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JERZY L  OŚ, ZBIGNIEW SEMADENI

CCCIX

ARTHUR KNOEBEL and ANNA ROMANOWSKA

Distributive multisemilattices

W A R S Z A W A 1991



Published by the Institute of Mathematics, Polish Academy of Sciences

Typeset in TEX at the Institute

Printed and bound by M. & K. Herman, Spokojna 1, Raszyn

P R I N T E D I N P O L A N D

c© Copyright by Instytut Matematyczny PAN, Warszawa 1991

ISBN 83-85116-09-5 ISSN 0012-3862



C O N T E N T S

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2. Definition, basic examples and properties of multisemilattices . . . . . . . . . 6
3. The subdirectly irreducibles . . . . . . . . . . . . . . . . . . . . . . . 13
4. The lattice of subvarieties of Dn . . . . . . . . . . . . . . . . . . . . . 18
5. Subvarieties of Dn defined by identities involving at most

two operation symbols . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6. Some further comments and open problems . . . . . . . . . . . . . . . . 34
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Abstract

A distributive multisemilattice of type n is an algebra with a family of n binary
semilattice operations on a common carrier that are mutually distributive. This concept
for n = 2 comprises the distributive bisemilattices (or quasilattices), of which distribu-
tive lattices and semilattices with duplicated operations are the best known examples.
Multisemilattices need not satisfy the absorption law, which holds in all lattices.

Kalman has exhibited a subdirectly irreducible distributive bisemilattice which is
neither a lattice nor a semilattice. It has three elements. In this paper it is shown that all
the subdirectly irreducible distributive multisemilattices are derived from those for n = 2
simply by duplicating their operations in all possible ways. Thus, up to isomorphism there
are 2n−1 of type n, but up to the coarser relation of polynomial equivalence there are only
three. Hence every distributive multisemilattice is the subdirect product of irreducibles,
each with two or three elements.

The rest of the paper is devoted to the varieties of distributive multisemilattices. The
lattice of these varieties is described, and bases for their identities are given.

1985 Mathematics Subject Classification: Primary 06A12, 08B15; Secondary 05C40,
08B05.



1. Introduction

This monograph may be viewed as an introduction to the theory of
algebras called distributive multisemilattices, with the emphasis on their
structure and their varieties.

A distributive multisemilattice is an algebra with many semilattices on
a common carrier, in which each pair of semilattice operations satisfy both
distributive laws. In the case when there are two semilattices, these algebras
are called distributive bisemilattices or quasilattices, and are well known.
The basic facts concerning their structure and varieties (mostly results of
Kalman, Padmanabhan and P lonka) are recalled in Sections 2 and 3.

In Section 2 basic definitions are given and the main results known about
distributive multisemilattices are recalled; in particular, P lonka’s represen-
tation of these algebras is presented. This section contains as well a number
of examples of distributive multisemilattices.

In Section 3 we show how to extend the results of Kalman, who char-
acterized all subdirectly irreducible distributive bisemilattices, to the case
of distributive multisemilattices. It is shown that all subdirectly irreducible
distributive multisemilattices are derived from bisemilattices simply by du-
plicating their operations in all possible ways. In the case of n semilattice
operations, there are 2n − 1 subdirectly irreducibles up to isomorphism, but
up to the coarser relation of polynomial equivalence there are only three.
Hence a distributive multisemilattice is a subdirect product of subdirectly
irreducibles, each with two or three elements.

Section 4 deals with varieties of distributive multisemilattices with a
finite number n of basic semilattice operations. It is shown that the lattice
of all such varieties is isomorphic to a Boolean lattice of 22n−1

elements, and
a basis for the identities satisfied in each such variety is given.

Section 5 is devoted to varieties of distributive multisemilattices with n
semilattice operations that may be defined by identities involving at most
two operation symbols. (The identities given in Section 4 are more compli-
cated.) It is shown that such varieties form a meet subsemilattice and an
order ideal in the lattice of all varieties of distributive multisemilattices of a
given type and have very simple bases for their identities. To prove this we
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establish a one–to–one correspondence between these varieties and certain
specially defined networks.

The paper closes with Section 6, which contains some additional com-
ments and a number of open questions.

The principal facts known about multisemilattices can be found in this
paper. More information may be obtained from the papers listed at the end
of the article. As for general references concerning universal algebra we refer
the reader to [C], [Gr2], [Kn2], [MMT] and [RS3], and for ordered sets and
lattice theory to [Bi] and [Grl].

2. Definition, basic examples and properties

of multisemilattices

A semilattice is an algebra, S = 〈S;∨〉, with one binary operation ∨ that
is idempotent, commutative and associative, i.e., the following identities
hold on S:

x ∨ x = x (idempotence),(I)

x ∨ y = y ∨ x (commutativity),(C)

(x ∨ y) ∨ z = x ∨ (y ∨ z) (associativity).(As)

It is well known that the binary relation ≤∨ defined on S by

x ≤∨ y if x ∨ y = y

is a partial order with least upper bound x∨ y for each pair x, y of elements
of S.

One calls this semilattice a join semilattice when it is necessary to distin-
guish it from other semilattices which might be around. For example, in a
lattice 〈L;∨,∧〉 we have both a join semilattice 〈L;∨〉 and a meet semilattice
〈L;∧〉. Note that in a lattice the relation ≤∧ is the converse of ≤∨:

x ≤∨ y iff y ≤∧ x .

It follows that for each pair x, y of elements of L, x∧ y is the greatest lower
bound of x and y in the ordering ≤∨.

Now an algebra 〈B;∨,∧〉 with two semilattice reducts, 〈B;∨〉 and 〈B;∧〉,
is called a bisemilattice. In particular, a bisemilattice is distributive if it
satisfies the two laws of distributivity:

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) ,(D∧∨)

x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) .(D∨∧)

Note that in a bisemilattice one distributive law does not necessarily imply
the other, although in a lattice this implication does hold. For example, in
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the bisemilattice 〈{0, 1, 2};∨,∧〉 in Fig. 1, meet distributes over join, but
join does not distribute over meet (see [R2]).

Fig. 2.1

In this picture, we have introduced a convention useful in drawing Hasse
diagrams. If the operation symbol is ∨, then the associated ordering is drawn
upward: if the symbol is ∧, then the ordering is drawn downward. This is
the convention typically used to represent lattices graphically, and with it
both operations can fit together in one diagram. However, multisemilattices
in general usually require more than one diagram, as is the case in the
example above. For example, we read from these diagrams that 0 ∨ 2 = 2
and 0 ∧ 2 = 0; but 1 ∨ 2 = 1 = 1 ∧ 2.

Distributive bisemilattices form one of the major classes of bisemilattices.
If a distributive bisemilattice 〈B;∨,∧〉 satisfies additionally the absorptive
law,

(A2) x ∨ (x ∧ y) = x ,

then it is a distributive lattice; the dual absorptive law,

x ∧ (x ∨ y) = x ,

follows from (A2), (D∧∨), and (I) (1). If the bisemilattice 〈B;∨,∧〉 satisfies
also the law of equality of operations,

(E∨∧) x ∨ y = x ∧ y ,

then it is called a stammered semilattice. Stammered semilattices are always
distributive. While in a lattice both orderings ≤∨ and ≤∧ are converses of
each other, in a stammered semilattice they coincide.

Distributive bisemilattices may be regarded as distributive lattices for
which the requirement of absorption has been dropped, just as lattices are
distributive lattices for which the requirement of distributivity has been
dropped. These algebras were defined by P lonka [P1] and studied in [P1]
and some other papers: [B], [K], [Kn1] and [N]. More general classes of

(1) In fact, in the theory of bisemilattices, either distributive law together with either

absorption law implies the remaining two.
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bisemilattices have already quite a long list of references as well. See, e.g.,
[A], [D1]–[D3], [DR], [G1]–[G3], [Gi], [GR], [Go1], [Go2], [JK1], [JK2], [MR],
[Pn], [PR], [R2]–[R10], [RS1]–[RS3], [RT] and [T].

In this paper we are interested in algebras having more than two semilat-
tice structures in which the semilattice operations are mutually distributive.
Define a multisemilattice, M = 〈M ; I 〉, to be an algebra with a family,
I ≡ 〈 i | i ∈ I〉, of binary operations for which each reduct 〈M, i 〉 is a

semilattice. In more detail, for each i in the index set I, the operation i
is an idempotent, commutative and associative operation on M . Note that
each operation i has an associated partial order ≤i:

x ≤i y if x i y = y.

The family of operations of a multisemilattice may be infinite. If the
cardinality of I is n, we refer to M as to a multisemilattice of type n, or
simply an n-semilattice. If n is finite we may denote the operations of
M by 0 , 1 , . . . , n − 1 . So in this case we write explicitly that M =
〈M ; 0 , 1 , . . . , n − 1 〉. To make the statement of general results uniform,
we assume at least one operation, i.e., always n ≥ 1. Multisemilattices
were introduced in [R10] and [RS3] in connection with investigation of some
structure theorems for abstract algebras.

