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Abstract

The Γ -minimax estimator under squared error loss for the unknown parameter of a one-
parameter exponential family with an unbiased sufficient statistic having a variance which
is quadratic in the parameter is explicitly determined for a class Γ of priors consisting of
all distributions whose first two moments are within some given bounds. This generalizes
the choice of Γ in Jackson et al . (1970) as well as the unrestricted case. It is shown
that the underlying statistical game is always strictly determined and that there exists a
Γ -minimax estimator which is a linear function of the unbiased sufficient statistic. If the
bounds for both prior moments are effective then there exists a least favourable prior in
Γ which is a member of the Pearsonian family.

1980 Mathematics Subject Classification (1985 Revision): Primary 62C99; Secondary
62F10.

Key words and phrases: Gamma-minimax, exponential family, squared error loss,
moment restrictions, least favourable conjugate prior, Pearsonian family.
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1. Introduction and summary

In this paper the problem of estimating the unknown parameter
θ of a one-parameter exponential family is considered. It is assumed
that there exists an unbiased sufficient statistic having a variance
which is quadratic in the parameter θ. In the second section it is
shown that the densities of these distributions can be described by
two simple differential equations. The natural conjugate priors with
respect to these distributions are always members of the Pearsonian
family. Parts of these results can also be deduced from Diaconis
and Ylvisaker (1979). In the third section it is proved that the
Bayes estimators with respect to the natural conjugate priors under
squared error loss are linear functions of the underlying unbiased
sufficient statistic. Since the variance is quadratic in the parameter
θ the risk function of these Bayes estimators is a quadratic function
of θ. Hence the Bayes risk with respect to any prior can be ex-
pressed in terms of its first two moments. This is the reason why
in the fourth section the Γ -minimax estimator under squared error
loss can be determined explicitly when the set Γ of priors consists
of all distributions whose first two moments are within some given
bounds. In particular, this choice of Γ includes the case of fixed
first two moments as in Jackson et al . (1970). Similar sets Γ of
priors have been considered by Robbins (1964, Section 5), Solomon
(1972), DeRouen and Mitchell (1974), Samaniego (1975), Eichenauer
et al . (1988), and Chen et al . (1990). In the fourth section it is
also shown that the corresponding statistical game is strictly deter-
mined and those situations are characterized where a saddle point
exists. In these cases the Γ -minimax estimator is uniquely deter-
mined up to a set of measure zero. In all other cases a Γ -minimax
estimator is determined which is the pointwise limit of a sequence
of Bayes estimators with respect to a least favourable sequence of
priors in Γ .

The authors would like to thank the referee for his thorough
reading of the manuscript and for his helpful remarks.
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2. A class of exponential families

Let {Pθ | θ ∈ Θ} be a family of Borel probability measures on R with
densities

(1) f(θ, x) = C(θ)eq(θ)x , x ∈ R ,

with respect to a σ-finite Borel measure µ on B(R), the Borel σ-algebra on
R, and let Θ = (θ0, θ1) be an open interval such that C and q are real-valued
continuously differentiable functions on Θ and q is strictly increasing on Θ.

The following technical lemma is used in order to determine the first two
moments of the probability measures Pθ, θ ∈ Θ.

Lemma 1. For any θ̂ ∈ Θ there exist an ε > 0 and a µ-integrable function

h : R → R such that ∣∣∣∣x
j ∂

∂θ
f(θ, x)

∣∣∣∣ ≤ h(x)

for all x ∈ R, θ ∈ Θ with |θ − θ̂| < ε, and j ∈ {0, 1}.
P r o o f. Since q is strictly increasing on Θ the functions hγ : R → R,

hγ(x) = eγx, are µ-integrable for all γ ∈ (q(θ0), q(θ1)). For any θ̂ ∈ Θ
it can easily be shown that there exist real numbers ε > 0, M > 0, and
γ0, γ1 ∈ (q(θ0), q(θ1)) such that

|x|jeq(θ)x ≤M(eγ0x + eγ1x)

for all x ∈ R, θ ∈ Θ with |θ − θ̂| < ε, and j ∈ {0, 1}. Because of

∂

∂θ
f(θ, x) = C ′(θ)eq(θ)x + C(θ)q′(θ)xeq(θ)x

the assertion follows.

Lemma 1 and a well known argument (see e.g. Weir 1973, p. 118) show
that the functions

τj(θ) := C(θ)
∫
xjeq(θ)x µ(dx) , θ ∈ Θ , j ∈ {0, 1, 2} ,

are continuously differentiable for j ∈ {0, 1} and that the derivatives are
given by

(2) τ ′j(θ) =
C ′(θ)

C(θ)
τj(θ) + q′(θ)τj+1(θ) , θ ∈ Θ , j ∈ {0, 1} ,

with τ0(θ) = 1, θ ∈ Θ, because of (1). Following Jackson et al . (1970) it is
assumed that the probability measures Pθ, θ ∈ Θ, are the distributions of
an unbiased sufficient statistic having a variance of the form aθ2+bθ+c > 0,
θ ∈ Θ, with appropriate real numbers a, b and c. To make it more precise,
suppose that a, b and c are real numbers such that

Θ+ = {θ ∈ R | aθ2 + bθ + c > 0}
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is not empty. Let the functions C and q be continuously differentiable real-
valued solutions of the differential equations

C ′(θ)

C(θ)
=

−θ
aθ2 + bθ + c

,(3)

q′(θ) =
1

aθ2 + bθ + c
,(4)

defined on a maximal open interval

Θ ⊂ {θ ∈ Θ+ | C(θ) > 0} .
Then the differential equations (2)–(4) imply that∫

xPθ(dx) = θ , θ ∈ Θ ,(5) ∫
x2Pθ(dx) = (a+ 1)θ2 + bθ + c , θ ∈ Θ .(6)

Put D = b2 − 4ac and, in case a 6= 0 and D ≥ 0, set

t0 =
−b+

√
D

2a
, t1 =

−b−
√
D

2a
.

Then straightforward calculations yield the types of distributions given in
Table 1 as solutions of the differential equations (3) and (4). A closely
related representation is given in Morris (1982) and in Morris (1983).

Table 1. Types of distributions

Type Θ = (θ0, θ1) C(θ) q(θ)

I a < 0 , D > 0 (t0, t1) (θ − t0)−t0/
√
D(t1 − θ)t1/

√
D 1√

D
ln

( θ−t0
t1−θ

)

II a = b = 0 , c > 0 R e−θ
2/(2c) 1

c θ

III.1
III.2 a = 0 , b 6= 0

(−c/b,∞) if b > 0
(−∞,−c/b) if b < 0

(bθ + c)c/b
2
e−θ/b 1

b ln(bθ + c)

IV.1
IV.2 a > 0 , D > 0

(t0,∞)
(−∞, t1)

|θ − t0|
−t0/

√
D|θ − t1|

t1/
√
D 1√

D
ln

( θ−t0
θ−t1

)

V.1
V.2 a > 0 , D = 0

(t0,∞)
(−∞, t0)

|θ − t0|
−1/aet0/(a(θ−t0)) 1

a(t0−θ)

VI a > 0 , D < 0 R (aθ2 + bθ + c)−1/(2a) 2√
−D

arctan
(

2aθ+b√
−D

)

× exp
(

b

a
√
−D

arctan
(

2aθ+b√
−D

))

The following examples show that several important families of distributions
are of one of these types. The notation follows Berger (1985, Appendix 1).

Example 1. (a) If the random variable X is binomially distributed
B(n, θ), n ≥ 1, θ ∈ (0, 1), and if Pθ is the distribution of (1/n)X then
Pθ satisfies (1), (3), and (4) with a = −1/n, b = 1/n, and c = 0, which is a
special case of type I in Table 1.



8 Gamma-minimax estimators in the exponential family

(b) If Pθ = N (θ, 1), θ ∈ R, is a normal distribution with known variance
1 then Pθ satisfies (1), (3), and (4) with a = b = 0 and c = 1, which is a
special case of type II.

(c) If Pθ = P(θ), θ ∈ (0,∞), is a Poisson distribution then Pθ satisfies
(1), (3), and (4) with a = 0, b = 1, and c = 0, which is a special case of type
III.1.

(d) If Pθ = NB(1/a, 1/(aθ + 1)), a > 0, θ ∈ (0,∞), is a negative
binomial distribution then Pθ satisfies (1), (3), and (4) with a > 0, b = 1,
and c = 0, which is a special case of type IV.1. In particular, Pθ = Ge(1/(θ+
1)), θ ∈ (0,∞), is a geometric distribution for a = b = 1 and c = 0.

(e) If Pθ = G(1/a, aθ), a > 0, θ ∈ (0,∞), is a gamma distribution then
Pθ satisfies (1), (3), and (4) with a > 0 and b = c = 0, which is a special
case of type V.1. In particular, Pθ = E(θ), θ ∈ (0,∞), is an exponential
distribution for a = 1 and b = c = 0.

The examples above are typical representatives of their classes. The
class of distributions of type VI is also nonvoid, but its members are of
minor importance (compare Morris 1982 and Morris 1983).

Now let Π denote the set of all Borel probability measures π on the
parameter space Θ whose first two moments

νj(π) :=
∫
Θ

θj π(dθ) , j ∈ {1, 2} ,

exist, and let Λ be the set of all (α, β) ∈ R
2 which satisfy the inequalities

α > 3a ,(7)

β > θ0(α− 2a) − b ,(8)

β < θ1(α− 2a) − b .(9)

Obviously, (8) and (9) imply

(10) α > 2a .

Furthermore, (8) and (9) imply (7) for distributions of type I, (7) implies
(8) and (9) for type II or type VI, (7) and (8) imply (9) for type III.1, type
IV.1 or type V.1, and (7) and (9) imply (8) for type III.2, type IV.2, or type
V.2. Therefore at least one of the inequalities (7)–(9) is always redundant.

Now the technical Lemma 2 follows at once from the definition of Λ and
Table 1.

Lemma 2. Assume that (α, β) ∈ R
2. Then the conditions

(α, β) ∈ Λ ,(a)

C
(j)
α,β :=

∫
Θ

|θ|jCα(θ)eβq(θ) dθ <∞ , j ∈ {0, 1, 2} ,(b)
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lim
θ∈Θ
θ→θk

[aθ2 + bθ + c]θjCα(θ)eβq(θ) = 0 , j, k ∈ {0, 1} ,(c)

are equivalent.

