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Introduction

The present paper is devoted to a natural generalization of differential
equations for mappings from a subset of Banach space into a Banach space.
These equations can be defined in the following way.

Let X,Y be Banach spaces over a field K (where K = R or K = C), and
let U and V be open subsets of X and Y , respectively. Let h be a mapping
from U into X and H a mapping from U × V into Y . The equation of the
form

Df(x)(h(x)) = H(x, f(x)) for x ∈ U
will be called a generalized differential equation of the first order , and a dif-
ferentiable function f defined on U with values in V , satisfying this equation,
will be called its solution.

Among these equations we can distinguish generalized linear differential
equations of the first order.

Let X,Y, U and h be as above. Let g be a mapping from U into Y and
A a mapping from U into L(Y, Y ), the space of continuous linear operators
from Y into Y . A generalized differential equation of the form

Df(x)(h(x)) = A(x)(f(x)) + g(x) for x ∈ U

will be called a generalized linear differential equation of the first order .
Equations of this type appear in studies concerning some geometrical

properties of mappings (see [Su], [PS], [G]); so possessing concrete geomet-
rical properties by a mapping is connected with the fulfilment of some gen-
eralized differential equation by this mapping.

In Chapter I we present fundamental problems for generalized differen-
tial equations at nonsingular points, that is, at points x0 ∈ U for which
h(x0) 6= 0. We consider the initial value problem with initial conditions at
nonsingular points and the dependence of solutions upon parameters and
initial conditions.

Chapter II is devoted to the discussion of total solutions of generalized
linear differential equations at nonsingular points. We present the form of
such solutions and discuss their stability.
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Chapter III deals with the Cauchy problem at a singular point (i.e. a
point x0 ∈ U such that h(x0) = 0).

Existence and the form of solutions of some type of generalized linear
differential equations which are connected with geometrical properties of
holomorphic mappings are studied in Chapter IV.

The results concerning a generalization of the Frobenius conditions to
some type of differential equations connected with generalized differential
equations are presented in Chapter V; they strengthen the results of [Ap1],
[Ap2], [H], [Ko].

I. Fundamental problems for generalized differential
equations at nonsingular points

§1. Introduction. In this part of our paper we shall be concerned with
initial value problems for generalized differential equations at nonsingular
points and with the dependence of solutions upon parameters and initial
conditions.

The following notations will be used. Let a 6= 0 be a point of a Banach
space X over a field K (where K = R or K = C), and let La = {κa;κ ∈ K}.
Any (fixed in further considerations) subspace complementary to La will be
denoted by Xa. Let Xx0

a = {x + x0;x ∈ Xa} where x0 is a fixed point of
X. By B(x, r) we shall denote the ball with radius r > 0 and centre x ∈ X;
let Xx0

a (r) = Xx0
a ∩ B(x0, r). The ball in K with radius r > 0 and centre

p0 ∈ K will be denoted by K(p0, r); if p0 = 0, then K(0, r) = K(r).

Definition 1.1. The mappings ya : X → Xa, ta : X → K such that

(1.1) x = ya(x) + ta(x)a for x ∈ X ,

will be called the projection operators.

R e m a r k 1.1. If Xa is a closed subspace of X, then the projection
operators are continuous and the space La×Xa is isomorphic to X (see e.g.
[Se], p. 372).

R e m a r k 1.2. Let U be an open subset of X and f0 a function from
Xx0
a ∩U into a Banach space Y . Such a function will be called differentiable

on Xx0
a ∩ U if the function f̃0(x) = f0(x + x0), where x ∈ Xa ∩ U , is

differentiable on Xa ∩ U .

§2. Cauchy problem at nonsingular points for generalized dif-
ferential equations of the first order. Let U and V be open subsets of
Banach spaces X and Y , respectively, over the field K, h a mapping from
U into X, and H a mapping from U × V into Y . Let x0 be any point of U ,
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Xh(x0), a certain (fixed in further considerations) space complementary to
Lh(x0), and let f0 be a function from Xx0

h(x0) ∩ U into V .
With the above notations we can formulate the following

Theorem 1.1. Suppose that h(x0) 6= 0 and that Xh(x0) is a closed sub-
space of X. If h, H, f0 are continuously differentiable (wherever defined),
then there exists a neighbourhood U0 of x0 such that the Cauchy problem

Df(x)(h(x)) = H(x, f(x)) for x ∈ U0 ,(1.2)
f(x) = f0(x) for x ∈ Xx0

h(x0) ∩ U0(1.2′)

has exactly one continuously differentiable solution f : U0 → X.

P r o o f. First, consider the Cauchy problem

(1.3)
∂v

∂t
(t, y) = h(v(t, y)) ,

v(0, y) = y for y ∈ Xx0
h(x0) ∩ U .

By the well known theorems for ordinary differential equations (see e.g.
Theorems 10.8.1 and 10.8.2 of [D]) there exist ε, r > 0 and a function
v : K(ε) × Xx0

h(x0)(r) → X which is the unique continuously differentiable
solution of (1.3) on K(ε)×Xx0

h(x0)(r).
Next, define the auxiliary function ṽ(t, y) = v(t, x0+y) for (t, y) ∈ K(ε)×

X0
h(x0)(r). Notice that (∂ṽ/∂y)(0, 0) = I, where I is the identity operator on

Xh(x0), and that (∂ṽ/∂t)(0, 0) = h(x0). Since h(x0) 6= 0, Dṽ(0, 0) is a linear
homeomorphism from K×Xh(x0) onto X. By the inverse function theorem
(Theorem 10.2.5 of [D]), there exist ε0, r0 > 0 and a neighbourhood Ũ0 ⊂ U
of x0 such that ṽ is a diffeomorphism of class C1 from K(ε0) ×X0

h(x0)(r0)

onto Ũ0. Set v−1(x) = (T (x),Y(x)) for x ∈ Ũ0.
Now, consider the Cauchy problem

(1.4)
∂w̃

∂s
(s, y) = H(v(s, y), w̃(s, y) + f0(y)) ,

w̃(0, y) = 0 for y ∈ Xx0
h(x0)(r0) .

Again there exist ε1, r1 > 0 (ε1 < ε0, r1 < r0) such that (1.4) has exactly
one continuously differentiable solution w̃ : K(ε1)×Xx0

h(x0)(r1)→ X.
Now, set

w(s, y) = w̃(s, y) + f0(y) for (s, y) ∈ K(ε1)×Xx0
h(x0)(r1) .

Then w : K(ε1)×Xx0
h(x0)(r1)→ X is differentiable and satisfies

(1.5)
∂w

∂s
(s, y) = H(v(s, y), w(s, y)) for (s, y) ∈ K(ε1)×Xx0

h(x0)(r1) ,

w(0, y) = f0(y) for y ∈ Xx0
h(x0)(r1) .
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Now, let U0 = v(K(ε1)×Xx0
h(x0)(r1)) and define f : U0 → X by

f(x) = w(T (x),Y(x)) for x ∈ U0 .

We now prove that f fulfils (1.2)–(1.2′). By the definition of f and (1.5),

Df(x) = H(v(T (x),Y(x)), f(x))DT (x)(1.6)

+
∂w

∂y
(T (x),Y(x))DY(x) for x ∈ U0 .

Fix x ∈ U0. For t ∈ T (U0) we have clearly

(1.7) T (v(t,Y(x))) = t , Y(v(t,Y(x))) = Y(x) .

Differentiating (1.7) with respect to t, we obtain, for t = T (x),

DT (x)(h(x)) = 1 , DY(x)(h(x)) = 0 .

Hence (1.6) takes the form

Df(x)(h(x)) = H(v(T (x),Y(x)), f(x)) = H(x, f(x)) for x ∈ U0 .

It is obvious that f also fulfils the initial condition.
To end the proof, it is sufficient to show the uniqueness of solution of

(1.2), (1.2′).
Suppose that there exist two distinct mappings f1, f2 satisfying (1.2),

(1.2′). Hence there exists b ∈ U0 such that f1(b) 6= f2(b). Let b = Y(b),
w1(s, b) = f1(v(s, b)) and w2(s, b) = f2(v(s, b)) for s ∈ K(ε1). Then w1, w2

are distinct too, and satisfy
∂w

∂s
(s, b) = H(v(s, b), w(s, b)) for s ∈ K(ε1) ,

w(0, b) = f0(b) ,

which contradicts the uniqueness of solution for (1.5).

R e m a r k. The above theorem was presented in [Po1].

§3. Dependence of solution on parameters and initial condi-
tions. First, we deal with the dependence of solution upon parameters. To
this end, we introduce the following assumptions.

Let X, Y1, Y2 be Banach spaces over the field K and let U , V1, V2 be
their respective open subsets; let h be a mapping from U into X, and H
a mapping from U × V1 × V2 into Y1. Let, further, x0 be any point of
U , and Xh(x0) a subspace complementary to Lh(x0). Assume that f0 is a
function from Xx0

h(x0)∩U into V1 and z0 is any point of V2. Under the above
assumptions, the theorem on the continuous dependence of the solution of
the generalized differential equation upon parameters takes the following
form.
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Theorem 1.2. Suppose that h(x0) 6= 0 and that Xh(x0) is a closed sub-
space of X. If h and f0 are continuously differentiable on U and Xx0

h(x0)∩U ,
respectively , and , for any z ∈ V2, the mapping H(·, · ,z) : U × V1 → Y1 is
continuously differentiable and also the mappings H, D2H are continuous
on U × V1 × V2, then there exist neighbourhoods U0 and V 0

2 of x0 and z0,
respectively , such that the problem

(1.8)
D1f(x, z)(h(x)) = H(x, f(x, z), z) for x ∈ U0 , z ∈ V 0

2 ,

f(x, z) = f0(x) for x ∈ Xx0
h(x0) ∩ U0 , z ∈ V 0

2 ,

has exactly one solution f : U0 × V 0
2 → Y1 continuously differentiable in the

first variable. Moreover , f is continuous and bounded.

P r o o f. Let v, ε0, r0, Ũ0, T , Y be as in the proof of Theorem 1.1.
Consider the Cauchy problem

(1.9)
∂w̃

∂s
(s, y, z) = H(v(s, y), w̃(s, y, z) + f0(y), z) ,

w̃(0, y, z) = 0 for (y, z) ∈ Xx0
h(x0)(r0)× V2 .

By Theorem 10.7.1 of [D], there exist numbers ε1, r1, r2 > 0 (ε1 <
ε0, r1 < r0) such that (1.9) has exactly one continuous and bounded solu-
tion w̃ : K(ε1)×Xx0

h(x0)(r1)×B(z0, r2)→ X. Theorem 10.7.3 of [D] implies
immediately that, for any z ∈ B(z0, r2), the mapping w̃(·,·,z) is continuously
differentiable on K(ε1)×Xx0

h(x0)(r1).
Let U0 = v(K(ε1) × Xx0

h(x0)(r1)) and V 0
2 = B(z0, r2). Now, we define

f : U0 × V 0
2 → Y1 by

f(x, z) = w̃(T (x),Y(x), z) + f0(Y(x)) for (x, z) ∈ U0 × V 0
2 .

From the properties of w̃ it follows that f is continuous and bounded
and, for any z ∈ B(z0, r2), D1f(·, z) is continuous on U0. Further, as in the
proof of Theorem 1.1, we can show that f satisfies (1.8) and is unique.

Let the notations preceding the formulation of Theorem 1.2 be still valid.
Then the following theorem on the differentiable dependence of solution
upon parameters can be proved.

Theorem 1.3. Suppose that h(x0) 6= 0 and that Xh(x0) is a closed sub-
space of X. If h and f0 are continuously differentiable on U and Xx0

h(x0)∩U ,
respectively , and D1H, D2H, D3H are continuous on U × V1 × V2, then
there exist neighbourhoods U0 and V 0

2 of x0 and z0, respectively , such that
the problem

D1f(x, z)(h(x)) = H(x, f(x, z), z) for (x, z) ∈ U0 × V 0
2 ,

f(x, z) = f0(x) for x ∈ Xx0
h(x0) ∩ U0 , z ∈ V 0

2 ,
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has exactly one solution f : U0 × V 0
2 → Y1, and f is continuously differen-

tiable.

The proof is similar to that of Theorem 1.2.

Now, we take up the dependence of solution upon initial conditions.
Let X and Y be Banach spaces over K and let U , V be their respective

open subsets; let h be a mapping from U into X, and H a mapping from U×
V into Y . Let x0 be any point of U , and Xh(x0) a subspace complementary
to Lh(x0). Let f0 be a function from Xx0

h(x0)∩U into V . The space of bounded
and continuously differentiable mappings fromXx0

h(x0)∩U into Y with the sup
norm will be denoted by C1

b (Xx0
h(x0)∩U, Y ) (analogously we define C1

b (U, Y )).

Theorem 1.4. Suppose that h(x0) 6= 0 and that Xh(x0) is a closed sub-
space of X. If h, H and f0 are continuously differentiable on their domains,
then there exist δ > 0 and a neighbourhood U0 of x0 such that , for each func-
tion f̃0 ∈ B(f0, δ) ⊂ C1

b (Xx0
h(x0) ∩ U0, Y ) the problem

(1.10)
Df(x)(h(x)) = H(x, f(x)) for x ∈ U0 ,

f(x) = f̃0(x) for x ∈ Xx0
h(x0) ∩ U0

has exactly one solution f = f(x, f̃0) for x ∈ U0 which is continuously
differentiable and bounded.

Moreover , f : B(f0, δ)→ C1
b (U0, Y ) is continuous at f0.