The most important and best known class of multisemilattices is the
class of distributive multisemilattices, M = 〈M ; I 〉, in which each operation
distributes over any other one, i.e., the distributive law (D i j ) holds in

M for each pair i, j of indices. These algebras were studied in [P3] under
the name of “distributive n-quasilattice” in the case of n finite and n > 2,
and just “quasilattice ” when n = 2. However, since an n-semilattice has
exactly n semilattice structures and 2n “quasilattice” structures over all
pairs of operations, and further since the term “n-quasilattice” would imply
that there are 2n semilattice structures, the cardinalities seem hopelessly
askew. So we decided to use the name “multisemilattice” for the algebras
we investigate in this paper.

Examples of distributive multisemilattices are easy to come by. We
present here some of them.

Example 2.1 (stammered semilattices of type n). If for each pair of
operations, i and j , in a multisemilattice 〈M ; I 〉 the law of equality of
operations,

(Eij) x i y = x j y ,

is satisfied, then 〈M ; I〉 is called a stammered semilattice and may be iden-
tified with a semilattice in which the basic operation is repeated n times.
Recall from [P2] and [RS3] that semilattices, and hence also stammered
semilattices, satisfy exactly the regular identities between I -words (i.e.,
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identities with the same sets of variables on both sides). And they are
obviously distributive.

Example 2.2 (absorptive multisemilattices [P3]). Let n = {0, 1, . . . ,
n − 1} and let

P0(n) ≡ {K ⊆ n | 0 ∈ K and K 6= n} .

For each element K of P0(n) let (LK ;∨,∧) be a distributive lattice. For
each i in n define a binary operation i on LK by

x i y =

{
x ∨ y if i ∈ K,
x ∧ y otherwise.

Then it is easy to see that each algebra LK ≡ 〈LK ; 0 , 1 , . . . , n − 1 〉 is
a distributive n-semilattice. Moreover, it satisfies the following absorptive
law:

(An) x 0 (x 1 (. . . (x n − 1 y) . . .)) = x .

Any distributive multisemilattice satisfying the identity (An) is called ab-
sorptive. It is easy to see that the direct product

∏

K∈P0(n)

LK

and each subalgebra of it are absorptive n-semilattices. In fact P lonka
proved the following.

Theorem 2.3 [P3]. An algebra 〈S; 0 , 1 , . . . , n − 1 〉 with n binary op-
erations is an absorptive n-semilattice if and only if it is a subalgebra of
some direct product ,

∏
K∈P0(n) LK , as defined above.

We will improve this result in Section 3 by showing that each absorptive
n-semilattice is a subdirect product of subdirectly irreducible n-semilattices
LK , each defined on the 2-element lattice.

Let us note that P lonka used a different name “n-lattice” for an absorp-
tive n-semilattice. The reason for changing the name in this case is deeper
than that for distributive multisemilattices. Let i , j , and k be any
three operations of a multisemilattice M. If all three reducts — 〈M ; i , j 〉,
〈M ; i , k 〉 and 〈M ; j , k 〉 — are lattices, then it must follow from the
absorption laws that all three operations are the same: i = j = k . And
since each of these three operations is at the same time a semilattice oper-
ation, it must be, again because of the absorptive laws, that x = y for all
x , y in M , whence M has only one element. So multisemilattices are trivial
when all the absorptive laws of the form (A2) hold among all pairs of three
or more of the operations. In fact, the nontrivial multisemilattices may have
several lattice reducts only when there are disjoint pairs i , j and k , m
of operations such that 〈M ; i , j 〉 and 〈M ; k , m 〉 are lattices.
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Before we discuss further properties and examples of distributive multi-
semilattices, let us mention one more identity, which is very important and
will be used repeatedly in the sequel, especially in Section 4:

(2.4) x i0 (x i1 . . . (x im−1 y) . . .) = x j0 (x j1 . . . (x jm−1 y) . . .) .

This identity holds in each distributive multisemilattice of type n for each
permutation j0 , . . . , jm−1 of the operations i0 , . . . , im−1 where m ≤ n.
An easy proof by induction is left to the reader.

Examples 2.1 and 2.2 play a central role in the theory of distribu-
tive n-semilattices. In fact, as proved by P lonka [P3], each distributive
n-semilattice may be constructed from absorptive n-semilattices and one
stammered semilattice of type n as a so-called P lonka sum. (See [P1],
[P2],[P3] and [RS3].) Let us recall the definition and corresponding the-
orem here. First note that, by the well-known result of Mal’cev, [M1] and
[M2], each distributive multisemilattice, M = 〈M ; I 〉, has a least con-
gruence relation ρ such that the quotient multisemilattice, S = M/ρ, is a
stammered semilattice. Such a quotient is called the semilattice replica of
M. The congruence classes of ρ are disjoint subalgebras of M and we can
index them with elements of S. Now for each pair of elements s, t of S with
s ≤ t, there is a homomorphism ϕs,t : Ms → Mt satisfying

(i) ϕs,s is the identity mapping,
(ii) for s ≤ t ≤ u in S, ϕs,t ◦ ϕt,u = ϕs,u.

Then the structure of the multisemilattice M may be recovered from the
multisemilattice structures on the Ms and the semilattice structure on S by
defining operations on the disjoint union, M =

⋃
{Ms | s ∈ S}, as follows.

When as ∈ Ms, bt ∈ Mt and i ∈ I, one has

as i bt = ϕs,s∨t(as) i ϕt,s∨t(bt) .

Such a sum is called a P lonka sum of multisemilattices MS over the semilat-
tice S by the homomorphisms ϕs,t or briefly a P lonka sum of the Ms. The
following theorem describes the structure of distributive multisemilattices.

Theorem 2.5 [P3]. An algebra, S = 〈S; 0 , 1 , . . . , n − 1 〉, with n bi-
nary operations is a distributive n-semilattice if and only if it is a P lonka
sum of absorptive n-semilattices.

We close this section by giving some more examples of distributive mul-
tisemilattices.

Example 2.6 (distributive multisemilattices in median algebras). Let L

be a distributive lattice 〈L;∨,∧〉. From the two lattice operations we build
a ternary median operation µ on L:

µ(x, y, z) ≡ (x ∧ y) ∨ (y ∧ z) ∨ (z ∧ x) = (x ∨ y) ∧ (y ∨ z) ∧ (z ∨ x) .
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(See, e.g., [BK], [Bi] and [BH].) Out of this median operation, we extract a
family of binary operations:

(2.7) x y z ≡ µ(x, y, z) ,

with one operation for each element y of L. One easily checks that each
such operation y is a semilattice operation, and that each y distributes
over any other w for all y and w in L. Thus we obtain a distributive
multisemilattice. If L has a least element 0 and a greatest element 1, then
the two original operations ∨ and ∧ of L are found among the new ones:

∧ = 0 , ∨ = 1 .

That is, µ(x, 0, z) = z ∧ x and µ(x, 1, z) = x ∨ z if x, z ∈ L.

An illustration of this construction, about which there is a pleasing sym-
metry, comes from the four-element distributive lattice which is not a chain.
The four mutually distributive semilattices gotten from the median opera-
tion can be visualized by taking the Hasse diagram of Fig. 2.2, and holding
it up successively by each of its four corners to get four distinct semilattices.
Example 2.12 will generalize this special case in a different direction.

Fig. 2.2

More generally, Bandelt and Hedĺıková [BH] and others (2) defined a
median algebra as an algebra with a single ternary operation µ which satis-
fies all the identities true for the median operation in distributive lattices.
Each such algebra may be embedded in a median algebra defined on a dis-
tributive lattice and many properties of distributive lattices have immediate
analogues for median algebras. Now for each element y of a median algebra,
A = 〈A; µ〉, the formula (2.7) defines a semilattice operation [BH, Theorem
3.1]. In this way A becomes a multisemilattice, and as was proved in [BH,
Theorem 7.3], this multisemilattice is distributive. We know that not every
distributive multisemilattice comes from some distributive lattice (or more
generally from a median algebra) via the median operation, e.g. B3 does
not.

(2) The concept of a ternary median operation goes back at least to A. A. Grau

[Gra] in 1944. See [Bi] for a brief development and history. Apparently independently,

Robert O. Winder [W] also discovered a set of related axioms characterizing median

algebras.
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Example 2.8 (vector spaces as distributive multisemilattices [Me]). For
every basis U = {~u1, . . . , ~uk} of the real vector space R

k define a binary

operation U as follows. If ~a = a1~u1 + . . .+ ak~uk and ~b = b1~u1 + . . .+ bk~uk,
with coefficients in R, then

a U b ≡ max{a1, b1}~u1 + . . . + max{ak, bk}~uk .

Clearly 〈Rk; U 〉 is a semilattice. Gerasimos Meletiou [Me] has shown that
if U = {~u1 . . . , ~uk} and W = {~w1, . . . , ~wk} are two bases of R

k, then U
distributes over W if and only if there are ai in R − {0} and some permu-
tation π of {1, . . . , k} such that ~ui = ai ~wπ(i) whenever 1 ≤ i ≤ k. Hence

a distributive multisemilattice arises from any set of bases of R
k in which

each pair of bases satisfies the condition above.

Example 2.9 (multisemilattices as quotients of algebras in multiregular
varieties [R10], [RS3]). Let S be a semilattice 〈S;∨〉, and let ω be an oper-
ation symbol having at least two arguments. Then S may be considered as
an ω-algebra on setting

(2.10) ω(x1, . . . , xn) ≡ x1 ∨ . . . ∨ xn .

