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Let T (X) be the full transformation semigroup on a finite set X. Con-
tinuing our study of subsemilattices S of T (X) in [1] we want to apply the
characterization of S by its transitivity order TR(S) and fixed-element sets,
in order to determine the maximal subsemilattices of T (X). This problem
was already posed by Schein [5] in 1969 and there are a couple of prelimi-
nary results [3] resp. research announcements [2], but nobody seems to have
really entered the world of semilattice actions so far. A summary of our
results is given in [4].

First let us outline what we know about semilattice actions from [1].
Let S be a subsemilattice of T (X). Define x ≤ y by x = yγ for some
γ ∈ S ∪{id}. Then TR(S) = (X,≤) is a partial order, the transitivity order

of S. The following properties are characteristic of the fixed-element set F

of a mapping in S:

(i) F contains the minimal elements of (X,≤),

(ii) F is convex,

(iii) F is closed under minimal upper bounds: If z is some minimal upper
bound of elements x, y ∈ F , then z ∈ F .

In order to investigate the structure of fixed-element sets of mappings in
S, we introduce some notation. For x, u, v ∈ X and T ⊆ X define

FS(X,≤) = {T ⊆ X | T satisfies (i)–(iii)},

MUB(u, v) = {z ∈ X | z is some minimal upper bound of u, v in
(X,≤)},

Sub(T ) = {w ∈ X | w ≤ z and z ∈ MUB(u, v) for some u, v ∈ T},

Subi+1(T ) = Sub(Subi(T )),

Sub(x) = Sub({x}) = {z ∈ X | z ≤ x} = the ideal generated by x in
(X,≤),

〈x〉 =
⋂

{T ∈ FS(X,≤) | x ∈ T}.

For reasons that will be apparent later, 〈x〉 is sometimes informally called
the “principal fixed-element set” generated by x and it can be determined
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6 Subsemilattices of the full transformation semigroup

effectively by

〈x〉 =
⋃

{Subi(M ∪ {x}) | i ∈ N}
where M is the set of minimal elements of (X,≤). In [1] transitivity orders
of subsemilattices of T (X) are axiomatically characterized by the following
Axiom A2:

(A2) For every x ∈ X, x is a maximal element in 〈x〉.

Axiom A2 implies

(A1) For every x ∈ X, Sub(x) is a sublattice of (X,≤),

and consequently every subset F ∈ FS(X) gives rise to a mapping αF defined
by

xαF = sup(F ∩ Sub(x)) .

This mapping is idempotent, because its fixed-element set is Fix(αF ) =
F = XαF , which is sometimes denoted by Im(αF ). From [1] we recall

Theorem 1. (a) For any partial order (X,≤) satisfying A2,

S≤ = {αF ∈ T (X) | F ∈ FS(X,≤)}

defines a subsemilattice of T (X) and TR(S≤) = (X,≤).
(b) Given any subsemilattice S of T (X), let ≤ be the partial order rela-

tion of TR(S). Then α = αFix(α) for every α ∈ S. In particular , S ⊆ S≤.

Towards our goal of determining the maximal subsemilattices of T (X)
we quote the following result from [1] (Proposition (1.1) and (9)):

Proposition. The transitivity order of maximal subsemilattices of

T (X) is connected and has a least element.

So we know that the maximal subsemilattices of T (X) are in 1-1 corre-
spondence with certain semilattices of the form S = S≤ where (X,≤) is a
connected partial order with least element and satisfying A2.

Definition. Let us call a subsemilattice S of T (X) full if it is of the
form S = S≤ for some partial order (X,≤).

The problem is to find necessary and sufficient conditons for full semi-
lattices S≤ to be maximal. This problem can be expressed in terms of
transitivity orders (X,≤) as follows:

Definition. Let (X,≤) be the transitivity order of a subsemilattice of
T (X).

(a) An extension (X,≤1) of (X,≤) is an orbit extension if it is the tran-
sitivity order of a subsemilattice S≤1

of T (X) that contains S≤. [Examples
like (6.1) show that the last condition is essential.]

(b) (X,≤) is orbit maximal if it has no proper orbit extension.
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(c) A proper orbit extension (X,≤2) of (X,≤) is minimal if the fol-
lowing condition holds: If (X,≤2) is an orbit extension of (X,≤1) which
in turn is an orbit extension of (X,≤), then either (X,≤) = (X,≤1) or
(X,≤1) = (X,≤2). [Example (6.1) also shows that there are chains (X,≤) ⊆
(X,≤1) ⊆ (X,≤2) of extensions such that both (X,≤1) and (X,≤2) are or-
bit extensions of (X,≤), but (X,≤2) is not an orbit extension of (X,≤1),
i.e., S≤1

6⊆ S≤2
.]

Obviously (X,≤) is orbit maximal if and only if S≤ is a maximal subsemi-
lattice of T (X). Observing that every maximal orbit extension of (X,≤)
can be obtained by iterated minimal orbit extensions, in spite of the com-
plications indicated above, we may restate our problem by searching for
minimal orbit extensions of (X,≤). Of course, the existence of minimal
orbit extensions will turn out to be as hard to recognize as our problem is
nontrivial. To narrow down this search for minimal orbit extensions, we in-
troduce various types of extensions which come naturally in one or another
way: basic extensions (Sect. 2), elementary extensions (Sect. 4), simple ex-
tensions (Sect. 6), and the relationships between them are summarized in
Sect. 8. The main result is presented in two versions: Theorem 2* in Sect. 9
recurs to a verification of Axiom A2 within a certain range of extensions,
while Theorem 2 relies on a technical construction (Sects. 7 and 8) which
is intuitive from the algorithmic point of view. Either way the point is to
determine FS(X,≤1) for a certain range of extensions, and our objective is
to limit that range as far as possible. Depending on the properties of (X,≤),
we single out various special cases which are easy to handle.

To determine the maximal subsemilattices is equivalent to finding all
subsemilattices of a given semigroup S. But a motivation to study sub-
semilattices derives from a general directive in semigroup theory: the in-
vestigation of idempotents. Knowing all subsemilattices and their products
provides a lot of information about S.

The following notations will be used frequently:

C(x) = the set of elements covered by x in (X,≤)

= the set of lower neighbors of x in (X,≤) ,

Max(T ) = the set of maximal elements of T in (X,≤) ,

Gen(〈x〉) = the set of generators of 〈x〉, i.e., {y ∈ X | 〈x〉 = 〈y〉} .

1. General properties of orbit extensions (X,≤1) of (X,≤)

Example (1.1). The dashed line in the figure indicates the new edge
in (X,≤1). Using the description of mappings by fixed-element sets, it is



8 Subsemilattices of the full transformation semigroup

easy to verify that this is an orbit extension. The oval shows the new fixed-
element set.

Lemma (G0). FS(X,≤) ⊆ FS(X,≤1).

P r o o f. For every F ∈ FS(X,≤), we have αF ∈ S≤ ⊆ S≤1
. So F =

Fix(αF ) ∈ FS(X,≤1).

Lemma (G1). 〈x〉1 ⊆ 〈x〉 where 〈 〉1 denotes the 〈 〉-closure in (X,≤1).
If (X,≤1) is a proper extension of (X,≤), then there is some x such that

this inclusion is strict.

P r o o f. G0 implies 〈x〉1 ⊆ 〈x〉 because of the definition of 〈x〉1, 〈x〉
as an intersection of subsets containing x and satisfying (i)–(iii). For the
second statement, pick x, y ∈ X such that x ≤1 y but not x ≤ y. Then
yα〈x〉1 = x but yα〈x〉 6= x, because yα〈x〉 ≤ y. Therefore α〈x〉1 6= α〈x〉 and
〈x〉1 = Fix(α〈x〉1 ) 6= Fix(α〈x〉) = 〈x〉 (cf. [1], (3)).