P r o o f. Let v, ε0, r0, Ũ0, T , Y be as in the proof of Theorem 1.1 and
let δ1 > 0 be such that the ball B(f0(x0), δ1) in the space Y is contained
in V . From the continuity of f0 it follows immediately that there exists
r1 > 0 (r1 < r0) such that f0(Xx0

h(x0)(r1)) ⊂ B(f0(x0), 1
3δ1). Take U1 =

v(K(ε0)×Xx0
h(x0)(r1)). Consider the problem

(1.11)
∂w

∂s
(s,Y(x), β) = H(v(s,Y(x)), w(s,Y(x), β) + f0(Y(x)) + β) ,

w(0,Y(x), β) = 0 ,

where s ∈ K(ε0), x ∈ U1, β ∈ B(0, 1
3δ1) ⊂ Y .

The theorem on the differentiable dependence of solutions of ordinary
differential equations upon parameters implies that there exist ε̃0, r̃1, δ > 0
(ε̃0 < ε0, r̃1 < r1, δ <

1
3δ1) such that, for s ∈ K(ε̃0), x ∈ U0 = v(K(ε̃0) ×

Xx0
h(x0)(r1)), β ∈ B(0, δ) ⊂ Y , equation (1.11) has exactly one solution

w = w(s,Y(x), β) which is defined, continuously differentiable and bounded
together with its first derivative on K(ε̃0)× U0 ×B(0, δ).

It is not difficult to see that the function f defined by
f(x, f̃0) = w(T (x),Y(x), f̃0(Y(x))− f0(Y(x))) + f̃0(Y(x))

for x ∈ U0 and f̃0 ∈ B(f0, δ) has the required properties (1.10).
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II. Total solutions of generalized linear
differential equations

§1. Introduction. Let X, Y be Banach spaces over R, h a mapping
from X into X, g a mapping from X into Y , and A a mapping from X
into L(Y, Y ). In this chapter we will be concerned with generalized linear
differential equations of the form

(2.1) Df(x)(h(x)) = A(x)(f(x)) + g(x) for x ∈ X .

First, a sufficient condition will be given which guarantees that the above
equation has a solution defined on all of X and the form of this solution will
be found. Next, we define stability and asymptotic stability of solutions,
and we prove necessary as well as sufficient conditions for these properties.

Suppose h(0) 6= 0. By Xh(0) we will denote a fixed complementary
subspace to Lh(0). Furthermore, we will assume (in this chapter) that Xh(0)

is a closed subspace of X.

Definition 2.1. We will say that a mapping h ∈ C1(X,X) belongs to
the class N (X) if

(i) there exist positive numbers ε1, ε2 such that ε1 < th(0)(h(x)) < ε2

for x ∈ X, where th(0) is defined as in §1 of Chapter I,
(ii) for every x ∈ X there exists a solution of

dv

dt
= h(v), v(0) = x ,

defined on R (compare Theorem 5.6.1 of [L]).

§2. Form of solutions of generalized linear differential equa-
tions. The formulation of sufficient conditions which guarantee that equa-
tion (2.1) has a solution defined on the whole space X and determining the
form of this solution will be preceded by two lemmas.

Lemma 2.1. Let h ∈ N (X) and let v : R×X → X be the unique solution
of

(2.2)
∂v

∂t
= h(v), v(0, x) = x ,

existing by Definition 2.1. Then for every x ∈ X there are unique Th(x) ∈ R
and Yh(x) ∈ Xh(0) such that

(2.3) v(0,Yh(x)) = Yh(x), v(Th(x),Yh(x)) = x .

P r o o f. Fix x ∈ X. Consider the function φ(τ) = th(0)(v(τ, x)) for
τ ∈ R. By (2.2) and Definition 2.1 (i), 0 < ε1 < φ′(τ) < ε2. Hence there
exists exactly one τx such that φ(τx) = 0, i.e. th(0)(v(τx, x) = 0; in other
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words, v(τx, x) ∈ Xh(0). Let Th(x) = −τx, Yh(x) = v(τx, x). Clearly (2.3) is
satisfied and Th, Yh are uniquely determined.

Lemma 2.2. Let h ∈ N (X) and let Th, Yh be defined as in Lemma 2.1.
Then the mappings Th and Yh are continuously differentiable on X and

(2.4) DTh(x)(h(x)) = 1, DYh(x)(h(x)) = 0 for x ∈ X .

P r o o f. From the construction of Th (see the proof of Lemma 2.1) we
have

(2.5) th(0)(v(−Th(x), x)) = 0 for x ∈ X .

Notice that th(0) is a continuous linear mapping defined on X and v is
continuously differentiable from R × X into X. Therefore, by Definition
2.1(i) we see that

∂th(0)

∂τ
(v(−τ, x)) 6= 0 for x ∈ X .

Now by (2.5) and the implicit function theorem (see e.g. [D]) the map-
ping Th is continuously differentiable on X. Hence so is Yh, since Yh(x) =
v(−Th(x), x) for x ∈ X. From the construction of Th, Yh it follows that

(2.6) Th(v(τ,Yh(x))) = τ, Yh(v(τ,Yh(x))) = Yh(x)

for (τ, x) ∈ R × X. Differentiating (2.6) with respect to τ we obtain, for
τ = Th(x), equalities (2.4). This ends the proof of the lemma.

Theorem 2.1. Let h ∈ N (X) and suppose A, g are continuously differ-
entiable on X (see §1). Let f0 be a continuously differentiable mapping from
Xh(0) into Y . Then the Cauchy problem

Df(x)(h(x)) = A(x)(f(x)) + g(x) for x ∈ X ,(2.7)
f(x) = f0(x) for x ∈ Xh(0) ,(2.7′)

has exactly one continuously differentiable solution on X. Moreover , this
solution has the form

f(x) = R(Th(x), 0,Yh(x))(f0(Yh(x)))(2.8)

+R(Th(x), 0,Yh(x))
( Th(x)∫

0

R(0, s,Yh(x))g(v(s,Yh(x))) ds
)
,

for x ∈ X, where v, Th, Yh are defined as in Lemmas 2.1 and 2.2, and
R = R(·, · ,Yh(x)) is the mapping from R× R into L(Y, Y ) such that

(2.9)
dR
dt

(t, t0,Yh(x)) = A(v(t,Yh(x))) ◦ R(t, t0,Yh(x)) for t ∈ R ,

R(t0, t0,Yh(x)) = IY ,

for some t0 ∈ R and x ∈ X, where IY is the identity operator on Y .
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P r o o f. First, we prove that if f is a solution of (2.7)–(2.7′), then it has
the form (2.8).

Fix x ∈ X and let v, Th, Yh be as in Lemmas 2.1 and 2.2. Since f fulfils
equation (2.7), we have

Df(v(τ,Yh(x)))(h(v(τ,Yh(x))))(2.10)
= A(v(τ,Yh(x)))(f(v(τ,Yh(x)))) + g(v(τ,Yh(x)))

for τ ∈ R. Define

f̃Yh(x)(τ) = f(v(τ,Yh(x))) for τ ∈ R .

Then (2.10) takes the form

f̃ ′Yh(x)(τ) = A(v(τ,Yh(x)))(f̃Yh(x)(τ)) + g(v(τ,Yh(x))) for τ ∈ R .

From condition (2.7′) it follows that f̃Yh(x)(0) = f0(Yh(x)). Hence by the
general form of a solution of a linear differential equation (see e.g [M], p. 305)
we can represent f̃Yh(x) in the form

f̃Yh(x)(τ) = R(τ, 0,Yh(x))(f0(Yh(x)) +
τ∫

0

R(0, s,Yh(x))(g(v(s,Yh(x)))) ds)

for τ ∈ R, where R = R(·, · ,Yh(x)) is the solution of (2.9). Since v(Th(x),
Yh(x)) = x, this clearly gives (2.8).

Conversely, we prove that the function f defined by (2.8) fulfils (2.7)–
(2.7′).

Fix x ∈ X. It is not difficult to see that f is differentiable, hence the
function φ defined by

φ(τ) = R(Th(v(τ,Yh(x))), 0,Yh(v(τ,Yh(x))))(f0(Yh(v(τ,Yh(x)))))(2.11)
+R(Th(v(τ,Yh(x))), 0,Yh(v(τ,Yh(x))))

◦
( Th(v(τ,Yh(x)))∫

0

R(0, s,Yh(v(τ,Yh(x))))

◦ (g(v(s,Yh(v(τ,Yh(x)))))) ds
)

is differentiable for τ ∈ R. By (2.6) and (2.11),

φ(τ) = R(τ, 0,Yh(x))(f0(Yh(x)))(2.12)

+R(τ, 0,Yh(x))
( τ∫

0

R(0, s,Yh(x))(g(v(s,Yh(x)))) ds
)

for τ ∈ R. From the definition of φ it follows immediately that

(2.13) Df(x)(h(x)) = φ′(Th(x)) .
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On the other hand, using (2.12) and (2.9) we get

φ′(Th(x)) = A(x)(R(Th(x), 0,Yh(x)))(f0(Yh(x)))(2.14)

+A(x)(R(Th(x), 0,Yh(x)))
( Th(x)∫

0

R(0, s,Yh(x))(g(v(s,Yh(x)))) ds
)

+ g(x) .

From (2.13) and (2.14) it follows immediately that f satisfies equation (2.7).
It is obvious that f also fulfils condition (2.7′).

In the next part of this chapter we look at the form of the solution of
equation (2.1) in the case when the function h is constant and the derivative
on the left side of the equation is a directional derivative.

Definition 2.2. Let a ∈ X \ {0} and U ⊂ X. We will say that U is
convex in the direction of the subspace La (see Chap. I, §1) if for any x ∈ X
the segment [x, ya(x)] ⊂ U .

Let U be a convex set in the direction of La.
Notice that for x ∈ X the set Ja(x) = {τ ∈ R; ya(x) + τa ∈ U} is an

interval in R and ta ∈ Ja(x) for x ∈ U . Let, moreover, A be a continuous
mapping from U into L(Y, Y ), and R(·, · , ya(x)) : Ja(x)× Ja(x)→ L(Y, Y )
be the solution of the equation

dR
dt

(t, t0, ya(x)) = A(ya(x) + at) ◦ R(t, t0, ya(x)) ,

R(t0, t0, ya(x)) = IY

for some t0 ∈ Ja(x) and all x ∈ U .
With the above notation the following theorem is true.

Theorem 2.2. Let a be a nonzero point of X, let U be an open subset
of X which is convex in the direction of La and which contains the point 0
and let f0 be a mapping from U ∩Xa into Y . If the mappings A and g from
U into L(Y, Y ) and Y , respectively , are continuous then there exists exactly
one solution of

∇af(x) = A(x)(f(x)) + g(x) for x ∈ U ,
f(x) = f0(x) for x ∈ U ∩Xa ,

and it is of the form

f(x) = R(ta(x), 0, ya(x))(f0(ya(x)))

+R(ta(x), 0, ya(x))
( ta(x)∫

0

R(0, s, ya(x))(g(ya(x) + as)) ds
)

for x ∈ U .

The proof is analogous to that of Theorem 2.1 and is presented in [Po1].
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The effectiveness of this theorem is illustrated by the following example.

Example 2.1. Let X = Y = C([0, 1]) be the space of continuous real
functions on [0, 1]. Let a ∈ C([0, 1]) be defined by a(t) = 1 for t ∈ [0, 1].
Then La is the space of constant functions defined on [0, 1]. The set of
x ∈ C([0, 1]) such that x(0) = 0 will be denoted by Xa. It is not difficult to
see that Xa is a closed subspace of C([0, 1]) and La ⊕Xa = C([0, 1]).

Now consider the equation

∇af(x) = f(x) for x ∈ C([0, 1])

with the initial condition f(x) = 2x + a for x ∈ Xa. Since in this case
the assumptions of Theorem 2.2 are fulfilled and R(τ, 0, ya(x)) = eτIY for
τ ∈ R, we obtain

f(x) = ex(0)[2(x− x(0)) + 1] for x ∈ C([0, 1]) .

§3. Stability of generalized linear differential equations. In this
section we will be occupied with the stability and asymptotic stability for
the generalized linear differential equation (2.1).

Let X, Y be Banach spaces over R, h ∈ N (x), A ∈ C1(X,L(Y, Y )),
g ∈ C1(X,Y ). As before, Xh(0) denotes a certain subspace complementary
to Lh(0) and we will assume that it is closed in X. The space of differentiable
and bounded functions on Xh(0) with the sup norm will be denoted by
C1
b (Xh(0), Y ). In further considerations, X+ will denote the set

X+ = {x; x = x1 + τh(0), where x1 ∈ Xh(0), τ ≥ 0} .

With such notations the problem

(2.15)
Df(x)(h(x)) = A(x)(f(x)) + g(x) for x ∈ U ,

f(x) = f0(x) for x ∈ Xh(0) ,

where f0 ∈ C1
b (Xh(0), Y ), by Theorem 2.1, has a unique solution which will

be denoted by f = f(x, f0) for x ∈ X.

R e m a r k 2.1. The equation

(2.16) Df(x)(h(x)) = A(x)(f(x)) for x ∈ X
will be called the homogeneous equation corresponding to equation (2.15).

These introductory statements will be assumed throughout.

Definition 2.3. The solution f = f(x, f0) of (2.15) will be called
stable in X+ if for every ε > 0 there exists δ > 0 such that for every
f̃0 ∈ B(f0, δ) ⊂ C1

b (Xh(0), Y )

sup
x∈X+

‖f(x, f0)− f(x, f̃0)‖ < ε .
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Equation (2.15) will be called stable in X+ if its every solution f =
f(·, f0), where f0 ∈ C1

b (Xh(0), Y ), is stable in X+.

