge(U − µ) ,

τ0 − µ = G∗(τ − µ) .

Hence, by the projection property, with the scalar product (33),

(τ0 − µ, τ0 − µ) ≤ (τ − µ, τ − µ) .
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Because w ∈ A∗, B = B(w) defines an injective mapping fromMl×r ontoM(B) ⊂
Msk×r. Let us define on Ml×r a scalar product by (θ, θ̃)q = (µ, µ̃), where (µ, µ̃)

is given by (33), µ = Bθ, µ̃ = Bθ̃. We have

(θ, θ̃)q = (Bθ,Bθ̃) = (
−→
Bθ)′[Ir ⊗ diag−1(V1, . . . , Vk)](

−→
Bθ̃)

= [(Ir ⊗B)
−→
θ ]′[Ir ⊗ diag(V −11 , . . . , V −1k )](Ir ⊗B)

−→̃
θ

= (
−→
θ )′[Ir ⊗B′ diag(V −11 , . . . , V −1k )B]

−→̃
θ

= (
−→
θ )′[Ir ⊗ diag(B′iV

−1
i Bi, i = 1, . . . , k)]

−→̃
θ .

Define q = q(w) = [Ir ⊗ diag(B′iViBi, i = 1, . . . , k)], a positive definite lr × lr-
matrix. Then

(θ, θ̃)q = (
−→
θ )′q
−→̃
θ .

Consider two CGLSE of θ, which are CILUE by Theorem 5(i),

θ = B−GeU +B−(I −Ge)µ0 = B−τ ,

θ∗ = B−G0U +B−(I −G0)µ0 = B−τ0 ,

where µ0 = Bθ0. Then, for every θ ∈ Θ, θ = B−µ, θ − θ = B−τ − B−µ =
B−(τ − µ), θ∗ − θ = B−(τ0 − µ), we get

(θ∗ − θ, θ∗ − θ)q = (τ0 − µ, τ0 − µ) ≤ (τ − µ, τ − µ) = (θ − θ, θ − θ)q
or

(
−→
θ∗ −−→θ )′q(

−→
θ∗ −−→θ ) ≤ (

−→
θ −−→θ )′q(

−→
θ −−→θ ) , ∀θ ∈ Θ .

Thus, the conditional quadratic loss function, given the instantaneous state w,
based on q = q(w), of the CGLSE θ∗ corresponding to the linear hull T of D0 is
uniformly not greater than that of the CGLSE θ corresponding to any subspace E
containing D0. This fact is to be taken into consideration when T is an arbitrary
linear subspace of Msk×r, especially when Assumption 2 is not satisfied, and then,
by Theorem 5(i), we have to view different CGLSE of θ.

III. Prediction of the response variable

9. Introduction. We start from the data-bases {(X(t), Y (t)), t = 1, . . . , n}
of n items. On a new item, the (n + 1)th, say, the observed value X(n + 1) is
available, and one must predict the response value Y (n + 1) on the ground of
{(X(t), Y (t)), t = 1, . . . , n;X(n+ 1)}.

Suppose on the range H of X the disjoint domains S1, . . . , Sk are prescribed.
The sum S = S1 + . . .+Sk represents the relevant domain of explanatory values.
We shall exhibit a predictor ψ only when the observed value x of X(n + 1) falls
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in S. Thus ψ is some function of

{(X(1), Y (1)), . . . , (X(n), Y (n)), x} where x ∈ S .

If the exact mixed conditional distribution Q( · , x), or at least a conditional lo-
cation function f(x, θ) of Y (n+1) given X(n+1) were known, the predictor value
would be f(x, θ). Thus the prediction is directed by Q( · , x), hence it would be
reasonable to perform all Si-transformations preserving Q( · , x) and to construct

a good estimator θ̂ of θ on the basis of the transformed data {(Xij , Yij), i =

1, . . . , k; j = 1, . . . , a(i)}, or (U,W ), then to predict Y (n + 1) by f [x, θ̂(U,W )]
when the functional form f( · , · ) is known.