Lemma (G2). x ≤1 y implies 〈x〉 ⊆ 〈y〉.

P r o o f. Since x ≤1 y, there is a γ ∈ S≤1
such that yγ = x. Then

xα〈y〉 = yγα〈y〉 = yα〈y〉γ = yγ = x. Thus x ∈ Fix(α〈y〉) = 〈y〉 and
〈x〉 ⊆ 〈y〉.

Lemma (G3). If x, y are connected by a new edge in (X,≤1) [i.e., x ≤1 y

and x, y are neighbors in (X,≤1), but not x ≤ y], then 〈x〉 = 〈y〉.

P r o o f. The relationship x = xα〈x〉 ≤1 yα〈x〉 ≤1 y is a consequence
of x ≤1 y, because α〈x〉 ∈ S≤1

⊆ End(X,≤). Since x, y are neighbors in
(X,≤1), either x = yα〈x〉 6= y or yα〈x〉 = y. The first case is impossible,
because not x ≤ y. Therefore y ∈ Fix(α〈x〉) = 〈x〉 and 〈y〉 ⊆ 〈x〉. The other
inclusion is clear from G2.

Lemma (G2/3). Suppose x ≤1 y. Then there is no edge of (X,≤) in

between x, y if and only if 〈x〉 = 〈y〉.

P r o o f. “⇒” is immediate from G3. In order to prove “⇐”, assume
〈x〉 = 〈y〉 and x ≤1 x′ < y′ ≤1 y. Then 〈x〉 ⊆ 〈x′〉 ⊆ 〈y′〉 ⊆ 〈y〉 by G2.



1. General properties of orbit extensions (X,≤1) of (X,≤) 9

Hence 〈x′〉 = 〈y′〉 and this contradicts A2 in (X,≤).

Definition [1]. An element z ∈ X is a minimal upper bound of a subset
V ⊆ X if V ⊆ Sub(z) and, for every y ∈ X, V ⊆ Sub(y) and y ≤ z imply
y = z.

Lemma (G4). For connected (X,≤) we have: If x ≤1 y such that x, y

are connected by a sequence of new edges in (X,≤1), then x, y are minimal

upper bounds of some set V ⊆ X in (X,≤).

P r o o f by induction in (X,≤). Basis: x is a minimal element. Since
(X,≤) is connected, x is the least element of both (X,≤) and (X,≤1). There
is no new edge starting from x by G3. So x = y and there is nothing to
prove.

Induction step: From G2/3 we know 〈x〉 = 〈y〉. Suppose x 6= y. Then
|C(x)| ≥ 2 by Lemma (4.1) in [1]. Let us pick two different x1, x2 ∈ C(x).
For i = 1, 2 we have

xi = xα〈xi〉 = yα〈x〉1α〈xi〉 = yα〈xi〉α〈x〉1 .

Define yi = yα〈xi〉. Then 〈yi〉 ⊆ 〈xi〉, because yi ∈ Im(α〈xi〉) = 〈xi〉,
and the opposite inclusion follows from xi = yiα〈x〉1 ≤1 yi by G2. So
〈xi〉 = 〈yi〉. G2/3 implies that xi, yi are connected by a sequence of new
edges in (X,≤1). Hence xi, yi are minimal upper bounds of some Vi ⊆ X in
(X,≤) by induction hypothesis. Since x is a minimal upper bound of x1, x2,
it is also a minimal upper bound of V := V1 ∪ V2 by Lemma (4.2)(b) in [1].
Similarly, y is some upper bound of V . Let y′ ≤ y be a minimal upper bound
of V in (X,≤). Then 〈y′〉 contains V and 〈x〉 = 〈y〉 by Lemma (4.2)(a) in
[1]. So A2 implies y′ = y and we are done.

R e m a r k. In case xi = yi we have Vi = {xi} in the proof of (G4).

Example (1.2). In Section 3 it will be clear that the following is a sketch
of an orbit extension. Here |V | = 3.

y

x

V
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2. Basic orbit extensions

Following the idea outlined in the introduction we shall now single out
an easier type of orbit extensions than that of Example (1.2). Using the
notation from above, we will have |V | = 2 and V ⊆ C(x):

Definition. An orbit extension (X,≤1) of (X,≤) is called basic if for
every pair x, y of new neighbors x ≤1 y in (X,≤1) we have

C(x) ⊆ Sub(y) .

Accordingly it will be convenient to distinguish between two types of
partial orders (X,≤):

Definition. (X,≤) is called singular if there are x 6= y in X such that
|C(x)| ≥2 and C(x) = C(y). Otherwise (X,≤) is called regular .

Example (1.1) is a basic orbit extension of a regular partial order.

R e m a r k. In a regular partial order (X,≤) we have

|C(x)| ≥ 2 and C(x) = C(y) imply x = y .

(X,≤) is regular if and only if the relation defined on X by

x � y ⇔

{

x ≤ y if |C(x)| ≤ 1,
C(x) ⊆ Sub(y) otherwise

is a partial order. An orbit extension (X,≤1) of (X,≤) is basic iff ≤1⊆�.

We now list some properties of basic orbit extensions (X,≤1) of (X,≤):

Lemma (B0). If u′ ≤1 u are connected by a new edge in (X,≤1), then u

is a minimal upper bound of any two distinct v1, v2 ∈ C(u′) in (X,≤).

P r o o f. Let w be the minimal upper bound of v1, v2 which belongs to
Sub(u) (cf. A1). Then u ∈ 〈u〉 = 〈u′〉 ⊆ 〈w〉 by G3, and A2 implies w = u.

Lemma (B1). If x ≤1 y and v1, v2 ∈ C(x) for v1 6= v2, then there is a

minimal upper bound u of v1, v2 in (X,≤) such that x ≤1 u ≤ y.

y

u

x

v1 v2

P r o o f. Let x0, x1, x2, . . . , xn−1, xn be a sequence of elements such that
xi is covered by xi+1 in (X,≤1) and x0 = x, xn = y. If none of the edges
(xi, xi+1) is old, i.e., xi ≤ xi+1, then put u = y and the claim follows
from B0 by induction. Otherwise consider the first edge (xk, xk+1) in that
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sequence such that xk ≤ xk+1. Put u = xk. As in the previous case, xk

is a minimal upper bound of v1, v2 by B0, and xk ≤ y is a consequence
of the very definition of basic orbit extensions, because xk ∈ C(xk+1) and
xk+1 <1 xk+2 <1 . . . <1 xn = y.

Lemma (B2). If x < x′ ≤1 y, then x ≤ y. If x ≤1 y and x, y have an

upper bound in (X,≤), then x ≤ y.

P r o o f. The first statement is a consequence of B1, the second one is
immediate from A1.

The second part of B2 is generalized in

Lemma (B3). If x ≤1 y ≤1 z and x ≤ z, then x ≤ y.

P r o o f. Applying B1 twice we find u1, u2 ∈ X such that x ≤1 u1 ≤
y ≤1 u2 ≤ z and 〈x〉 = 〈u1〉, 〈y〉 = 〈u2〉. If x = u1, then we are done.
The case x 6= u1 6= y is impossible, because B2 would imply u1 ≤ z, which
contradicts A1. The remaining case is x 6= u1 = y. Here we have 〈x〉 = 〈u2〉
and applying A2 (or its equivalent A2* from Lemma (3.2) in [1]) we learn
u2 ∈ Sub(x). Hence x ≤1 y ≤1 u2 ≤ x and consequently x = y.

z (B3) w (B4)

u

u2 y

y x w1

u1

V

x

Lemma (B4). If w is a minimal upper bound of V in (X,≤) and w1 is

the minimal upper bound of V in (X,≤1) such that w1 ≤1 w, then w1 is

also a minimal upper bound of V in (X,≤), and w1, w are connected by a

sequence of new edges in (X,≤1).