Theorem 2.3. A necessary and sufficient condition for equation (2.15)
to be stable in X+ is that the trivial solution of the homogeneous equation
(2.16) corresponding to equation (2.15) be stable in X+.

The proof is similar to that of Theorem 1 of [DPS].

Definition 2.4. The family of solutions f = f(·,f0) of equation (2.16)
for f0 ∈ C1

b (Xh(0), Y ) will be called almost uniformly bounded if for every
δ > 0 there exists M > 0 such that for every f0 ∈ B(0, δ)

sup
x∈X+

‖f(x, f0)‖ ≤M .

Theorem 2.4. The generalized linear homogeneous equation (2.16) is
stable in X+ if and only if its solutions are almost uniformly bounded.

The proof is similar to that of Theorem 2 of [DPS].

Theorem 2.5. Equation (2.15) is stable in X+ if and only if the mapping
R(Th(·), 0,Yh(·)) is bounded on X+, where R(t, 0,Yh(x)), for t ∈ R, x ∈ X+

is the solution of
dR
dt

(t, 0,Yh(x)) = A(v(t,Yh(x))) ◦ R(t, 0,Yh(x)) ,

R(0, 0,Yh(x)) = IY for x ∈ X+ ,

and v, Th, Yh are defined as in Lemma 2.1.

P r o o f. Suppose equation (2.15) is stable in X+. Then from Theorem
2.3 it follows that so is the homogeneous equation (2.16). Hence, by The-
orem 2.4, the solutions f(·,f0) of (2.16) are almost uniformly bounded. By
Theorem 2.1 those solutions can be represented in the form

(2.17) f(x, f0) = R(Th(x), 0,Yh(x))(f0(Yh(x))) for x ∈ X+

and by Definition 2.4 there exists M such that

sup
x∈X+

‖R(Th(x), 0,Yh(x))(f0(Yh(x)))‖ ≤M

for f0 belonging to some ball B(0, δ). Notice furthermore that for y0 ∈ Y
such that ‖y0‖ < δ

sup
x∈X+

‖R(Th(x), 0,Yh(x))(y0)‖ ≤M

Hence
sup
x∈X+

‖R(Th(x), 0,Yh(x))‖ ≤M/δ .

Conversely, suppose R(Th(·), 0,Yh(·)) is bounded on X+. Then from The-
orem 2.3 and from (2.17) it follows that equation (2.15) is stable in X+.
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R e m a r k 2.2. In the case X = R, an analogous theorem can be found
in [DK] (compare Lemma 3.1).

In the next part of this section we will be concerned with the asymptotic
stability for solutions of equation (2.15) and with necessary and sufficient
conditions for equation (2.15) to be asymptotically stable.

Definition 2.5. The solution f(·, f0) of equation (2.15) will be called
asymptotically stable in X+ if

(i) this solution is stable in X+,
(ii) there exists ∆ > 0 such that for every ε > 0 there exists t0 > 0 such

that for f̃0 ∈ B(f0, ∆) ⊂ C1
b (Xh(0), Y ) and for x ∈ X with th(0)(x) > t0,

‖f(x, f0)− f(x, f̃0)‖ < ε .

Equation (2.15) will be called asymptotically stable in X+ if its every
solution f(·, f0), where f0 ∈ C1

b (Xh(0), Y ), is asymptotically stable in X+.

It is not difficult to prove a theorem analogous to Theorem 2.3, namely

Theorem 2.6. A necessary and sufficient condition for equation (2.15) to
be asymptotically stable in X+ is that the trivial solution of the corresponding
homogeneous equation (2.16) be asymptotically stable in X+.

R e m a r k 2.3. In the next theorem the Banach space Y will be consid-
ered with a semi-inner product, defined as follows (compare [Lu], [LP]).

Let Y0 be a set of nonzero elements with norm equal to 1, chosen one by
one from each line in Y through zero. Let Y ∗ be the dual space of Y and

C∗(y) = {y∗ ∈ Y ∗; ‖y∗‖ = 1, y∗(y) = ‖y‖}
for y ∈ Y .

Let J0 be any (fixed in further considerations) mapping from Y0 into Y ∗

such that J0(y) ∈ C∗(y) for y ∈ Y0. Let J be the homogeneous extension
of J0 to the whole space Y : J (λy) = λJ0(y) for y ∈ Y0 and λ ∈ R.

Now we define a semi-inner product by

〈y1, y2〉 = J (y2)(y1) for y1, y2 ∈ Y .
It has the following properties:

(a) it maps Y × Y into R,
(b) 〈y1 + y2, y3〉 = 〈y1, y3〉+ 〈y2, y3〉, 〈y1, λy2〉 = λ〈y1, y2〉 for y1, y2, y3 ∈

Y , λ ∈ R,
(c) 〈y, y〉 = ‖y‖2 for y ∈ Y ,
(d) |〈y1, y2〉|2 ≤ 〈y1, y1〉〈y2, y2〉 for y1, y2 ∈ Y .

The next theorem gives a sufficient condition for equation (2.15) to be
asymptotically stable in X+.
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Theorem 2.7. If there exists a constant C > 0 such that

(2.18) 〈A(x)(y), y〉 ≤ −C‖y‖2 for y ∈ Y x ∈ X+

(where 〈· , ·〉 is a semi-inner product in Y ), then equation (2.15) is asymp-
totically stable in X+.

P r o o f. By Theorem 2.6 it is sufficient to prove that the trivial solution
of equation (2.16) is asymptotically stable in X+.

Let f0 ∈ C1
b (Xh(0), Y ) and let v, Th, Yh be as in Lemma 2.1. Then

the solution f of (2.16) fulfilling f(x, f0) = f0(x) for x ∈ Xh(0) can be
represented in the form

f(x, f0) = R(Th(x), 0,Yh(x))(f0(Yh(x))) for x ∈ X+ .

It follows that for τ ≥ 0 and x ∈ X+

f(v(τ, x), f0) = R(Th(v(τ, x)), 0,Yh(v(τ, x))) .

Fix x in X+. Since the function τ → f(v(τ, x), f0) is continuously differen-
tiable for τ ≥ 0, the function τ → ‖f(v(τ, x), f0)‖ is absolutely continuous
in each interval [0, τ ] (see e.g. [HS]), and therefore almost everywhere differ-
entiable on [0,∞). Lemma 1.3 of [Ka] now gives for almost every τ ≥ 0

d

dτ
(‖f(v(τ, x), f0)‖2) = 2〈A(v(τ, x))(f(v(τ, x), f0), f(v(τ, x), f0)〉 .

By (2.18) it follows that

d

dτ
(‖f(v(τ, x), f0)‖2) ≤ −2C‖f(v(τ, x), f0)‖2

for almost every τ ≥ 0, and so

(2.19)
d

dτ
(e2Cτ‖f(v(τ, x), f0)‖2) ≤ 0

for almost every τ ≥ 0. Since ‖f(v(·, x), f0)‖ is absolutely continuous it
follows from (2.19) that the function e2Cτ‖f(v(τ, x), f0)‖2 is decreasing for
τ ≥ 0. Hence

‖f(v(0,Yh(x)), f0)‖2 ≥ e2CTh(x)‖f(v(Th(x),Yh(x)), f0)‖2 ,

that is, we have

‖f0(Yh(x))‖2 ≥ e2CTh(x)‖f(x, f0)‖2 for x ∈ X+ .

Since h ∈ N (X) there exists ε2 > 0 such that Th(x) ≥ th(0)(x)/ε2 for
x ∈ X+ and consequently

‖f(x, f0)‖ ≤ ‖f0(Yh(x))‖e−(C/ε2)th(0)(x) for x ∈ X+ .

The asymptotic stability of the trivial solution of equation (2.16) in X+ is
a simple consequence of the above inequality.
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Example 2.2. Let X = Y = ` (where ` is the space of absolutely
summable sequences), a = (1, 0, 0, . . .), h(x) = a for x ∈ `, and let Xa

be the set of absolutely summable sequences x = (αn)(n = 1, 2, . . . , ) for
which α1 = 0. Naturally, X = La ⊕Xa and Xa is a closed subspace of X.

Let A : `→ ` be the linear operator defined by

A(x) = (−αn/n) for x = (αn) ∈ ` .
Consider the differential equation

(2.20) Df(x)(a) = A(f(x)) for x ∈ X .

Notice that under the notations used before (compare Theorem 2.5) we have

R(Th(x), 0,Yh(x))(u) = (e−(1/n)ta(x)un) where u = (un) ∈ ` .
Therefore ‖R(Th(x), 0,Yh(x))‖ ≤ 1 for x ∈ X+, hence from Theorem 2.5
equation (2.20) is stable in X+. After calculating the semi-inner product in
the space ` (see Remark 2.3) it is not difficult to verify that 〈A(y), y〉 ≤ 0 for
y ∈ `. Some straightforward calculations show that, nevertheless, equation
(2.20) is not asymptotically stable in X+. This shows that the assumptions
of Theorem 2.7 are essential.

III. Fundamental problems for generalized
differential equations at singular points

§1. Introduction. Let X, Y be Banach spaces over R and let the
norm of X be continuously differentiable for x ∈ X − {0}. Let U , V be
open subsets of X and Y , respectively, let h be a mapping from U into X,
and H a mapping from U × V into Y . Let x0 ∈ U and h(x0) = 0. We
will be interested in the initial conditions for which there exists a vicinity
S(x0, r) = B(x0, r)− {x0} of x0 such that the equation

Df(x)(h(x)) = H(x, f(x)) for x ∈ S(x0, r) .

has exactly one solution defined on S(x0, r).
Moreover, the dependence of solutions upon initial conditions and pa-

rameters is treated. In §3 the form is given for the solutions of some types
of generalized linear differential equations in a vicinity of a singular point.

§2. Initial conditions at singular points and dependence of solu-
tions upon initial conditions and parameters. We need the following
three lemmas.

Lemma 3.1. Let H̃ be a mapping from B(0, r)×[0,∞) (B(0, r) ⊂ Y ) into
Y , continuously differentiable, bounded with its first derivative on B(0, r)×
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[0,∞), and suppose there exists β > 0 such that

(3.1) y∗(H̃(y, t)) ≤ −β‖y‖
for y∗ ∈ C∗(y) (see Remark 2.3) and (y, t) ∈ B(0, r)×[0,∞). Fix y ∈ B(0, r)
and let w = w(t, y), for t ∈ Py, be the total solution of

(3.2)
dw

dt
= H̃(w, t), w(0, y) = y .

Then

(i) Py = [0,∞),
(ii) ‖w(·, y)‖ is decreasing on [0,∞),
(iii) limt→∞ w(t, y) = 0,
(iv) the mapping w : [0,∞)×B(0, r)→ Y is continuously differentiable.

P r o o f. Fix y ∈ B(0, r) \ {0} and let r1 = ‖y‖. Take r2 > 0 such that
r1 + r2 < r. Then B(ỹ, r2) ⊂ B(0, r1 + r2) for any ỹ ∈ B(0, r1). By the
assumptions about H̃, there exist constants K, L such that

‖H̃(y, t)‖ ≤ K, ‖DH(y, t) ≤ L, for (y, t) ∈ B(0, r1 + r2)× [0,∞) .

Let τ0 satisfy 0 < τ0 < min(r2/K, 1/L). By Theorem IX.2.3 of [M, p. 270]
there exists exactly one solution w = w(t, y), for t ∈ [0, τ0], of (3.2).

First, notice that
d

dt
‖w(t, y)‖2 = 2〈H̃(w(t, y), t), w(t, y)〉

for almost every t ∈ [0, τ0] (compare [Ka]). Hence by inequality (3.1) we
obtain

d

dt
‖w(t, y)‖2 ≤ −2β‖w(t, y)‖2

for almost every t ∈ [0, τ0]. Since ‖w(·, y)‖ is absolutely continuous on [0, τ0]
this implies that it is decreasing on [0, τ0] and

‖w(t, y)‖ ≤ e−βt‖y‖ for t ∈ [0, τ0] .

Let y1 = w(τ0, y); then, obviously, ‖y1‖ ≤ r1 = ‖y‖.
Now consider the equation

(3.3)
dw

dt
= H̃(w, t), w(τ0, y) = y1 .

Proceeding analogously to the first part of this proof we can prove that
(3.3) has a solution w = w(t, y) for t ∈ [τ0, 2τ0], and hence (3.2) has a
solution defined on [0, 2τ0]. Repeating this argument we see that (3.2) has
exactly one solution w = w(t, y) defined for t ∈ [0,∞). Moreover, ‖w(·, y)‖
is decreasing on [0,∞) and

(3.4) ‖w(t, y)‖ ≤ e−βt‖y‖ for t ∈ [0,∞) .
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and so limt→∞ w(t, y) = 0.
In the case when y = 0 the solution obviously fulfils (i)–(iii). By Theo-

rem 10.8.2 of [D], w(·,·) is continuously differentiable on [0,∞)×B(0, r).

Definition 3.1. An operator A ∈ L(Y, Y ) will be called negative definite
if there exists a positive constant β such that

y∗(A(y)) ≤ −β‖y‖ for y ∈ Y and y∗ ∈ C∗(y) .

Lemma 3.2. Let W be an open subset of X ×Y containing (0, 0). Let H
be a continuously differentiable mapping from W into Y and suppose that
exists a ball B(0, r1) ⊂ X such that H(x, 0) = 0 for x ∈ B(0, r1). Suppose
that the operator D2H(0, 0) is negative definite. Then there exist constants
R1, R2 and a positive number α such that

y∗(H(x, y)) ≤ −α‖y‖

for y∗ ∈ C∗(y), x ∈ B(0, R1) and y ∈ B(0, R2) ⊂ Y .

