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Abstract

Let {mn,n > 0} be a sequence of measure preserving transformations of a probability
space (§2, X, P) into itself and let {fn,n > 0} be a sequence of elements of LQ(Q7 X, P)
with E{fn} = 0. It is shown that the distribution of

(Zf) (D(iz:fim_._om))l

tends to the normal distribution N(0,1) as n — oo.

1985 Mathematics Subject Classification: 58F11, 60F05, 28D99.
Key words and phrases: conditional expectation, martingale differences, central limit
theorem; ergodic, mixing and exact transformations.



1. Introduction

It is well known (see [5, 10]) that for every stationary process { X,,,n € Z}
there exist a probability space (£2, X, P), a transformation 7 : {2 — {2 and
a random variable X : 2 — C (C is the set of complex numbers) such that
the process { X/ = X{o7™,n € Z} has the same joint distributions as {X,,
n € Z}. It is also easy to see that every sequence {X,,,n € Z} of independent
random variables can be represented in the form X, = X o 7", where
7 : 2 — (2 is a transformation of (2 into itself such that {77"(Xy),n € Z}
is a sequence of independent sub-o-fields for some Xy C X and {X[',n € Z}
is a sequence of Yy-measurable random variables.

There exists many central limit theorems concerning the above two types
of processes. However, the two cases lead naturally to the question whether a
central limit theorem also holds for sequences of random variables of the type
X, = Xy o7" with 7 more general than those connected with independent
random variables; more generally, it is interesting to investigate whether a
central limit theorem also holds for random variables of the form

(1.1) Xp,=X{or,0...079

where {7,,n > 0} is a sequence of admissible transformations.

Many biological, technical and economical problems lead to this type of
problems. For example, consider a population of annual plants. It is clear
that the number of plants next year depends on their number the previous
year. Therefore, we can write z,41 = 7(x,), where z,, is the number of
plants in the nth year and 7 is a transformation. However, 7 depends on
time because of weather, soil erosion, various disasters and so on. Thus, in
general, we have the relation x,1x = 71k 0 ... 07 (2p—1). Now, let Y be
a random variable depending on both quality and quantity of plants. For
example, let Y be the amount of honey obtained during a year. It is easy to
see that Y also depends on time and consequently, we deal with a sequence
of random variables ¥,, = Yj? o7, 0...07;.

For more examples and interesting facts concerning the above questions
consult the very simple but interesting work [23].

The paper [16] provides us with a technological problem leading to a
process of the form (1.1). It turns out that with tool-drilling of rocks there



6 A central limit theorem

is connected a C? transformation 7 of the unit interval into itself. Moreover,
the behaviour of certain velocities is described by processes of the form
X, = for™. The authors of that work have assumed that the transformation
7 does not depend on time. However, in fact, the tool wears down and also
the properties of the rock vary with depth. Therefore, 7 must vary with
time and consequently, the processes considered must also be of the form
X, =Yor,o...0Ty.

The above examples show that only rarely do the practical problems lead
to stationary processes and thus it is interesting to consider more general
cases. The purpose of the present paper is to give a central limit theorem
for processes mentioned in the above two examples, that is, for processes of
the form (1.1).

There already exist some central limit theorems for such processes,
namely, for mixing ones (see for example C. S. Withers [27]). However, these
results require strong assumptions on the mixing coefficients. Of course, one
may try to approximate processes (1.1) by mixing processes with mixing co-
efficients sufficiently small and then a limit passage might yield a central
limit theorem for the general case; but it seems that this method is not suf-
ficiently efficient. This can be seen by comparing Keller’s [14] and Wong’s
[28] results for one piecewise C? transformation and one function f. In this
paper, we approximate processes (1.1) by martingale differences. For this
purpose we formulate simple approximation theorems (Theorems 4.3 and
5.2), which are generalizations of Gordin’s theorem for stationary processes
[6]. Of course, Gordin’s theorem is a simple consequence of our theorems
and, moreover, our theorems give a clearer idea of the way of approximat-
ing processes (1.1) by martingale differences because we need not bother
whether the approximating processes are stationary.