P r o o f. As a consequence of B3 we have x, y ≤ w1 for any x, y ∈ V .
The second statement follows from A2, applied to some u obtained by B1,
namely w1 ≤1 u ≤ w and 〈w1〉 = 〈u〉.

Lemma (B5). If (X,≤) is regular and |C(u)| ≥ 2, then u is a minimal

upper bound of C(u) in (X,≤1), too.

P r o o f. By A1 in (X,≤1) there exists a unique u1 ≤1 u such that u1 is
a minimal upper bound of C(u) in (X,≤1). Since C(u1) ⊆ Sub(u) by B2
and C(u) ⊆ Sub(u1) by B4 applied to V = C(u), we have C(u) = C(u1).
The regularity assumption implies u = u1.
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Example (2.2) shows that we cannot drop the regularity assumption in
B5.

Examples (2.1) (left) and (2.2) (right). Basic orbit extensions, regular
case (left; cf. Sect. 3) and singular case (right).

3. Construction of orbit extensions

In this section we want to discuss how to construct basic orbit extensions.
Let (X,≤) be a connected transitivity order. Motivated by B0 we consider

E ⊆ {(x, y) | x, y are different minimal upper bounds of some v1, v2

and C(x) ⊆ Sub(y)} = Emax(X,≤) .

Define ≤1 to be the transitive closure of (≤ ∪ E). Then (X,≤1) is an
extension of (X,≤) and E is the set of new edges. Whether or not (X,≤1) is
an orbit extension of (X,≤) is not trivial to decide in general. A necessary
condition is certainly that A2 has to be valid in (X,≤1). In Sections 8–9
we shall see how to establish A2 in a general setting. For small examples
meanwhile one may check this condition easily by hand, because determining
the principal fixed-element sets is of interest anyway. The following result
is a first step to solve the extension problem:

Basic Proposition.If (X,≤1) is an extension of (X,≤) as described

above such that A2 holds in (X,≤1), then (X,≤1) is a basic orbit extension

of (X,≤).

P r o o f. First we want to show that (X,≤1) has property G0. To this
end, note that B0 holds in (X,≤1) by definition of E and A2 in (X,≤).
Therefore the proof of B1 transfers to the present situation and B1 holds in
(X,≤1). Now let us prove G0. Suppose F ∈ FS(X,≤). We have to check
(ii) and (iii) in (X,≤1). Regarding (ii), assume x ≤1 y and y ∈ F . Applying
B1 we find v1, v2 ∈ C(x) ∩ Sub(y), and we may conclude x ∈ F by (ii), (iii)
in (X,≤). In order to verify (iii), consider x1, x2 ∈ F and assume that y
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is a minimal upper bound of x1, x2 in (X,≤1). If x1, x2 ≤ y, we can apply
(iii) in (X,≤) immediately. Otherwise, if not xi ≤ y, B1 allows us to find
some ui ≤ y such that ui is a minimal upper bound of some vi, v

′
i ∈ C(xi)

in (X,≤). Applying (ii), (iii) in (X,≤) we conclude ui ∈ F , and then we
repeat the previous argument, because u1, u2 ≤ y.

Notation. By G0, every fixed-element set F ∈ FS(X,≤) induces a map-
ping that is a member of S≤1

. Let us denote this mapping by αF,1.

We still have to prove S≤ ⊆ S≤1
. However, first we show

(∗) wαF,1 ≤ w for every F ∈ FS(X,≤) and w ∈ X .

w

y

u1 u2 u
x1 x2 wαF,1

F

Checking (iii) in (X,≤1) Verifying (∗)

P r o o f o f (∗). Suppose wαF,1 6= w. Since wαF,1 ≤1 w, we may consider
an ascending path from wαF,1 to w in (X,≤1). Let u be an upper neighbor
of wαF,1 on that path. It turns out to be impossible that the edge (wαF,1, u)
belongs to E for the following reason: In that case wαF,1 ∈ F and u ∈ F by
(ii), (iii), so that u ≤1 w, u ∈ F , wαF,1 ≤1 u, and wαF,1 would not be the
supremum of {z ∈ F | z ≤1 w}. Therefore we have wαF,1 ≤ u, and actually
wαF,1 ∈ C(u). But now B2 implies wαF,1 ≤ w. And B2 is an immediate
consequence of B1 which was verified above under the present assumptions.

Now the following lemma will complete the proof of the Basic Proposi-
tion.

Extension Lemma. Let (X,≤1) be any extension of a connected tran-

sitivity order (X,≤) such that A2 holds in (X,≤1) and G0 is valid. If

furthermore wαF,1 ≤ w for every F ∈ FS(X,≤) and w ∈ X, then (X,≤1)
is an orbit extension of (X,≤).

P r o o f. We have to prove S≤ ⊆ S≤1
. So, consider any αF ∈ S≤. F

qualifies as a fixed-element set in (X,≤1) because of G0. Since ≤1 extends
≤, we have

wαF ∈ {z ∈ F | z ≤ w} ⊆ {z ∈ F | z ≤1 w} for every w ∈ X .

Hence wαF ≤1 sup{z ∈ F | z ≤1 w} = wαF,1. On the other hand, the
assumption wαF,1 ≤ w implies wαF,1 ≤ sup{z ∈ F | z ≤ w} = wαF .
Therefore αF = αF,1 ∈ S≤1

.
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As an application of the Basic Proposition we see that the extensions
shown in Examples (1.1), (2.1), (2.2) are orbit extensions. In Example (1.2)
we need to apply the Basic Proposition twice. (X,�) is an orbit extension
iff it satisfies A2.

4. Elementary orbit extensions

Definition. An orbit extension (X,≤1) of (X,≤) is called elementary

if there is an F0 ∈ FS(X,≤) such that the set of new edges

E1 = {(x, y) | x is covered by y in (X,≤1), but not x ≤ y}

is contained in the restriction of ≤1 to

L(F0) = F0 \
⋃

{F ∈ FS(X,≤) | F ⊆ F0 , F 6= F0} .

This definiton is motivated by a consequence of G3 that is shared by
arbitrary orbit extensions (X,≤1) of (X,≤):

(x, y) ∈ E1 and x ∈ F ∈ FS(X,≤) imply y ∈ F .

Examples (1.1) and (2.2) are elementary orbit extensions, but the extension
of Example (2.1) is not elementary. Also note that the distinguished fixed-
element set F0 of an elementary orbit extension is necessarily a principal
fixed-element set. Otherwise L(F0) would be empty, because every fixed-
element set F equals the union of principal fixed-element sets contained
in F :

F =
⋃

{〈u〉 | u ∈ F} =
⋃

{〈u〉 | u ∈ Max(F )} .

Assumption. For the remainder of this section we assume that (X,≤1)
is an elementary orbit extension of (X,≤) with respect to F0 ∈ FS(X,≤).

Then F0 = 〈z0〉 for some z0 ∈ X, L(F0) = Gen(〈z0〉), and |Gen(〈z0〉)|
≥ 2.

Lemma (E1). For x ∈ F0 \ Gen(F0) we have 〈x〉1 = 〈x〉.