P r o o f. Since D2H(0, 0) is negative definite, there exists a constant
β > 0 such that

(3.5) y∗(D2H(0, 0)(y)) ≤ −β‖y‖ for y∗ ∈ C∗(y), y ∈ Y .

Since D2H is continuous on W there exists a ball B(0, r0) ⊂ X such that

‖D2H(x, 0)(y)−D2H(0, 0)(y)‖ ≤ 1
3β‖y‖ for x ∈ B(0, r0), y ∈ Y .

It follows that

|y∗(D2H(x, 0)(y)−D2H(0, 0)(y))| ≤ 1
3β‖y‖

for y∗ ∈ C∗(y), x ∈ B(0, r0), y ∈ Y . Hence (3.5) yields

(3.6) y∗(D2H(x, 0)(y)) ≤ 2
3β‖y‖

for y∗ ∈ C∗(y), x ∈ B(0, r0), y ∈ Y .
By the assumptions on H there exist balls B(0, R1) ⊂ X (0 < R1 < r0)

and B(0, R2) ⊂ Y such that

‖H(x, y)−D2H(x, 0)(y)‖ ≤ 1
3β‖y‖

for x ∈ B(0, R1) and y ∈ B(0, R2). Hence for x ∈ B(0, R1), y∗ ∈ C∗(y) and
y ∈ B(0, R2) we have

(3.7) |y∗(H(x, y))− y∗(D2H(x, 0)(y))| ≤ 1
3β‖y‖ .

Finally, (3.6) and (3.7) yield the assertion of the lemma with α = 1
3β. This

ends the proof.

Lemma 3.3. Let U be an open subset of X and let x0 ∈ U . Let h be a
continuously differentiable mapping from U into X such that h(x0) = 0 and
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suppose Dh(x0) is negative definite. Let , further , v = v(t, x), for t ∈ Px, be
the total solution of

dv

dt
= h(v), v(0, x) = x ,

for x ∈ U . Then there exists a ball B(x0, r) such that B(x0, r) ⊂ U and

(i) the function h and its first derivative are bounded on B(x0, r),
(ii) there exist positive constants β1, β2 such that for x ∈ B(x0, r)

−β1‖x‖ ≤ x∗(h(x)) ≤ −β2‖x‖ for x∗ ∈ C∗(x) ,

(iii) for any x ∈ S(x0, r) there exists exactly one point τ(x) ∈ Px such
that ‖v(τ(x), x)‖ = r.

P r o o f. Without loss of generality we can assume that x0 = 0. Since
Dh(0) is bounded and negative definite, it is not difficult to show, as in the
proof of Lemma 3.2, that there exist positive constants β1, β2 and a ball
B(0, r) such that B(0, r) ⊂ U , the function h and its first derivative are
bounded on B(0, r) and

−β1‖x‖ ≤ x∗(h(x)) ≤ −β2‖x‖ for x∗ ∈ C∗(x), x ∈ B(0, r) .

Hence for any fixed x ∈ B(0, r)

−2β1‖v(t, x)‖2 ≤ d

dt
‖v(t, x)‖2 ≤ −2β2‖v(t, x)‖2

for almost every t ∈ Px (compare the proof of Lemma 3.1). It follows that

(3.8) ‖v(t, x)‖ ≥ e−β1t‖x‖ for t ∈ Px, x ∈ B(0, r) .

Now fix x ∈ S(0, r). Suppose that for any t ∈ Px, ‖v(t, x)‖ < r. Then
similarly to the proof of Lemma 3.1, we could show that Px = R and by
(3.8), we would obtain limt→−∞ ‖v(t, x)‖ =∞, contrary to our assumption.
Hence for any x ∈ S(0, r) there exists τ(x) ∈ Px such that ‖v(τ(x), x)‖ = r.
Uniqueness of τ(x) follows from the fact the function ‖v(·, x)‖ is decreasing
on Px.

Definition 3.2. Let U be an open subset of X, x0 a fixed point of U ,
and let h be a continuously differentiable mapping from U into X such that
h(x0) = 0 and Dh(x0) is negative definite. Every ball B(x0, r) for which
conditions (i)–(iii) of Lemma 3.3 are fulfilled will be called an h-regular
neighbourhood of x0. The function f0 defined on FrB(x0, r) with values in
Y will be called (continuously) h-differentiable on FrB(x0, r) if the mapping
f0(v(τ(·), ·)) is (continuously) differentiable on S(0, r), where v and τ are
defined as in Lemma 3.3.

Let X, Y be, as previously, Banach spaces over R, and suppose the norm
of X is continuously differentiable for x ∈ X such that x 6= 0. Let U , V be
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open subsets of X and Y , respectively; let h be a mapping from U into X,
and H a mapping from U × V into Y . Let x0 ∈ U and y0 ∈ V .

Theorem 3.1. Suppose h, H are continuously differentiable on their do-
mains, h(x0) = 0, H(x, y0) = 0 for x ∈ U0, where U0 is some neighbourhood
of x0. If Dh(x0), DH(x0, y0) are negative definite then there exist positive
numbers r1, r2 such that

1o B(x0, r1) is an h-regular neighbourhood of x0,
2o for any continuously h-differentiable mapping f0 defined on

FrB(x0, r1) such that ‖f0(x)− y0‖ < r2 for x ∈ FrB(x0, r1) the differential
equation

(3.9) Df(x)(h(x)) = H(x, f(x)) for x ∈ S(x0, r1)

has exactly one solution satisfying

(3.9′) f(x) = f0(x) for x ∈ FrB(x0, r1) ,

3o if f is the solution of (3.9) satisfying (3.9′), then limx→x0 f(x) = y0.

P r o o f. Without loss of generality, we can assume that x0 = 0, y0 = 0.
By the assumption on H and by Lemma 3.2 it follows that there exist
R1, R2, α > 0 such that

y∗(H(x, y)) ≤ −α‖y‖ for y∗ ∈ C∗(y), x ∈ B(0, R1) ⊂ X, y ∈ B(0, R2) ⊂ Y.

Since h fulfils the assumptions of Lemma 3.3 there exists a ball B(0, r0) ⊂
X which is an h-regular neighbourhood of 0. Let r1 = min(r0, R1) and
fix x ∈ S(0, r1). Let v = v(t, x), for t ∈ Px, be the total solution of
dv/dt = h(v), v(0, x) = x. Next, in accordance with Lemma 3.3, let τ be the
mapping from S(0, r1) into R such that ‖v(τ(x), x)‖ = r1 for x ∈ S(0, r1).

Since the norm of X is continuously differentiable at x 6= 0,

d

dt
‖v(t, x)‖ =

2
‖v(t, x)‖

〈h(v(t, x)), v(t, x)〉

for x ∈ S(0, r1) and t ∈ Px (compare Lemma 3.1 of [Ka]). Since for some
β > 0

x∗(h(x)) ≤ −β‖x‖
for x∗ ∈ C∗(x) and x ∈ S(0, r1), we obtain

d

dt
‖v(t, x)‖ 6= 0 for x ∈ S(0, r1), t ∈ Px .

Hence, by the implicit function theorem, τ is continuously differentiable on
S(0, r1).
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Now, for each x ∈ S(0, r1), let w = w(·, x) be the solution of

(3.10)
dw

dt
(t, x) = H(v(t, v(τ(x), x)), w(t, x)) ,

w(0, x) = f0(v(τ(x), x)) .

Define H̃x(w, t) = H(v(t, v(τ(x), x)), w) for w ∈ B(0, R2) ⊂ Y and t ∈
[0,∞). Since H̃x fulfils the assumptions of Lemma 3.1, w(·, x) is defined on
[0,∞). The function w : [0,∞)×S(0, r1)→ Y is continuously differentiable
because so are H, v, τ . Moreover, notice that by the properties of v, τ(x) ∈
(−∞, 0] for x ∈ S(0, r1). Now define

(3.11) f(x) = w(−τ(x), v(τ(x), x)) for x ∈ S(0, r1) .

It is obvious that this function is continuously differentiable on S(0, r1). We
will prove that it fulfils equation (3.9). By (3.11),

Df(x) =−D1w(−τ(x), v(τ(x), x))Dτ(x)
+D2w(−τ(x), v(τ(x), x))Dv(τ(x), x) for x ∈ S(0, r1) .

Differentiating with respect to t the identities

v(τ(v(t, x)), v(t, x)) = v(τ(x), x), τ(v(t, x)) = τ(x)− t ,
t ∈ Px, x ∈ S(0, r1) ,

we obtain for t = 0 and x ∈ S(0, r1)

Dv(τ(x), x)(h(x)) = 0, Dτ(x)(h(x)) = −1 .

Hence for x ∈ S(0, r1)

Df(x)(h(x)) = D1w(−τ(x), v(τ(x), x))
= H(v(−τ(x), v(τ(x), x)), w(−τ(x), v(τ(x), x))) (by (3.10))
= H(x, f(x)) (by (3.11)) .

Uniqueness follows from the uniqueness for equation (3.10). Since w(0, x) =
f0(v(τ(x), x)) for x ∈ S(0, r1), we have f(x) = f0(x) for x ∈ S(0, r1).

Now we will prove that limx→0 f(x) = 0. By (3.11) and (3.4),

(3.12) ‖f(x)‖ ≤ eατ(x)‖f0(v(τ(x), x))‖ for x ∈ S(0, r1) .

Since ‖f0(x)‖ ≤ r2 for x ∈ FrB(0, r1) and limx→0 τ(x) = −∞, we immedi-
ately get the conclusion.

R e m a r k 3.1. Condition 3o of the above theorem suggests the natural
question whether the function

f̃(x) =
{
f(x) for x ∈ S(x0, r1),
y0 for x = x0

is a solution of equation (3.8) in B(x0, r1). That this is not generally the
case is shown by the following example.
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Let X = Y be a real unitary space. Taking pattern upon the proof of
Theorem 3.1 it is not difficult to find the solution of

(3.13)
Df(x)(−x) = − 1

2f(x) for x ∈ S(0, 1) ,
f(x) = x for x ∈ FrB(0, 1) .

The solution is f(x) = ‖x‖−1/2x for x ∈ S(0, 1). Notice that the function

f̃(x) =
{
‖x‖−1/2x for x ∈ S(0, 1),
0 for x = 0

is not differentiable at x = 0, hence it cannot be a solution of equation (3.13)
in B(0, 1).

In the next part of this section we will be concerned with the depen-
dence upon initial conditions and parameters of solutions of a generalized
differential equation in a vicinity of a singular point.

Let the assumptions of Theorem 3.1 be fulfilled and let r1, r2 be the
constants in the statement of this theorem. The space of continuously h-
differentiable mappings from FrB(x0, r1) into B(y0, r2) ⊂ Y will be de-
noted by Bh(FrB(x0, r1), B(y0, r2)) and the space of bounded mappings
from S(x0, r1) into B(y0, r2) by B(S(x0, r1), B(y0, r2)); both these spaces
will have the sup norm. With these assumptions for f ∈ Bh(FrB(x0, r1),
B(y0, r2)) there exists exactly one solution of

Df(x)(h(x)) = H(x, f(x)) for x ∈ S(x0, r1) ,
f(x) = f0(x) for x ∈ FrB(x0, r1) .

From now on, this solution will be denoted by f(·, f0).
With the above notations we have

Theorem 3.2. If {fn}n∈N ⊂ Bh(FrB(x0, r1), B(y0, r2)) is convergent to
f0 ≡ y0 then {f(·, fn)}n∈N converges to f(·, f0) in B(S(x0, r1), B(y0, r2)).

P r o o f. Let all the assumptions and notations used in the proof of
Theorem 3.1 be valid. We reduce the proof to the case when x0 = 0 and
y0 = 0. By (3.12),

‖f(x, fn)‖ ≤ eατ(x)‖fn(v(τ(x), x))‖
≤ ‖fn(v(τ(x), x))‖ for x ∈ S(0, r1) ,

since τ(x) ≤ 0 for x ∈ S(0, r1). Hence it follows immediately that if {fn}n∈N
is convergent to 0 in Bh(FrB(0, r1), B(0, r2)) then {f(·, fn)}n∈N is conver-
gent to f(·, 0) = 0 in B(S(0, r1), B(0, r2)).

The next theorem will be preceded by the following assumptions.
Let X, Y , Z be real Banach spaces and let the norm of X be continu-

ously differentiable at x 6= 0. Let U , V1, V2 be open subsets of X, Y , Z,
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respectively, h a mapping from U into X, and H a mapping from U×V1×V2

into Y . Further, let x0 ∈ U , y0 ∈ V1, z0 ∈ V2.

Theorem 3.3. Suppose h and H are continuously differentiable on their
domains, h(x0) = 0, H(x, y0, z) = 0 for (x, z) ∈ U ′ × V ′2 where U ′, V ′2
are some neighbourhoods of x0, z0, respectively. If Dh(x0), D2H(x0, y0, z0)
are negative definite, then there exist positive constants r1, r2, r3 such
that

1) B(x0, r1) is an h-regular neighbourhood of x0,
2) for any z ∈ B(z0, r3) and for any continuously h-differentiable map-

ping f0 defined on FrB(x0, r1) such that ‖f0(x)−y0‖ < r2 for x ∈ B(x0, r1)
the differential equation

Dfz(x)(h(x)) = H(x, fz(x), z) for x ∈ S(x0, r1)

has exactly one solution satisfying

fz(x) = f0(x) for x ∈ FrB(x0, r1) ,

3) the mapping f̃(x, z) = fz(x) for (x, z) ∈ S(x0, r1) × B(z0, r3) is
continuously differentiable.