Because of Lemma 2(a) and (b), for every (α, β) ∈ Λ

(11) pα,β(θ) := (C
(0)
α,β)−1Cα(θ)eβq(θ) , θ ∈ Θ ,

defines a density pα,β with respect to Lebesgue measure of a Borel probabil-
ity measure πα,β ∈ Π. The density pα,β is continuously differentiable, and
its first derivative is given by

(12) p′α,β(θ) =

(
α
C ′(θ)

C(θ)
+ βq′(θ)

)
pα,β(θ) , θ ∈ Θ .

The differential equations (3), (4), and (12) yield

(13) (aθ2 + bθ + c)p′α,β(θ) = (β − αθ)pα,β(θ) , θ ∈ Θ ,

i.e. πα,β is a Pearsonian distribution (cf. Johnson and Kotz 1970, Ch. 12,
Sec. 4.1).

In Lemma 3 the first two moments of πα,β are obtained by the usual
technique for Pearsonian distributions. A proof is added for the sake of
completeness. For λ = (α, β) ∈ Λ set πλ = πα,β ∈ Π and define

ΠΛ = {πλ ∈ Π | λ ∈ Λ} .

Lemma 3. Assume that λ = (α, β) ∈ Λ. Then the first two moments of

the probability measure πλ with density as defined by (11) are given by

ν1(πλ) =
β + b

α− 2a
, ν2(πλ) =

ν1(πλ)(β + 2b) + c

α− 3a
.

P r o o f. Lemma 2 shows that an integration by parts of equation (13)
yields

β − αν1(πλ) =
∫
Θ

(aθ2 + bθ + c)p′α,β(θ) dθ

= (aθ2 + bθ + c)pα,β(θ)
∣∣θ1
θ0

−
∫
Θ

(2aθ + b)pα,β(θ) dθ

= −2aν1(πλ) − b .

Similarly after multiplying both sides of (13) with θ an integration by parts
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yields

βν1(πλ) − αν2(πλ) =
∫
Θ

(aθ3 + bθ2 + cθ)p′α,β(θ) dθ

= (aθ2 + bθ + c)θpα,β(θ)
∣∣θ1
θ0

−
∫
Θ

(3aθ2 + 2bθ + c)pα,β(θ) dθ

= −3aν2(πλ) − 2bν1(πλ) − c .

Now together with (10) and (7) the assertion follows.

Define a set

(14) M = {(ν1, ν2) ∈ Θ × (0,∞) | ν2 > ν2
1 , aν2 + bν1 + c > 0} .

Then Θ ⊂ Θ+ and aν2 + bν1 + c = a(ν2 − ν2
1 ) + aν2

1 + bν1 + c yield

(15) M = {(ν1, ν2) ∈ Θ × (0,∞) | ν2 > ν2
1} for a ≥ 0 .

Define functions α, β : M → R by

α(ν1, ν2) = 2a+
aν2 + bν1 + c

ν2 − ν2
1

,(16)

β(ν1, ν2) = −b+ ν1(α(ν1, ν2) − 2a) ,(17)

and set

L(ν1, ν2) = (α(ν1, ν2), β(ν1, ν2)) .

Moreover, put

M(λ) = (ν1(πλ), ν2(πλ))

for λ = (α, β) ∈ Λ.

Lemma 4. The mapping L : M → Λ is bijective, and M is its inverse

mapping.

P r o o f. (i) Assume that (ν1, ν2) ∈ M. Because of

α(ν1, ν2) = 3a+
aν2

1 + bν1 + c

ν2 − ν2
1

,

Θ ⊂ Θ+, and ν2 > ν2
1 it follows that α(ν1, ν2) > 3a, i.e. α = α(ν1, ν2) satis-

fies inequality (7). Since aν2 + bν1 + c > 0 and θ0 < ν1 < θ1, equation (17)
implies the inequalities (8) and (9). Hence L(ν1, ν2) ∈ Λ, i.e. L(M) ⊂ Λ.

(ii) Assume that (α, β) ∈ Λ and put (ν1, ν2) = M(α, β). Lemma 3 yields

(18) ν1 =
β + b

α− 2a
, ν2 =

ν1(β + 2b) + c

α− 3a
.

The inequalities (8)–(10) imply θ0 < (β + b)/(α − 2a) < θ1, i.e. ν1 ∈ Θ,
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because of (18). A short calculation shows that (18) implies

aν2 + bν1 + c =
α− 2a

α− 3a
(aν2

1 + bν1 + c) ,

ν2 = ν2
1 +

aν2
1 + bν1 + c

α− 3a
,

which yields aν2 + bν1 + c > 0 and ν2 > ν2
1 because of (7), (10), and

ν1 ∈ Θ ⊂ Θ+. Hence M(α, β) ∈ M, i.e. M(Λ) ⊂ M.
(iii) It is straightforward to check that

M(L(ν1, ν2)) = (ν1, ν2) , (ν1, ν2) ∈ M ,

L(M(α, β)) = (α, β) , (α, β) ∈ Λ ,

which proves the lemma.

For a subset Γ ⊂ Π of Borel probability measures let

M(Γ ) = {(ν1(π), ν2(π)) ∈ R
2 | π ∈ Γ}

be the moment space of Γ . In particular,

M(E) = {(ν, ν2) | ν ∈ Θ}
is the moment space of the subset E = {εθ | θ ∈ Θ} of one-point probability
measures on Θ. Moreover, Lemma 4 implies that

(19) M(ΠΛ) = M = M(Π) \M(E) .

Recall that µ denotes the σ-finite Borel measure which dominates the family
{Pθ | θ ∈ Θ} of probability measures. Then the following technical lemma
holds.

Lemma 5. The measure µ is concentrated on the closure of the parameter

space, i.e. µ(R \ [θ0, θ1]) = 0.

P r o o f. Assume that N = (−∞, θ0) is nonvoid, i.e. one of the types I,
III.1, IV.1, or V.1 is considered. Let (θn)n≥2 be a sequence in (θ0, θ1) which
converges to θ0. Table 1 shows that limn→∞ f(θn, x) = ∞ for x ∈ N . But
Fatou’s lemma yields

1 ≥ lim inf
n→∞

∫
N

f(θn, x)µ(dx) ≥
∫
N

lim inf
n→∞

f(θn, x)µ(dx) ,

hence µ(N) = 0. The proof of µ((θ1,∞)) = 0 is similar.

The subsequent lemma shows that the subclass ΠΛ ⊂ Π of Borel prob-
ability measures is a conjugate family with respect to the class of densities
{f(θ, ·) | θ ∈ Θ} given by (1).

Lemma 6. (i) If (α, β) ∈ Λ then (α + 1, β + x) ∈ Λ for µ-almost every

x ∈ R.
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(ii) If (α, β) ∈ Λ then the posterior distribution of θ given x ∈ [θ0, θ1]
with respect to πα,β is given by πα+1,β+x.

P r o o f. (i) Lemma 5 shows that x ∈ [θ0, θ1] for µ-almost every x ∈ R.
Therefore the inequalities (8) and(9) yield

β + x > x− θ0 + θ0(α+ 1 − 2a) − b ≥ θ0(α+ 1 − 2a) − b ,

β + x < x− θ1 + θ1(α+ 1 − 2a) − b ≤ θ1(α+ 1 − 2a) − b ,

i.e. (α+ 1, β + x) ∈ Λ for µ-almost every x ∈ R if (α, β) ∈ Λ.
(ii) Because of (i) a density g of the posterior distribution of θ given

x ∈ [θ0, θ1] with respect to πα,β is given by

g(θ) =
pα,β(θ)f(θ, x)∫

Θ

pα,β(t)f(t, x) dt

=
Cα+1(θ)e(β+x)q(θ)∫

Θ

Cα+1(t)e(β+x)q(t) dt
= pα+1,β+x(θ) , θ ∈ Θ ,

if (α, β) ∈ Λ. This proves (ii) by (11).

3. The estimation problem

In the sequel the problem of estimating the parameter θ of the one-
parameter exponential family with densities as defined by (1) is considered.
Let ∆ be the set of all (non-randomized) estimators, i.e. the set of all Borel
measurable functions δ : R → R.

The Bayes risk of an estimator δ ∈ ∆ with respect to a prior π ∈ Π is
defined by

r(π, δ) =
∫
Θ

R(θ, δ)π(dθ)

where R(·, δ) denotes the expected loss, i.e. the risk function, of the estima-
tor δ which is given by

R(θ, δ) =
∫
R

(θ − δ(x))2 Pθ(dx) , θ ∈ Θ ,

under squared error loss.

The risk function of a linear estimator δ ∈ ∆ with δ(x) = dx+ e, x ∈ R,
satisfies

R(θ, δ) =
∫
R

(θ − dx− e)2 Pθ(dx)(20)
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= (θ − e)2 − 2d(θ − e)
∫
R

xPθ(dx) + d2
∫
R

x2 Pθ(dx)

= ((a+ 1)d2 − 2d+ 1)θ2 + (bd2 + 2de − 2e)θ + cd2 + e2 , θ ∈ Θ ,

because of (5) and (6).

An estimator δπ ∈ ∆ with

r(π, δπ) = r(π)

is called a Bayes estimator with respect to the prior π ∈ Π where

r(π) = inf{r(π, δ) | δ ∈ ∆}
denotes the minimum Bayes risk of the prior π ∈ Π.

Lemma 7. Suppose that λ = (α, β) ∈ Λ. Then the estimator δλ ∈ ∆ with

δλ(x) =
β + b+ x

α+ 1 − 2a
, x ∈ R,

is the Bayes estimator with respect to πλ ∈ Π which is uniquely determined

up to a set of µ-measure zero.

P r o o f. From Lemma 6 it follows that every estimator δ ∈ ∆ with

δ(x) = ν1(πα+1,β+x) , x ∈ [θ0, θ1],

is Bayes with respect to πλ, and that it is uniquely determined up to a set
of Q-measure zero where Q denotes the marginal measure defined by

Q(A) =
∫
Θ

Pθ(A)πλ(dθ) , A ∈ B(R)

(see e.g. Lehmann 1983, Corollaries 4.1.1 and 4.1.2). Since the Borel measure
Q dominates µ the assertion follows from Lemma 3.