P r o o f. By G1, it is sufficient to show 〈x〉 ⊆ 〈x〉1. To this end we
are going to prove Subk(x) ⊆ 〈x〉1 by induction on k. The basis k = 1 is
trivial. Suppose v1, v2 ∈ Subk(x) and u is a minimal upper bound of v1, v2

in (X,≤). Since u ∈ 〈x〉 ⊂ F0, there is no new edge below u. Hence u is
a minimal upper bound of v1, v2 in (X,≤1), too. By induction hypothesis
v1, v2 ∈ 〈x〉1 and (iii) implies u ∈ 〈x〉1. Thus Subk+1(x) ⊆ 〈x〉1 and the
proof is complete.

Lemma (E2). x ≤1 y ≤ u ≤1 w implies x ≤ y or u ≤ w.

P r o o f. If neither x ≤ y nor u ≤ w, then 〈x〉 = F0 = 〈w〉 and we can
apply G2/3.
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x
u

u

v2 u′

v1

v F

Subk(x)

Verifying E1 Proving EB

Lemma (E3). u′ ≤1 u ≤ w and v′ ≤1 v ≤ w imply u = v.

P r o o f. We may assume that w is a minimal upper bound of u, v in
(X,≤). Then 〈u〉 = 〈v〉 = F0 = 〈w〉, which contradicts A2 unless u = w = v.

Proposition EB. Every elementary orbit extension is basic.

P r o o f. Consider any new edge (u′, u) in the elementary orbit extension
(X,≤1) of (X,≤), and some lower neighbor v ∈ C(u′) in (X,≤). Then we
have

v = uα〈u′〉1α〈v〉 = uα〈v〉α〈u′〉1 = uα〈v〉 ,

because uα〈v〉 ∈ 〈v〉 = 〈v〉1 ⊆ 〈u′〉1 by E1 and A2 in (X,≤). But v = uα〈v〉

means v ≤ u. Thus C(u′) ⊆ Sub(u).

Examples (4.1) (left) and (4.2) (right). On the left: An elementary orbit
extension. On the right: A basic orbit extension which is not elementary.

Example (4.3). Obviously, no proper basic orbit extension for (X,≤)
below exists. Because of G3 the only way to add a new edge would be in
between the maximal elements. However, this would be an elementary orbit
extension which cannot exist by EB either. This argument is generalized in
the next section. Also observe that |S≤| = 7.
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Lemma (E4). If w is a minimal upper bound of a set V in (X,≤) and

w does not belong to the distinguished fixed-element set F0, then w is also a

minimal upper bound of V in (X,≤1).

P r o o f. By A1, let w1 be the minimal upper bound of V in (X,≤1)
such that w1 ≤1 w. From Proposition EB and B4 we learn that w1, w

are connected by a sequence of new edges in (X,≤1). If this sequence is
empty, then we have w1 = w as we want. Otherwise there were a new edge
originating at w and hence w ∈ F0, because all the new edges are contained
in F0.

5. Minimal orbit extensions are elementary

Proposition ME. Let S≤ be some full semilattice of transformations on

X and let (X,≤2) be a proper orbit extension of (X,≤). Also assume that

(X,≤) is connected. Then there exists a proper elementary orbit extension

(X,≤1) of (X,≤) such that (X,≤2) is an orbit extension of (X,≤1).

P r o o f. By G1 and A2 in (X,≤2) we can find some t ∈ X such that
〈t〉2 ⊂ 〈t〉 is a strict inclusion, and we may pick a minimal t with that
property, i.e.,

〈x〉 ⊂ 〈t〉 implies 〈x〉2 = 〈x〉 .

Define

S = S≤ ∪ {αF ∈ S≤2
| F ⊆ 〈t〉 and F ∈ FS(X,≤2)} .

Clearly S is a subsemilattice of S≤2
. Put (X,≤1) = TR(S). Obviously,

≤ ⊆ ≤1 ⊆ ≤2 and A2 holds in (X,≤), (X,≤1), (X,≤2). By construction
(X,≤1) is a proper orbit extension of (X,≤), which is elementary for the
following reason: Consider any new edge (u′, u) in (X,≤1). Then there is an
αF ∈ S≤2

\ S≤ such that F ⊆ 〈t〉 and uαF = u′. Moreover, 〈u′〉2 ⊆ F ⊂ 〈t〉
and u′ = uαF = uα〈u′〉2 . If 〈u′〉 ⊂ 〈t〉, then we would have 〈u′〉2 = 〈u′〉,
which contradicts u′ = uα〈u′〉2 6∈ Sub(u). So 〈u′〉 = 〈t〉, i.e., u′ ∈ Gen(〈t〉)
and the extension (X,≤1) of (X,≤) is elementary with respect to F0 = 〈t〉.

The main part of the proof is to show S≤1
⊆ S≤2

. To this end consider
any αF ∈ S≤1

where F ∈ FS(X,≤1).

C a s e 〈t〉 ⊆ F . Since all the new edges of (X,≤1) are inside 〈t〉, F

satisfies (iii) in (X,≤) by E4. Obviously it satisfies (ii) in (X,≤). Hence
F ∈ FS(X,≤). Therefore αF ∈ S≤ ⊆ S≤2

, because (X,≤2) is an orbit
extension of (X,≤).

C a s e F ⊆ 〈t〉. By G0 applied to 〈t〉, we have 〈F 〉2 ⊆ 〈t〉. But inside 〈t〉
both (X,≤1) and (X,≤2) coincide. So 〈F 〉2 = 〈F 〉1 = F . Moreover, for the
same reason, when restricting the mappings to 〈t〉, αF,2|〈t〉 = αF,1|〈t〉 where
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αF,i denotes the mapping induced by F as a member of S≤i
. We have to

show that αF,1 = αF,2. Since αF,2 ≤ α〈t〉 in S≤2
and αF,1 ≤ α〈t〉 in S≤1

, we
have

αF,1 = α〈t〉 · αF,1 (composition of mappings)

= α〈t〉 · αF,1|〈t〉 (because Im(α〈t〉) ⊆ 〈t〉)

= α〈t〉 · αF,2|〈t〉

= α〈t〉 · αF,2 = αF,2 ∈ S≤2
.

C a s e F , 〈t〉 are incomparable. Note that F ⊂ 〈F ∪ {t}〉 and 〈F ∪ {t}〉
is a member of each of FS(X,≤), FS(X,≤1), FS(X,≤2). First we prove
that F satisfies (ii) in (X,≤2): Suppose that z′ is a lower neighbor of some
z ∈ F in (X,≤2). We have to show z′ ∈ F . If z′ ≤ z this is obvious.
Otherwise we have either z ∈ F ∩ 〈t〉 and may conclude z′ ∈ F ∩ 〈t〉 by the
previous case, or z 6∈ 〈t〉. In the latter case we know that z, z′ are minimal
upper bounds of some set V ⊆ X in (X,≤) by G4. Also z′ 6∈ 〈t〉, because
z 6∈ 〈t〉 implies V 6⊆ 〈t〉 by [1], Lemma (4.2). Hence z′ ∈ F by E4 and (iii)
in (X,≤1).

Next we prove that F satisfies (iii) in (X,≤2): Let u be a minimal upper
bound of v1, v2 ∈ F in (X,≤2). By G1 we have α〈vi〉2 ≤ α〈vi〉 in S≤2

and
hence

vi = uα〈vi〉2 = uα〈vi〉α〈vi〉2 .