The proof is analogous to that of Theorem 3.1.

§3. Form of solutions in a vicinity of a singular point. Let X,
Y be Banach spaces over R , let U ⊂ X be an open set containing 0, let
g be a mapping from U into Y , and A a mapping from U into L(Y, Y ).
In this part of our paper we will be concerned with the differential equa-
tion

Df(x)(x) = A(x)(f(x)) + g(x) for x ∈ U .
Lemma 3.4. Suppose U is a starlike set , and g and A are continuous. Let

r > 0 be such that B(0, r) ⊂ U . Then for any function f0 from FrB(0, r)
into Y there exists exactly one mapping f which is differentiable at every
x ∈ U − {0} in the direction of the vector x and which satisfies

∇xf(x) = A(x)(f(x)) + g(x) for x ∈ U − {0} ,(3.14)
f(x) = f0(x) for x ∈ FrB(0, r) .(3.14′)

Moreover , if tx = inf{t;xe−t ∈ U} and Qx = (tx,∞) for x ∈ U −
{0}, and R = R(·,·, x) is the mapping from Qx × Qx into L(Y, Y ) such
that

(3.15)
dR
dt

(t, t0, x) = −A(xe−t) ◦ R(t, t0, x) for t ∈ Qx ,

R(t0, t0, x) = Ix for t0 ∈ Qx ,
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then the solution f of (3.14)–(3.14′) can be represented in the form

f(x) = R(ln(r/‖x‖), 0, rx/‖x‖)
(
f0(rx/‖x‖)(3.16)

−
ln(r/‖x‖)∫

0

R(0, τ, rx/‖x‖)(g(rxe−τ/‖x‖)) dτ
)

for x ∈ U − {0}.

P r o o f. First, we prove that a function satisfying (3.14) and (3.14′) is of
the form (3.16). Fix x in U − {0} and let u(t) = f(xe−t) for t ∈ Qx. Then
u fulfils

du

dt
(t) = −A(xe−t)(u(t))− g(xe−t) for t ∈ Qx ,

u(0) = f(x) .

This is a linear differential equation of the first order and its unique solution
is

u(t) = R(t, 0, x)
(
f0(x)−

t∫
0

R(0, τ, x)(g(xe−τ )) dτ
)

for t ∈ Qx, where R is the solution of (3.15). Thus

(3.17) f(xe−t) = R(t, 0, x)
(
f0(x)−

t∫
0

R(0, τ, x)(g(xe−τ )) dτ
)

for t ∈ Qx and x ∈ FrB(0, r).
Notice that any point x ∈ U − {0} can be represented in the form x =

ξe− ln(r/‖x‖), where ξ = rx/‖x‖. It is obvious that rx/‖x‖ ∈ FrB(0, r) and
ln(r/‖x‖) ∈ Qξ for ξ = rx/‖x‖. Hence (3.16) follows from (3.17).

Conversely, let f be defined by (3.16). We prove that it is a solution of
(3.14)–(3.14′). Let x ∈ U −{0} and let Qx(ε) ⊂ (−1, 1) be an open interval
containing 0 such that (1 + s)x ∈ U − {0} for s ∈ Qx(ε). Define

f̃(s) = f(x+ sx) for s ∈ Qx(ε) .

By (3.16) we get

f̃(s) = R
(

ln
r

(1 + s)‖x‖
, 0,

rx

‖x‖

)(
f0

(
rx

‖x‖

)

−
ln(r/((1−s)‖x‖))∫

0

R
(

0, τ,
rx

‖x‖

)(
g

(
rxe−τ

‖x‖

))
dτ

)
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for s ∈ Qx(ε). Consequently f̃ is differentiable and

f̃ ′(s) = A((1 + s)x)
(
R
(

(ln
r

(1 + s)‖x‖
, 0,

rx

‖x‖

)(
f0

(
rx

‖x‖

)

−
ln(r/((1+s)‖x‖))∫

0

R
(

0, τ,
rx

‖x‖

)(
g

(
rxe−τ

‖x‖

))
dτ

))
+

1
1 + s

g((1 + s)x)

for s ∈ Qx(ε). Since f̃ ′(0) = ∇xf(x), this gives

∇xf(x) = A(x)
(
R(ln(r/‖x‖), 0, rx/‖x‖)

(
f0(rx/‖x‖)

−
ln(r/‖x‖)∫

0

R(0, τ, rx/‖x‖)(g(rxe−τ/‖x‖)) dτ
))

+ g(x)

for x ∈ U − {0} .

It is obvious that f also satisfies condition (3.14′).

Theorem 3.4. Let X, Y be real Banach spaces and suppose the norm
of X is continuously differentiable on X − {0}. Let U ⊂ X be an open and
starlike set , g a continuously differentiable mapping from U into Y , and A
a continuously differentiable mapping from U into L(Y, Y ). If r > 0 is such
that B(0, r) ⊂ U then for any function f0 defined on FrB(0, r) such that the
function f̃0(x) = f0(rx/‖x‖) is continuously differentiable on X − {0}, the
equation

(3.18) Df(x)(x) = A(x)(f(x)) + g(x) for x ∈ U − {0} .

has exactly one continuously differentiable solution on U − {0}, satisfying

(3.18′) f(x) = f0(x) for x ∈ FrB(0, r) .

Moreover , this solution has the form

f(x) = R(ln(r/‖x‖), 0, rx/‖x‖)
(
f0(rx/‖x‖)(3.19)

−
ln(r/‖x‖)∫

0

R(0, τ, rx/‖x‖)(g(rxe−τ/‖x‖)) dτ
)

for x ∈ U − {0}, where R is defined as in Lemma 3.4.

P r o o f. Our assumptions imply that f defined by (3.19) is continu-
ously differentiable on U −{0}. Lemma 3.4 now yields the statement of the
theorem.
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R e m a r k 3.2. In the last theorem the assumptions about the mappings
f0, g, A are strong. Hence it seems to be of interest, just as in Theorem 3.1,
whether the solution f can be extended continuously to x = 0. Consider
the following example.

Let X, Y be real Banach spaces and suppose the norm of X is continu-
ously differentiable on X − {0}. Consider the equation

Df(x)(x) = −f(x) for x ∈ X − {0}
f(x) = x for x ∈ FrB(0, 1) .

Then f(x) = x/‖x‖2 for x ∈ X − {0} is a solution with no continuous
extension to all of X. Hence the answer to this question is negative.

R e m a r k 3.3. In Theorem 3.4 we looked for a solution of equation
(3.18) in a vicinity of the singular point. A completely different problem is
the problem of finding a solution of (3.18) in a neighbourhood of the singular
point. The difference is illustrated by the following example.

Let X, Y be real Banach spaces. We show that the unique, continuously
differentiable solutions on B(0, 1) of

(3.20)
Df(x)(x) = f(x) for x ∈ B(0, 1) ,

f(0) = 0

are continuous linear operators from X into Y .
Fix x in B(0, 1) and let f be a continuously differentiable mapping on

B(0, 1) satisfying (3.20). Define u(t) = f(xe−t) for t ∈ [0,∞). Then u′(t) =
−u(t) for t ∈ [0,∞), u(0) = f(x). It follows that

(3.21) f(xe−t) = e−tf(x) for t ∈ [0,∞) .

Since f(0) = 0, by the Taylor Formula we get

lim
t→∞

etf(xe−t) = Df(0)(x) .

Hence, by equality (3.21) we obtain f(x) = Df(0)(x) for x ∈ B(0, 1).

IV. Existence and form of solutions of generalized linear
differential equations connected with geometrical

properties of holomorphic mappings

§1. Introduction. Let X be a complex Banach space and let Ω be
a domain of X. The class of all holomorphic functions f : Ω → X will be
denoted by H(Ω). As in the previous chapters, let

C∗(x) = {x∗ ∈ X∗; ‖x∗‖ = 1, x∗(x) = ‖x‖} for x ∈ X
where X∗ is the dual of X.
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Define the following classes of mappings:

N0 = {h ∈ H(B); h(0) = 0, rex∗(h(x)) ≥ 0
for x∗ ∈ C∗(x), x ∈ B} ,

N = {h ∈ H(B); h(0) = 0, rex∗(h(x)) > 0
for x∗ ∈ C∗(x), x ∈ B − {0}} ,

M = {h ∈ N; Dh(0) = IX} ,

where B = B(0, 1).
For A ∈ L(X,X), set

m(A) = inf{rex∗(A(x)); x∗ ∈ C∗(x), ‖x‖ = 1} ,

and if m(A) 6= 0 let α(A) denote the integer part of ‖A‖/m(A) (i.e. α(A) =
[‖A‖/m(A)]).

Definition 4.1. Let f be a biholomorphic mapping from the ball
B ⊂ X into X such that f(0) = 0, Df(0) = IX ; let A ∈ L(X,X) and
m(A) > 0. The mapping f will be called spiral-like relative to A if

e−tA(f(B)) ⊂ f(B) for all t ≥ 0 .

A spiral-like mapping relative to A = IX will be called starlike.

Definition 4.2. A mapping v ∈ H(B) is called a Schwarz function if
v(0) = 0 and ‖v(x)‖ ≤ ‖x‖ for x ∈ B (compare [Ha]).

Definition 4.3. A subordination chain is a function f : B×[0,∞)→ X
such that for each t ≥ 0, f(·, t) ∈ H(B), f(0, t) = 0 and for s, t such
that 0 ≤ s ≤ t there exists a Schwarz function v = v(·, s, t) such that
f(x, s) = f(v(x, s, t), t) for x ∈ B.

A subordination chain f is univalent if for each t ≥ 0, f(·, t) is univalent
in B.

A subordination chain f = f(x, t), (x, t) ∈ B × [0,∞), is called normal-
ized if

Df(0, t) = etIX for t ≥ 0
(compare [Pm], [Pf]).

With the above assumptions, in view of Theorem 5 of [G] we can write
Theorem 11 of [Su] in the following form:

Theorem. Let A ∈ L(X,X), m(A) > 0 and let f : B → X be a locally
biholomorphic mapping such that f(0) = 0, Df(0) = IX . Then f is spiral-
like relative to A if and only if there exists h ∈ N such that Dh(0) = A
and

(4.1) Df(x)(h(x)) = Dh(0)(f(x)) for x ∈ B .
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It is natural to ask if for each h ∈ N there exists f satisfying (4.1). The
answer is given in §2 of this chapter.

In §3 we will be concerned with the equation

(4.2) Df(x)(h(x)) = g(x) for x ∈ B ,
and with the conditions f(0) = 0, Df(0) = IX , where h ∈ M and g is a
starlike mapping. This equation is connected with close-to-starlike functions
which are defined in the following way:

Definition 4.4. A mapping f ∈ H(B) such that f(0) = 0 Df(0) = IX
will be called close-to-starlike if there exist functions h, g such that h ∈M,
g is a starlike and (4.2) holds.

In the case when X is a finite-dimensional space, these mappings have
some interesting geometrical properties. It is a natural question whether for
any starlike function g and for any h ∈ M equation (4.2) has a solution.
The answer is given in §3.

In §4 we present relations between univalent subordination chains and
solutions of the generalized equation of Lőwner.

Fundamental facts concerning holomorphic mappings can be found e.g.
in [BS], [Di], [Mu] and [N].

§2. Holomorphic solutions of generalized differential equation
connected with spiral-like mappings. The consideration of equation
(4.1) will be preceded by the following

Lemma 4.1 Let h ∈ N and m(Dh(0)) > 0. Then for each x ∈ B the
equation

(4.3)
∂v

∂t
(t, x) = −h(v(t, x)), v(0, x) = x ,

has exactly one solution v(·, x) defined for t ≥ 0. Moreover , for every t ≥ 0,
v(t, ·) is a univalent Schwarz function on B, v is infinitely often differentiable
with respect to (t, x) ∈ [0,∞)×B, and

(4.4)
‖v(t, x)‖

(1− ‖v(t, x)‖)2
≤ e−m(Dh(0))t ‖x‖

(1− ‖x‖)2
for (t, x) ∈ [0,∞)×B .

P r o o f. The existence and uniqueness of solution and the fact that
v(t, ·) is a univalent Schwarz function on B for t ≥ 0 follow immediately
from Lemma 5 of [G]. Theorem 10.8.2 of [D] yields the existence of the
derivatives of v of all orders with respect to (t, x) ∈ [0,∞) × B. Hence it
remains to prove inequality (4.4).

Fix x ∈ B − {0}. Analogously to Lemma 5 of [G] we find that

∂‖v(t, x)‖
∂t

≤ −m(Dh(0))
1− ‖v(t, x)‖
1 + ‖v(t, x)‖

‖v(t, x)‖ ,
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that is,
1 + ‖v(t, x)‖

(1− ‖v(t, x)‖)‖v(t, x)‖
∂‖v(t, x)‖

∂t
≤ −m(Dh(0))

for almost every t ≥ 0. By using the absolute continuity of ‖v(t, x)‖ in [0, t]
(t > 0) and by integrating the above inequality we obtain the assertion.

Theorem 4.1. Let h ∈ N and m(Dh(0)) > 0. If f ∈ H(B) is a solution
of the equation

Df(x)(h(x)) = Dh(0)(f(x)) for x ∈ B, f(0) = 0 ,

then

(4.5) f(x) = lim
t→∞

eDh(0)t

(α(Dh(0))∑
n=1

1
n!
Dnf(0)(vn(t, x))

)
for x ∈ B ,

where v = v(t, x), for (t, x) ∈ [0,∞) × B, is the solution of (4.3). Here
yn = (y, . . . , y)(n times) for y ∈ X.