The adequacy of the predictor ψ will be assessed by ‖ψ−Y (n+1)‖2 ·IS(X(n+
1)), with the Euclidean norm ‖ · ‖; the factor IS reminds us not to carry out the
prediction when X(n+ 1) 6∈ S.

10. Predictors connected with the CGLSE. For studying the properties
of predictors, we introduce

Definition 3. Consider a function

ψ(x, U,w) = L(x,w)
−→
U + c(x,w)

where L( · , · ), c( · , · ) are matrix-valued andA×Ask -measurable in (x,w) ∈ S×A;
the regularity conditions for the existence of

EΩ′(a,n)∩(W∈A)ψ(X(n+ 1), U,W )IS(X(n+ 1))

are to be satisfied. Then ψ(X(n+1), U,W ) is called a conditional inhomogeneous
linear unbiased predictor (CILUP) for Y (n+ 1) if, for every envisaged underlying
distribution of (X,Y ),

(Q)EΩ′∩(W∈A){ψ(X(n+ 1), U,W )IS(X(n+ 1)) |W,X(n+ 1)}
= (Q)EΩ′∩(W∈A){Y (n+ 1)IS(X(n+ 1)) |W,X(n+ 1)} .

The prefix (Q) will be justified below, by Lemma 7.

This definition is stated from the viewpoint of predicting the r.v. Y (n+ 1) by
a random predictor ψ(X(n + 1), U,W ), after performing all Si-transformations,
at every random instantaneous state W , X(n+ 1) being observed only in S; the
basic space used is Ω′(a, n) ∩ (W ∈ A), i.e. we always start from an elementary
situation a, with A as described in Theorem 1(iii). The following lemmas give an
equivalent form of Definition 3.

Lemma 7. Choose (see Remark 1, §2)

Ω∗ = Ω = {X(n+ 1) ∈ S} ∩Ω′(a, n) = Ω1 + . . .+Ωk

where

Ωh = {X(n+ 1) ∈ Sh} ∩Ω′, h = 1, . . . , k .
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Let g(Z(n+ 1), U,W ) be any matrix-valued function such that

EΩ′∩(W∈A)g(Z(n+ 1), U,W )IS(X(n+ 1)) exists.

Then a.s.

EΩ∩(W∈A){g(Z(n+ 1), U,W ) | U,W,X(n+ 1)}

=

k∑
h=1

ISh
(X(n+ 1))EΩh∩(W∈A){g(Z(n+ 1), U,W ) | U,W,X(n+ 1)} .

In particular , for ω ∈ {X(n+ 1) ∈ S},

(Q)EΩ′∩(W∈A){g(Z(n+ 1), U,W )IS(X(n+ 1)) |W,X(n+ 1)}
= (Q)EΩ∩(W∈A){g(Z(n+ 1), U,W ) |W,X(n+ 1)} ,

where both sides are determined by Q( · , · ).

P r o o f. For every set Γ ∈ Csk ×Ask ×A, consider

EΩh∩(W∈A){Φh(U,W,X(n+ 1))IΓ (U,W,X(n+ 1))}
= EΩh∩(W∈A){g(Z(n+ 1), U,W )IΓ (U,W,X(n+ 1))}

where Φh = EΩh∩(W∈A){g | U,W,X(n + 1)}. Set Φ =
∑k
h=1 ΦhISh

(X(n + 1)).
Then

EΩ∩(W∈A){ΦIΓ (U,W,X(n+ 1))} = EΩ∩(W∈A){gIΓ }
and the first a.s. equality is proved.

By applying Lemma 1 to the space Ω′ ∩ (W ∈ A) instead of Ω, we get

EΩ∩(W∈A){g(Z(n+ 1), U,W ) |W,X(n+ 1)}
= EΩ′∩(W∈A){g(Z(n+ 1), U,W )IS(X(n+ 1)) |W,X(n+ 1)}

a.s. modPΩ∩(W∈A) because

Ω ∩ (W ∈ A) = (Ω′ ∩ (W ∈ A)) ∩ {(X(n+ 1),W ) ∈ S ×A} .