If we can find v∗1 , v∗2 ∈ F such that vi ≤1 v∗i and u is a minimal upper bound
of v∗1 , v∗2 in (X,≤1), then we are done, because in that case this upper
bound u is minimal (otherwise it would not be a minimal upper bound
of v1, v2 in (X,≤2) either) and (iii) in (X,≤1) applies. Now, how to find
v∗1 , v∗2 ? Observe 〈uα〈vi〉〉 ⊆ Im(α〈vi〉) = 〈vi〉 and, by G2, 〈vi〉 ⊆ 〈uα〈vi〉〉. So
〈vi〉 = 〈uα〈vi〉〉 and by G2/3 there is no edge of (X,≤) between vi and uα〈vi〉.
If uα〈vi〉 ∈ 〈t〉, then all edges between vi and uα〈vi〉 belong to (X,≤1) and
we can put v∗i := vi. Otherwise we apply G4 and E4 to conclude uα〈vi〉 ∈ F

by (iii) for finite sets V in (X,≤1), and we put v∗i := uα〈vi〉.

Now we know F ∈ FS(X,≤2) and we shall complete the proof of Propo-
sition ME by showing αF,1 = αF,2. By the Extension Lemma it is sufficient
to show wαF,2 ≤1 w for w ∈ X. If wαF,2 ∈ 〈t〉, then wα〈wαF,2〉 ∈ 〈t〉 and
all the edges of (X,≤2) between wα〈wαF,2〉 and wα〈wαF,2〉α〈wαF,2〉2 = wαF,2

belong to (X,≤1). Otherwise we conclude wα〈wαF,2〉 ∈ F by G2, G2/3,
G4, E4, (iii) in (X,≤1) as above. But in that case wαF,2 = wα〈wαF,2〉 ≤
w.

Corollary of Propositions ME, EB. Let (X,≤) be a connected tran-

sitivity order such that (X,�) coincides with (X,≤). Then S≤ is a maximal

subsemilattice of T (X).
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Example (5.1). An orbit maximal transitivity order. Also compare
with Example (7.1).

Informally, the condition (X,≤) = (X,�) says that for each pair u′, u

of different minimal upper bounds of two elements, u′ has a “private” lower
neighbor z ∈ C(u′) \ Sub(u). In particular, every semilattice (X,≤) is orbit
maximal.

6. Simple orbit extensions

Definition. An orbit extension (X,≤1) of (X,≤) is simple if (X,≤1) =
TR(〈S≤ ∪ {γ}〉) for some γ ∈ S≤1

, where 〈S〉 denotes the subsemigroup
generated by S in S≤1

.

Here are some properties of simple orbit extensions (X,≤1) = TR(〈S≤∪
{γ}〉) of (X,≤):

Lemma (S1). Every new edge of (X,≤1) is induced by γ: If x ≤1 y and

x, y are neighbors in (X,≤1) but not x ≤ y, then yγ = x.

P r o o f. Since 〈S≤ ∪ {γ}〉 = S≤ ∪ {γβ | β ∈ S≤} and not x ≤ y,
the relationship x ≤1 y means yγβ = x for some β ∈ S≤. y ∈ Fix(γ) is
impossible, because x = yγβ = yβ would imply x ≤ y. Thus x = yγβ ≤
yγ ≤1 y. Now yγ = yγβ = x, because x, y are neighbors in (X,≤1).

Lemma (S2). x <1 y <1 z implies x < y or y < z.

P r o o f. If not y ≤ z, then y ∈ Fix(γ) by S1 and (ii). Applying S1 and
(ii) again to x <1 y yields x < y.

Lemma (S3). If x, x′ ≤1 y but neither x ≤ y nor x′ ≤ y, and both x, x′

are neighbors of y in (X,≤1), then x = x′.

P r o o f. This is immediate from S1.

Proposition MS. Let (X,≤2) be a proper elementary orbit extension of

a regular , connected transitivity order (X,≤). Then there is a proper simple

orbit extension (X,≤1) of (X,≤) such that (X,≤2) is an orbit extension of

(X,≤1).
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P r o o f. Pick some γ ∈ S≤2
\ S≤ which is minimal in this set with

respect to the order in S≤2
. Then S := S≤ ∪ {γ} is a subsemilattice of S≤2

.
Define (X,≤1) := TR(S). (X,≤1) is a simple orbit extension of (X,≤) by
Theorem 1, and ≤2 extends ≤1. All we have to prove is S≤1

⊆ S≤2
. First

we show FS(X,≤1) ⊆ FS(X,≤2):

(ii) Suppose z ∈ F ∈ FS(X,≤1) and u ≤2 z. We may assume that u is a
lower neighbor of z in (X,≤2). If u ≤1 z we are done. Otherwise we know
C(u) ⊆ Sub(z) from EB, and in particular C(u) ⊆ F by (ii) in (X,≤1).
Applying B5 and (iii) for finite sets in (X,≤1) yields u ∈ F .

(iii) Suppose u is a minimal upper bound of v1, v2 in (X,≤2) and v1, v2 ∈
F ∈ FS(X,≤1). For i = 1, 2 define

Vi :=

{

{vi} if vi < v′i ≤2 u for some v′i ∈ X,
C(vi) otherwise.

In the first case we have vi ≤ u by B2. So V := V1∪V2 ⊆ Sub(u) either way.
Since vi is a minimal upper bound of Vi in (X,≤2) by B5, u is a minimal
upper bound of V in (X,≤2) by [1], Lemma (4.2). Hence the upper bound
u is minimal in (X,≤1), too, and (iii) applied to V in (X,≤1) yields u ∈ F .

u w

u
v1 v′

2
u′

wαF,2

v2

C(v1) C(wαF,2)

Checking (iii) in (X,≤2) Applying the Extension Lemma

To complete the proof of Proposition MS we need αF,1 = αF,2 for every
F ∈ FS(X,≤1). By the Extension Lemma it is sufficient to show wαF,2 ≤1

w. To this end, pick some maximal possible u ∈ X such that wαF,2 ≤2

u ≤2 w and all the edges between wαF,2 and u belong to (X,≤2) but not
to (X,≤). Suppose wαF,2 6= u, because otherwise wαF,2 ≤ u by B2 and we
are done. Now u ≤ w by E2.

Suppose some edge between wαF,2 and u belongs to (X,≤1). Since this
edge is induced by γ because of S1, we have 〈wαF,2〉2 ⊆ Fix(γ). Hence
α〈wαF,2〉2 ≤ γ in S≤2

, i.e., α〈wαF,2〉2 ∈ S ⊆ S≤1
. Therefore wαF,2 ≤1 u ≤ w.

The remaining case where no edge between wαF,2 and u belongs to
(X,≤1) turns out to be impossible: We know C(wαF,2) ⊆ Sub(u). Let u′

be the minimal upper bound of C(wαF,2) in (X,≤1) which is≤1 u. If u′ = u,
then u ∈ F and wαF,2 = u ≤ w, because wαF,2 = sup{z ∈ F | z ≤2 w}.
Otherwise u′ <1 u and we obtain a contradiction as follows: B4 and S1, S2
imply uγ = u′ and
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— wαF,2 ≤2 u′ is not possible by assumption of this case,
— u′ <2 wαF,2 is not possible by B5,
— wαF,2, u incomparable in (X,≤2) would imply that F contains some

minimal upper bound u∗ ≤2 u of those elements. However, wαF,2 <2 u∗ ≤2

w contradicts wαF,2 = sup{z ∈ F | z ≤2 w}.

Example (6.1). Trying all possible candidates for γ ∈ S≤2
\S≤, not only

minimal elements, shows that the regularity assumption in MS is essential.