In order to prove a central limit theorem for processes (1.1) we also need
a central limit theorem for martingale differences. There exists a large vari-
ety of such theorems. For almost complete literature see [7, 18]. However, in
applications, all these theorems require examining the limit behaviour either
of the sequence (1/D2)>")_, XZ orof (1/D2) >} _ E{X¥ Xk—1, Xp—2,..-}
(see for example Theorems 3.2 and 3.4 in [7]). For this reason we formu-
late and prove a new theorem (Theorem 2.1), which is more appropriate
for our purposes. In our theorem assumptions concerning the sequence
(1/D2%)>"%_, X}? are replaced by assumptions (2.7) and (2.11). Owing
to this theorem we can obtain a central limit theorem even for processes
X, generated by a non-ergodic sequence of transformations 7, and with
(1/D2) >, _, X} divergent (see Examples 6.1, 6.2 and Counterexample 6.1).

Counterexample 6.1 also shows that Theorem 2.1 cannot be deduced
from the most general central limit theorem for martingale differences [7,
Theorem 3.4]; besides, the latter is rather difficult to apply because of a large
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number of technical assumptions not intuitive and difficult to check. It is also
interesting that all ergodic theorems concerning convergence of sequences
(1/D?%) >0 _, X7 with X}, given by (1.1) require a common invariant mea-
sure for all 7, while (2.11) holds if we just assume that (), (7, 0...0m) 1 (X)
is the trivial o-field. This condition is satisfied, for example, for sequences of
Rényi’s transformations (for definition see Section 4). Since in practise we
generally cannot expect the existence of a common invariant measure under
all the 7, the fact that the existence of such a measure is not necessary to
obtain a central limit theorem may be very useful in applications. When
applying Theorem 2.1 we must check condition (2.7). This can be done by
direct estimations if the 7, are sufficiently regular. Assuming, however, the
existence of a common invariant measure, it turns out that (2.7) holds for
every finite set of transformations {7,,,0 < n < k;} and every finite set of
functions {f,,0 < n < ky}. For more general sets of transformations and
functions we can prove (2.7) using a method similar to that in the proof
of the Arzela theorem. In order to facilitate the checking of (2.7) we in-
troduce the notion of a stationary family of processes and we formulate an
appropriate central limit theorem for its elements (Theorem 3.1). Now, us-
ing Theorems 3.1, 4.3 and 5.2 we can obtain a whole new class of central
limit theorems for processes (1.1). Theorems 4.5 and 5.4 and Examples 4.2,
6.1 and 6.2 are first examples of such results for piecewise C? transforma-
tions. Moreover, Example 4.2 suggests that if a central limit theorem holds
for a stationary process then it also holds for the same process with small
perturbations. This problem and the proof of a central limit theorem for
families of transformations with no common invariant measure are subject
of another work.

In our paper we will be mainly concerned with piecewise C? transforma-
tions because they have a simple analytic description and their properties
are well investigated. It is possible to prove similar theorems for transforma-
tions with non-positive Schwarzian derivative considered by M. Misiurewicz
[19], W. Szlenk [25], B. Szewc [24] and K. Ziemian [29], but the proofs
require more complicated computations.

For stationary processes generated by a transformation of the unit in-
terval central limit theorems were given by Tran Vinh Hien [26], H. Ishitani
[11], S. Wong [28], G. Keller [14], J. Rousseau-Egele [21], M. Jablonski
and J. Malczak [13] and K. Ziemian [29]. Tran Vinh Hien, H. Ishitani,
M. Jabloniski and J. Malczak proved their theorems by estimating the mix-
ing coefficients and by using [10, Theorem 18.6.2]. S. Wong proved a central
limit theorem for a class of piecewise C? transformations and for a class of
Holder functions, using a version of Bunimovich’s method [4] together with
the fact, proven by R. Bowen [3], that the “natural” extension (see [20]) of
a weak-mixing transformation is isomorphic to a Bernoulli shift. F. Hof-
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bauer and G. Keller [8] and K. Ziemian [29] extended Wong’s method to a
class of piecewise monotonic transformations defined on an ordered space
and to a class of transformations with non-positive Schwarzian derivative
respectively. An interesting method of proof of a central limit theorem for
piecewise C? transformation was given by G. Keller [14]. Tt uses Gordin’s
theorem [6], whose proof, in turn, is based on a central limit theorem for
martingale differences given by I. A. Ibragimov [9] and P. Billingsley [2].