Such an algebra 〈S; ω〉 is called an ω-semilattice. Conversely, given an ω-
semilattice 〈S; ω〉 constructed in this way one may recover the binary oper-
ation ∨ on S by the equation

(2.11) x ∨ y ≡ ω(x, y, . . . , y) .

The equation (2.10) will then hold. Thus the variety Sl of all ordinary
semilattices can be equationally interdefined with the variety of all ω-semi-
lattices.

A slightly more general situation arises by letting Ω be a family
〈ωi | i ∈ I〉 of operation symbols each having at least two arguments. Then
from the one semilattice S we create for each i in I an operation ωi by means
of (2.10). The resulting algebra 〈S; 〈ωi | i ∈ I〉〉 is called an Ω-semilattice.
Again the variety Sl of all ordinary semilattices can be equationally inter-
defined with the variety of all Ω-semilattices.

Now consider an even more general situation. Given a fixed family
Ω of operation symbols each having at least two arguments, define an
Ω-multisemilattice to be an algebra 〈M ; Ω〉 for which each reduct 〈M ; ωi〉
is an ωi-semilattice. For each reduct 〈M ; ωi〉, (2.11) defines a binary semi-
lattice operation i . There is a corresponding semilattice order ≤i on M
for each i in I. In this way the set M together with the operations i be-
comes a multisemilattice 〈M ; I 〉. In some cases this multisemilattice may
be distributive.

Let M be the variety of all Ω-multisemilattices. Now for a variety V of
Ω-algebras, the intersection M ∩ V is the variety of Ω-multisemilattices
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〈M ; Ω〉 lying in V. The variety M∩V is non-trivial if and only if V is multi-
regular , i.e., each identity satisfied by all the V-algebras and involving only
one operation symbol ωi is regular. Thus each algebra in a multiregular vari-
ety has a least congruence θ such that the quotient is an Ω-multisemilattice.
This decomposition into congruence classes of θ forms a basis for a num-
ber of methods for constructing V-algebras which were investigated in [R10],
[R11], [R3] and [RS4]. For details and more information see [R11] and [RS4].

Example 2.12 (bilattices [Gi], [RT], [T]). In a number of papers,
M. L. Ginsberg introduced algebras called bilattices having two (bounded)
lattice structures and one additional unary operation acting on both lattices
in a very regular way. We use the notation B = 〈B;∨,∧, 01, 11, +, ·, 02, 12,

′ 〉.
Bilattices originated as an algebraization of some non-classical logics that
appeared recently in investigations on artificial intelligence. Bilattices that
appear in applications usually satisfy some additional conditions. In par-
ticular, distributive bilattices (“world based” bilattices in the terminology
of Ginsberg) satisfy all possible distributive laws between the basic binary
semilattice operations. Each such distributive bilattice B may be con-
structed from a bounded distributive lattice, L = 〈L;∨,∧, 0, 1〉, as follows
[T], [RT]. The reduct 〈B;∨,∧〉 is just the direct product of 〈L;∨,∧〉 and its
dual 〈L;∧,∨〉. The reduct 〈B; +, ·〉 is the direct square 〈L;∨,∧〉× 〈L;∨,∧〉.
Then the unary operation ′ and all four constants can be defined by

〈a, b〉′ ≡ 〈b, a〉 ,

01 ≡ 〈0, 1〉 , 02 ≡ 〈0, 0〉 ,

11 ≡ 〈1, 0〉 , 12 ≡ 〈1, 1〉 .

Obviously, the reduct 〈B;∨,∧, +, ·〉 is a distributive 4-semilattice. For some
other properties of distributive 3- or 4-semilattices see also [A], [BK], [JK1],
[JK2]. A special case of this is the four-element lattice found in the middle
of Example 2.6.

3. The subdirectly irreducibles

In this section we characterize the distributive multisemilattices of an
arbitrary type which are subdirectly irreducible. Let Dn be the class of
all distributive multisemilattices of type n, i.e., with n basic operations.
Our result is an extension of the description by J. A. Kalman [K] of the
subdirectly irreducibles of D2. Kalman found three of them. They are,
up to isomorphism: the two-element lattice, C2 ≡ 〈{0, 1};∨,∧〉; the two-
element stammered semilattice, S2 ≡ 〈{0, 1};∨,∨〉 with the operations being
equal; and the three-element bisemilattice, B3 ≡ 〈{0, 1,∞};∨,∧〉, which is
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the P lonka sum of the lattice C2 and the one-element lattice C1. Here are
their Hasse diagrams.

Fig. 3.1

We show that when n ≥ 3, the subdirectly irreducible distributive mul-
tisemilattices of type n are obtained from those of Kalman by replicating
and permuting his operations in all possible ways. Up to isomorphism there
are 2n − 1 of them, but up to polynomial equivalence there are only three,
no matter how large n is. Thus we have the spectacle of varieties with a
large number of nonisomorphic subdirectly irreducibles, most of which are
polynomially equivalent.

We will say that an operation i of a multisemilattice, M = 〈M ; I 〉,
possesses a unity i if

x i i = x (x ∈ M) .

Obviously, since 〈M ; i 〉 is a semilattice, the unity i, if it exists, is unique
and is the least element of the ordering ≤i. The proof of Kalman’s theorem
characterizing the subdirectly irreducibles of D2 is a direct proof based on
the fact that each basic operation has a unity. His proof may be restated to
prove our characterization of the subdirectly irreducibles of any type. The
following lemma may be proved exactly as Lemma 3 in Kalman’s paper.

Lemma 3.1. Let M be a subdirectly irreducible of Dn.

(i) M possesses the unity i for each operation i (i < n).

(ii) a i j = j iff a = i or a = j (i, j < n).

We also need two propositions. In the first one we talk about the set of
unities of a multisemilattice 〈M ; I 〉 and write it as I.

Proposition 3.2. If M is a subdirectly irreducible distributive multi-
semilattice, then its set of unities I has at most two elements.

P r o o f. Let i , j and k be any three of the basic operations of M.

We will show that at least two of their three unities, i, j and k, are equal.
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We deduce that

i = i j i

= i j (i k k)

= (i j i) k (i j k)

= i k (i j k)

(I)

(k is a unity)

(by distributivity)

(I).

Now by applying Lemma 3.1(ii) to this whole equation with the variable a
playing the role of i j k, we deduce that i j k is i or k. If i j k = i, then

again by Lemma 3.1, k = i or k = j. If i j k = k, similarly i = j or i = k.

Proposition 3.3. Let M be a distributive multisemilattice.

(i) If the unities i and j of M exist and are equal , then the corresponding
operations are also equal ; that is, i = j implies i = j .

(ii) If M is moreover subdirectly irreducible, then the number of distinct
basic operations is no more than two.

P r o o f. (i) Assume throughout that i, j < n, i = j, and a, b ∈ M . The
following four steps constitute the proof.

a i (a j b) = (a j j) i (a j b) (j is a unity)(1)

= a j (j i b) (by distributivity)

= a j (i i b) (by hypothesis)

= a j b (i is a unity) .

We now simplify (a i b) i (a j b) in two different ways.

(a i b) i (a j b) = b i (a i (a j b)) (As)(2)

= b i (a j b) (1)

= a j b (C) and (1).

(a i b) i (a j b) = ((a i b) i a) j ((a i b) i b) (by distributivity)(3)

= (a i b) j (a i b) (C), (As) and (I)

= (a i b) (I).

(4) By (3) and (2),

a i b = a j b

for any a and b in M . Therefore, i = j .

(ii) This follows from (i) and the previous proposition.

Now assume that M is a subdirectly irreducible distributive multisemi-
lattice 〈M ; I 〉. By the last proposition I has at most two distinct basic
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operations, regardless of the value of n. It follows that M must be polyno-
mially equivalent to one of the subdirectly irreducible 2-semilattices. And
according to Kalman’s result there are three of them, C2, S2, and B3. This
gives the following.

Theorem 3.4. Let Dn be the variety of all distributive multisemilattices
of type n. If n ≥ 2, then up to polynomial equivalence Dn has three subdi-
rectly irreducibles. These are equivalent to C2, S2 and B3.

Now there is a short proof of Kalman’s result based on two results that
were published a little later than that of Kalman.

Theorem 3.5 [Pa]. The lattice D2 of all subvarieties of D2 is a four-
element lattice presented by the picture:

Here T is the trivial variety of one-element bisemilattices, A2 is the variety
of distributive lattices, and Sl2 is the variety of stammered semilattices (with
two equal basic operations).

Let us call the variety satisfying all regular identities satisfied in a given
variety V, the regularization of V, and denote it by Reg V. By P lonka’s re-
sults [P1] (see as well [P2], [RS3]), we know that D2 is the regularization of
A2 and is composed exactly of P lonka sums of distributive lattices, and Sl2
is the regularization of T . Now, if B is a subdirectly irreducible distribu-
tive bisemilattice and is a member of the variety A2, then B must coincide,
up to isomorphism, with the unique subdirectly irreducible distributive lat-
tice, that is, the lattice C2. If B is in the variety Sl2, it must coincide
with the unique subdirectly irreducible semilattice, that is, the stammered
2-semilattice S2. If B is neither in A2 nor in Sl2, it must be a nontriv-
ial P lonka sum of distributive lattices. Subdirectly irreducible P lonka sums
were characterized by Lakser, Padmanabhan & Platt in [LPP]. The following
may be deduced from their result very easily.