F F

(X,≤2) A possible (X,≤1) Another possible (X,≤1)
and αF ∈ S≤1

\ S≤2
and αF ∈ S≤1

\ S≤2

The extension of Example (6.3) below may be seen to be an orbit exten-
sion in two steps: First add the lower new edge to obtain a basic extension
(Basic Proposition), and thereafter introduce the upper new edge to obtain
another basic extension. Example (1.2) is a simple orbit extension obtained
in a similar way.

The basic orbit extension of Example (4.2) is also simple.

Examples (6.2) (left) and (6.3) right. In the example on the left, MS
can be applied. On the right, we have a simple orbit extension which is not
basic.

Fix(γ)

7. Upper-bound connections

We want to use labeled complete binary trees as an auxiliary structure
to make the generating process of 〈x〉 visible by starting from {x} and
applying (ii), (iii). As usual, a labeled complete binary tree is a cycle-free
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directed graph with a distinguished node, called root , such that every node
except the root has exactly one predecessor (called parent) and every node
has either two successor nodes (called children) or no successors (in which
case it is called a leaf ). Finally, each node is assigned a label. Different
nodes may have identical labels.

Definition. Let (X,≤) be a partial order, T ⊆ X, and y ∈ X. A
labeled complete binary tree B with labels (u, v) ∈ X×X is an upper-bound

connection (UBC) from T to y if the following conditions hold:

— The leaves of B are labeled (x, v) where x ∈ T and v ∈ Sub(x).

— The root of B is labeled (u, y) for some u ∈ X and y ∈ Sub(u).

— The children of a parent with label (u, v) are labeled by some (u1, v1),
(u2, v2) such that v1 ∈ Sub(u1), v2 ∈ Sub(u2), and u ∈ MUB(v1, v2).

(u, v) u

v

u1 u2

(u1, v1) (u2, v2)
v1 v2

Part of a UBC and its interpretation in (X,≤)

R ema r k. Let (X,≤) be a connected partial order, F ⊆ X, and F 6= ∅.
Then F ∈ FS(X,≤) if and only if F has the following property: If there is
a UBC from F to some y ∈ X, then y ∈ F . (Informally we may say: F is
closed under UBCs.)

Indeed, Subk(x) consists of those elements that can be reached by UBCs
of height k from {x}. [The height of a binary tree is a standard notion.] An
upper-bound connection from {x} to y serves as a certificate for y ∈ 〈x〉 by
giving precise information about the way how y gets into 〈x〉 by alternating
application of properties (ii) and (iii).

Example (7.1). Let us give an argument why this transitivity order is
orbit maximal. Using ME and EB we look at (X,�) and find that (x, y) is

yy
u x

y

z1 v1 v2 v3 z2 u u

v1 v2

x x x x
v2 v3 v2 v3
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the only candidate for a new edge. However, the extended order obtained by
adding (x, y) to (X,≤) [which in this case happens to coincide with (X,�)]
does not satisfy Axiom A2, because the particular UBC shown in the sketch
is also a valid UBC with respect to the extended order. The behavior of
UBCs under extensions of (X,≤) is a key point for the existence of proper
orbit extensions. The UBC shown here is a supported UBC as defined below:

Definition. A UBC B in (X,≤) is supported if every minimal upper
bound u of v1, v2 that occurs in B is still a minimal upper bound of v1, v2
in (X,�).

A supported UBC in (X,≤) from {x} to y is also a UBC in any basic
orbit extension of (X,≤). Therefore the next result is a consequence of ME
and EB.

Proposition (on supported UBCs). A connected transitivity order

(X,≤) is orbit maximal if the following condition holds: If 〈x〉 = 〈y〉 and

x � y, then there is a supported UBC from {x} to y.

The drawback is that checking out all UBCs for many x, y is not a very
nice thing to do. We conclude this section with a lemma that facilitates
working with UBCs.

Replacement Lemma. Let B be a UBC from T to y and B′ be a

subtree of B which is a UBC from T ′ to some v ∈ X. Furthermore, let C
be any UBC from T ′ to v. Then there is a UBC BC from T to y where

every occurrence of B′ is replaced by C.

S k e t c h o f p r o o f. Suppose T ′ = {u1, . . . , uk}. Then there are UBCs
Ui from T to ui for 1 ≤ i ≤ k, and any occurrence of B′ in B may be
replaced by a copy of C as shown in the sketch below.

B y BC y

v v
B′

C
∈T ∈T ∈T ∈T ∈T ∈T ∈T ∈T ∈T ∈T ∈T ∈T ∈T ∈T

U1 Uk

∈T ∈T

U1 Uk
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8. On sheltered connections

Let (X,≤) be a connected transitivity order. Searching for minimal orbit
extensions of (X,≤), all the candidates for new edges come from the set

Emax(X,≤) = {(u′, u) | u′, u ∈ MUB(v1, v2) for some v1, v2 and u′ ≺ u} .

The idea is to extend (X,≤) by adding a few edges from Emax(X,≤)
in such a way that sufficiently many UBCs of (X,≤) get interrupted and
Axiom A2 will be guaranteed in the extended order. It turns out that a
key property of successful minimal orbit extensions is the following: Every
principal order ideal of the extended order contains at most one new edge
between its points. The reasons for that will be clear by the end of the next
section, but we do have a slight terminology problem right away: How to
talk about order ideals of an order which we do not yet have, and which we
are just screening candidates for that all may have to be rejected? Since a
formal change of names from “principal order ideal” to “shelter” of some
element does not help much, we define independence of edges by recurring
only to notions available in the original order (X,≤):

Definition. In any partial order (X,≤) define

Com(u) = {x ∈ X | u, x have a common upper bound} .

Two new edges (u′, u), (t′, t) of an extension (X,≤1) of (X,≤) are called
independent if t 6∈ Com(u) ∪ Sub(u′) and u 6∈ Com(t) ∪ Sub(t′).

Shelter Lemma.The new edges of a simple basic orbit extension are

pairwise independent.

P r o o f. Let (X,≤1) be a simple basic orbit extension of (X,≤) and
(u′, u), (t′, t) new edges in (X,≤1). From S2 we know t 6∈ Sub(u′). Suppose
t ∈ Com(u) \ Sub(u′). Then u, t have a minimal upper bound s in (X,≤).
Let w be the minimal upper bound of u′, t′ in (X,≤1) such that w ≤1 s.
Since both edges (u′, u) and (t′, t) are induced by the generating element
γ ∈ S≤1

\S≤, as we know from S1, we have u′, t′, w ∈ Fix(γ). Hence w <1 s,
because w = s would imply u, t ∈ Fix(γ) by (ii). Also, every point between
w and u′ as well as t′ belongs to Fix(γ). So S1 implies u′ ≤ w and t′ ≤ w.

s
s

u w tu t

u′ w t′

v1 v2

If u′ < w or t′ < w, then B2 would force u′ < s or t′ < s, which contradicts
A1. Thus u′ = w = t′. Now consider any two lower neighbors v1, v2 ∈ C(w).



24 Subsemilattices of the full transformation semigroup

By B0 both u and t are minimal upper bounds of v1, v2. Thus u = t by A1,
and the proof is complete.

Examples (8.1) (left) and (8.2) (right). On the left, we have an ele-
mentary orbit extension which is not simple but satisfies the claim of the
Shelter Lemma. On the right: introducing only one of the two new edges
makes a proper subextension.

R ema r k (Converse of the Shelter Lemma). Any orbit extension

(X,≤new) of (X,≤) such that the new edges are pairwise independent is

basic.