P r o o f. Let h, f , v be as in the statement of the theorem. Then

(4.6) Df(v(t, x))(h(v(t, x))) = Dh(0)(f(v(t, x))) for (t, x) ∈ [0,∞)×B ,

or, setting w(t, x) = f(v(t, x)) for (t, x) ∈ [0,∞)×B,

(4.6′)
∂w

∂t
(t, x) = −Dh(0)(w(t, x)) for (t, x) ∈ [0,∞)×B .

Since v(0, x) = x, therefore w(0, x) = f(x) for x ∈ B. Solving (4.6′) gives

f(v(t, x)) = w(t, x) = e−Dh(0)t(f(x)) for (t, x) ∈ [0,∞)×B .

In order to show (4.5) it is sufficient to prove that

(4.7) lim
t→∞

eDh(0)t

(
f(v(t, x))−

α(Dh(0))∑
n=1

1
n!
Dnf(0)(vn(t, x))

)
= 0

for x ∈ B. Taylor’s formula (Theorem 8.14.3 of [D]) implies that there exist
a ball B(0, r) ⊂ X and a constant C > 0 such that for y ∈ B(0, r)∥∥∥∥f(y)−

α(Dh(0))∑
n=1

1
n!
Dnf(0)(yn)

∥∥∥∥ ≤ C‖y‖α(Dh(0))+1 .

Now fix x ∈ B. By (4.4) there exists t0 > 0 such that for t > t0, v(t, x) ∈
B(0, r). Hence

‖f(v(t, x))−P0(v(t, x))‖ ≤ C‖v(t, x)‖α(Dh(0))+1 for t > t0 ,
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where P0(x) =
∑α(Dh(0))
n=1 (1/n!)Dnf(0)(xn) for x ∈ B. Since ‖eDh(0)t‖ ≤

et‖Dh(0)‖ for t ≥ 0 we deduce that

‖eDh(0)t(f(v(t, x))−P0(v(t, x)))‖ ≤ Cet‖Dh(0)‖‖v(t, x)‖α(Dh(0))+1

≤ C‖x‖α(Dh(0))+1

(1− ‖x‖)2(α(Dh(0))+1)
etM(Dh(0))

for t > t0, by (4.4), where M(Dh(0)) = ‖Dh(0)‖ − α(Dh(0))m(Dh(0)) −
m(Dh(0)). Since M(Dh(0)) < 0, (4.7) follows.

Theorem 4.2. Let h ∈ N, m(Dh(0)) > 0 and let v = v(t, x), for (t, x) ∈
[0,∞)×B, be the solution of (4.3). Let F be a mapping from B into X such
that the limit

(4.8) lim
t→∞

eDh(0)t(F (v(t, x))) = f(x)

exists for x ∈ B and belongs to H(B). Then f fulfils the equation

(4.9) Df(x)(h(x)) = Dh(0)(f(x)) for x ∈ B .

P r o o f. Fix x ∈ B and let t0 ≥ 0. Clearly,

(4.10) v(t, v(t0, x)) = v(t+ t0, x) for t ≥ 0 .

From (4.8) we have

lim
t→∞

eDh(0)t(F (v(t, v(t0, x)))) = f(v(t0,x))(4.11)

for t0 ≥ 0 and x ∈ B .
This and (4.10) imply that

(4.12) lim
t→∞

e−Dh(0)t0eDh(0)(t+t0)(F (v(t+ t0, x))) = e−Dh(0)t0f(x)

for t0 ≥ 0 and x ∈ B. Next, from (4.11) and (4.12) it follows that

f(v(t0, x)) = e−Dh(0)t0f(x) for t0 ≥ 0 and x ∈ B .
By differentiating the above equation with respect to the parameter t0 for
t0 = 0, we obtain (4.9).

R e m a r k 4.1. If in Theorem 4.2 we assume, additionally, that F ∈
H(B), F (0) = 0 and DF (0) = IX , then the function f defined by (4.8)
fulfils, in addition, the conditions: f(0) = 0 and Df(0) = IX .

The next theorem will be preceded by the following

Lemma 4.2. Let h ∈ N, m(Dh(0)) > 0 and let v be the solution of (4.3).
If α(Dh(0)) = 1, then the limit

lim
t→∞

eDh(0)t(v(t, x)) = f(x)

exists for x ∈ B and f ∈ H(B), f(0) = 0, Df(0) = IX .
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P r o o f. Let u(t, x) = eDh(0)t(v(t, x)) for t ≥ 0 and x ∈ B. Then

∂u

∂t
(t, x) = Dh(0)(u(t, x))− eDh(0)t(h(e−Dh(0)t(u(t, x))))

for t ≥ 0 and x ∈ B ,
u(0, x) = x for x ∈ B .

Put H(x) = h(x) − Dh(0)(x) for x ∈ B. Then H is holomorphic on B,
H(0) = 0 and DH(0) = 0. This implies that

(4.13)
∂u

∂t
(t, x) = −eDh(0)t(H(e−Dh(0)t(u(t, x)))) for t ≥ 0, x ∈ B ,

u(0, x) = x for x ∈ B .
Integrating both sides of (4.13) on [t1, t2] (0 < t1 < t2), we obtain

(4.14) u(t2, x)− u(t1, x) = −
t2∫

t1

eDh(0)τ (H(e−Dh(0)τ (u(τ, x)))) dτ .

By Taylor’s formula (Theorem 8.14.3 of [D]) there exist a constant C > 0
and a ball B(0, δ) ⊂ X (where 0 < δ < 1) such that for y ∈ B(0, δ)

(4.15) ‖H(y)‖ ≤ C‖y‖2 .

Fix r ∈ (0, 1). By (4.4),

‖e−Dh(0)t(u(t, x))‖ ≤ e−m(Dh(0))t ‖x‖
(1− ‖x‖)2

for t > 0 and x ∈ B .

Hence there exists tr > 0 such that for t > tr and x ∈ B(0, r)

‖e−Dh(0)t(u(t, x))‖ ≤ δ .
Consequently, (4.15) and (4.14) imply that for t1, t2 such t2 > t1 > tr

‖u(t2, x)− u(t1, x)‖ ≤ C‖x‖2

(1− ‖x‖)4

t2∫
t1

e‖Dh(0)‖τ−2m(Dh(0))τ dτ for x ∈ B .

Since ‖Dh(0)‖ − 2m(Dh(0)) < 0 by our assumption, the integral∫∞
0
e‖Dh(0)‖−2m(Dh(0)))τ dτ is convergent. From the Cauchy condition of

convergence of improper integrals it then follows that for any ε > 0 there
exists t0r > 0 such that for t1, t2 with t2 > t1 > t0r and for x ∈ B(0, r) we
have

‖u(t2, x)− u(t1, x)‖ < ε .

Hence limt→∞ eDh(0)t(v(t, x)) exists for x ∈ B.
Let f(x) be this limit. Since the convergence is uniform on every ball

B(0, r) (where 0 < r < 1), it follows that f ∈ H(B) by Weierstrass’s theorem
(see e.g. [BS]). It is not difficult to verify that f(0) = 0, Df(0) = IX .
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Theorem 4.3. If h ∈ N and α(Dh(0)) = 1, then the equation

(4.16) Df(x)(h(x)) = Dh(0)(f(x)) for x ∈ B

has exactly one solution f ∈ H(B) satisfying f(0) = 0, Df(0) = IX
and

f(x) = lim
t→∞

eDh(0)t(v(t, x)) for x ∈ B ,

where v is the solution of (4.3).

P r o o f. First, notice that by Lemma 4.2 the limit limt→∞ eDh(0)t(v(t, x))
exists for x ∈ B and is a holomorphic function. Further, let F (x) = x for
x ∈ B; hence by Theorem 4.2 the function

f(x) = lim
t→∞

eDh(0)t(v(t, x))

fulfils (4.16) and, by Remark 4.1, f(0) = 0 and Df(0) = IX . Uniqueness is
a simple consequence of Theorem 4.1.

There is a sufficient condition for equation (4.16) to have a solution when
α(Dh(0)) ≥ 2. Let Lks(X,X) denote the space of all k-linear symmetric
mappings from X into X.

Theorem 4.4. Let h ∈ N and α(Dh(0)) ≥ 2. If there exist mappings
Fk ∈ Lks(X,X) for k = 2, . . . , n0 (where n0 = α(Dh(0))) such that

1
k!
Dkh(0)(xk) =Dh(0)(Fk(xk))(4.17)

−
k∑
j=2

jFj

(
1

(k − j + 1)!
Dk−j+1h(0)(xk−j+1), xj−1

)
for k = 2, . . . , n0, then the limit

lim
t→∞

eDh(0)t

(
v(t, x) +

n0∑
k=2

Fk(vk(t, x))
)

= f(x)

exists for x ∈ B, where v is the solution of (4.3). Furthermore, f ∈ H(B),
f(0) = 0, Df(0) = IX and f fulfils equation (4.16).

P r o o f. Let

u(t, x) = eDh(0)t

(
v(t, x) +

n0∑
k=2

Fk(vk(t, x))
)
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for x ∈ B and t ≥ 0. Then

∂u

∂t
(t, x) = Dh(0)eDh(0)t

(
v(t, x) +

n0∑
k=2

Fk(vk(t, x))
)

− eDh(0)t(h(v(t, x)))

− eDh(0)t

( n0∑
k=2

kFk(vk−1(t, x), h(v(t, x)))
)

for t ≥ 0 and x ∈ B.
Next, let

h̃(x) = h(x)−
n0∑
l=1

1
l!
Dlh(0)(xl) for x ∈ B .

Then h̃ ∈ H(B) and we can rewrite the above equality in the form

∂u

∂t
(t, x) = Dh(0)eDh(0)t

(
v(t, x) +

n0∑
k=2

Fk(vk(t, x))
)

− eDh(0)t

( n0∑
l=1

1
l!
Dlh(0)(vl(t, x))

)
− eDh(0)th̃(v(t, x))

− eDh(0)t

( n0∑
j=2

jFj

(
vj−1(t, x),

n0∑
l=1

1
l!
Dlh(0)(vl(t, x))

))

− eDh(0)t

( n0∑
k=2

kFk(vk−1(t, x), h̃(v(t, x)))
)

for t ≥ 0, x ∈ B. Applying (4.17), we obtain

∂u

∂t
(t, x) = −eDh(0)t

(
h̃(v(t, x))−

n0∑
k=2

kFk(vk−1(t, x), h̃(v(t, x))
)

(4.18)

− eDh(0)t

( n0∑
k=2

n0∑
l=n0−k+2

kFk

(
vk−1(t, x),

1
l!
Dlh(0)(vl(t, x))

))
for t ≥ 0, x ∈ B. By Taylor’s formula (Theorem 8.14.3 of [D]) there exist a
constant C1 > 0 and a ball B(0, δ) ⊂ X (0 < δ < 1) such that

(4.19) ‖h̃(x)‖ ≤ C1‖x‖n0 for x ∈ B(0, δ) .

Now, fix r ∈ (0, 1). By (4.4) there exists a constant C2(r) such that

(4.20) ‖v(t, x)‖ ≤ e−m(Dh(0))tC2(r) for t ≥ 0, x ∈ B(0, r) .

Since Fk ∈ Lks(X,X) for k = 2, . . . , n0, by (4.18)–(4.20) there exist C(r) > 0
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and t0 > 0 such that for z ∈ B(0, r) and for t1, t2 with t0 < t1 < t2 we have

‖u(t2, x)− u(t1, x)‖ ≤ C(r)
t2∫

t1

e‖Dh(0)‖τe−m(Dh(0))n0τ dτ .

Hence

f(x) = lim
t→∞

eDh(0)t

(
v(t, x) +

n0∑
k=2

Fk(vk(t, x))
)

exists for x ∈ B. Since the convergence is uniform on B(0, r), f ∈ H(B) by
Weierstrass’s theorem (see [BS]). Theorem 4.2 implies that f is a solution of
equation (4.16). It is not difficult to prove that f(0) = 0 and Df(0) = IX .

R e m a r k 4.2. Using Theorem 4.1 it is not hard to show that the suffi-
cient conditions presented in Theorem 4.4 are also necessary.

R e m a r k 4.3. In the case when X is finite-dimensional, the study of
the existence of the mappings Fk from Theorem 4.4 amounts to analysing a
system of linear equations.

The results of this section, in the case X = Cn (with the norm ‖z‖ =
(
∑n
i=1 |zi|2)1/2 for z ∈ Cn) are contained in [PoS]. For h ∈M the equation

(4.21) Df(x)(h(x)) = f(x) for x ∈ B
was discussed in [KP] and [Po2].

Since we know the form of solutions of equation (4.21), we can prove a
number of properties of starlike mappings from B into Cn. These results
are presented in [KP], [Po2] and [Po3].