After a short calculation Lemma 4, Lemma 7, and (20) yield

Proposition 1. Suppose that (ν1, ν2) ∈ M. Then πL(ν1,ν2) ∈ Π, and

the first two moments of πL(ν1,ν2) are given by

νj(πL(ν1,ν2)) = νj , j ∈ {1, 2}.
The uniquely determined Bayes estimator δL(ν1,ν2) ∈ ∆ with respect to

πL(ν1,ν2) can be written in the form

(21) δL(ν1,ν2)(x) =
(aν2 + bν1 + c)ν1 + (ν2 − ν2

1)x

aν2 + bν1 + c+ ν2 − ν2
1

, x ∈ R,

and its risk function is given by

R(θ, δL(ν1,ν2)) = h(ν1, ν2)(ψ(ν1, ν2)θ
2 + ϕ(ν1, ν2)θ + k(ν1, ν2)) , θ ∈ Θ ,
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with

h(ν1, ν2) =

(
aν2 + bν1 + c

ν2 − ν2
1

+ 1

)−2

,

k(ν1, ν2) = ν2
1

(
aν2 + bν1 + c

ν2 − ν2
1

)2

+ c ,

ψ(ν1, ν2) =

(
aν2 + bν1 + c

ν2 − ν2
1

)2

+ a ,

ϕ(ν1, ν2) = b− 2ν1

(
aν2 + bν1 + c

ν2 − ν2
1

)2

.

The minimum Bayes risk of the prior πL(ν1,ν2) can be written in the form

r(πL(ν1,ν2)) = r(πL(ν1,ν2), δL(ν1,ν2))(22)

= ((aν2 + bν1 + c)−1 + (ν2 − ν2
1 )−1)−1 .

If the distribution of the unknown parameter θ is known and can be
described by a prior π ∈ Π then usually the Bayes principle is applied,
i.e. a Bayes estimator δπ ∈ ∆ with respect to the prior π is considered to
be optimal. If on the other hand no prior information on the unknown
parameter θ is available then the minimax principle can be used where an
estimator δ∗ ∈ ∆ is optimal if it minimizes the maximum expected loss, i.e.

sup
θ∈Θ

R(θ, δ∗) = inf
δ∈∆

sup
θ∈Θ

R(θ, δ).

In this paper an intermediate approach between the Bayes and the minimax
principle is chosen. The use of the Γ -minimax principle is appropriate if
prior information is available which can be described by a subset Γ ⊂ Π.
For such a subset Γ , a Γ -minimax estimator δ∗ ∈ ∆minimizes the maximum
Bayes risk with respect to the elements of Γ , i.e.

sup
π∈Γ

r(π, δ∗) = r∗(Γ )

where the Γ -minimax risk is defined by

r∗(Γ ) = inf
δ∈∆

sup
π∈Γ

r(π, δ) .

Following Wald’s interpretation of a statistical decision problem as a two-
person zero-sum game (see Wald 1950), the use of a Γ -minimax estimator
only makes sense if the upper value r∗(Γ ) of the statistical game (Γ,∆, r)
coincides with its lower value

r∗(Γ ) = sup
π∈Γ

inf
δ∈∆

r(π, δ) .

In this case the game is said to be strictly determined. Observe that every
estimator δ∗ ∈ ∆ is Γ -minimax if r∗(Γ ) = ∞. Such statistical games will
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be called degenerate. A sequence (πn)n∈N of priors in Γ is a least favourable

sequence if

lim
n→∞

r(πn) = r∗(Γ ) ,

and a prior π ∈ Γ is called least favourable if

r(π) = r∗(Γ ) .

The following observation is obvious and well known.

R e m a r k 1. (i) The statistical game (Γ,∆, r) is strictly determined and
the estimator δ∗ ∈ ∆ is Γ -minimax if and only if there exists a sequence
(πn)n∈N of priors in Γ such that

lim
n→∞

r(πn) = sup
π∈Γ

r(π, δ∗) .

In this case the sequence (πn)n∈N is least favourable and the Γ -minimax
risk is given by

r∗(Γ ) = sup
π∈Γ

r(π, δ∗) .

(ii) The statistical game (Γ,∆, r) is strictly determined, the estimator
δ∗ ∈ ∆ is Γ -minimax, and the prior π∗ ∈ Γ is least favourable if and only
if (π∗, δ∗) is a saddle point, i.e. r(π, δ∗) ≤ r(π∗, δ) for every π ∈ Γ and
δ ∈ ∆.

In this paper subsets Γ ⊂ Π of priors are considered where bounds
for the first two moments of the priors π ∈ Γ are given. For any g =

(g1, . . . , g4) ∈ R
4

let [g] = [g1, g2] × [g3, g4] ⊂ R
2

denote a rectangle and let

Γg = {π ∈ Π | (ν1(π), ν2(π)) ∈ [g]}
be the corresponding subset of priors. Without loss of generality

(23) θ0 ≤ g1 ≤ g2 ≤ θ1 and 0 ≤ g3 ≤ g4

is assumed. If Γg ∩ ΠΛ = ∅ then either Γg = ∅ or Γg = {εθ} for some
θ ∈ Θ because of (14) and (19), which both are trivial cases. Therefore
subsequently only such rectangles [g] are considered where the sets Γg and
ΠΛ are not disjoint. The following lemma characterizes these rectangles.

Lemma 8. Assume that g ∈ R
4

satisfies (23). Then the following condi-

tions are equivalent :

(a) Γg ∩ΠΛ 6= ∅ ,
(b)





g3 <∞, g4 > 0,
g1 < θ1, g2 > θ0,
g1 <

√
g4, g2 > −√

g4, and
(24)
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{
ag3 + bg2 + c > 0 if a < 0, b ≥ 0,
ag3 + bg1 + c > 0 if a < 0, b ≤ 0.

(25)

P r o o f. (i) Suppose that Γg∩ΠΛ = ∅. First the case a ≥ 0 is considered.
Then ν2 ≤ ν2

1 for every (ν1, ν2) ∈ [g] because of (15) and (19). In particular,
g4 ≤ ν2

1 for all ν1 ∈ [g1, g2], i.e.
√
g4 ≤ g1√
g4 ≤ −g2

g4 = 0

if g1 ≥ 0 ,

if g2 ≤ 0 ,

if g1 < 0 < g2 ,

which contradicts (24).
Now let a < 0. If ν2 ≤ ν2

1 for all (ν1, ν2) ∈ [g] then a contradiction to
(24) follows as above. Otherwise (14) and (23) show that aν2 + bν1 + c ≤ 0
for some and hence for all (ν1, ν2) ∈ [g], which contradicts (25).

(ii) Suppose that Γg ∩ ΠΛ 6= ∅. Then there exists (ν1, ν2) ∈ [g] ∩ M
by (19). Therefore g4 ≥ ν2 > ν2

1 ≥ 0, g1 ≤ ν1 < θ1, g2 ≥ ν1 > θ0,
g1 ≤ ν1 <

√
ν2 ≤ √

g4, and g2 ≥ ν1 > −√
ν2 ≥ −√

g4, i.e. (24) is satisfied.
If a < 0 and b ≥ 0 then ag3 + bg2 + c ≥ aν2 + bν1 + c > 0. If a < 0 and b ≤ 0
then ag3 + bg1 + c ≥ aν2 + bν1 + c > 0, i.e. (25) is valid.

Let R denote the set of all g ∈ R
4

which satisfy the conditions (23)–(25)
stated above. It will subsequently be shown that for any given g ∈ R the
statistical game (Γg,∆, r) has a value and a linear Γg-minimax estimator
exists. The proof of this assertion is based on

Proposition 2. Suppose that g ∈ R. If (ν∗1 , ν
∗
2 ) ∈ M ∩ [g] satisfies

one of the conditions stated in Table 2 below then (πL(ν∗1 ,ν
∗

2 ), δL(ν∗1 ,ν
∗

2 )) is a

saddle point of the statistical game (Γg,∆, r), where the functions ψ and ϕ
are defined as in Proposition 1.

Table 2. Conditions for a saddle point

ν∗1 ν∗2 Conditions

g1 g3 ψ(g1, g3) ≤ 0 , ϕ(g1, g3) ≤ 0

g1 g4 ψ(g1, g4) ≥ 0 , ϕ(g1, g4) ≤ 0

g2 g3 ψ(g2, g3) ≤ 0 , ϕ(g2, g3) ≥ 0

g2 g4 ψ(g2, g4) ≥ 0 , ϕ(g2, g4) ≥ 0

ν1 g3 ψ(ν1, g3) ≤ 0 , ϕ(ν1, g3) = 0

ν̂1 g4 ψ(ν̂1, g4) ≥ 0 , ϕ(ν̂1, g4) = 0

g1 ν2 ψ(g1, ν2) = 0 , ϕ(g1, ν2) ≤ 0

g2 ν̂2 ψ(g2, ν̂2) = 0 , ϕ(g2, ν̂2) ≥ 0

ν̃1 ν̃2 ψ(ν̃1, ν̃2) = 0 , ϕ(ν̃1, ν̃2) = 0

P r o o f. If (ν∗1 , ν
∗
2 ) ∈ M∩ [g] satisfies one of the conditions stated in
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Table 2 then

ψ(ν∗1 , ν
∗
2 )ν∗2 + ϕ(ν∗1 , ν

∗
2 )ν∗1 = sup

(ν1,ν2)∈M∩[g]

[ψ(ν∗1 , ν
∗
2 )ν2 + ϕ(ν∗1 , ν

∗
2 )ν1] .

Therefore (19) and Proposition 1 yield

(26) r(πL(ν∗1 ,ν
∗

2 ), δL(ν∗1 ,ν
∗

2 )) = sup
π∈(Π\E)∩Γg

r(π, δL(ν∗1 ,ν
∗

2 )) .

Again (19) shows that for any π ∈ E ∩ Γg there exists a sequence (πn)n∈N

in (Π\E) ∩ Γg such that

lim
n→∞

νj(πn) = νj(π) , j ∈ {1, 2} .