P r o o f. By ME and EB there is a sequence of basic orbit extensions
(X,≤1), . . . , (X,≤k) = (X,≤new) such that ≤ ⊆ ≤1 ⊆ . . . ⊆ ≤k. Hence for
every new edge (x, y) in (X,≤new), not in (X,≤), there is some i < k such
that

C(x) ⊆ Subi(Ci(x)) ⊆ Subi(y)

where Ci(x), Subi(y) are taken in (X,≤i). However, that requires new edges
which are not independent of (x, y) unless C(x) ⊆ Sub(y) already.

The relationships between various classes of orbit extensions of regular
connected transitivity orders (X,≤) is summarized in the following sketch.

simple
Ex. (6.3)

Ex. (4.2)

Ex. (8.1)

Ex. (8.2)

basic elementary

minimal
Ex. (2.1) Ex. (4.1) Ex. (1.1)

Ex. (6.2)

Domain where the Shelter Lemma holds
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New edges that are not independent (i.e., one in the shelter of another):

— cannot exist in simple, basic orbit extensions,

— always are present in simple orbit extensions which are not basic,

— may or may not occur in basic orbit extensions which are not simple.

UBC Lemma. Let (X,≤) be a connected transitivity order , E ⊆
Emax(X,≤) such that the edges in E are pairwise independent. Consider

the transitive closure ≤1 of (≤ ∪E). If B is a UBC from T to z in (X,≤1),
then there is also a binary tree B′ that is a UBC from T to z in both (X,≤)
and (X,≤1).

P r o o f. There are two kinds of atomic steps in B to consider:

(a) Going down: (u, v) is a label in B. This means v ≤1 u. If v ≤ u,
then this step is good in both (X,≤) and (X,≤1). Otherwise, because of the
type of new edges, we can find v1, v2 such that v1, v2 ≤ u and v is a minimal
upper bound of v1, v2 in (X,≤). This upper bound v of v1, v2 is minimal in
(X,≤1), too, by independence of the new edges. Therefore we may replace
the nodes labeled (u, v) in B by the following tree (Replacement Lemma),
with copies of the original subtree below (u, v) attached to both (u, v1) and
(u, v2):

(v, v)

v

(u, v1) (u, v2)

v1 v2

(b)Going up: A node labeled (s, s∗) of B has children with labels (u∗, u′),
(t∗, t). This means s is a minimal upper bound of u′, t in (X,≤1). If u

′, t ≤ s,
then this upper bound is minimal in (X,≤), too, and no change is needed.

s (s, s∗)

u′ u
w

(w,w)
(u∗, v1)

t

v1 v2
(u∗, v2) (t∗, t)

Without loss of generality assume u′ ≤1 s but not u′ ≤ s. Since the new
edges in E are pairwise independent, we have t ≤ s. Moreover, there is a
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minimal upper bound u in (X,≤) of two lower neighbors v1, v2 of u′ such
that u ≤ s and u′ ≤1 u. Now, s is a minimal upper bound of u, t in
both (X,≤) and (X,≤1). Let w be the minimal upper bound of v2, t in
(X,≤) such that w ≤ s. By independence of the new edges, w is a minimal
upper bound of v2, t in (X,≤1), too. Furthermore, s is an upper bound of
v1, w and this upper bound is minimal in (X,≤) by A2 and in (X,≤1) by
independence of the new edges. In order to obtain a UBC from T to z that
is valid in both (X,≤) and (X,≤1), we replace the node labeled (s, s∗) with
children labeled (u∗, u′), (t∗, t) in B by the tree shown above, with copies
of the original subtree below (u∗, u′) attached to both (u∗, v1) and (u∗, v2).
The required subtree below (t∗, t) is obvious.

The UBC Lemma will help us to guarantee Axiom A2 in certain exten-
sions.

9. Main result

Let (X,≤) be a connected transitivity order and define Emax(X,≤) as
above.

Definition. A set E ⊆ Emax(X,≤) of new edges is said to be complete

with respect to some (x, y) ∈ E if none of the UBCs from {x} to y in (X,≤)
is a UBC in (X,≤1) where ≤1 is the transitive closure of (≤ ∪E).

Proposition M. Let (X,≤) be a connected transitivity order , (x, y) ∈
E ⊆ Emax(X,≤), and ≤1 the transitive closure of (≤ ∪E). If E is a minimal

complete set of pairwise independent new edges with respect to (x, y), then
(X,≤1) is an orbit extension of (X,≤).

P r o o f. We have to verify A2 in (X,≤1). Then the claim follows from the
Basic Proposition (Sect. 3). First observe that property G0 is an immediate
consequence of the UBC Lemma by a Remark in Sect. 7. Therefore 〈z〉1 ⊆
〈z〉 for any 〈z〉1 ∈ FS(X,≤1) and z is a maximal element of 〈z〉1 with
respect to ≤ by A2 in (X,≤). But suppose there were a w ∈ 〈z〉1 such that
z <1 w. Because of the type of edges in Emax(X,≤) there would be a new
edge (z, u) ∈ E and u ≤ w, and in particular u ∈ 〈z〉1 by (ii). This means
we would have UBCs from {z} to u in (X,≤1), and by the UBC Lemma
we could find such a UBC B′ with respect to both (X,≤) and (X,≤1).
However, as we shall see shortly, this would enable us to construct a UBC
from {x} to y in (X,≤1), which cannot exist by the completeness of E with
respect to (x, y) and the UBC Lemma. That contradiction will complete
the proof.
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By the minimality of the complete set E of new edges with respect to
(x, y), there is a UBC B from {x} to y in (X,≤) that still is a UBC with
respect to the transitive closure of (≤ ∪ (E \ {(z, u)})). Otherwise there
would be no need for the edge (z, u) in E. Because of the completeness of
E, this B is not a UBC in (X,≤1). The only way this may happen is that a
w ≥ u occurs as a minimal upper bound of some r1, r2 in B, and this bound
w is not minimal any more in (X,≤1) because of the new edge (z, u). Let
z∗ be a minimal upper bound of r1, r2 in (X,≤1) such that z∗ ≤1 w. By the
independence condition there is a total of one new edge in E on the joint
paths from w to z∗, from z∗ to r1, and from z∗ to r2, and this new edge is
(z, u). By A1 in (X,≤) and E ⊆ Emax(X,≤), we conclude z = z∗, u ≤ w,

(w,w∗)

w

(w,w∗) (u, u)

u (r∗
1
, r1) B∗

(z,z) (z,z)
(r∗

1
, r1) (r∗

2
, r2) z

r1 r2

(r∗
1
,r1) (r

∗
2
,r2) (r

∗
1
,r1) (r

∗
2
,r2)

r1 ≤ z, r2 ≤ z. Now we apply the Replacement Lemma and substitute
each occurrence of a node labeled (w,w∗), together with its children labeled
(r∗

1
, r1), (r

∗
2
, r2), by the tree sketched above, with properly attached subtrees

at (r∗
1
, r1), (r

∗
2
, r2). The resulting tree with all the substitutions being made

would be a UBC from {x} to y in both (X,≤) and (X,≤1).

Corollary. Singular connected transitivity orders (X,≤) are not orbit

maximal.

Indeed, just put E = {(x, y)} for any two distinct x, y such that C(x) =
C(y) and |C(x)| ≥ 2. Then C(x) = C(y) and x ≤1 y imply that y can
never be obtained as a minimal upper bound of elements from 〈x〉 \ {y} in
(X,≤1), while other minimal upper bounds inside 〈x〉 agree in both orders
(X,≤) and (X,≤1). Actually 〈x〉1 = 〈x〉 \ {y}.