§3. Existence and form of solutions of generalized differential
equations which define close-to-starlike mappings. Close-to-starlike
mappings from the ball B ⊂ X into X (see Definition 4.4) are connected
with the generalized differential equation

(4.22) Df(x)(h(x)) = g(x) for x ∈ B
where h ∈ M and g is a starlike mapping from B into X. In the case
when X = Cn, such mappings were considered by J. A. Pfaltzgraff and
T. J. Suffridge (compare [PS], [Su1]). Essential results of these papers con-
cern geometrical properties of close-to-starlike mappings. However, in these
papers an important problem is left out of account; namely, whether for each
h ∈ M and for every starlike function g there exists a function f ∈ H(B)
satisfying equation (4.22). A positive answer to this question is given by the
following

Theorem 4.5. Let h ∈M and let g be any starlike mapping from B into
X. Then there exists exactly one holomorphic solution f of equation (4.22)
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satisfying f(0) = 0, Df(0) = IX , and it is of the form

(4.23) f(x) =
∞∫

0

g(v(t, x)) dt for x ∈ B ,

where v = v(t, x) for (t, x) ∈ [0,∞)×B is the solution of

∂v

∂t
(t, x) = −h(v(t, x)) for (t, x) ∈ [0,∞)×B

v(0, x) = x for x ∈ B .

P r o o f. First, we prove that if there exists a solution f of (4.22) with
the required properties then it is of the form (4.23). Fix x ∈ B. Then

− d

dt
f(v(t, x)) = g(v(t, x)) for t ≥ 0 ,

and consequently

(4.24) −f(v(t, x)) + f(x) =
t∫

0

g(v(τ, x)) dτ for t ≥ 0 .

Notice that limt→∞ v(t, x) = 0 (see Lemma 4.1), hence limt→∞ f(v(t, x)) =
0. By Theorem 6 of [Po2] and Lemma 4.1,

(4.25) ‖g(v(τ, x))‖ ≤ e−τ ‖x‖
(1− ‖x‖)2

for τ ≥ 0 .

As a consequence, the improper integral
∫∞

0
g(v(τ, x)) dτ is absolutely con-

vergent. Hence, (4.24) implies that

f(x) =
∞∫

0

g(v(τ, x)) dτ .

Conversely, we show that the function f defined by (4.23) fulfils equation
(4.22). By (4.25), the definition (4.23) is correct and f is differentiable on
B. Since v(τ, v(t, x)) = v(τ + t, x) for x ∈ B and t, τ ≥ 0,

f(v(t, x)) =
∞∫
t

g(v(τ, x)) dτ for x ∈ B, t ≥ 0 .

This implies that

Df(v(t, x))
(
∂v

∂t
(t, x)

)
= −g(v(t, x)) for x ∈ B, t ≥ 0 .

Hence for t = 0 we get the assertion.

From Theorem 4.1 we obtain immediately
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Corollary 4.1. If f is a close-to-starlike function then

‖f(x)‖ ≤ ‖x‖
(1− ‖x‖)2

for x ∈ B .

§4. Univalent subordination chains and solutions of a general-
ized equation of Löwner. In the case when X = C the relation between
univalent subordination chains and the Löwner equation was examined in
great detail by Ch. Pommerenke in [Pm]. The results contained in this
section were published in [Po4].

Theorem 4.6. Let g = g(x, t) for x ∈ B, t ≥ 0 be a univalent subordi-
nation chain, and let v = v(t, s, x) for x ∈ B, 0 ≤ s ≤ t <∞ be a univalent
Schwarz function such that

(4.26) g(x, s) = g(v(t, s, x), t) for x ∈ B, 0 ≤ s ≤ t .
If the derivatives D2g(·, t) and (∂+v/∂t)(t, t, ·) exist for t ≥ 0 and are holo-
morphic functions in B, then there exists a function h = h(x, s) for x ∈ B,
s ≥ 0 such that h(·, s) ∈ N0 for each s ≥ 0 and the equation

(4.27) D2g(x, s) = D1g(x, s)(h(x, s)) for x ∈ B, s ≥ 0 ,

which is the generalized equation of Löwner , is satisfied.

P r o o f. We have v(t, s, 0) = 0 for 0 ≤ s ≤ t < ∞, and, on account of
the univalence of g(·, t), v(s, s, x) = x for x ∈ B, s ≥ 0. Fix s ≥ 0 and define
ṽs(τ, x) = v(s+ τ, s, x) for x ∈ B, τ ∈ [0, 1]. It is easy to see that ṽs satisfies
the assumptions of Lemma 1 of [Su]. Since

lim
τ→0+

x− ṽs(τ, x)
τ

= −∂v
∂t

(s, s, x) for x ∈ B, s ≥ 0 ,

we have −(∂v/∂t)(s, s, ·) ∈ N. Put −(∂v/∂t)(s, s, ·) = h(·, s) for s ≥ 0.
By differentiating boths sides of (4.26) with respect to t, we obtain for

t = s

D1g(v(s, s, x), s)
(
∂v

∂t
(s, s, x)

)
+D2g(v(s, s, x), s) = 0 ,

which is exactly (4.27).

In connection with Pfaltzgraff’s considerations in the last part of his
paper [Pf] we formulate

Lemma 4.3. Let h = h(x, t) be a function from B × [0,∞) into X such
that

(i) h(·, t) ∈M for each t ≥ 0,
(ii) h is continuous on B × [0,∞),
(iii) for each r ∈ (0, 1) there exists a constant C = C(r) such that

‖h(x, t)‖ ≤ C(r) for x ∈ B(0, r), t ≥ 0.
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Then for each s ≥ 0 and x ∈ B the equation

(4.28)
∂v

∂t
= −h(v, t) for t ≥ s, v(s) = x ,

has exactly one solution v = v(t, s, x), where x ∈ B, 0 ≤ s ≤ t < ∞.
Furthermore, for any (s, t) such that 0 ≤ s ≤ t <∞, v(t, s, ·) is a univalent
Schwarz function on B.

Upon introducing a semi-inner product in X (for definition see e.g. [G]
or Remark 2.3) and using Lemma 1.3 of [Ka] the proof of this lemma is
similar to that of Theorem 2.1 of [Pf].

With the assumptions of Lemma 4.3 we have

Corollary 4.2. If v = v(t, s, x) for x ∈ B, 0 ≤ s ≤ t < ∞ satisfies
(4.28) then

et‖v(t, s, x)‖
(1− ‖v(t, s, x)‖)2

≤ es‖x‖
(1− ‖x‖)2

,
es‖x‖

(1 + ‖x‖)2
≤ et‖v(t, s, x)‖

(1 + ‖v(t, s, x)‖)2

for x ∈ B and 0 ≤ s ≤ t <∞.

With the use of Lemma 4 of [G] the proof of this corollary is similar to
that of Lemma 2.2 of [Pf].

Lemma 4.4 Let h satisfy the assumptions of Lemma 4.3. Then the limit

(4.29) lim
t→∞

etv(t, s, x) = f(x, s)

exists for x ∈ B, s ≥ 0, where v = v(t, s, x) is the function from Lemma 4.3,
and for fixed s ≥ 0, f(·, s) is holomorphic on B.

P r o o f. Let u(t, s, x) = etv(t, s, x) for x ∈ B, 0 ≤ s ≤ t <∞. Then

(4.30)
∂u

∂t
(t, s, x) = u(t, s, x)− eth(e−tu(t, s, x), t)

for x ∈ B and 0 ≤ s ≤ t <∞. Set H(x, t) = h(x, t)−x for x ∈ B and t ≥ 0.
For each t ≥ 0, H(·, t) is holomorphic on B and H(0, t) = 0, DH(0, t) = 0.
Now (4.30) takes the form

(4.31)
∂u

∂t
(t, s, x) = −etH(e−tu(t, s, x), t) for x ∈ B, 0 ≤ s ≤ t <∞ .

By (iii), for each r ∈ (0, 1) there exists a constant C(r) such that ‖H(x, t)‖ ≤
C(r) for x ∈ B(0, r) and t ≥ 0.

Fix r0 ∈ (0, 1). Then there exists δ0 ∈ (0, 1) such that a+ ξx ∈ B(0, r0)
for a, x ∈ B(0, δ0), ξ ∈ C and |ξ| = 1. From the Cauchy integral formula
(see e.g. [BS]) we have

1
2!
D2H(a, t)(x, x) =

1
2πi

∫
|ξ|=1

H(a+ ξx, t)ξ−2 dξ
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for a, x ∈ B(0, δ0). Since ‖H(a+ ξx, t)‖ ≤ C(r0) for a, x ∈ B(0, δ0), |ξ| = 1
and t ≥ 0, we obtain∥∥∥∥ 1

2!
D2H(a, t)(x, x)

∥∥∥∥ ≤ C(r0) for a, x ∈ B(0, δ0), t ≥ 0 ,

and since D2H(a, t) is bilinear,

(4.32)
∥∥∥∥ 1

2!
D2H(a, t)(x, x)

∥∥∥∥ ≤ C(r0)
δ2
0

‖x‖2

for a ∈ B(0, δ0), t ≥ 0 and x ∈ X.
By the Taylor formula (see Theorem 5.6.1 of [Ca]),

H(x, t) =
1∫

0

(1− ξ)D2H(ξx, t)(x, x) dξ

for x ∈ B(0, δ0) and t ≥ 0, and so

(4.33) ‖H(x, t)‖ ≤ C(r0)
δ2
0

‖x‖2

for x ∈ B(0, δ0) and t ≥ 0, by (4.32).
Corollary 4.2 gives

‖v(t, s, x)‖ ≤ es−t ‖x‖
(1− ‖x‖)2

for x ∈ B, 0 ≤ s ≤ t <∞ .

Hence for any r ∈ (0, 1) there exists τ1 ≥ s such that ‖v(t, s, x)‖
≤ δ0 for x ∈ B(0, r) and t ≥ τ1. From (4.33) we thus obtain

‖H(e−tu(t, s, x), t)‖ ≤ C(r0)
δ2
0

e−2t‖u(t, s, x)‖2

for x ∈ B(0, δ0) and 0 ≤ s ≤ t < ∞. Since, for r ∈ (0, 1) and s ≥ 0, there
exists τ2 > s such that ‖u(t, s, x)‖/t ≤ 1 for t ≥ τ2 and x ∈ B(0, r), we get
for t ≥ τ0 = max(τ1, τ2) the estimate

‖H(e−tu(t, s, x), t)‖ ≤ C(r0)
δ2
0

t2e−2t for x ∈ B(0, r) .

This and equation (4.31) imply that

‖u(t2, s, x)− u(t1, s, x)‖ ≤ C(r0)
δ2
0

t2∫
t1

t2e−2t dt

for x ∈ B and t1, t2 ≥ τ0. Since the integral
∫∞

0
t2e−2t dt is convergent, for

any ε > 0 there exists τ > 0 such that for t1, t2 > τ

‖u(t2, s, x)− u(t1, s, x)‖ ≤ ε for x ∈ B(0, r) .
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As a consequence, by Weierstrass’s theorem the limit (4.29) is holomorphic
on B for each s ≥ 0.

Corollary 4.3. With the assumptions of Lemma 4.4 the function f =
f(x, s) defined by (4.29) satisfies

es‖x‖
(1 + ‖x‖)2

≤ ‖f(x, s)‖ ≤ es‖x‖
(1− ‖x‖)2

for x ∈ B and s ≥ 0.

These inequalities follow immediately from Corollary 4.2 and Lemma
4.4.

Lemma 4.5. Let h, v and f be as in Lemma 4.4. Then f is a univalent
normalized subordination chain.

P r o o f. Fix s ≥ 0 and τ ≥ s and let x̃ = v(τ, s, x) and ṽ(t, τ, x̃) =
v(t, s, x) for t ≥ τ and x ∈ B. Then

∂ṽ

∂t
(t, τ, x̃) = −h(ṽ(t, τ, x̃), t) for t ≥ τ, ṽ(τ, τ, x̃) = x̃ .

From the equality

lim
t→∞

etv(t, s, x) = lim
t→∞

etṽ(t, τ, x̃)

we obtain f(x, s) = f(x̃, τ) for τ ≥ s, and thus

(4.34) f(x, s) = f(v(τ, s, x), τ) for x ∈ B, 0 ≤ s ≤ τ .

Hence f is a subordination chain. Analogously to Theorem 2.1 of [Pf] we can
prove that (∂v/∂x)(t, s, 0) = es−tIX ; so the Weierstras theorem (see[BS])
and the definition of f imply immediately that D1f(0, s) = esIX for s ≥ 0.

Now, we must prove the univalence of the subordination chain f .
First we will show that there exists δ > 0 such that rex∗(D1f(y, s)(x)) >

0, for y ∈ B(0, δ), s ≥ 0, x ∈ B, x 6= 0 and x∗ ∈ C∗(x). On account of the
inequality

‖e−sf(x, s)‖ ≤ ‖x‖
(1− ‖x‖)2

for x ∈ B, s ≥ 0

(see Corollary 4.3), as in the proof of Lemma 4.4 we can choose δ0 > 0
and C > 0 such that ‖e−tD2

1f(a, t)(x, x)‖ ≤ C for x, a ∈ B(0, δ0). By the
polarization formula (see [Di], Thm. 1.5) there exists C1 > 0 such that

(4.35) ‖e−tD2
1f(a, t)(x, y)‖ ≤ C1‖x‖‖y‖ ,

for t ≥ 0, a ∈ B(0, δ0), x, y ∈ B.
For x ∈ B, y ∈ B(0, δ0/2) and t ≥ 0 define F (ξ) = e−tD1f(ξy, t)(x)

where ξ ∈ C and |ξ| < 2. Since F is holomorphic (see [BS]), from the
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mean-value theorem (see [D], Thm. 8.5.4) we obtain

‖F (1)− F (0)‖ ≤ sup
ρ≤1
‖F ′(ρ)‖ .

As a consequence we have for x ∈ B, y ∈ B(0, δ0/2) and t ≥ 0

‖e−tD1f(y, t)(x)− x‖ ≤ sup
0≤ρ≤1

‖D2
1f(ρy, t)(x, y)‖

≤ C1‖x‖‖y‖ ( by (4.35)) .