On the other hand, set a′(h) = a(h) + 1; we get

EΩh∩(W∈A){g(Z(n+ 1), U,W ) |W,X(n+ 1)}
= EΩh∩(W∈A){g(Zha′(h), U,W ) |W,Xha′(h)}

(for notations, see §2). By Theorem 1(iii) and Remark 1, the last expectation can
be determined by Q( · , · ); hence, because the first equality just proved applies as
well to

EΩ∩(W∈A){g(Z(n+ 1), U,W ) |W,X(n+ 1)} ,

this conditional expectation can also be determined by Q( · , · ), and we get the
second equality of Lemma 7 where the left-hand side is determined by Q( · , · ) on
the set {X(n+ 1) ∈ S}.
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Lemma 8. The unbiasedness in Definition 3 is equivalent to

(Q)EΩ∩(W∈A){ψ(X(n+ 1), U,W ) |W,X(n+ 1)}
= (Q)E{Y (n+ 1)|X(n+ 1)} on the set {X(n+ 1) ∈ S} .

In other words, a CILUP for Y (n + 1) in the sense of Definition 3 is also a
CILUE for the regression function value at X(n+ 1) ∈ S, and conversely.

P r o o f. By the decomposition in Lemma 7,

(Q)EΩ′∩(W∈A){Y (n+ 1)IS(X(n+ 1)) |W,X(n+ 1)}
= (Q)EΩ∩(W∈A){Y (n+ 1) |W,X(n+ 1)}

=

k∑
h=1

ISh
(X(n+ 1))(Q)EΩh∩(W∈A){Yha′(h) |W,Xha′(h)} ,

where, as in the proof of Lemma 7, a′(h) = a(h) + 1. By Theorem 1(iii), writing
p(x) = (Q)E(Y | X = x), we get

(Q)EΩh∩(W∈A){Yha′(h) |W,Xha′(h)} = p(Xha′(h)) = p(X(n+ 1)) ;

indeed, here ω ∈ Ωh = {X(n+ 1) ∈ Sh} ∩Ω′, and so X(n+ 1) = Xha′(h). Thus

(Q)EΩ′∩(W∈A){Y (n+ 1)IS(X(n+ 1)) |W,X(n+ 1)}

=

k∑
h=1

ISh
(X(n+ 1))p(X(n+ 1)) = p(X(n+ 1))

provided X(n + 1) ∈ S. But p(X(n + 1)) = (Q)E(Y (n + 1) | X(n + 1)) for
p(x) = (Q)E(Y | X = x) = (Q)E(Y (n+ 1) | X(n+ 1) = x), hence the relation in
Definition 3 coincides with the one of Lemma 8, in view of Lemma 7. Lemma 8
is proved.

If the structure assumptions (21) are satisfied, then

(Q)E(Y ′ | x) = f ′(x, θ) =

k∑
i=1

bi(x)ISi
(x)θi = b(x)θ

where b(x) =
(
b1(x)IS1(x) . . . bk(x)ISk

(x)
)
, an 1 × l-matrix. Then a CILUP for

Y ′(n + 1) is also a CILUE of b(x)θ when X(n + 1) = x ∈ S, and conversely.
From the model (23), by Lemma 5(iv), b(x)θ(U,w) (see Theorem 5) is an ILUE
for b(x)θ for any given x. Hence we are led to consider the CGLS (conditional
generalized least squares) predictors

Y ′(n+ 1) = b(X(n+ 1))θ(U,W )

connected with the CGLSE θ(U,W ) of θ by Theorem 5.
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11. Properties of CGLS predictors

Theorem 6. Y ′(n+ 1) is a CILUP for Y ′(n+ 1) in the sense of Definition 3.

P r o o f. By Lemma 7 and its proof, in view of Corollary 1 we have P (Ωh ∩
(W ∈ A∗)) > 0, for h = 1, . . . , k, and

(Q)EΩ∩(W∈A∗){b(X(n+ 1)θ(U,W ) |W,X(n+ 1)}

= b(X(n+ 1))

k∑
h=1

ISh
(X(n+ 1))(Q)EΩh∩(W∈A∗){θ(U,W ) |W,Xha′(h)} .