Hence Proposition 1 implies

lim
n→∞

r(πn, δL(ν∗1 ,ν
∗

2 )) = r(π, δL(ν∗1 ,ν
∗

2 )) .

This and (26) lead to

r(πL(ν∗1 ,ν
∗

2 ), δL(ν∗1 ,ν
∗

2 )) = sup
π∈Γg

r(π, δL(ν∗1 ,ν
∗

2 )) .

Since δL(ν∗1 ,ν
∗

2 ) is the Bayes estimator with respect to πL(ν∗1 ,ν
∗

2 ) the pair of
strategies (πL(ν∗1 ,ν

∗

2 ), δL(ν∗1 ,ν
∗

2 )) is a saddle point of (Γg,∆, r).

4. Solution of the statistical games

In the sequel it will be shown that the statistical game (Γg,∆, r) is
strictly determined, and a linear Γg-minimax estimator δ∗ ∈ ∆ is derived
for every g ∈ R. Moreover, a least favourable sequence (πn)n∈N in ΠΛ is
constructed. When a least favourable prior exists then a least favourable
prior π∗ ∈ ΠΛ is determined. Hence a complete solution of the Γg-minimax
problem is obtained which is stated in the subsequent theorems.

First, it is shown that b ≥ 0 can be assumed without loss of generality. To
this end, choose (a, b, c) ∈ R

3 such that a family of distributions {Pθ | θ ∈ Θ}
exists with µ-densities given by (1) which satisfy the differential equations
(3) and (4). Let Π, ∆, R and Γg, g ∈ R, be defined as above, and consider
the statistical game

Gg = (Γg,∆, r)

for g ∈ R. Now set Θ̃ = −Θ, µ̃(A) = µ(−A), A ∈ B(R), and f̃(θ, x) =

f(−θ,−x), θ ∈ Θ, x ∈ R. Then the distributions P̃θ̃, θ̃ ∈ Θ̃, with µ̃-

densities f̃ satisfy (3) and (4) with b replaced by −b. Let Π̃, ∆̃, R̃, and Γ̃g̃ ,
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g̃ ∈ R̃, correspond to the family {P̃θ̃ | θ̃ ∈ Θ̃}. Then

Π̃ = {π̃ | π ∈ Π} with π̃(A) = π(−A) , A ∈ B(Θ̃) ,

∆̃ = {δ̃ | δ ∈ ∆} with δ̃(x) = −δ(−x) , x ∈ R ,

R̃ = {g̃ | g ∈ R} with g̃ = (−g2,−g1, g3, g4) ,
Γ̃g̃ = {π̃ ∈ Π̃ | (ν1(π̃), ν2(π̃)) ∈ [g̃ ]} , g̃ ∈ R̃ ,

and the corresponding statistical game

G̃g̃ = (Γ̃g̃, ∆̃, r̃)

is equivalent to Gg in the sense that

Γg → Γ̃g̃ , π → π̃ ,

and

∆→ ∆̃ , δ → δ̃ ,

are bijections, and that

r̃(π̃, δ̃) = r(π, δ) , π ∈ Γg , δ ∈ ∆ .

Hence, there is no loss of generality to make the

Assumption. In the following, let b ≥ 0.

Theorem 1. Suppose that a ≥ 0, b ≥ 0, and g ∈ R with g4 <∞.

(i) If g1 = θ0, θ
2
0 < g4, and 2a2θ0 ≥ b then the estimator δ∗ ∈ ∆ with

δ∗(x) =
x+ aθ0
a+ 1

, x ∈ R ,

is Γg-minimax , the statistical game (Γg,∆, r) is strictly determined , and the

Γg-minimax risk is given by

r∗(Γg) =
a

a+ 1
(g4 − θ2

0) .

Let (g
(n)
1 )n∈N be a sequence in (θ0, g2) with (g

(n)
1 )2 < g4, n ∈ N, and

limn→∞ g
(n)
1 = θ0. Then (π

L(g
(n)
1 ,g4)

)n∈N is a least favourable sequence of

priors, (π
L(g

(n)
1 ,g4)

, δ
L(g

(n)
1 ,g4)

) is a saddle point of the statistical game

(Γg(n) ,∆, r) with g(n) = (g
(n)
1 , g2, g3, g4) for every n ∈ N, and

δ∗(x) = lim
n→∞

δ
L(g

(n)
1 ,g4)

(x) , x ∈ R .

A least favourable prior does not exist.

(ii) If g2 = θ1, θ
2
1 < g4, and 2a2θ1 ≤ b then the estimator δ∗ ∈ ∆ with

δ∗(x) =
x+ aθ1
a+ 1

, x ∈ R ,
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is Γg-minimax , the statistical game (Γg,∆, r) is strictly determined , and the

Γg-minimax risk is given by

r∗(Γg) =
a

a+ 1
(g4 − θ2

1) .

Let (g
(n)
2 )n∈N be a sequence in (g1, θ1) with (g

(n)
2 )2 < g4, n ∈ N, and

limn→∞ g
(n)
2 = θ1. Then (π

L(g
(n)
2 ,g4)

)n∈N is a least favourable sequence

of priors, (π
L(g

(n)
2 ,g4)

, δ
L(g

(n)
2 ,g4)

) is a saddle point of the statistical game

(Γg(n) ,∆, r) with g(n) = (g1, g
(n)
2 , g3, g4) for every n ∈ N, and

δ∗(x) = lim
n→∞

δ
L(g

(n)
2 ,g4)

(x) , x ∈ R .

A least favourable prior does not exist.

(iii) If neither the hypothesis of (i) nor of (ii) is satisfied then there exists

a point (ν∗1 , g4) ∈ M∩ [g] such that (πL(ν∗1 ,g4), δL(ν∗1 ,g4)) is a saddle point of

the statistical game (Γg,∆, r) and

(a) ν∗1 = g1 if (g1, g4) ∈ M and ϕ(g1, g4) ≤ 0,
(b) ν∗1 = g2 if (g2, g4) ∈ M and ϕ(g2, g4) ≥ 0,
(c) ν∗1 = ν1 otherwise, where ν1 ∈ (max(g1,−

√
g4),min(g2,

√
g4)) satis-

fies (ν1, g4) ∈ M and ϕ(ν1, g4) = 0.

The Γg-minimax risk is given by

r∗(Γg) = ((ag4 + bν∗1 + c)−1 + (g4 − (ν∗1 )2)−1)−1 .

P r o o f. First part (iii) of the theorem is shown. If the assumption in (a)
or (b) is satisfied then the assertion of (iii) follows at once from Proposition 2.
Otherwise put h1 = max(g1,−

√
g4) and h2 = min(g2,

√
g4). First note that

h1 < h2 since otherwise g1 = g2 by g ∈ R and (24), which shows that (a)
or (b) would be satisfied because of (g1, g4) ∈ M by (15) and (24). Now if
h ∈ (h1, h2) then h ∈ (g1, g2) ⊂ Θ and h2 < g4, which implies (h, g4) ∈ M
by (15), hence (h1, h2) × {g4} ⊂ M. Therefore it suffices to show that

lim
ν1→h1+

ϕ(ν1, g4) > 0 ,(27)

lim
ν1→h2−

ϕ(ν1, g4) < 0 ,(28)

since the function ϕ(·, g4) is continuous on (h1, h2). If (g1, g4) ∈ M and
ϕ(g1, g4) > 0 then (27) is valid because of h1 = g1. If (g2, g4) ∈ M and
ϕ(g2, g4) < 0 then (28) is valid because of h2 = g2. Hence it suffices to show
that (g1, g4) 6∈ M implies (27) and that (g2, g4) 6∈ M implies (28). First
(g1, g4) 6∈ M is considered. Then (15) and (24) imply that not both g2

1 < g4
and g1 > θ0 are valid. Hence three cases are distinguished.

C a s e 1: Assume that g2
1 ≥ g4 and g1 > θ0 or that g2

1 > g4 and g1 = θ0.
Then g1 ≤ −√

g4 or g1 < −√
g4, respectively, by g ∈ R, and thus h1 =
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−√
g4 > θ0. Therefore ag4 + bh1 + c = ah2

1 + bh1 + c > 0, which yields
limν1→h1+ ϕ(ν1, g4) = +∞, i.e. (27) is valid.

C a s e 2: Assume that g2
1 = g4 and g1 = θ0. Then g1 = −√

g4 by g ∈ R
and thus h1 = −√

g4 = θ0 > −∞. Therefore

ag4 + bν1 + c

g4 − ν2
1

=
aθ2

0 + bθ0 + c− b(θ0 − ν1)

(θ0 − ν1)(θ0 + ν1)
= − b

θ0 + ν1

implies that

lim
ν1→h1+

ϕ(ν1, g4) = b+
b2

2
√
g4

> 0

since b = 0 and −∞ < −√
g4 = θ0 < 0 is impossible according to Table 1.

C a s e 3: Assume that g2
1 < g4 and g1 = θ0. Then h1 = g1 = θ0 > −∞,

which yields 2a2θ0 < b since the hypothesis of part (i) is not satisfied.
Therefore

lim
ν1→h1+

ϕ(ν1, g4) = b− 2θ0

(
ag4 + bθ0 + c

g4 − θ2
0

)2

= b− 2a2θ0 > 0 ,

i.e. (27) is valid.

Now (g2, g4) 6∈ M is considered. Then (15) and (24) imply that not both
g2
2 < g4 and g2 < θ1 are valid. Therefore again three cases are distinguished.

C a s e 1: Assume that g2
2 ≥ g4 and g2 < θ1 or that g2

2 > g4 and g2 = θ1.
Then g2 ≥ √

g4 or g2 >
√
g4, respectively, by g ∈ R, and hence h2 =

√
g4 <

θ1. This yields

lim
ν1→h2−

ϕ(ν1, g4) = −∞ .

C a s e 2: Assume that g2
2 = g4 and g2 = θ1. Then g2 =

√
g4 by g ∈ R

and thus 0 <
√
g4 = θ1 < ∞. But Table 1 shows that either θ1 = ∞ or

θ1 = t1 ≤ 0, so case 2 is impossible.
C a s e 3: Assume that g2

2 < g4 and g2 = θ1. Then h2 = g2 = θ1 < ∞.
Since the hypothesis of part (ii) is not satisfied it follows that 2a2θ1 > b,
which leads to

lim
ν1→h2−

ϕ(ν1, g4) = b− 2a2θ1 < 0 .