Proposition 3.6. If B is a subdirectly irreducible distributive bisemilat-
tice neither in the variety A2 nor in the variety Sl2, then B is isomorphic to
the P lonka sum of two distributive lattices, C2 and C1 = 〈{∞},∨,∧〉, over
S2, where the P lonka homomorphism ϕ : C2 → C1 is defined by x 7→ ∞.

From Proposition 3.6, it follows easily that B must be isomorphic to B3.
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The next theorem shows how to find all nonisomorphic subdirectly irre-
ducibles in Dn (n ≥ 1).

Theorem 3.7. Up to isomorphism, there are 2n−1 subdirectly irreducible
algebras in Dn (3).

P r o o f. The number of nonisomorphic subdirectly irreducibles in Dn will
be determined by counting the number of ways in which the two operations,
∨ and ∧, of either C2 or B3 may be spread among n slots. Consider first C2.
Let M be a subdirectly irreducible member of Dn polynomially equivalent
to C2. Since 〈M ;∨〉 is isomorphic to 〈M ;∧〉, we may well interpret the first
operation as the join ∨. The remaining ones can be chosen in any way so
long as they are not all ∨. Thus there are 2n−1 − 1 possibilities. Similarly
B3 is also polynomially equivalent to 2n−1−1 nonisomorphic n-semilattices.
Together with the two-element stammered semilattice, there are altogether

(2n−1 − 1) + (2n−1 − 1) + 1 = 2n − 1

subdirectly irreducibles.

We close this section by introducing some notation and symbols for all
of these subdirectly irreducibles. Let n be a natural number. For each n,
let Σn be the set of all n-element binary sequences starting with 0. They
can be defined as follows:

(i) Σ1 ≡ {〈0〉};

(ii) if 〈s0, . . . , sn−2〉 is in Σn−1, then both 〈s0, . . . , sn−2, 0〉 and
〈s0, . . . , sn−2, 1〉 are in Σn.

Let ô denote the unique constant sequence in Σn; this means it is all zeros.
For each s in Σn define the algebra

Ls ≡ 〈{0, 1}; 0 , 1 , . . . , n − 1 〉 ,

where

i ≡

{
∨ if si = 0,
∧ if si = 1.

Similarly, for each s in Σn with s 6= ô, define another algebra,

Bs ≡ 〈{0, 1,∞}; 0 , 1 , . . . , n − 1 〉 ,

with the operations i defined as above but now in B3.

Corollary 3.8. Up to isomorphism, the subdirectly irreducible distribu-
tive n-semilattices are Ls for s in Σn, and Bs for s in Σn − {ô}.

(3) To interpret such subtraction meaningfully for infinite cardinals ∞, let us agree

that ∞− 1 = ∞.
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If we agree to use the symbols ∼= for isomorphism and ≃ for polynomial
equivalence, we may notice the following from Theorems 3.4 and 3.7. For
each sequence s in Σn − {ô},

Ls ≃ C2 , Bs ≃ B3 .

Also

Lô ≃ S2 .

Kalman’s three subdirectly irreducibles for n = 2 are obtained as

L〈0,0〉 = 〈{0, 1};∨,∨〉 = S2 ,

L〈0,1〉 = 〈{0, 1};∨,∧〉 = C2 ,

B〈0,1〉 = 〈{0, 1,∞};∨,∧〉 = B3 .

Note that for any nonzero sequence s in Σn, Ls is a subalgebra of Bs, Lô is
isomorphic to a subalgebra of Bs, and finally Bs is a homomorphic image
of Lô × Ls obtained by identifying 〈0, 1〉 and 〈1, 1〉.

According to Garrett Birkhoff’s well-known fundamental theorem [Bi1],
any algebra is isomorphic to a subdirect product of subdirectly irreducibles.
This gives us the possibility of representing each distributive multisemilat-
tice as a subdirect product of subdirectly irreducible multisemilattices, and
these will have no more than three elements each. In another direction,
the main results of this section will be very helpful in the next section in
characterizing the lattice Dn of all subvarieties of Dn.

4. The lattice of subvarieties of Dn

This section is devoted to studying the lattice Dn of all subvarieties of the
variety Dn of all distributive n-semilattices. We fully describe this lattice,
and for each subvariety in Dn we give a basis for the identities satisfied by
it. In this section and the next, we assume n is finite.

For some varieties the knowledge of subdirectly irreducible members is
very helpful in describing the lattice of all subvarieties. This is true, for ex-
ample, for congruence-distributive varieties generated by a finite number of
finite subdirectly irreducible algebras [J]. In this case Bjarni Jónsson’s well-
known Lemma [J] implies that each subvariety is determined by exactly one
subset of subdirectly irreducibles, and two different subsets determine two
different subvarieties. The situation may be quite different in case a variety
is not congruence-distributive. Since the variety Dn contains the variety of
stammered semilattices, obviously it is not congruence-distributive. And we
have already seen that the variety D2, though generated by two subdirectly
irreducibles, C2 and S2, contains the third one as well, namely B3; and in
fact, is generated solely by B3. It was shown in [MR] that the variety of
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bisemilattices satisfying only one distributive law (D∧∨) contains as proper
subvarieties only varieties of distributive bisemilattices, and in [R2] and [R3]
that this variety contains infinitely many subdirectly irreducibles. Similarly,
the variety of commutative monoids provides another similar example; see
[H] and [S].

Since for a finite n, the variety Dn contains exactly 2n − 1 subdirectly
irreducible n-semilattices, the number of all subvarieties of Dn may not
be larger than 22n−1, the number of subsets of subdirectly irreducibles; but
evidently it may be smaller, as in the case of D2, where some distinct subsets
generate the same variety. The main result of this section will show that
in fact the lattice Dn contains 22n−1

elements and is dually isomorphic to
the lattice of all subsets of the set of subdirectly irreducible n-semilattices
Ls for s in Σn. So, just as in the case of the variety D2, the subdirectly
irreducibles Bs are in a sense “redundant” for the description of the lattice
of subvarieties.

To begin with let us recall two basic facts that are direct corollaries from
the main results in [DG] and [P3].

Theorem 4.1. Let An be the variety of all absorptive n-semilattices, and
An the lattice of all subvarieties of An. Then the lattice Dn of all varieties
of distributive n-semilattices is isomorphic to the direct product An × C2.

Theorem 4.2. Let Sln be the variety of all stammered semilattices in Dn,
where n is finite. Then each subvariety of Dn containing the variety Sln is
the regularization Reg V of exactly one subvariety V of An and consists of
P lonka sums of n-semilattices in V.

It follows that each irregular subvariety V of Dn has its counterpart in
the filter of Dn generated by Sln, namely its regularization, Ṽ = Reg V. By
remarks at the end of the previous section we can easily deduce that each
such variety Ṽ is determined by the subdirectly irreducible members of V
and Sln, whence the subdirectly irreducibles Bs are relevant in describing
the lattice of subvarieties of Dn. It will turn out that the subvarieties are in
one-to-one correspondence with the subsets of

{Bs | s ∈ Σn − {ô}} .

But first we turn our attention to an alternative description. We will
show that any two different sets of subdirectly irreducible n-semilattices Ls

determine different subvarieties. We will do this by proving that for each
set of 2n−1 − 1 subdirectly irreducibles Ls there exists an identity satisfied
in all of them, but not in the one left out.

First for i, j < n consider the identity

(Aij) x i (x j y) = x .
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This is an irregular identity and obviously cannot be satisfied in the subdi-
rectly irreducible stammered semilattice Sn, because all possible identities
(Eij) of equality of operations are satisfied, i.e.,

(Eij) x i y = x j y .

In general, it is easy to see that the subdirectly irreducible n-semilattice
Ls satisfies (Eij) if and only if si = sj ; and it satisfies (Aij) if and only if
si 6= sj .

Before we prove our main theorem we need some notation for some tech-
nical lemmas. Recall that n ≡ {0, 1, . . . , n − 1}. Consider the useful poly-
nomial, ps = ps(x, y), defined recursively on sequences, s ≡ 〈i1, . . . , ik〉,
starting with the empty sequence, ∅ ≡ 〈〉:

p〈〉(x, y) = y ,

p〈i1,...,ik+1〉(x, y) = p〈i1,...,ik〉(x, x ik+1 y) .

This amounts to

ps ≡ x i1 (x i2 (. . . (x ik y) . . .)) .

Notice that p〈i〉 = x i y.

Lemma 4.3. The following identities are satisfied in each distributive
n-semilattice, S = 〈S; 0 , 1 , . . . , n − 1 〉. We assume all the components
of the sequences which index the operations of S run from 0 to n − 1.

p〈i,i〉 = p〈i〉 .(I)

p〈i,j〉 = p〈j,i〉 .(C)

p〈i1,...,ik,j1,...,jm〉 = p〈i1,...,ik〉(x, p〈j1,...,jm〉) .(A)

(P) If 〈j1, . . . , jk〉 is a permutation of 〈i1, . . . , ik〉, then

p〈i1,...,ik〉 = p〈j1,...,jk〉 .

(R) If the components of 〈i1, . . . , ik〉 and 〈j1, . . . , jm〉 induce the same sets
of basic operations, then

p〈i1,...,ik〉 = p〈j1,...,jm〉 .