By Theorem 1(iii)

(Q)EΩh∩(W∈A∗){θ(U,W ) |W,Xha′(h)} = (Q)EΩh∩(W∈A∗){θ(U,W ) |W} .
By Theorem 5(i), applied to Ωh, the right-hand side equals θ. Hence we have

(Q)EΩ∩(W∈A∗){Y ′(n+ 1) |W,X(n+ 1)} = b(X(n+ 1))θ

= (Q)E(Y ′(n+ 1) | X(n+ 1)) for X(n+ 1) ∈ S .
From Lemma 8, Theorem 6 follows.

Theorem 7. Denote by F an arbitrary non-random positive semidefinite r×r-
matrix. Under the conditions of Theorem 5 together with Assumption 2,

Ŷ ′(n+ 1) = b(X(n+ 1))θ̂(U,W )

is a locally optimal estimator for (Q)E(Y ′(n + 1) | X(n + 1)) in the following
sense: For every CILUE Ψ(X(n+ 1), U,W ) of (Q)E(Y (n+ 1) | X(n+ 1)) in the
sense of Lemma 8,

(i) (Q)DΩ∩(W∈A∗){Ŷ (n+ 1) |W,X(n+ 1)}
≤ (Q)DΩ∩(W∈A∗){Ψ(X(n+ 1), U,W ) |W,X(n+ 1)},

(ii) (Q)EΩ∩(W∈A∗){‖Ŷ (n+ 1)− (Q)E(Y (n+ 1) | X(n+ 1))‖2F |W,X(n+ 1)}
≤ (Q)WΩ∩(W∈A∗){‖Ψ(X(n+ 1), U,W )

−(Q)E(Y (n+ 1) | X(n+ 1))‖2F |W,X(n+ 1)}
provided the regularity conditions, like those of Theorem 5 , ensuring the existence
of conditional dispersion matrices, are satisfied.

P r o o f. (i) Define Ψ = Ψ(X(n+ 1), U,W ), b = b(X(n+ 1)), θ̂ = θ̂(U,W ),

T = T (X(n+ 1), U,W ) = (Ψ −−→bθ)(Ψ ′ − bθ)− (
−→
bθ̂ −−→bθ)(bθ̂ − bθ) .

By Lemma 7, at any given value w, xn+1 of (W,X(n+ 1)) with xn+1 ∈ S,
(34) (Q)EΩ∩(W∈A∗){T (X(n+ 1), U,W ) | w, xn+1}

=

k∑
h=1

ISh
(xn+1)(Q)EΩh∩(W∈A∗){T (X(n+ 1), U,W ) | w, xn+1} .
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Applying Theorem 1(iii), integrating with respect to the mixed conditional dis-
tribution given (W,Xha′(h)) = (w, xn+1), we get

(Q)EΩh∩(W∈A∗){T (X(n+ 1), U,W ) | w, xn+1}
= (Q)EΩh∩(W∈A∗){T (xn+1, U, w) | w, xn+1} .

Apply Theorem 1(iii) again to get

(Q)EΩh∩(W∈A∗){T (xn+1, U, w) | w, xn+1}
= (Q)EΩh∩(W∈A∗){T (xn+1, U, w) | w} .

Apply Theorem 1(iii) to both Ωh and Ω,

(Q)EΩh∩(W∈A∗){T (xn+1, U, w) | w} = (Q)EΩ∩(W∈A∗){T (xn+1, U, w) | w} .