Now part (i) of the theorem is shown. The risk function of the estimator
δ∗ ∈ ∆ with δ∗(x) = (x+ aθ0)/(a + 1), x ∈ R, is given by

(29) R(θ, δ∗) =
a

a+ 1
θ2 +

b− 2a2θ0
(a+ 1)2

θ +
a2θ2

0 + c

(a+ 1)2
, θ ∈ (θ0,∞) ,

according to (20). The hypotheses 2a2θ0 ≥ b and θ2
0 < g4 imply that

sup
π∈Γg

r(π, δ∗) =
a

a+ 1
g4 +

b− 2a2θ0
(a+ 1)2

θ0 +
a2θ2

0 + c

(a+ 1)2
=

a

a+ 1
(g4 − θ2

0)
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as in the proof of Proposition 2 because of aθ2
0 + bθ0 + c = 0.

Now let (g
(n)
1 )n∈N be a sequence in (θ0, g2) with (g

(n)
1 )2 < g4, n ∈ N,

and limn→∞ g
(n)
1 = θ0. Such a sequence exists because of θ2

0 < g4 and

θ0 < g2 by (24). Then (g
(n)
1 , g4) ∈ M, n ∈ N, according to (15). Hence

πn = π
L(g

(n)
1 ,g4)

∈ Γg by Proposition 1, and it follows by (22) that

lim
n→∞

r(πn) =
a

a+ 1
(g4 − θ2

0) .

Therefore Remark 1(i) shows that the statistical game (Γg,∆, r) is strictly
determined, the Γg-minimax risk is given by

r∗(Γg) =
a

a+ 1
(g4 − θ2

0) ,

δ∗ is a Γg-minimax estimator, and (πn)n∈N is a least favourable sequence of
priors.

From the hypothesis in (i) it follows that a > 0. But it is easy to see
that

∂

∂ν1
ϕ(ν1, g4) < 0

for ν1 > θ0 ≥ 0. Hence from ϕ(θ0, g4) = b − 2a2θ0 ≤ 0 it follows that

ϕ(g
(n)
1 , g4) < 0, n ∈ N. Therefore part (iii) shows that (πn, δn) with

δn = δ
L(g

(n)
1 ,g4)

is a saddle point of the statistical game (Γg(n) ,∆, r). Hence

δ∗(x) = limn→∞ δn(x), x ∈ R, according to (21).

Finally, assume that π∗ is a least favourable prior. The Γg-minimax
estimator δ∗ is Bayes with respect to π∗ according to Remark 1(ii). In
particular,

r(π∗, δ∗) = inf
δ∈∆L

r(π∗, δ)

where ∆L ⊂ ∆ denotes the subclass of linear estimators. Assume that
(ν1(π

∗))2 = ν2(π
∗). Then the estimator δ̃ ∈ ∆L with δ̃(x) = ν1(π

∗), x ∈ R,
satisfies the inequality

r(π∗, δ̃) = 0 <
a

a+ 1
(g4 − θ2

0) = r(π∗, δ∗) ,

which leads to a contradiction. Hence (ν1(π
∗), ν2(π∗)) ∈ M can be assumed

without loss of generality. But then it is easy to see that δL(ν1(π∗),ν2(π∗)) is
the unique estimator which minimizes r(π∗, ·) on ∆L . Hence for νi = νi(π

∗),
i ∈ {1, 2}, it follows by (21) that

(aν2 + bν1 + c)ν1
aν2 + bν1 + c+ ν2 − ν2

1

=
aθ0
a+ 1

,

ν2 − ν2
1

aν2 + bν1 + c+ ν2 − ν2
1

=
1

a+ 1
.
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A short calculation leads to

(aν2
1 + bν1 + c)ν1 + a(ν1 − θ0)(ν2 − ν2

1) = 0 ,

which contradicts ν1 > θ0 ≥ 0. Now the proof of (i) is complete. The proof
of (ii) is omitted since it is similar to that of (i).

Theorem 2. Suppose that a ≥ 0, b ≥ 0, and g ∈ R with g4 = ∞. Then

the estimator δ∗ ∈ ∆ with

δ∗(x) = x , x ∈ R ,

is Γg-minimax , the statistical game (Γg,∆, r) is strictly determined , and the

Γg-minimax risk is given by

r∗(Γg) = a · ∞ + bg2 + c

(with the usual convention 0 ·∞ = 0). In particular , the game is nondegen-

erate only in the cases

(i) a = b = 0 and

(ii) a = 0, b > 0, and g2 <∞.

Put ν∗1 = med(0, g1, g2), the middle of the three numbers 0, g1, g2, in

case (i), ν∗1 = g2 in case (ii), and ν∗1 ∈ [g1, g2] ∩ Θ arbitrarily otherwise.

Let (ν
(n)
2 )n∈N be a sequence in (g3,∞) with ν

(n)
2 > (ν∗1 )2, n ∈ N, and

limn→∞ ν
(n)
2 = ∞. Then (π

L(ν∗1 ,ν
(n)
2 )

)n∈N is a least favourable sequence of

priors. A least favourable prior does not exist.

Furthermore, in case (i) or (ii), (π
L(ν∗1 ,ν

(n)
2 )

, δ
L(ν∗1 ,ν

(n)
2 )

) is a saddle point

of the statistical game (Γg(n) ,∆, r) with g(n) = (g1, g2, g3, ν
(n)
2 ) for suffi-

ciently large n ∈ N, and

δ∗(x) = lim
n→∞

δ
L(ν∗1 ,ν

(n)
2 )

(x) , x ∈ R .

P r o o f. From (15) it follows immediately that (ν∗1 , ν
(n)
2 ) ∈ M ∩ [g],

n ∈ N. Hence πn = π
L(ν∗1 ,ν

(n)
2 )

∈ Γg by Proposition 1 and its minimum

Bayes risk is given by

r(πn) = ((aν
(n)
2 + bν∗1 + c)−1 + (ν

(n)
2 − (ν∗1 )2)−1)−1

because of (22). Therefore

(30) lim
n→∞

r(πn) = a · ∞ + bν∗1 + c = a · ∞ + bg2 + c .

From (20) it follows that the risk function of the estimator δ∗ is given by

R(θ, δ∗) = aθ2 + bθ + c , θ ∈ Θ .

Therefore the maximum Bayes risk of δ∗ with respect to Γg satisfies

sup
π∈Γg

r(π, δ∗) = a · ∞ + bg2 + c .
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Hence (30) and Remark 1(i) imply that (πn)n∈N is a least favourable se-
quence of priors, the estimator δ∗ is Γg-minimax, the statistical game
(Γg,∆, r) is strictly determined, and the Γg-minimax risk is given by

r∗(Γg) = a · ∞ + bg2 + c .

Now assume that π∗ ∈ Γg is a least favourable prior. Then it follows
in a similar way as in the proof of Theorem 1 that (ν1(π

∗), ν2(π∗)) ∈ M
and that δ∗ = δL(ν1(π∗),ν2(π∗)). But, in view of (21), this leads to aν2(π

∗) +
bν1(π

∗) + c = 0 in contradiction to (14). Finally, the last assertion follows,
by Theorem 1(iii), from the fact that

lim
n→∞

ϕ(g2, ν
(n)
2 ) = b > 0

in case (ii).

Observe that for a ≥ 0 and g ∈ R the Γg-minimax risk r∗(Γg) is always
independent of g3, i.e. the restriction “ν2(π) ≥ g3” is always ineffective (cf.
Bierlein 1967 and Bierlein 1968 for the exact definition), whereas the restric-
tion “ν2(π) ≤ g4” is always effective. However, in the situation described
by Theorem 1(i) and (ii) the Γg-minimax estimator is independent of g4 if
g4 is sufficiently large. In case g4 = ∞ the restriction “ν1(π) ≥ g1” is also
ineffective, and the restriction “ν1(π) ≤ g2” is effective only for a = 0 and
b > 0.

Note that in case g4 = ∞ the Γg-minimax estimator δ∗ ∈ ∆ with δ∗(x) =
x, x ∈ R, is the maximum likelihood estimator as well as the unique unbiased
linear estimator.

In the situations described by Theorem 1(iii) the statistical game
(Γg,∆, r) has a saddle point. Therefore Remark 1(ii) and Lemma 7 im-
ply that the Γg-minimax estimator is uniquely determined up to a set of
µ-measure zero (and hence admissible in the statistical game (Γg,∆, r), see
e.g. Lehmann 1983, Theorem 4.3.1).

Example 2. Consider the case that Pθ = N (θ, 1), θ ∈ R, is a normal
distribution with known variance 1 as in Example 1(b). Suppose that g ∈ R,

i.e. g ∈ R
4
, g1 ≤ g2, 0 ≤ g3 ≤ g4, g3 <∞, g4 > 0, g1 <

√
g4, and g2 > −√

g4.
If g4 < ∞ then (ν∗1 , ν

∗
2 ) = (med(0, g1, g2), g4) ∈ M ∩ [g] and

(πL(ν∗1 ,ν
∗

2 ), δL(ν∗1 ,ν
∗

2 )) is a saddle point of the statistical game (Γg,∆, r). In
particular, the estimator δ∗ with

δ∗(x) =
(g4 − (med(0, g1, g2))

2)x+ med(0, g1, g2)

g4 − (med(0, g1, g2))2 + 1

is the Γg-minimax estimator and

r∗(Γg) =
g4 − (med(0, g1, g2))

2

g4 − (med(0, g1, g2))2 + 1



24 Gamma-minimax estimators in the exponential family

is the Γg-minimax risk.

If g4 = ∞ then the estimator δ∗ with δ∗(x) = x is a Γg-minimax estima-
tor, and r∗(Γg) = 1 is the Γg-minimax risk. A least favourable prior does
not exist.

Example 3. Consider the case that Pθ = P(θ), θ ∈ (0,∞), is a Poisson

distribution as in Example 1(c). Suppose that g ∈ R, i.e. g ∈ R
4
, 0 ≤ g1 ≤

g2, 0 ≤ g3 ≤ g4, g3 <∞, g4 > 0, g1 <
√
g4, and g2 > 0.