P r o o f. (I) This follows from associativity and idempotence.
(C) This follows from distributivity and idempotence.
(A) Formally this would need a proof by induction.
(P) This is a restatement of (2.4) but can now be proven easily by

induction using (C) and (A) above.
(R) This can be proven easily by induction using (I) and (P) above.

This lemma should make clear that what ps really depends on—other
than its arguments—is the range I of s and not the order of its components.
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Thus from now on we will write

pI ≡ ps .

Along this line we establish some notation throughout the remainder of
this section. Let n be a disjoint union of I and J . Write these subsets out:

I ≡ {i1, . . . , ik} and J ≡ {j1, . . . , jm} .

In terms of these, define a binary sequence, s = s(I, J), by

sh =
{

0 when h ∈ I,
1 when h ∈ J .

That is, s is the characteristic function of the set J . Conversely, for any
binary sequence s of length n, there is a disjoint union, n = I ∪J , such that
s = s(I, J).

In terms of the polynomial pI above define a new polynomial

qIJ(x, y) ≡ pJ(pI(x, y), x) .

Written out, this amounts to

qIJ = pI j1 (pI j2 (. . . (pI jm x) . . .)) .

Since p∅ = y, we note that

q∅J = y j1 (y j2 (. . . (y jm x) . . .)) = pJ(y, x) .

For a similar reason, qI∅ = x.
Now assume s ∈ Σn and s = s(I, J). Consider the new identity

(As) qIJ = pI .

In the case I = ∅, we have s = s(∅, J) = ô and (As) denotes the identity

(Aô) pn(y, x) = y .

In a distributive multisemilattice, this new identity (Aô) is equivalent by
(2.4) to our old identity (An). Note that for a sequence s in Σn the identity
(As) is regular (i.e., the same variables occur on both sides of the equality
sign) iff s 6= ô.

We now wish to investigate when the identity (As) holds in a multisemi-
lattice Lt. To that end we study in detail what the polynomials pI and
qIJ reduce to in this subdirectly irreducible. Let us make clear that I and
J form a disjoint union of n, which comes from one sequence, s = s(I, J);
and t is another sequence, usually different from s but sometimes the same.
Note that pI is composed of only one or two distinct operations when inter-
preted in Lt. Thus, what it reduces to in Lt depends on the cardinality | I |
of the set of different basic operations in Lt. Similarly, qIJ in Lt depends
very much on both | I | and | J |. This observation is the key to our anal-
ysis. Throughout let us assume for convenience that i, h ∈ I and i 6= h
whenever | I | = 2.
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Lemma 4.4. If s = s(I, J), then in Lt we have

pI =

{
x i y if | I | = 1,
x if | I | = 2.

P r o o f. By the range identity (R), when | I | = 1, we have

pI = p{i} = x i y .

Similarly, when | I | = 2, we have

pI = p{i,h} = x i (x h y) = x ,

by absorption.

Lemma 4.5. If s = s(I, J) ∈ Σn, then in Lt we have

qIJ =





x i y if | I | = 1, and | J | = 2 or both I and
J induce the same operations in Lt;

x if | I | = 2, or | J | = 1 and I and J
induce different sets of operations in Lt,
or J = ∅.

P r o o f. There are five cases to consider.
(i) If J = ∅, we already know that qIJ = x. Now assume that J 6= ∅

and j ∈ J . Note that, as in Lemma 4.4, one can prove that

pJ =

{
x j y if | J | = 1,
x if | J | = 2.

(ii) If | I | = 1 and | J | = 2 in Lt, then

qIJ = pJ (pI(x, y), x)

= pI(x, y) (Lemma 4.4)

= x i y (Lemma 4.4) .

(iii) If | I | = | J | = 1 and i = j in Lt, then all the operations are the
same in Lt, i.e., t = ô. We deduce immediately that

qIJ = x i y (R) .

(iv) If | I | = | J | = 1 and i 6= j in Lt, then

qIJ = pI(x, y) j x (Lemma 4.4)

= (x i y) j x (Lemma 4.4)

= x (since i 6= j ).

(v) If | I | = 2 in Lt, then

qIJ = pJ(pI(x, y), x)

= pJ(x, x)

= x

(Lemma 4.4)

(I) .
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Note that in this case | J | = 1 or | J | = 2.

Now we are ready to show that the identity (As) separates all our vari-
eties.

Proposition 4.6. Assume that s, t ∈ Σn. The identity (As) is satisfied
in all Lt when t 6= s, but it is not satisfied in Ls itself.

P r o o f. Let s = s(I, J). For the first assertion, note in Lt that | I | = 2
or | J | = 2 or t = ô 6= s. On the one hand, if | I | = 2, then by Lemmas 4.4
and 4.5 it follows that

qIJ = x = pI .

On the other hand, if | I | = 1 and | J | = 2, then again by the previous
lemmas,

qIJ = x i y = pI .

This last analysis also goes through in the special case when t = ô.

For the second assertion when t = s = s(I, J), it is clear that | I | = 1 =
| J | and i 6= j . Hence, by the lemmas,

qIJ = x but pI = x i y .

Since Ls has two elements, qIJ = pI cannot be an identity of it.

For a subset T of Σn, let DT be the variety of distributive n-semilattices
generated by the subdirectly irreducibles Ls for s in T . Note that DΣn

is the
variety Dn of all distributive n-semilattices, and that D∅ is the trivial variety
of one-element n-semilattices. The varieties D{s} for s in Σn are the atoms
of the lattice Dn of all subvarieties of Dn. There are 2n−1 of them. Since
any two atomic varieties, D{s} and D{t}, for s and t in Σn, satisfy different
sets of laws (Eij) of equality of operations, they are different. Moreover, the
laws of equality of operations that hold in Ls are not satisfied in the variety
DΣn−{s}.

Corollary 4.7. The varieties DT for T ≡ Σn − {s} with s in Σn

are all dual atoms in the lattice Dn. Each such variety DT is defined by
the one identity (As), in addition to those defining Dn. For T 6= T ′, with
T ′ ≡ Σn − {s′}, the dual atoms DT and DT ′ are different.

Let T be a subset {s1, . . . , sp} of Σn. For each i = 1, . . . , p, we can write
si = s(Ii, Ji), where Ii ≡ {k ∈ n | si(k) = 0} and Ji ≡ n−Ii. By Proposition
4.6, the identity (Asi

) is satisfied in Ls when s 6= si, but it is not satisfied
in Lsi

. Hence the identities (As1
),. . . ,(Asp

) are satisfied simultaneously in
all Ls with the exception of just Ls1

, . . . ,Lsp
, and they are not satisfied in

a larger set of subdirectly irreducibles of the form Ls. It follows that the
identities (As1

), . . . , (Asp
) are satisfied in the variety DΣn−T but not in any
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variety generated by a set of subdirectly irreducibles Ls properly containing
the set {Ls | s ∈ Σn − T}. As a consequence one gets the following.

Corollary 4.8. There is a one-to-one correspondence between all sub-
sets of {(As) | s ∈ Σn} and the sets of equations satisfied by all subsets of
{Ls | s ∈ Σn}. This correspondence is given by

{(As) | s ∈ T} 7→ {Ls | s ∈ Σn − T} ,

for all T ⊆ Σn.

Finally, here is the main theorem describing the lattice Dn of subvarieties
of Dn.

Theorem 4.9. The lattice Dn of all varieties of distributive n-semi-
lattices is isomorphic to the Boolean lattice (C2)2

n−1

. Each variety of dis-
tributive n-semilattices is generated by a subset , say {Ls1

, . . . ,Lsk
}, of {Ls |

s ∈ Σn}, and is defined by the axioms for distributive n-semilattices and the
identities (As) for all sequences s in Σn − {s1, . . . , sk}.

Corollary 4.10. Suppose T ⊆ Σn. Let LT be the set {Ls | s ∈ T} of
subdirectly irreducibles.

(i) The variety Var LT is regular iff ô ∈ T .

(ii) Reg Var LT = Var(LT ∪ {Lô}).

P r o o f. As noted before, when s ∈ Σn, the identity (As) is regular iff
s 6= ô. Thus by Theorem 4.9, Var LT is regular iff ô ∈ T . Since the identities
(As) serve to discriminate among all of the subvarieties of Dn, we have also
established (ii).

Theorem 4.9 and its corollary are well illustrated in Fig. 5.1.

5. Subvarieties of Dn defined by identities involving

at most two operation symbols

Though Theorem 4.9 describes the lattice of subvarieties of Dn and gives
a basis for the identities of each of them, we may easily notice that at least
for some of these subvarieties one can find a simpler set of axioms. For
example, each of the atomic varieties D{s}, when s ∈ Σn and s = s(I, J),
is defined by the identities (Eij) where i and j are both in I or both in
J , as well as the identities (Aij) where i is in I and j is in J . All these
identities involve two operation symbols. Call these two kinds of identities
special laws.
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They satisfy these inferences (assuming, of course, also the defining iden-
tities for distributive n-semilattices):

(Aij) ⇒ (Aji) ; (Eij) ⇒ (Eji) ;

(Aij) & (Ajk) ⇒ (Eik) ; (Eij) & (Ejk) ⇒ (Eik) ;

(Aij) & (Ejk) ⇒ (Aik) ; (Aij) & (Eij) ⇔ x = y .

The proofs of these inferences are either easy or they have already been
discussed.