Now we are ready to announce our second main result about semilattice
actions (for Theorem 1 cf. introduction):

Theorem 2. Let S be a subsemilattice of the full transformation semi-

group T (X) and (X,≤) its transitivity order TR(S). S is a maximal sub-

semilattice of T (X) if and only if the following conditions (a)–(c) hold true:

(a) (X,≤) is connected.

(b) S = S≤.
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(c) For any (x, y) ∈ Emax(X,≤), there is no complete set E ⊆
Emax(X,≤) of pairwise independent new edges with respect to (x, y).

P r o o f. If S is a maximal subsemilattice, then (c) holds by Proposi-
tion M and (a), (b) are already discussed in the introduction. If on the
other hand S = S≤ and (X,≤) is connected but S is not maximal, then
there is a minimal proper orbit extension (X,≤1) of (X,≤). By the Corol-
lary above we may assume that (X,≤) is regular. Because of ME, EB the
set of new edges of (X,≤1) is contained in Emax(X,≤). So let E be the set
of new edges of (X,≤1). Then E is complete with respect to any (x, y) ∈ E

by A2 in (X,≤1) and the new edges are pairwise independent by MS and
the Shelter Lemma.

The special case where Emax(X,≤) = ∅ was already mentioned in Sect. 5.
In general, testing of condition (c) amounts to partially verifying Axiom A2
in an extension of (X,≤). This, of course, may still be cumbersome for large
X. It remains an open problem to find a more elegant characterization of
the maximal subsemilattices of T (X). So, let us summarize what we know
from the abstract point of view without involving technical constructions
like UBCs:

Theorem 2*. Let (X,≤) be a connected transitivity order.

— If (X,≤) is singular , then S≤ is extendible in at least two different

ways to a maximal subsemilattice of T (X).

— If (X,≤) is regular , then S≤ is extendible if and only if A2 holds in

some proper extension (X,≤1) such that (X,≤) ⊆ (X,≤1) ⊆ (X,�). Here,
we may assume that the new edges of (X,≤1) are pairwise independent and

that they connect different generators of the same principal fixed-element set

〈x0〉 for some x0 ∈ X.

Examples (9.1) (left) and (9.2) (right). On the left, an orbit maximal
transitivity order similar to Examples (5.1) and (7.1). On the right: a
minimal orbit extension may need two or more new edges.

y y

x

x z

Example (9.3). Trying to interrupt each UBC from {x} to y at the first
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occasion encountered on the way from {x} to y does not work in gen-
eral.

y

x

Example (9.4). Generalizing Example (9.1) it is easy to construct a
sequence of finite sets Xn and maximal subsemilattices Sn of T (Xn) such
that

lim
n→∞

(|Sn|/|Xn|) = 0 .

Let the elements of Xn be the subsets T of {1, . . . , n} that are of cardinality
|T | 6= 2 and define

T ≤ T ′ ⇔ T ⊆ T ′ and |T | ≤ 1 .

All the elements T of cardinality |T | > 2 are pairwise incomparable and
〈T 〉 = Xn. Therefore |S≤| = n + 2. S≤ is maximal, because for any choice
of T ′, T of cardinality ≥ 3 there are UBCs from {T ′} to every T ′′ ⊆ T where
|T ′′| = 3, and those UBCs cannot be interrupted. Finally apply B5.

Example (9.5). Another orbit maximal transitivity order, together with
its fixed-element sets and associated partial order (X,�).

x

The associated order (X,�)
restricted to Gen(〈x〉)

where 〈x〉 = X.
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10. The case when (X,�) is a semilattice

If (X,�) = (X,≤), then S≤ is immediately seen to be maximal. We
saw examples like (6.3) where (X,�) is an orbit extension but is not orbit
maximal. It is easy to construct examples showing that in general (X,�) is
not comparable as a partial order with the transitivity order of a maximal
subsemilattice containing S≤. At any rate, (X,�) appears to be interest-
ing. (X,�) is useful to narrow the question down to a strictly local problem
in (X,≤). However, if some generators of a principal fixed-element set in
FS(X,≤) are incomparable elements with respect to (X,�), then (X,�)
does not seem to provide much information on the extendibility of S≤. The
case when (X,�) happens to be a semilattice may be characterized as fol-
lows.

Proposition (10.1). The associated partial order (X,�) of a regular

connected transitivity order (X,≤) is a semilattice if and only if the following

condition holds:

(∗) If x, y are incomparable in (X,�) and |Max(Sub(x) ∩ Sub(y))| ≥ 2,
then Sub(x) ∩ Sub(y) = Sub(z) \ {z} for some z ∈ X.

P r o o f. First suppose (∗) holds. Let x, y be incomparable elements in
(X,�). Since (X,≤) has a least element, we have Sub(x) ∩ Sub(y) 6= ∅.

C a s e Max(Sub(x) ∩ Sub(y)) = {t}. We claim that t = inf(x, y) in
(X,�). For every z � x, y we have C(z) ⊆ Sub(x),Sub(y) and thus C(z) ⊆
Sub(t). If |C(z)| ≥ 2, this means z � t. But otherwise z ≤ x, y and we have
z ≤ t as well as z � t, too.

C a s e |Max(Sub(x) ∩ Sub(y))| ≥ 2. Applying (∗) we find t ∈ X such
that Max(Sub(x)∩Sub(y)) = C(t). So t � x, y and we claim t = inf(x, y) in
(X,�). Consider any z � x, y. If |C(z)| ≥ 2, then C(z) ⊆ Sub(x)∩Sub(y) =
Sub(t) \ {t} ⊆ Sub(t), i.e., z � t. Otherwise we have z ≤ x, y and z ≤ t,
z � t anyway.

Now let us verify that condition (∗) is necessary. For x, y ∈ X put
t = inf(x, y) in (X,�).

C a s e |C(x)| ≤ 1. Then t ≤ x, y. This means t ∈ Sub(x) ∩ Sub(y).
We claim Max(Sub(x) ∩ Sub(y)) = {t}. Consider z ∈ Sub(x) ∩ Sub(y).
If |C(z)| ≤ 1, then z ≤ inf(x, y) = t anyway. Otherwise z is a minimal
upper bound of two elements v1, v2 ∈ C(z) ⊆ Sub(x) ∩ Sub(y). Now, if not
z ≤ t, then we would have some minimal upper bound z′ of v1, v2 which is
� inf(x, y) = t and this contradicts A2.

C a s e |C(t)| ≥ 2. Then C(t) ⊆ Sub(x) ∩ Sub(y) and consequently
Sub(t) \ {t} ⊆ Sub(x) ∩ Sub(y). We claim that in fact equality holds, or
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Max(Sub(x)∩Sub(y)) = {t}. Suppose we have some v ∈ (Sub(x)∩Sub(y))\
(Sub(t) \ {t}). We know v � inf(x, y) = t.

S u b c a s e v = t. Then Sub(x) ∩ Sub(y) = Sub(t), because for every
u ∈ Sub(x) ∩ Sub(y) either u ≤ t or C(u) ⊆ Sub(t). But the latter case
contradicts A1 unless u ≤ t.

S u b c a s e v 6= t. Then C(v) ⊆ Sub(t)\{t} ⊆ Sub(x). Since v 6∈ Sub(t),
there are two elements v1, v2 ∈ C(v) ⊆ Sub(x) with different minimal upper
bounds ≤ x, namely v and another one on the paths v1 ≤ u1 ≤ x, v2 ≤
u2 ≤ x where u1, u2 ∈ C(t) ⊆ Sub(x). This contradicts A1.

Acknowledgement. We wish to thank the referee for his helpful sug-
gestions.

References
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