If g4 < ∞ then there exists exactly one zero ν0 of the polynomial p
defined by p(ν) = ν4 − 2ν3 − 2g4ν

2 + g2
4 , ν ∈ (0,

√
g4). Moreover, (ν∗1 , ν

∗
2 ) =

(med(ν0, g1, g2), g4) ∈ M∩ [g] and (πL(ν∗1 ,ν
∗

2 ), δL(ν∗1 ,ν
∗

2 )) is a saddle point of
the statistical game (Γg,∆, r). In particular, the estimator δ∗ with

δ∗(x) =
(g4 − (med(ν0, g1, g2))

2)x+ (med(ν0, g1, g2))
2

g4 − (med(ν0, g1, g2))2 + med(ν0, g1, g2)

is the Γg-minimax estimator and

r∗(Γg) =
(g4 − (med(ν0, g1, g2))

2) · med(ν0, g1, g2)

g4 − (med(ν0, g1, g2))2 + med(ν0, g1, g2)

is the Γg-minimax risk.

If g4 = ∞ and g2 < ∞ then the estimator δ∗ with δ∗(x) = x is a Γg-
minimax estimator (which does not depend on g2), and r∗(Γg) = g2 is the
Γg-minimax risk. A least favourable prior does not exist.

Example 4. Consider the case that Pθ = G(1/a, aθ), a > 0, θ ∈ (0,∞),
is a gamma distribution as in Example 1(e). Suppose that g ∈ R with

g4 < ∞, i.e. g ∈ R
4
, 0 ≤ g1 ≤ g2, 0 ≤ g3 ≤ g4 < ∞, g4 > 0, g1 <

√
g4, and

g2 > 0.

If g1 > 0 then (g1, g4) ∈ M∩ [g] and (πL(g1,g4), δL(g1,g4)) is a saddle point
of the statistical game (Γg,∆, r). In particular, the estimator δ∗ with

δ∗(x) =
(g4 − g2

1)x+ ag1g4
g4 − g2

1 + ag4

is the Γg-minimax estimator and

r∗(Γg) =
ag4(g4 − g2

1)

g4 − g2
1 + ag4

is the Γg-minimax risk.

If g1 = 0 then the estimator δ∗ with δ∗(x) = x/(a+ 1) is a Γg-minimax
estimator (which does not depend on g4), and r∗(Γg) = ag4/(a + 1) is the
Γg-minimax risk. A least favourable prior does not exist.

The special case that Pθ = E(θ), θ ∈ (0,∞), is an exponential distribu-
tion is obtained by setting a = 1 in the formulas above.
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Results which are similar to those in Example 4 are described in Eichen-
auer et al . (1988) where the problem of insurance rate making is studied.

In the sequel the case a < 0 is considered. For the sake of simplicity the
subcases b = 0 and b > 0 are treated separately. Observe that in case b = 0
the parameter interval is given by

Θ = (t0, t1) = (−
√
c/(−a),

√
c/(−a))

where c > 0. Define a function ψ2 : Θ → R by

ψ2(ν) = ν2 +
aν2 + c√−a− a

.

A short calculation shows that

(ν, ψ2(ν)) ∈ M for ν ∈ Θ ,(31)

ψ(ν, ψ2(ν)) = 0 for ν ∈ Θ .(32)

Theorem 3. Suppose that a < 0, b = 0, and g ∈ R. Put

ν∗1 = med(0, g1, g2) , ν∗2 = med(ψ2(ν
∗
1 ), g3, g4) .

Then (ν∗1 , ν
∗
2 ) ∈ M ∩ [g], and (πL(ν∗1 ,ν

∗

2 ), δL(ν∗1 ,ν
∗

2 )) is a saddle point of the

statistical game (Γg,∆, r). The Γg-minimax risk is given by

r∗(Γg) = ((aν∗2 + c)−1 + (ν∗2 − (ν∗1 )2)−1)−1 .

P r o o f. Observe that (ν∗1 , ν
∗
2 ) ∈ [g]. In the sequel several cases are

distinguished in order to show that (ν∗1 , ν
∗
2 ) ∈ M, i.e. ν∗1 ∈ Θ, ν∗2 > (ν∗1 )2,

and aν∗2 + c > 0 because of (14).

C a s e 1: If g2 < 0 then g2 > t0 by (24), i.e. ν∗1 = g2 ∈ Θ.

C a s e 1.1: If g4 < ψ2(g2) then ν∗2 = g4. From g2 < 0 and (24) it
follows that 0 < −g2 < √

g4, i.e. g4 > g2
2 . Because of (31) it follows that

ag4 + c > aψ2(g2) + c > 0.
C a s e 1.2: If g3 ≤ ψ2(g2) ≤ g4 then ν∗2 = ψ2(g2) and (31) implies

(g2, ψ2(g2)) ∈ M.
C a s e 1.3: If ψ2(g2) < g3 then ν∗2 = g3 and (31) shows that g3 >

ψ2(g2) > g2
2 . The inequality ag3 + c > 0 follows from (25).

C a s e 2: If g1 ≤ 0 ≤ g2 then ν∗1 = 0 ∈ Θ.

C a s e 2.1: If g4 < ψ2(0) then ν∗2 = g4 and g4 > 0 follows from (24).
Again (31) shows that ag4 + c > aψ2(0) + c > 0.

C a s e 2.2: If g3 ≤ ψ2(0) ≤ g4 then ν∗2 = ψ2(0) and (31) implies
(0, ψ2(0)) ∈ M.

C a s e 2.3: If ψ2(0) < g3 then ν∗2 = g3 and (31) shows that g3 > ψ2(0) >
0. Again (25) yields ag3 + c > 0.

C a s e 3: If 0 < g1 then g1 < t1 by (24), i.e. ν∗1 = g1 ∈ Θ.



26 Gamma-minimax estimators in the exponential family

C a s e 3.1: If g4 < ψ2(g1) then ν∗2 = g4. From(24) it follows that√
g4 > g1 > 0, i.e. g4 > g2

1 , and (31) yields ag4 + c > aψ2(g1) + c > 0.

C a s e 3.2: If g3 ≤ ψ2(g1) ≤ g4 then ν∗2 = ψ2(g1) and (31) implies that
(g1, ψ2(g1)) ∈ M.

C a s e 3.3: If ψ2(g1) < g3 then ν∗2 = g3 and (31) shows that g3 >
ψ2(g1) > g2

1 . Again ag3 + c > 0 follows from (25).

Hence (ν∗1 , ν
∗
2 ) ∈ M ∩ [g] is proved. Observe that ϕ(ν1, ν2) > (=, <) 0

if ν1 < (=, >) 0 and that ψ(ν1, ν2) > (=, <) 0 if ν2 < (=, >) ψ2(ν1) for
(ν1, ν2) ∈ M. This shows that (ν∗1 , ν

∗
2 ) ∈ M∩ [g] satisfies one of the condi-

tions stated in Table 2, which completes the proof of the theorem.

Now the case a < 0 and b > 0 is treated. Note that Θ = (t0, t1)

where t1 > 0. Put I = (max(0, t0), t1), Ĩ = [t0, t1] ∩ (0,∞), and J =
((max(0, t0))

2, t21). Define a function ϕ2 : [t0, t1] → R by

ϕ2(ν) =




ν2 +

aν2 + bν + c√
b/(2ν) − a

for ν ∈ Ĩ,

0 for ν 6∈ Ĩ.

A short calculation shows that

(ν, ϕ2(ν)) ∈ M for ν ∈ I ,(33)

ϕ(ν, ϕ2(ν)) = 0 for ν ∈ I ,(34)

ϕ2 is increasing on [t0, t1] .(35)

The restriction of ϕ2 to I is strictly increasing with ϕ2(I) = J . Let ϕ1 : J →
I denote its inverse mapping. In particular, ϕ1 is also strictly increasing with

(ϕ1(ν), ν) ∈ M for ν ∈ J ,(36)

ϕ(ϕ1(ν), ν) = 0 for ν ∈ J .(37)

As in the case b = 0 define a function ψ2 : [t0, t1] → R by

ψ2(ν) = ν2 +
aν2 + bν + c√−a− a

.

It is easy to check that

(ν, ψ2(ν)) ∈ M for ν ∈ Θ ,(38)

ψ(ν, ψ2(ν)) = 0 for ν ∈ Θ .(39)

Put

ν̃ = − b

2a
.

Then ν̃ ∈ I and

(40) ϕ2(ν̃) = ψ2(ν̃) .
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Some calculations yield

ψ2(ν̃) < ψ2(ν) ≤ ϕ2(ν) for ν̃ < ν ≤ t1 ,(41)

ψ2(ν̃) > ψ2(ν) ≥ ϕ2(ν) for t0 ≤ ν < ν̃ .(42)

For ν ∈ Θ let

Mν = {ν2 > 0 | (ν, ν2) ∈ M}
denote the ν-section of M. Then it follows that

ϕ(ν, ·) ≥ 0 on Mν for ν ∈ Θ \ I ,(43)

ϕ(ν, ·) is strictly increasing on Mν for ν ∈ I ,(44)

ψ(ν, ·) is strictly decreasing on Mν for ν ∈ Θ .(45)

A short calculation shows that

ϕ(ν, ψ2(ν)) = b+ 2aν for ν ∈ Θ ,(46)

ψ(ν, ϕ2(ν)) =
b

2ν
+ a for ν ∈ I .(47)

In particular, the functions ν → ϕ(ν, ψ2(ν)) and ν → ψ(ν, ϕ2(ν)) are strictly
decreasing on Θ and I, respectively. Now define the following subsets of R:

R1 = {g ∈ R | ν̃ ≤ g1, ψ2(g1) ≤ g3 ≤ ϕ2(g1)} ,
R2 = {g ∈ R | g4 ≤ min(ϕ2(g1), ψ2(g1))} ,
R3 = {g ∈ R | max(ϕ2(g2), ψ2(g2)) ≤ g3} ,
R4 = {g ∈ R | g2 ≤ ν̃, ϕ2(g2) ≤ g4 ≤ ψ2(g2)} ,
R5 = {g ∈ R | ν̃ ≤ g2, max(ϕ2(g1), ϕ2(ν̃)) ≤ g3 ≤ ϕ2(g2)} ,
R6 = {g ∈ R | g1 ≤ ν̃, ϕ2(g1) ≤ g4 ≤ min(ϕ2(g2), ϕ2(ν̃))} ,
R7 = {g ∈ R | ν̃ ≤ g1, g3 ≤ ψ2(g1) ≤ g4} ,
R8 = {g ∈ R | g2 ≤ ν̃, g3 ≤ ψ2(g2) ≤ g4} ,
R9 = {g ∈ R | g1 ≤ ν̃ ≤ g2, g3 ≤ ϕ2(ν̃) ≤ g4} .