Sets of special laws are best pictured as certain kinds of networks, called
admissible. They will be defined shortly, but first we summarize what will be
found out. The collection of admissible networks forms a lattice in which the
join and meet operations are easily described. Moreover, the set of special
laws satisfied in a individual subdirectly irreducible is naturally represented
by a unique network. We will denote the lattice of all admissible networks
by N n. Let D

2
n be the lattice consisting of all varieties of distributive

n-semilattices definable by identities with at most two operation symbols.
D

2
n is a meet subsemilattice and an order ideal of Dn. The theorem we are

heading for is that there is an anti-isomorphism between N n and D
2
n.

Our next task is to describe admissible networks, which is a class of
link-labelled graphs. Our graphs have n nodes: 0, 1, . . . , n − 1, and some
links, or edges, between some of the nodes. In a graph we label each link,
if it exists, with α or ǫ, or both. The interpretation, to be worked out in
detail in a moment, is that a link from i to j, labelled by α, means that
the absorptive law (Aij) holds, and the label ǫ means the equality law (Eij)
holds. Call such a graph a network . Further call a network admissible if the
labels satisfy the inferences just given. The first two of these imply that the
network is undirected.

For example, here is an admissible network when n = 6:

The interpretation will be that in the corresponding variety these special
laws hold:

(E01) , (E12) , (E20) ,

(A34) , (A45) , (E53) .

Realize that no special laws hold between nodes 2 and 4, etc. To see the
extent of the notion of admissible network, please look at the pictures at
the end of this section.

A special case is the network corresponding to the atomic variety, D{s} ≡
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Var{Ls}, for s in Σn. If s = 〈s1, . . . , sn〉, then the link from i to j is labelled:

ǫ if si = sj in Ls ,

α if si 6= sj in Ls .

Each pair of nodes of the network are linked by an edge, i.e., the network
is complete. Conversely, it will become clear that the only complete proper
networks are those corresponding to the D{s}. The regularization RegD{s}

of D{s} drops the links labelled α, and links only those nodes for which
si = sj in Ls, and these links keep the label ǫ. It should be clear that

the links labelled α or ǫ correspond precisely to those special laws, (Aij)
or (Eij), which hold among the operations of the subdirectly irreducible
generating the corresponding variety.

With this motivation, it should be clear how we are to define a function
from admissible networks to varieties. For an admissible network N on n
nodes define the variety, V ≡ γn(N ), of distributive n-semilattices as that
equational class which satisfies the special laws:

(Aij) if i is linked to j by α in N ; and

(Eij) if i is linked to j by ǫ in N .

The logical equivalence

(Aij) ∧ (Eij) ⇔ x = y

implies the following for an admissible network. Either each link is labelled
by either α or ǫ, or all links are labelled by both. The former will be called
proper admissible networks, and the latter improper . We will see later that
this improper network—there is exactly one for each n—plays the role of
a least element in the lattice of all admissible networks. It corresponds to
the variety of one-element n-semilattices in which holds the trivial identity,
x = y. Of course, the class Dn of all distributive n-semilattices comes from
the network with no links whatsoever, meaning that no special laws hold
in it.

Our next task is to describe the structure of admissible networks. As a
graph each network is a disjoint union of connected components, two nodes
being in the same component just when there is a chain of links connecting
them. Because of the transitive inferences noted earlier, any two nodes in
an admissible network are connected iff they themselves are linked. Another
way of saying this is that for admissible networks any component is a clique,
that is, it is complete.

The following proposition describes the structure of each component. To
this end call a clique labelled exclusively by ǫ’s an ǫ-clique. We allow an
ǫ-clique to consist of one element only.
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Proposition 5.1. Assume N is an admissible network.

(i) Then each component is a clique.

(ii) When N is proper , each component of N is either an ǫ-clique or the
disjoint union of two ǫ-cliques, the remaining links in the component being
labelled α.

P r o o f. Already noted is the truth of (i). To establish (ii), realize by
transitivity that each component is a disjoint union of ǫ-cliques. By way
of contradiction, suppose there are three or more ǫ-cliques in a component.
That is, there are nodes i, j and k in distinct ǫ-cliques of the same compo-
nent. So, across the ǫ-cliques, the laws (Eij), (Ejk) and (Eki) cannot hold.
Since any component is complete the laws (Aij), (Ajk) and (Aki) must hold.
By transitivity across (Aij) and (Ajk), also (Eki) holds. But N is proper
and so both (Aki) and (Eki) cannot simultaneously hold.

To prove eventually that there are admissible networks corresponding
to particular varieties, we need maximal extensions of admissible networks
subject to certain constraints; this is the content of the next lemma. To this
end we need a partial ordering of networks. Only networks with the same
set of nodes are eligible for comparison. First links are ordered by their
labelling:

Then one network N2 is greater than another N1, and we write N2 ≥ N1, if
N1 and N2 have the same set of nodes, and for all pairs of nodes, i and j,
the corresponding linking and labelling, or lack of it, between i and j in N1

and N2 is related as above.

Before passing on to the extension lemma, we show that this partial
order is, in fact, a lattice order, both for all networks and just for admissible
networks. Notice that any two networks have a greatest lower bound; it is
the network in which each link must be common to the two given networks.
In fact, any set S of networks will have a greatest lower bound, which we
will denote by

∧
S, and call the meet of S. Most important is the fact that

if the networks of S are admissible, then so is their meet
∧

S.

Another way of phrasing this is that 〈Nn;
∧
〉 is a complete semilattice.

(Of course, once a binary meet is defined, it must be complete since Nn is
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finite.) In turn this implies that there is also a join operation
∨

:
∨

S =
∧

{N ∈ Nn | N ≥ M for all M ∈ S} .

There is another way to describe the join. For simplicity, take just two
admissible networks, N and M. To form their join first look at each pair
of nodes and link them according to the join of the link ordering given just
above. This will be a network, but it may not be admissible. So, to get an
admissible network, take the transitive closure as specified in the inferences
connecting the special laws.

With these two operations defined, we can summarize that we have a
lattice and then go on to extensions.

Proposition 5.2. Under join and meet , the set Nn of all admissible
networks on n nodes becomes a lattice,

N n ≡ 〈Nn;
∨

,
∧

〉 .

Lemma 5.3. Let N be an admissible network in which node i is not linked
to node j.

(i) There is an extension of N to a proper and complete admissible
network N in which i and j are linked by the label α.

(ii) There is another extension of N to a proper and complete admissible
network N in which i and j are linked by the label ǫ.

P r o o f. Assume there are components: C0, C1, C2, . . . Without loss of
generality, assume that the components Cp for p < t each have two ǫ-cliques,
C0

p and C1
p , and the remaining components only one. We now create the

two ǫ-cliques of N :

C0 ≡
⋃

p<t

C0
p ∪

⋃

p≥t

Cp , C1 ≡
⋃

p<t

C1
p .

That is, all nodes of C0 are to be linked by ǫ in N and similarly for those
in C1; pairs of nodes across C0 and C1 are to be linked and labelled by α,
if not already so labelled. (C1 may be empty.) It should be clear that N
both is admissible and extends N .

Now we accommodate the particulars of the two parts, (i) and (ii). Of
necessity, nodes i and j must belong to separate components. There are
three cases.

C a s e 1. Both i and j belong to components each having two ǫ-cliques.
Without loss of generality we may relabel the ǫ-cliques, if necessary, so that

i ∈ C0
0 and j ∈ C1

1 .

Then the preceding construction will give us the linkage i
α

j to establish
part (i) in this case. If we desire instead the linkage i

ǫ
j in part (ii), then
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it suffices to relabel so that

i ∈ C0
0 and j ∈ C0

1 .

C a s e 2. Only node i belongs to a component with two ǫ-cliques. Re-
labelling the ǫ-cliques so that i ∈ C1

0 ensures the linkage i
α

j; otherwise

i ∈ C0
0 ensures i

ǫ
j.

C a s e 3. Both nodes, i and j, belong to two components which are
single ǫ-components. Redefining C0 and C1 in the earlier construction so
that these two components are in distinct unions yields i

α
j. Leaving the

construction alone guarantees that i and j are both in C1, and hence we
have i

ǫ
j.

With Lemma 5.3 at hand we can describe the atoms of this lattice.

Corollary 5.4. Every proper admissible network N is the meet of a set
of complete proper admissible networks.

P r o o f. Whenever all pairs of nodes are linked, N is already complete.
Otherwise, for each pair of nodes, i and j, unlinked in N , define Nα

ij and
N ǫ

ij to be the extensions given by Lemma 5.3, parts (i) and (ii), respectively.
Let U be the set of all such unlinked pairs of nodes. It should now be clear
that

N =
∧

〈i,j〉∈U

(Nα
ij ∧ N ǫ

ij) .

We are now ready to state and prove the main result of this section,
which gives a one-to-one correspondence between admissible networks and
the varieties of D

2
n by means of the interpretation γn, defined earlier in this

section. Recall that D
2
n contains those classes of distributive multisemilat-

tices characterizable by identities with at most two operation symbols. It is
easy to see that the lattice D

2
n is a meet subsemilattice of Dn.

Theorem 5.5. Let n be finite and n ≥ 2. Recall the function

γn : N n → D
2
n

that assigns to each admissible network N a variety , V ≡ γn(N ), of dis-
tributive n-semilattices. The variety V is that equational class defined by
the identities: (Aij) whenever i

α
j is a link of N , and (Eij) whenever

i
ǫ

j is. Then γn is a lattice anti-isomorphism from N n onto D
2
n.