Hence, replacing this expectation on the right-hand side of (34) gives

(Q)EΩ∩(W∈A∗){T (X(n+ 1), U,W ) | w, xn+1}
= (Q)EΩ∩(W∈A∗){T (xn+1, U, w) | w}

because xn+1 ∈ S. Similarly,

(Q)EΩ∩(W∈A∗){Ψ(xn+1, U, w) | w}

= (Q)EΩ∩(W∈A∗){Ψ(X(n+ 1), U,W ) | w, xn+1}

= (Q)E{Y (n+ 1) | X(n+ 1) = xn+1} =
(
b(xn+1)θ

)′
,

by the relation of Lemma 8, i.e. Ψ(xn+1, U, w) is an ILUE for
−−−−−−→
b(xn+1)θ in the

model (23); but b(xn+1)θ̂(U,w) is a BILUE for b(xn+1)θ in (23) by Lemma 4(ii),
hence, for every w ∈ A∗, xn+1 ∈ S,

(Q)EΩ∩(W∈A∗){T (xn+1, U, w) | w} ≥ 0 .

Thus, from the above we have

(Q)EΩ∩(W∈A∗){T (X(n+ 1), U,W ) |W,X(n+ 1)} ≥ 0 ,

which proves (i).

(ii) Observe that, for any two r × 1 random vectors ξ, ζ with zero mean and
E‖ξ‖2 <∞, E‖ζ‖2 <∞,

E‖ξ‖2F = E(ξ′Fξ) = E Trace ξ′Fξ = TraceFE(ξξ′) = TraceFDξ ,

E‖ξ‖2F − E‖ζ‖2F = TraceF (Dξ −Dζ) ≥ 0 if Dξ ≥ Dζ .

This argument, when applied to conditional expectations and dispersion matrices,
proves (ii). Theorem 7 is proved.

Before passing to the optimality of Ŷ (n + 1) as a predictor, we need two
lemmas.
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Lemma 9. Let ξ1, ξ2, ξ3 be r.v.’s, with ξ1 matrix-valued. Suppose (ξ1, ξ2) is
independent of ξ3, and Eξ1 exists. Then

E(ξ1 | ξ2, ξ3) = E(ξ1 | ξ2) P ξ2,ξ3-a.s.

The standard proof is omitted.

Lemma 10. For every Rr-valued ,
(
Br,A × Brsk × Ask

)
-measurable function

Ψ(x, u, w) and non-random F ≥ 0, almost surely

EΩ∩(W∈A){‖Ψ(X(n+ 1), U,W )− Y (n+ 1)‖2F |W,X(n+ 1)}
= EΩ∩(W∈A){‖Ψ(X(n+ 1), U,W )

−p(X(n+ 1))‖2F |W,X(n+ 1)}+ u(X(n+ 1))

where

p(X) = (Q)E(Y | X), u(X) = (Q)E{‖Y − p(X)‖2F | X} .

P r o o f. Define (y1, y2) = y′1Fy2 for y1, y2 ∈ Rr. Then

‖y1 + y2‖2F = ‖y1‖2F + ‖y2‖2F + 2(y1, y2) .

We have

EΩ∩(W∈A){Ψ(X(n+ 1), U,W )− p(X(n+ 1)) ,

p(X(n+ 1))− Y (n+ 1) | U,W,X(n+ 1)}
= {Ψ(X(n+ 1), U,W )− p(X(n+ 1)),

EΩ∩(W∈A)[p(X(n+ 1)− Y (n+ 1)) | U,W,X(n+ 1)]}

almost surely, because Ψ(X(n + 1), U,W ), p(X(n + 1)) are Borel functions of
(X(n+ 1), U,W ). By Lemma 7,

EΩ∩(W∈A){p(X(n+ 1))− Y (n+ 1) | U,W,X(n+ 1)}

=

k∑
h=1

ISh
(X(n+ 1))EΩh∩(W∈A){p(Xha′(h))− Yha′(h) | U,W,Xha′(h)}

almost surely. By Lemma 1, applied to Ωh,

EΩh∩(W∈A){p(Xha′(h))− Yha′(h) | U,W,Xha′(h)}
= EΩh

{p(Xha′(h))− Yha′(h) | U,W,Xha′(h)}
PΩh∩(W∈A)-almost surely, because

(W ∈ A) = {(U,W,Xha′(h)) ∈ Ksk ×A× Sh} .
By Theorem 1(i), (Xha′(h), Yha′(h)) is PΩh

-independent of (U,W ), hence, by
Lemma 9,

EΩh
{p(Xha′(h))− Yha′(h) | U,W,Xha′(h)}

= EΩh
{p(Xha′(h))− Yha′(h) | Xha′(h)} a.s.
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By Theorem 1(ii), the PΩh
-distribution of (Xha′(h), Yha′(h)) coincides with the

P{X∈Sh}-distribution of (X,Y ), which implies, according to Lemma 1,

EΩh
{Yha′(h) | Xha′(h)} = p(Xha′(h)) a.s.