Lemma 9. The set R equals the union of its subsets R1,. . . ,R9.

P r o o f. Let g = (g1, g2, g3, g4) ∈ R be fixed. Observe that if ν̃ < g1 then
(41) and (35) show that ψ2(ν̃) < ψ2(g1) ≤ ϕ2(g1) ≤ ϕ2(g2) and ψ2(g2) ≤
ϕ2(g2). If g1 ≤ ν̃ ≤ g2 then (40)–(42) yield ϕ2(g1) ≤ ψ2(g1) ≤ ψ2(ν̃) =
ϕ2(ν̃) ≤ ψ2(g2) ≤ ϕ2(g2). If g2 < ν̃ then (35), (40), and (42) imply that
ϕ2(g1) ≤ ϕ2(g2) ≤ ψ2(g2) ≤ ψ2(ν̃) = ϕ2(ν̃) and ϕ2(g1) ≤ ψ2(g1). Therefore
every g ∈ R satisfies one of the conditions stated in Table 3 below, which
correspond to one of the nine subsets of R.
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Table 3. Classification of the rectangles

ν̃ < g1 ϕ2(g2) ≤ g3 g ∈ R3

ϕ2(g1) ≤ g3 ≤ ϕ2(g2) g ∈ R5

ψ2(g1) ≤ g3 ≤ ϕ2(g1) g ∈ R1

g3 ≤ ψ2(g1) ≤ g4 g ∈ R7

g4 ≤ ψ2(g1) g ∈ R2

g1 ≤ ν̃ ≤ g2 ϕ2(g2) ≤ g3 g ∈ R3

ψ2(ν̃) ≤ g3 ≤ ϕ2(g2) g ∈ R5

g3 ≤ ψ2(ν̃) ≤ g4 g ∈ R9

ϕ2(g1) ≤ g4 ≤ ψ2(ν̃) g ∈ R6

g4 ≤ ϕ2(g1) g ∈ R2

g2 < ν̃ ψ2(g2) ≤ g3 g ∈ R3

g3 ≤ ψ2(g2) ≤ g4 g ∈ R8

ϕ2(g2) ≤ g4 ≤ ψ2(g2) g ∈ R4

ϕ2(g1) ≤ g4 ≤ ϕ2(g2) g ∈ R6

g4 ≤ ϕ2(g1) g ∈ R2

Now define mappingsNi = (γi, ηi) : Ri → R
2 for i ∈ {1, . . . , 9} according

to Table 4.

Table 4. The mappings N1, . . . , N9

i 1 2 3 4 5 6 7 8 9

γi(g) g1 g1 g2 g2 ϕ1(g3) ϕ1(g4) g1 g2 ν̃

ηi(g) g3 g4 g3 g4 g3 g4 ψ2(g1) ψ2(g2) ψ2(ν̃)

Lemma 10. (i) Ni(g) ∈ M∩ [g], g ∈ Ri, i ∈ {1, . . . , 9}.
(ii) Ni(g) = Nj(g), g ∈ Ri ∩Rj , i, j ∈ {1, . . . , 9}.
P r o o f. (i) It is obvious that Ni(g) ∈ [g] for g ∈ Ri and i ∈ {1, . . . , 9}.

In order to prove Ni(g) ∈ M it has to be shown that γi(g) ∈ Θ, ηi(g) >
(γi(g))

2, and aηi(g) + bγi(g) + c > 0 for g ∈ Ri and i ∈ {1, . . . , 9} according
to (14).

C a s e i = 1: Since t0 < ν̃ ≤ g1 < t1 by (24), it follows that g1 ∈ Θ. This
and (38) yield g3 ≥ ψ2(g1) > g2

1 . Since g1 ≥ ν̃ > 0 it follows that g1 ∈ I.
This and (33) show that ag3 + bg2

1 + c ≥ aϕ2(g1) + bg2
1 + c > 0.

C a s e i = 2: If g1 = t0 then g4 ≤ min(ϕ2(g1), ψ2(g1)) = (max(0, t0))
2,

which contradicts
√
g4 > t0 because of g4 > 0 and (24). This and g1 < t1

by (24) show that g1 ∈ Θ. Again 0 < g4 ≤ ϕ2(g1) yields g1 > 0, i.e. g1 ∈ I.
This and (24) imply g4 > g2

1 . Finally, ag4 + bg1 + c ≥ aψ2(g1) + bg1 + c > 0
follows by (38).
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C a s e i = 3: If g2 = t1 then g3 ≥ ψ2(t1) = t21, i.e. ag3 + bg2 + c ≤
at21 + bt1 + c = 0, which contradicts (25). This and g2 > t0 by (24) show
that g2 ∈ Θ. Hence (38) yields g3 ≥ ψ2(g2) > g2

2 and (25) implies that
ag3 + bg2 + c > 0.

C a s e i = 4: Since t0 < g2 ≤ ν̃ < t1 by (24), it follows that g2 ∈ Θ.
If g2 ≤ 0 then (24) implies that g4 > g2

2 . If g2 > 0 then g2 ∈ I and (33)
shows that g4 ≥ ϕ2(g2) > g2

2 . Furthermore, (38) yields ag4 + bg2 + c ≥
aψ2(g2) + bg2 + c > 0.

C a s e i = 5: Since ν̃ > max(0, t0) and ϕ2 is strictly increasing on I it
follows that g3 ≥ ϕ2(ν̃) > (max(0, t0))

2. If g3 ≥ t21 is true then ϕ2(g2) ≥
g3 ≥ t21 = ϕ2(t1) would imply that g2 = t1 and hence ag3 + bg2 + c =
at21 + bt1 + c = 0, which contradicts (25). Therefore g3 < t21, i.e. g3 ∈ J , and
(36) implies that (ϕ1(g3), g3) ∈ M.

C a s e i = 6: If t0 > 0 and g4 = t20 then ϕ2(g1) ≤ t20 = ϕ2(t0) yields
g1 = t0, which contradicts

√
g4 > g1 by (24). This and g4 > 0 by (24) show

that g4 > (max(0, t0))
2. Since ν̃ ∈ I and ϕ2 is strictly increasing on I it

follows that g4 ≤ ϕ2(ν̃) < ϕ2(t1) = t21, i.e. g4 ∈ J . Hence (36) shows that
(ϕ1(g4), g4) ∈ M.

C a s e i = 7: Since t0 < ν̃ ≤ g1 < t1 by (24), it follows that g1 ∈ Θ.
This and (38) imply that (g1, ψ2(g1)) ∈ M.

C a s e i = 8: Since t0 < g2 ≤ ν̃ < t1 by (24), it follows that g2 ∈ Θ, and
(38) implies that (g2, ψ2(g2)) ∈ M.

C a s e i = 9: By ν̃ ∈ I ⊂ Θ and (38) it follows that (ν̃, ψ2(ν̃)) ∈ M.

(ii) Let i = 1 and j = 2, say. Then for g ∈ R1 ∩ R2 one obtains
g4 ≤ ψ2(g1) ≤ g3, i.e. g3 = g4, and hence N1(g) = N2(g). The other cases
are treated similarly.

Now, by Lemma 9 and Lemma 10, the mapping N = (γ, η) : R → M
with

N(g) = Ni(g) for g ∈ Ri and i ∈ {1, . . . , 9}
is unambiguously defined. In the following a simple geometric interpretation
of the mapping N is given.

The set M is divided into nine regions by the graphs of the functions
ϕ2 and ψ2. Number these regions according to the nine cases in Table 2
(see Fig. 1). Draw the rectangle [g] into the moment space, and number
the corners, the sides, and the interior of [g] as in Fig. 2. Now there exists
exactly one point (ν∗1 , ν

∗
2 ) ∈ M ∩ [g] which is the intersection of a region

of M and of a region of [g] with the same number. Then (ν∗1 , ν
∗
2 ) = N(g).

Fig. 3 shows the possible nine cases.
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Fig. 1

Fig. 2

Fig. 3

Now by means of the mapping N a simple description of the solution in
the case a < 0 and b > 0 is given in the following theorem. It turns out
that in the first four cases which correspond to the corners of the rectangle
exactly two restrictions, one for ν1 and one for ν2, are effective. In the
second four cases, corresponding to the sides of the rectangle, exactly one
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restriction is effective. In the ninth case all restrictions are ineffective.

Theorem 4. Suppose that a < 0, b > 0, and g ∈ R. Then (πL(N(g)),
δL(N(g))) is a saddle point of the statistical game (Γg,∆, r). The Γg-minimax

risk is given by

r∗(Γg) = ((aη(g) + bγ(g) + c)−1 + (η(g) − (γ(g))2)−1)−1 .

P r o o f. In view of Table 4 and Lemma 10 it is sufficient to show that
(ν∗1 , ν

∗
2 ) = N(g) satisfies the corresponding condition of Table 2. Then the

assertion follows from Proposition 2.

C a s e g ∈ R1: Because of (45), (39), and g1 ∈ Θ it follows that
ψ(g1, g3) ≤ ψ(g1, ψ2(g1)) = 0. Since g1 ≥ ν̃ > 0 it follows that g1 ∈ I
and (44) and (34) yield ϕ(g1, g3) ≤ ϕ(g1, ϕ2(g1)) = 0.

C a s e g ∈ R2: Because of (45), (39), and g1 ∈ Θ it follows that
ψ(g1, g4) ≥ ψ(g1, ψ2(g1)) = 0. Since g1 ∈ I, (44) and (34) imply that
ϕ(g1, g4) ≤ ϕ(g1, ϕ2(g1)) = 0.