The proof of this theorem is effected through three lemmas: the first
shows that γn is injective, the second that γn is surjective, and the third
that the lattice operations are reversed by γn.

Lemma 5.6. The function γn is injective.
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P r o o f. Consider two different admissible networks, M and N ; we want
to show that their images under γn are different. That is, assume there are
nodes, i and j, between which the linkage is different in M and N , meaning
that either the links are labelled differently or there is a link in one network
that is not in the other. Our method of proof will be to find a subdirectly
irreducible which is in the variety corresponding to one network but not in
the other.

First let us get out of the way the case when one network is improper,
say M is. Then to be different, N must be proper. If N should be complete,
then it must correspond to an Ls. Hence Ls ∈ γn(N ) but Ls 6∈ γn(M). If
N is not complete, then it can be extended by Lemma 5.3 to a complete
proper network.

Next assume that both M and N are proper. There are two cases. On
the one hand, if there are nodes i and j linked in one network, say M, but
not in N , then there is a complete extension N of N—again by Lemma 5.3—
so that the label linking i and j in N is different from that in M. As before
N corresponds to an Ls. Thus Ls ∈ γn(N ) but Ls 6∈ γn(M).

On the other hand, if all pairs of nodes are linked in these two proper
networks, then both of them are complete. But, since the labelling on
corresponding links must differ somewhere in order for the networks to be
unequal, say i

α
j in M and i

ǫ
j in N , there have to be different sets

of subdirectly irreducibles corresponding to these complete networks. In
particular, if Ls corresponds to N , then again Ls ∈ γn(N ) − γn(M). So
once more we reach the same conclusion.

Lemma 5.7. The function γn is surjective.

P r o o f. We must prove that for any variety V of D
2
n there is an admis-

sible network N such that

γn(N ) = V .

Since Theorem 4.9 tells us that a variety of multisemilattices is uniquely
determined by the subdirectly irreducibles Ls it contains, it suffices for us
to work with the set S = {Ls1

, . . . ,Lsr
} of subdirectly irreducibles in V.

Let N1, . . . ,Nr be the admissible networks corresponding to Ls1
, . . . ,Lsr

.
A likely candidate for the corresponding network which should give V back
is the meet

N ≡
r∧

k=1

Nk ,

defined by the partial ordering given earlier just before Proposition 5.2.
Equivalently, two nodes are linked in the meet if the nodes are linked in all
factors and labelled the same.
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This definition of the meet of networks immediately shows that γn(N ) ⊇
S, and hence,

γn(N ) ⊇ Var S = V ,

where Var S is the smallest variety generated by S. To show inclusion in
the other direction is the tricky part. It is conceivable that there might be
a subdirectly irreducible I in γn(N ) but not in V. This possibility could
arise if there are other identities besides the special laws which separate the
varieties more finely than admissible networks provide for.

Since we know already that the varieties in Dn are determined just
by the subdirectly irreducibles Ls, without loss of generality this troub-
lesome subdirectly irreducible I in γn(N ) can be chosen to be also an
Ls.

To show this is really an impossibility in Dn, it suffices to prove that any
identity,

w1 = w2 ,

satisfied by all the subdirectly irreducibles of V is also satisfied by I. Since
V ∈ D

2
n, we may further assume, again without loss of generality, that the

identity in question has at most two operation symbols in it, say i and j .
We consider two cases.

C a s e 1. The questionable subdirectly irreducible I is an Ls in which
i 6= j . For this Ls to be in the image of N it must be that α links nodes i

and j in some factor Nk of the meet N . Otherwise i would be linked to j by ǫ
in all the Nk and hence i = j , which is contradictory. Therefore, in some
Lsk

we have the absorptive law (Aij) holding. So our identity w1 = w2

is an identity of distributive lattices. But the reduct 〈{0, 1}; i , j 〉 of I

is also a distributive lattice. We conclude then that w1 = w2 must hold
in I.

C a s e 2. When I is an Ls and i = j , an analysis similar to that for
Case 1 reduces the problem to one in the theory of semilattices.

Lemma 5.8. The function γn reverses the lattice operations.

P r o o f. To show the lattice operations are reversed, since γn is a bi-
jection from N n onto D

2
n, it suffices to prove that these lattices are anti-

isomorphic as ordered sets under the mapping γn. So we need to verify
that

N ≥ N ′ iff V ≤ V ′ ,

where V ≡ γn(N ) and V ′ ≡ γn(N ′). In turn this can be checked by working
only with sets of generators. By Corollary 5.4, the generators of N n are the
complete and proper admissible networks, and their images under γn are
the D{s}, which in turn are generators of Dn.
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For any two proper networks N and N ′, assume {Nk | k ∈ S} is the
set of all proper complete networks which are greater than N , and similarly
{N ′

k | k ∈ S′} contains those greater than N ′. Although proper complete
networks are coatoms in the lattice N n, different sets of coatoms may have
the same meet; so, in this argument, we must use all coatoms greater than
a particular network. Set Dsk

≡ γn(Nk) and Ds′

k
≡ γn(N ′

k). Thus we finish
by verifying the following sequence of logical equivalences.

N ≥ N ′ iff
∧

k∈S

Nk ≥
∧

k∈S′

N ′
k

iff {Nk | k ∈ S} ⊇ {Nk | k ∈ S′}

iff {Lsk
| k ∈ S} ⊆ {Ls′

k
| k ∈ S′}

iff V ⊆ V ′ .

We close this section with some pictures illustrating the lattice D3, D
2
3

and N 3. In these Hasse diagrams a sequence, say 〈0, 1, 1〉 in Σ3, is abbrevi-
ated as 011. The variety Var{Ls | s ∈ T} generated by the subdirectly irre-
ducibles Ls for sequences s in the set T is denoted simply by DT , and to save
more space Ds means D{s}. Special sets of sequences are T1 ≡ {001, 011},
T2 ≡ {001, 010} and T3 ≡ {011, 010}.

Fig. 5.1. The lattice D3 of all varieties of distributive 3-semilattices
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Fig. 5.2. The lattice D
2
3 of all varieties of distributive 3-semilattices

definable by identities with at most two operation symbols

Fig. 5.3. The dual of the lattice N 3 of all admissible networks with 3 nodes
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6. Some further comments and open problems

We know already quite a lot about distributive multisemilattices. We
have examples showing how worthwhile these algebras are to study. We
have two types of structure theorems: representations by subdirect product
of subdirectly irreducibles and P lonka sums of absorptive multisemilattices.
Finally, we know the lattice of all subvarieties of Dn and identities defining
them. But still there are some open questions. Some of them may be not
very difficult to answer.

Problem 6.1. We described the lattice Dn of subvarieties of Dn only
for finite n. Do the same for infinite n. Because of the result of Dudek and
Graczyńska [DG], an essential part of the proof would involve the description
of irregular subvarieties. An answer to this problem may depend on a good
representation for absorptive multisemilattices that might be similar to that
of P lonka in Example 2.2.

Problem 6.2. Find a “good” structure theorem for absorptive multi-
semilattices in general.

Question 6.3. Find and describe classes of distributive multisemilat-
tices that have more than one lattice structure, that is, there are disjoint
pairs of semilattices, each pair satisfying the absorptive laws. In particular,
can the construction described in Example 2.12 be applied to a multisemi-
lattice with at least three lattice structures?

Example 6.4. We note here that in the case n = 3, the methods
used in Section 5 may be applied to reprove the two principal results of
B. H. Arnold’s paper [A] concerning the structure of distributive 3-semi-
lattices.

The two principal results of Arnold’s paper are concerned with algebras,
L = 〈L;∨,∧, ∗〉, with three binary operations in which 〈L;∨,∧〉 is a lattice,
〈L; ∗〉 is a semilattice, and the three operations are mutually distributive (4).
His two results are as follows.

(i) For any such algebra L, the reduct 〈L;∨,∧〉 is isomorphic to the sub-
direct product of two distribtive lattices, A and B, in which ∗ is recoverable
by the formula

〈a, b〉 ∗ 〈c, d〉 = 〈a ∨ c, b ∧ d〉 .

(ii) If ∗ has a unity e, then the previous subdirect product is actually
direct.

(4) Jakub́ık & Kolibiar [JK2] prove the same results without assuming that ∨ and ∧

distribute over each other.
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To derive (i), realize we are in the variety of distributive 3-semilattices
corresponding to the following network:

There are thus two proper and complete admissible networks extending it:

So L is isomorphic to—and to simplify we assume it is equal to—a sub-
direct product of corresponding factors: L010 and L011. So L is a subdirect
product of just two factors, A and B, obtained by grouping together all
the L010’s and then all the L011’s. Thus A and B are in the varieties cor-
responding to the two complete admissible networks given above. Since ∗
equals ∨ in A and ∧ in B, we obtain (i).

To see (ii), note that in the representation just established, the unity e
is 〈0, 1〉. Suppose a ∈ A and b ∈ B; we will show 〈a, b〉 ∈ L. Since the
canonical projections in a subdirect product are surjective, there must be a′

in A and b′ in B such that both

〈a, b′〉, 〈a′, b〉 ∈ L .