Put δ = min( 1
2δ0, 1/(C1 + 1)). Then

‖e−tD1f(y, t)(x)− x‖ ≤ ‖x‖ for x ∈ B, y ∈ B(0, δ), t ≥ 0 .

This yields immediately rex∗(e−tD1f(y, t)(x)) > 0 for y ∈ B(0, δ), t ≥ 0,
x ∈ B − {0} and x∗ ∈ C∗(x).

By Theorem 7 of [Su1], f(·, t), for each t ≥ 0, is univalent on B(0, δ).
Fix r ∈ (0, 1) and let s ≥ 0. Then by Corollary 4.2 there exists t0 > 0
such that for t ≥ t0, ‖v(t, s, x)‖ < δ for x ∈ B(0, r). From the univalence of
v = v(t, s, x) for x ∈ B and 0 ≤ s ≤ t <∞ it follows that the superposition
f(v(t, s, ·), t) is univalent on B(0, r) for t > t0; now it remains to recall
(4.34).

Theorem 4.7. Let h, v and f be as in Lemma 4.4. If the function f
defined by (4.29) is differentiable with respect to s for s ≥ 0 then it is a
solution of

D2f(x, s) = D1f(x, s)(h(x, s)) for (x, s) ∈ B × [0,∞) ,
D1(0, s) = esIX for s ≥ 0 .

P r o o f. From Lemma 4.5 it follows that f is a univalent normalized
subordination chain. Differentiating both sides of (4.34) with respect to t
we get

D1f(v(t, s, x), t)
(
∂v

∂t
(t, s, x)

)
+D2f(v(t, s, x), t) = 0

for x ∈ B, 0 ≤ s ≤ t <∞. Since v(t, t, x) = x and ∂v
∂t (t, t, x) = −h(x, t), the

assertion follows.

Theorem 4.8. Let h, v and f be as in Lemma 4.4. If g is a continuous
mapping from B × [0,∞) into X such that for each t ≥ 0, g(·, t) ∈ H(B),
and for x ∈ B, g(x, ·) is differentiable on [0,∞), and if g satisfies

D1g(x, t)(h(x, t)) = D2g(x, t) for x ∈ B, t ≥ 0 ,
g(0, t) = 0 and D1g(0, t) = etIX for t ≥ 0 ,

then g is a normalized subordination chain.
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Moreover , if there exist δ ∈(0, 1), t0 >0 and C > 0 such that ‖e−tg(x, t)‖
≤ C for x ∈ B(0, δ) and t ≥ t0 then g = f (hence g is a univalent normalized
subordination chain).

P r o o f. Fix x ∈ B and s ≥ 0 and define G(t) = g(v(t, s, x), t) for t ≥ 0.
Since G′(t) = 0 for t ≥ 0, we have g(v(t, s, x), t) = g(v(s, s, x), s), and since
v(s, s, x) = x,

(4.36) g(v(t, s, x), t) = g(x, s) ,

i.e. g is a normalized subordination chain.
Now we prove the second part of the proposition. As in the proof of

Lemma 4.4 it can be shown that there exist δ1 > 0 and C1 such that∥∥∥∥ 1
2!
e−tD2

1g(a, t)(x, x)
∥∥∥∥ ≤ C1 for a ∈ B(0, δ1), x ∈ B, t ≥ t0 .

From Taylor’s formula we have

g(x, t) = etx+
1∫

0

(1− τ)D2
1g(τx, t)(x, x) dτ for x ∈ B, t ≥ 0 .

Hence g(v(t, s, x), t) = etv(t, s, x) + r(v(t, s, x), t) where for x ∈ B and s ≥ 0
there exists t̂ such that

‖r(v, t)‖ ≤ C1e
t‖v(t, s, x)‖2 for t ≥ t̂ .

By Lemma 4.1 and Corollary 4.2 we get limt→∞ g(v(t, s, x), t) = f(x, s),
and so g(x, s) = f(x, s) for x ∈ B and s ≥ 0, by (4.36). This completes the
proof.

R e m a r k 4.4. If we use results of this section to study properties of
univalent holomorphic mappings of the ball B in Cn, then we obtain many
interesting facts (see e.g. [Po5], [Po6]).

V. The generalized form of the Frobenius theorem

§1. Introduction. This part of the paper extends the considerations
begun in Chapter I. It concerns a generalization of the Frobenius theorem.

Let X, Y be Banach spaces over the field K, let X1 be a subspace of X
and let U , V be open subsets of X and Y , respectively. Let h be a mapping
from U into L(X1, X) and H a mapping from U × V into L(X1, Y ).

We shall be interested in the problem of the existence of a mapping
f : U0 → V (where U0 ⊂ U and U0 is an open set) such that

(5.1) Df(x)(h(x)(·)) = H(x, f(x))(·) for x ∈ U0 .
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For x0 ∈ U , let X̃h(x0) be a fixed subspace of X such that

(5.2) h(x0)(X1)⊕ X̃h(x0) = X .

Let X̃x0
h(x0) = {x+ x0; x ∈ X̃h(x0)} and X̃x0

h(x0)(r) = X̃x0
h(x0) ∩B(x0, r).

§2. A necessary condition and a sufficient condition for exis-
tence and uniqueness. Suppose h and H are continuously differentiable
and let h satisfy

(5.3) Dh(x)(h(x)(s1))(s2) = Dh(x)(h(x)(s2))(s1)

for x ∈ U and s1, s2 ∈ X1. Next, assume that h(x0)(X1) and X̃h(x0) are
closed subspaces of X and h(x0) ∈ Isom(X1, h(x0)(X1)).

With the above assumptions and notations we can prove the following
theorems.

Theorem 5.1. If there exists a mapping f : U → U which is differentiable
on an open set U0 ⊂ U and which satisfies equation (5.1), then the following
generalized Frobenius condition holds:

D1H(x, f(x))(s1)(h(x)(s2)) +D2H(x, f(x))(s1)(H(x, f(x))(s2))
= D1H(x, f(x))(s2)(h(x)(s1)) +D2H(x, f(x))(s2)(H(x, f(x))(s1))

for x ∈ U0 and s1, s2 ∈ X1.

P r o o f. Let x ∈ U . Since h satisfies (5.3) and is continuously differen-
tiable, by the Frobenius theorem (see [D]) there exists a solution v of

(5.4) Dv(ξ) = h(v(ξ)) , v(0) = x ,

defined on some neighbourhood Ũ ⊂ X1 of ξ = 0. Define w(ξ) = f(v(ξ))
for ξ ∈ Ũ . Then w is twice continuously differentiable, and since f satisfies
(5.1) we have

D2w(ξ)(·,·) = D1H(v(ξ), f(v(ξ)))(·)(h(v(ξ))(·))(5.5)
+D2H(v(ξ), f(v(ξ)))(·)(H(v(ξ), f(v(ξ)))(·))

for ξ ∈ Ũ . By Theorem 8.12.2 of [D] we get at once

D2w(0)(s1, s2) = D2w(0)(s2, s1)

for s1, s2 ∈ X1. From the above equality and from (5.4), (5.5) we obtain the
assertion.

Theorem 5.2. If H satisfies the generalized Frobenius condition

D1H(x, y)(s1)(h(x)(s2)) +D2H(x, y)(s1)(H(x, y)(s2))(5.6)
= D1H(x, y)(s2)(h(x)(s1)) +D2H(x, y)(s2)(H(x, y)(s1))
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for x ∈ U , y ∈ V , s1, s2 ∈ X1, then for any continuously differentiable
mapping f0 : X̃x0

h(x0)(r) → V there exist r1 < r (r1 > 0) and exactly one
continuously differentiable mapping f from B(x0, r1) into V satisfying

Df(x)(h(x)(·)) = H(x, f(x))(·) for x ∈ B(x0, r1) ,

f(x) = f0(x) for x ∈ X̃x0
h(x0)(r1) .

P r o o f. Without loss of generality we can assume that x0 = 0. Since h
satisfies (5.3) the assumptions of Theorem 10.9.5 of [D] are fulfilled; hence
there exist neighbourhoods U1, U2 of zero such that U1 ⊂ X1, U2 ⊂ X̃h(0)

and the equation

D1v(x1, x2) = h(v(x1, x2)) , v(0, x2) = x2 ,

has exactly one continuously differentiable solution defined on U1 × U2.
Since h(0)(X1)⊕ X̃h(0) = X, h(0)(X1) and X̃h(0) are closed subspaces of X
and h(0) ∈ Isom(X1, h(0)(X1)), therefore Dv(0, 0) is an isomorphism from
X1 × X̃h(0) onto X. Hence by the inverse mapping theorem there exist
neighbourhoods Ũ1, Ũ2, Ũ3 of zero such that Ũ1 ⊂ X1, Ũ2 ⊂ X̃h(0), Ũ3 ⊂ X
and

v : Ũ1 × Ũ2 → Ũ3

is a diffeomorphism of class C1.
Let v−1(x) = (x1(x), x2(x)) for x ∈ Ũ3. Then

(5.7)
{
x1(v(x1, x2(x)) = x1 ,
x2(v(x1, x2(x)) = x2(x) ,

for x1 ∈ Ũ1 and x ∈ Ũ3. Differentiating (5.7) with respect to x1 we get for
x1 = x1(x)

(5.8)
{
Dx1(x)(h(x)) = IX1 ,

Dx2(x)(h(x)) = ΘX1 for x ∈ Ũ3 ,

where IX1 is the identity operator on X1 and ΘX1 is the zero operator on

X1. Next, consider neighbourhoods of zero (in the suitable spaces) Ũ̃1 ⊂
X1, Ũ̃2 ⊂ X̃h(0), Ũ̃3 ⊂ X, V1 ⊂ Y such that v : Ũ̃1 × Ũ̃2 → Ũ̃3 is a

diffeomorphism of class C1 and f0(x2) + w ∈ V1 for (x2, w) ∈ Ũ̃2 × V1.
Consider the Frobenius equation with respect to x1 and with parameter x2

in the form

(5.9)
D1w(x1, x2) = H(v(x1, x2), w(x1, x2) + f0(x2)) ,

w(0, x2) = 0 for x1 ∈ Ũ̃1, x2 ∈ Ũ̃2 .

It is not difficult to prove (cf. Theorem 10.9.5 of [D]) that there exist neigh-
bourhoods of zero Û1 ⊂ X1, Û2 ⊂ Xh(0) such that (5.9) has exactly one
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continuously differentiable solution on Û1 × Û2. Next, let

f(x) = w(x1(x), x2(x)) + f0(x2(x))

for x ∈ U3 where U3 = v(Û1 × Û2). Then f is continuously differentiable on
U3 and

Df(x) = D1w(x1(x), x2(x))Dx1(x) +D2w(x1(x), x2(x))Dx2(x)(5.10)
+Df0(x2(x))Dx2(x)

for x ∈ U3. By (5.8) and (5.10),

Df(x)(h(x)) = D1w(x1(x), x2(x)) for x ∈ U3 .

Since w fulfils (5.9),

Df(x)(h(x)) = H(v(x1(x), x2(x)), w(x1(x), x2(x)) + f0(x2(x)))

for x ∈ U3, that is, Df(x)(h(x)) = H(x, f(x)) for x ∈ U3. Since w(0, x2(x))
= 0 for x ∈ U3, we have f(x) = f0(x) for x ∈ U3 ∩ X̃h(0).

Uniqueness follows from the uniqueness of solution for (5.10).

§3. The generalized Frobenius equation and its integrability
conditions in Euclidean spaces. Let X = Rn, Y = Rm, X1 = Rp,
X̃h(0) = Rs where p + s = n (in this case we consider Rp and Rs as sub-
spaces of Rn). Hence U , V (from Theorem 5.2) are subsets of Rn and Rm,
respectively. Then

H(x, y) = [Hij(x, y)] 1≤i≤m
1≤j≤p

, h(x) = [hik(x)] 1≤i≤n
1≤k≤p

where x = (x1, . . . , xn) ∈ U , y = (y1, . . . , ym) ∈ V and

f =

 f1
...
fm

 .
In this case equation (5.1) takes the form of a system of equations

n∑
l=1

∂fi
∂xl

hlj = Hij(x, f) for 1 ≤ i ≤ m, 1 ≤ j ≤ p .

The integrability conditions (5.3) and (5.6) can be represented in the form
n∑
l=1

∂hki(x)
∂xl

hlr(x) =
n∑
l=1

∂hkr(x)
∂xl

hli(x)

for 1 ≤ i, r ≤ p, 1 ≤ k ≤ n, x ∈ U ,
n∑
l=1

∂Hij(x, y)
∂xl

hlr(x) +
m∑
t=1

∂Hir(x, y)
∂yt

Htj(x, y)
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=
n∑
l=1

∂Hir(x, y)
∂xl

hlj(x) +
m∑
t=1

∂Hij(x, y)
∂yt

Htr(x, y)

for 1 ≤ i ≤ m, 1 ≤ j, r ≤ p, x ∈ U , y ∈ V .
Many mathematicians are interested in problems connected with the ex-

istence of solutions of systems of differential equations in the case of finite-
dimensional spaces (such systems are special cases of the systems considered
earlier). Results of these studies can be found in papers [Ap1], [Ap2], [H],
[Ko]. The facts presented in these papers concern the case when the func-
tions Hij , i = 1, . . . ,m, j = 1, . . . , p, depend on the variable x only. More-
over, in these papers there is no consideration of the problem of uniqueness.

The results obtained in this chapter were obtained jointly with J. Kalina
(see [KaP]).
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