To sum up, we get

EΩ∩(W∈A){Ψ − p, p− Y (n+ 1) | U,W,X(n+ 1)} = 0 a.s.

Therefore

EΩ∩(W∈A){‖Ψ(X(n+ 1), U,W )− Y (n+ 1)‖2F | U,W,X(n+ 1)}

= EΩ∩(W∈A){‖Ψ(X(n+ 1), U,W )− p(X(n+ 1))‖2F | U,W,X(n+ 1)}

+ EΩ∩(W∈A){‖p(X(n+ 1))− Y (n+ 1)‖2F | U,W,X(n+ 1)} a.s.

By taking EΩ∩(W∈A){ · |W,X(n+ 1)}, we obtain

EΩ∩(W∈A){‖Ψ(X(n+ 1), U,W )− Y (n+ 1)‖2F |W,X(n+ 1)}

= EΩ∩(W∈A){‖Ψ − p‖
2
F |W,X(n+ 1)}

+ EΩ∩(W∈A){‖p− Y (n+ 1)‖2F |W,X(n+ 1)}

almost surely. By applying the decomposition in Lemma 7 to the second summand
of the right-hand side, we get

k∑
h=1

ISh
(X(n+ 1))(Q)EΩh∩(W∈A){‖p(Xha′(h))− Yha′(h)‖2F |W,Xha′(h)} ,

which equals u(X(n+ 1)) on Ω ∩ (W ∈ A) since, by Theorem 1(iii),

(Q)EΩh∩(W∈A){‖p(Xha′(h))− Yha′(h)‖2F |W,Xha′(h)}
= u(Xha′(h)) = u(X(n+ 1)) on Ωh ∩ (W ∈ A) .

Thus Lemma 10 is proved.

Theorem 8. Under the conditions of Theorem 7, Ŷ (n+1) is a locally optimal
predictor for Y (n+1) in the following sense: for every CILUP Ψ(X(n+1), U,W )
in the sense of Definition 3, almost surely

EΩ∩(W∈A∗){‖Ŷ (n+ 1)− Y (n+ 1)‖2F |W,X(n+ 1)}

≤ EΩ∩(W∈A∗){‖Ψ(X(n+ 1), U,W )− Y (n+ 1)‖2F |W,X(n+ 1)} .

P r o o f. Theorem 8 follows from Theorem 7(ii) and Lemma 10.

Theorem 9. Under the conditions of Theorem 7, Ŷ (n+1) is a globally optimal
predictor for Y (n+ 1) in the following sense: for every CILUP Ψ

EΩn
{‖Ŷ (n+ 1)− Y (n+ 1)‖2F IS(X(n+ 1))}

≤ EΩn
{‖Ψ(X(n+ 1), U,W )− Y (n+ 1)‖2F IS(X(n+ 1))} .
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P r o o f. From Theorem 8,

EΩ∩(W∈A∗){‖Ŷ (n+ 1)− Y (n+ 1)‖2F }

≤ EΩ∩(W∈A∗){‖Ψ(X(n+ 1), U,W )− Y (n+ 1)‖2F } .

By multiplying by P (Ω ∩ (W ∈ A∗)) and summing over the range as in (32), §7,
we obtain

E{X(n+1)∈S}∩Ωn
{‖Ŷ (n+ 1)− Y (n+ 1)‖2F }
≤ E{X(n+1)∈S}∩Ωn

{‖Ψ(X(n+ 1), U,W )− Y (n+ 1)‖2F }

because Ω = {X(n+ 1) ∈ S} ∩Ω′. This is equivalent to what is to be proved.
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