Then

〈a, b〉 = (〈a, b′〉 ∨ e) ∗ (〈a′, b〉 ∧ e) ,

and so 〈a, b〉 ∈ L as required.
In like manner, some of the results of Jan Jakub́ık and Milan Kolibiar

[JK2] are derivable from ours. However, the main thrust of their paper is
not. This is that if 〈L;∨,∧〉 is a lattice and ∗ is a third semilattice operation
on L which is mutually distributive with both ∨ and ∧, then ∨ and ∧ are
themselves mutually distributive. This is significant when one contemplates
weakening the axioms for distributive multisemilattices. For this can be
rephrased for a multisemilattice: if two operations are mutually absorptive
and some third operation is mutually distributive with these two, then the
original two are mutually distributive. In symbols,

(Aij) & (Aji) & (Dik) & (Dki) & (Djk) & (Dkj) ⇒ (Dij) & (Dji) .

Question 6.5. What is the simplest single n-semilattice which will
generate all of Dn? For n = 1, this is S2 (= L0), and for n = 2, it is B3
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(= B01). For n ≥ 3, there is the obvious generator T =
∏

s∈Σn
Ls, but this

can be shrunk, although how much is an open question. To explain this
when n is finite, consider this star-shaped graph on n + 1 nodes,

Define a median operation on it as follows:

µ(x, y, z) =

{
the common argument if two or more arguments are equal,
c if all three arguments are unequal.

Obtain n binary semilattices as before:

x y z = µ(x, y, z) (y ∈ {0, 1, . . . , n − 1}) .

Notice that all these binary operations are unequal and no absorptive laws
hold. Let the distributive n-semilattice with these operations be called Pn.
We will see that P3 generates the variety D3. However, this distributive
multisemilattice Pn does not generate all of Dn when n > 3. But it does
generate enough to shrink the product generator of Dn. To see this define
∆k to be the nonconstant sequence of length n such that

∆k
i =

{
1 if i = k,
0 otherwise.

Then L∆k is obtainable from Pn by identyfying all elements outside of k.
Conversely, Pn is isomorphic to the subalgebra of

∏n−1
k=0 L∆k whose carrier

is {ô,∆0, . . . ,∆n−1}. Thus Var P = Var(
∏

k L∆k). And so Pn can replace
the product of the factors L∆k in T to get a new and simpler generator T′

of Dn. Things are really this complicated since from Theorem 4.9 proven
previously we can see that L0011 6∈ Var{L∆k | k ∈ 4} = Var{P4}.

As for representations of distributive multisemilattices, recall one ques-
tion we formulated already in Section 2.

Question 6.6. Not every distributive multisemilattice comes from a
median algebra as described in Example 2.7. What is the relationship be-
tween varieties of distributive multisemilattices and varieties of median al-
gebras?

Another question concerns topological representations for distributive
multisemilattices. The first one was described for bisemilattices by R. Balbes
[B] (see [Kn1] as well).

Problem 6.7. Categorical duality for distributive bisemilattices was
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described by G. Gierz and A. Romanowska [GR]. The dual of D2 is the
variety of certain topological ordered left normal bands. This duality gen-
eralizes Priestley duality for distributive lattices and Pontryagin duality for
semilattices. Generalize the result of Gierz and Romanowska to distributive
multisemilattices.

Problem 6.8. Note that all absorptive multisemilattices are constructed
from distributive lattices. This suggests that the lattices of congruences of
these algebras should be distributive. Prove or disprove this conjecture
directly.

Question 6.9. Describe free n-semilattices. How large is the size of
the free n-semilattice on k generators? The problem reduces to a similar
one for the variety of absorptive n-semilattices, since the free algebra on
k generators in the regularization Reg V of a strongly irregular variety V
is known to be a P lonka sum of free V-algebras on k generators over the
free semilattice on k generators (see [P5], [R1], and [RS3]). The problem
of describing such algebras and their size may be extremely complicated as
it is in the case of distributive lattices (see the recent paper of Kisielewicz
[Ki]), but it might be easier to find a simple normal form for n-semilattice
words.

Question 6.10. Can more than n mutually distributive semilattices
exist on a set with only n elements?

To be concrete let M be a nonempty set with n elements, finite or in-
finite. Start with some distributive lattice 〈M ;∨,∧〉 on M ; this always
exists for any set M—take, for example, a chain on M . As outlined in
the introduction, it is easy to turn M into a distributive multisemilat-
tice M of type n. But this still leaves open the question of whether more
such mutually distributive semilattices could be cleverly squeezed onto one
set.

An illustration of this construction was given in the introduction.
A 4-semilattice M was manufactured from the four-element distributive lat-
tice which is not a chain:
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The network corresponding to the variety of distributive 4-semilattices gen-
erated by M is

From our theory the subdirectly irreducibles are found to be L0011 and L0110.
Can more binary operations be added to M to yield a new distributive
multisemilattice of larger type?

The size of maximal sets of such operations is a related question with
different answers. For the moment, let us agree to call one distributive
multisemilattice M2 an extension of another M1 if their carriers are equal
and the set of operations of M1 is a subset of those of M2. By means of the
Hausdorff maximal principle it is not hard to show that any n-semilattice has
a maximal extension in this sense. We must distinguish between maximal
sets of such operations and sets with a greatest number of operations.

To understand this distinction consider Kalman’s [K] algebra,

B3 = 〈B3;∨,∧〉 ,

where B3 = {0, 1,∞} and the two operations are as given earlier. There are
seven other semilattices on B3—four more chains and three isomorphic to
the semilattice

By a detailed analysis, case by case, one can show that none of these other
seven distribute with both of the original two. Thus B3 is a multisemilattice
of maximal type.

On the other hand, as demonstrated several paragraphs earlier, there is
also a multisemilattice on any three-element set which has three mutually
distributive operations. A case analysis will again show that this is also
maximal in the sense above.

Future generalizations. Distributive bisemilattices have been general-
ized by a number of authors. See e.g. [D1]–[D3], [DR], [G1]–[G3], [Go1],
[Go2], [MR], [Pn], [PR], [R2]–[R10], [RS1], [RS2]. Dropping distributivity
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completely opens a Pandora’s box. See, for example, Ga luszka [G1], who
exhibited an infinite ascending chain of varieties of bisemilattices satisfying
certain absorption laws. The one-way distributive law studied by McKen-
zie and Romanowska [MR] might be extended to multisemilattices, say, by
postulating that i distributes over j whenever i ≥ j in some given linear
order ≥ on the index set. This is attractive since all words may then be
“normalized” so that the depth of embedding of operations is limited to
n. Such types of generalizations may be very useful in the structure the-
orems for algebras in multiregular varieties based on decomposition over a
multisemilattice replicated as in Example 2.9.
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[BH] H.-J. Bandelt and J. Hed l ı́kov á, Median algebras, Discrete Math. 45 (1983),
1–30.

[Bi] G. Birkhof f, Lattice Theory , 3rd ed., Amer. Math. Soc., Providence, R.I., 1967.

[Bi1] —, Subdirect unions in universal algebra, Bull. Amer. Math. Soc. 50 (1944),
764–768.

[BK] G. Birkhof f and S. A. Kiss, A ternary operation in distributive lattices, ibid.
53 (1947), 749–752.

[C] P. M. Cohn, Universal Algebra, Reidel, Dordrecht 1981.

[D1] J. Dudek, On bisemilattices I , Colloq. Math. 47 (1982), 1–5.

[D2] —, On bisemilattices II , to appear.

[D3] —, On bisemilattices III , Math. Sem. Notes Kobe Univ. 10 (1982), 275–279.
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Tempsky, 1983, 343–358.

[R9] —, On some constructions of bisemilattices, Demonstratio Math. 17 (1984),
1011–1021.

[R10] —, Constructing and reconstructing of algebras, ibid. 18 (1985), 209–230.
[R11] —, On regular and regularized varieties, Algebra Universalis 23 (1986), 215–241.
[RS1] A. Romanowska and J. D. H. Smith, Bisemilattices of subsemilattices, J.

Algebra 70 (1981), 78–88.
[RS2] —, —, Distributive lattices, generalisations, and related non-associative struc-

tures, Houston J. Math. 11 (1985), 367–383.
[RS3] —, —, Model Theory , and Algebraic Approach to Order , Geometry and Con-

vexity , Heldermann, Berlin 1985.
[RS4] —, —, On the structure of semilattice sums, preprint, 1987.
[RT] A. Romanowska and A. Trakul, On the structure of some bilattices, in:

Universal and Applied Algebras, Proc. Universal Algebra Symposium, Turawa
1988, K. Halkowska and B. Stawski (eds.), World Scientific, Singapore 1989,
235–253.

[S] B. M. Sche in, Homomorphisms and subdirect decompositions of semigroups,
Pacific J. Math. 17 (1966), 529–547.

[T] A. Traku l, Bilattices, Master thesis, Warsaw Technical University, 1988 (in
Polish).

[W] R. O. Winder, Threshold Logic, Ph.D. Thesis, Princeton Univ., 1962.

Arthur Knoebel Anna Romanowska

DEPARTMENT OF MATHEMATICAL SCIENCES INSTITUTE OF MATHEMATICS

NEW MEXICO STATE UNIVERSITY WARSAW TECHNICAL UNIVERSITY

LAS CRUCES, NEW MEXICO 88003, U.S.A. 00-661 WARSZAWA, POLAND

Received May 31, 1990