C a s e g ∈ R3: Because of (45), (39), and g2 ∈ Θ it follows that
ψ(g2, g3) ≤ ψ(g2, ψ2(g2)) = 0. If g2 6∈ I then (43) yields ϕ(g2, g3) ≥ 0.
If g2 ∈ I then (44) and (34) show that ϕ(g2, g3) ≥ ϕ(g2, ϕ2(g2)) = 0.

C a s e g ∈ R4: Because of (45), (39), and g2 ∈ Θ it follows that
ψ(g2, g4) ≥ ψ(g2, ψ2(g2)) = 0. If g2 6∈ I then (43) implies that ϕ(g2, g4) ≥ 0.
If g2 ∈ I then (44) and (34) yield ϕ(g2, g4) ≥ ϕ(g2, ϕ2(g2)) = 0.

C a s e g ∈ R5: Since g3 ∈ J and ν̃ ∈ I, i.e. ϕ1(g3) ∈ I and ϕ2(ν̃) ∈ J ,
and since ϕ1 is strictly increasing on J it follows that ν̃ ≤ ϕ1(g3). This and
(47) imply that ψ(ϕ1(g3), g3) = ψ(ϕ1(g3), ϕ2(ϕ1(g3))) ≤ ψ(ν̃, ϕ2(ν̃)) = 0.
Now g3 ∈ J and (37) yield ϕ(ϕ1(g3), g3) = 0.

C a s e g ∈ R6: From g4 ∈ J it follows that ϕ1(g4) ∈ I. Then ϕ1(g4) ≤ ν̃
since ϕ1 is strictly increasing on J and ϕ2(ν̃) ∈ J . Now (39), (47), and
(37) yield ψ(ϕ1(g4), g4) = ψ(ϕ1(g4), ϕ2(ϕ1(g4))) ≥ ψ(ν̃, ϕ2(ν̃)) = 0 and
ϕ(ϕ1(g4), g4) = 0.

C a s e g ∈ R7: From g1 ∈ Θ and (39) it follows that ψ(g1, ψ2(g1)) = 0.
Now (46) shows that ϕ(g1, ψ2(g1)) ≤ ϕ(ν̃, ψ2(ν̃)) = 0.

C a s e g ∈ R8: Since g2 ∈ Θ equation (39) yields ψ(g2, ψ2(g2)) = 0.
Now (46) implies that ϕ(g2, ψ2(g2)) ≥ ϕ(ν̃, ψ2(ν̃)) = 0.

C a s e g ∈ R9: Since ν̃ ∈ I and ϕ2(ν̃) = ψ2(ν̃) it follows from (39) and
(34) that ψ(ν̃, ϕ2(ν̃)) = ϕ(ν̃, ϕ2(ν̃)) = 0.

Example 5. Consider the case of a binomial distribution B(n, θ), n ≥ 1,
θ ∈ (0, 1), as described in Example 1(a). Then the functions ϕ2, ψ2 : [0, 1] →
R are given by

ϕ2(ν) = ν3/2

√
nν +

√
2√

n+
√

2ν
, ψ2(ν) = ν

√
nν + 1√
n+ 1

.



32 Gamma-minimax estimators in the exponential family

Moreover, ν̃ = 1/2 and

ϕ2(ν̃) = ψ2(ν̃) =

√
n+ 2

4(
√
n+ 1)

.

Now Theorem 4 can be applied.

The special case n = 1 and g = (ω, ω, 0,∞) for ω ∈ (0, 1) of Example 5,
i.e.

Γg = {π ∈ Π | ν1(π) = ω} ,
has been studied by Robbins (1964, Section 5) and by Samaniego (1975).
Here ψ2(ω) = 1

2
ω(ω + 1), g ∈ R7 ∪ R8 ∪ R9, hence N(g) = (ω,ψ2(ω)),

L(N(g)) = (−1, ω − 1),

δL(N(g))(x) =
1

2
(x+ ω),

and

πL(N(g)) = Be(ω, 1 − ω)

is a Beta-distribution.

5. Some special cases

Now, as the statistical game (Γg,∆, r) is completely solved for arbitrary
rectangles [g] with g ∈ R, it is worthwhile to consider some special situ-
ations. Observe that if the statistical game (Γg,∆, r) has a saddle point
of the form (πL(ν1,ν2), δL(ν1,ν2)), (ν1, ν2) ∈ M, then the Γg-minimax risk is
given by formula (22).

Corollary 1. The “unrestricted case” corresponds to the choice g =
(θ0, θ1, 0,∞). Then Γg = Π, i.e. there are actually no restrictions on the

moments of the priors.

T y p e I: Here (πL(ν̃,ψ2(ν̃)), δL(ν̃,ψ2(ν̃))) with ν̃ = −b/(2a) is a saddle point

of the statistical game (Π,∆, r).
T y p e II: Here the estimator δ∗ with δ∗(x) = x, x ∈ R, is (Π-)minimax ,

and the (Π-)minimax risk is given by r∗(Π) = c. A least favourable prior

does not exist.

T y p e s III–VI: Here the statistical game (Π,∆, r) is degenerate.

For type I and II in Corollary 1 the linear minimax estimators have
constant risk. Conversely, if the linear estimator δ0 ∈ ∆ with δ0(x) = dx+e,
x ∈ R, has constant risk then it follows from (20) that ad2 + (d − 1)2 = 0
and bd2 + 2e(d − 1) = 0. Hence either a < 0 or a = b = 0, i.e. a linear
“equalizer” can only exist in the “binomial case” (type I) or in the “normal
case” (type II). This observation is closely related to a result of Tweedie
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(1967) from which Jackson et al . (1970) conclude that for types III–VI no
linear minimax estimator exists. But, since the corresponding statistical
games are degenerate, every (linear) estimator is minimax.

In Jackson et al . (1970, p. 442) it is proposed to study the subsequent
situation where “satisfactory results ... appear to exist only for very specific
cases”.

Corollary 2. The “G1-minimax case” corresponds to the choice g =
(ω, ω, 0,∞) with ω ∈ Θ. Then

Γg = {π ∈ Π | ν1(π) = ω} ,
i.e. the first moment of the prior is assumed to be known whereas there are

no restrictions on the second moment.

T y p e I: Here (πL(ω,ψ2(ω)), δL(ω,ψ2(ω))) is a saddle point of the statistical

game (Γg,∆, r).
T y p e II: Here the estimator δ∗ with δ∗(x) = x, x ∈ R, is Γg-minimax

(and does not depend on ω). The Γg-minimax risk is given by r∗(Γg) = c,
i.e. the restriction “ ν1(π) = ω” is ineffective. A least favourable prior does

not exist.

T y p e III: Here the estimator δ∗ with δ∗(x) = x, x ∈ R, is Γg-minimax

(and does not depend on ω). The Γg-minimax risk is given by r∗(Γg) =
bω + c. A least favourable prior does not exist.

T y p e s IV–VI: Here the statistical game (Γg,∆, r) is degenerate as in

the unrestricted case.

The following case has been studied by Jackson et al . (1970).

Corollary 3. The “G2-minimax case” corresponds to the choice g =
(ω1, ω1, ω2, ω2) with ω1 ∈ Θ , ω2

1 < ω2 < ∞, and , in case a < 0, with

aω2 + bω1 + c > 0. Then

Γg = {π ∈ Π | ν1(π) = ω1 , ν2(π) = ω2} ,
i.e. the first two moments of the priors are known. Here (πL(ω1,ω2), δL(ω1,ω2))
is a saddle point of the statistical game (Γg,∆, r).

6. Concluding remark

The statistical games (Γg,∆, r), g ∈ R, have completely been solved by a
direct calculation of a linear Γg-minimax estimator δ∗ and a least favourable
prior π∗, or a least favourable sequence (πn)n∈N, according to Remark 1.

If one were only interested in the strict determinateness of the statistical
games (Γg,∆, r) and in the existence of a linear Γg-minimax estimator, one
could replace tedious calculations by the following theoretical arguments:
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(i) There is a compact topology on ∆ such that the functions r(π, ·) ,
π ∈ Π, are lower semicontinuous.

(Compare Kindler 1981, Sec. 4, 5b, 5g, observe that L1(R,B(R), µ) is sepa-
rable, and apply Fatou’s lemma.)

(ii) For every nonvoid convex Γ ⊂ Π the statistical game (Γ,∆, r) is

strictly determined and a Γ -minimax estimator exists.

(In view of (i), Neumann’s generalization (Neumann 1977) of Ky Fan’s min-
imax theorem (Fan 1953) can be applied.)

(iii) If M(Γg) is bounded , then a linear Γg-minimax estimator exists.

(Let (Gn)n∈N be an increasing sequence of compact convex subsets of M
such that

⋃∞
n=1Gn = M(Γg\E). Then, as in (ii), it follows that the games

(Γn,∆, r) with M(Γn) = Gn possess saddle points (πn, δn). By (19), πn =

π
L(ν

(n)
1 ,ν

(n)
2 )

for some (ν
(n)
1 , ν

(n)
2 ) ∈ M, hence Proposition 1 yields δn =

δ
L(ν

(n)
1 ,ν

(n)
2 )

. In particular,

ρn = ((aν
(n)
2 + bν

(n)
1 + c)−1 + (ν

(n)
2 − (ν

(n)
1 )2)−1)−1

is the value of (Γn,∆, r). As M(Γg) is bounded one may assume w.l.g. that

the limit limn→∞(ν
(n)
1 , ν

(n)
2 ) = (ν∗1 , ν

∗
2 ) ∈ R

2 exists. From 0 < ρ1 ≤ ρ2 ≤ . . .
it follows that (ν∗1 , ν

∗
2 ) ∈ M. Now, for π ∈ Γg\E one has (ν1(π), ν2(π)) ∈ Gn

for some n ∈ N, hence r(π, δn) ≤ ρn ≤ r∗(Γg). Therefore,

sup
π∈Γg

r(π, δL(ν∗1 ,ν
∗

2 )) = sup
π∈Γg\E

r(π, δL(ν∗1 ,ν
∗

2 ))

= sup
π∈Γg\E

lim
n→∞

r(π, δ
L(ν

(n)
1 ,ν

(n)
2 )

) ≤ r∗(Γg) ,

i.e. δL(ν∗1 ,ν
∗

2 ) is a linear Γg-minimax estimator.)
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