The paper is divided into six sections. In Section 2 we give a central limit
theorem for martingales, which enables us to omit considerations concerning
the existence of limits of ergodic type. In Section 3 we introduce the notion
of a stationary family of processes and we apply the central limit theorem
from the previous section to the elements of a stationary family of martingale
differences. In Section 4 we apply the results of Section 3 to processes (1.1)
for non-invertible transformations.

It is well known (see [5, 10]) that problems concerning one-sided sta-
tionary processes {X,,n > 0} reduce to problems for two-sided stationary
processes {X,,,n € Z}. It seems that this procedure is rather difficult in
the case of processes (1.1). In Section 5 we point out the main distinctions
between problems that arise in connection with central limit theorems for
non-invertible and invertible transformations. In Section 6, using the re-
sults of the previous sections, we compare the central limit theorem from
Section 2 with those given in [7].

2. A central limit theorem for martingale differences

A sequence {X,,,n € Z} of random variables is said to be a sequence of
martingale differences if

(2.1) sup E{|X,|} = c< o0,
nez
(2.2) E{X,|Xn-1,Xn—2,...} =0 foreachneZ.

Let {X,,n € Z} be a sequence of martingale differences and let B,
denote the o-field generated by X, & < n. We introduce the following
notations: o2 = E{X2}, B=), Bn, A7 = E{X}|B}, s3,, = E{X}?|Bi—m},
sp = E{X}|Br_1} = s3y and A3, = E{X?,,|B} where X5 = X;1({|X;| <
M?}) and 1(A) is the indicator function of the set A.

For every sequence of martingale differences we have

(2.3) D? (i Xi) - i o2
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Moreover, the martingale convergence theorem implies

(2.4) s2 — A2 as m — oo almost surely,
(2.5) B{|s?, —Ai]} -0 asm — co.

Let A¢ = 2\ A denote the complement of the set A.

THEOREM 2.1. Let {an,n > 0} and {b,,n > 0} be two sequences of
integers such that b, —a, — o0 asn — co. Suppose a sequence of martingale
differences {X,,n € Z} satisfies

(2.6) supos =c; <oco, whereU = U [an,bn] NZ,

nelU n—1

(27) SupE{|sip_Ai|}—>O asp— 00,
keU

(2.8)  {X2,n € Z} is uniformly integrable,
(2.9)  for every e > 0,

b
1 n
Dz > B{X71(B},)} =0 asn— oo,

" k=an,
where By, = {| Xk| < ED}l/Sai/g} and D? = 2"2711 0%,
(2.10)  sup(b, — a,)/D2 =K < o0,

n>0
(2.11)  there exists My > 0 such that for every M > M

b
1 n
D2 E (A2 — E{A5y}) =0  asn— oo in L' —norm.

n j:a‘n
Then

1

bn
D Z X; — N(0,1) asn — oo in distribution.

1=apn

In the proof we will need the following simple fact.

LEMMA 2.1. If the sequences {an,n > 0} and n(>_;_, a3)~! are bounded,
then (X}, at) (S, a2)2 — 0 as n — oo.

Proof of Theorem 2.1. We shall prove the theorem for a, = —n
and b,, = 0. The general case is obtained by the same reasoning.
Set

k—1
1
Z,:L:D—g X; forn<k<0
n .
J=n
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and let f,(t) be the characteristic function of Z, i.e., f,,(t) = E{exp(itZy)}.
We prove the theorem by showing that

|fn(t) —exp(—t?/2)] = 0 asn — —cc.

The desired result will be a consequence of the continuity theorem for char-
acteristic functions.

Let @} (t), ¥} (t) and g(x) be given by

Pk () = exp(—t*Di/(2D})),
( ) = ( )E{exp(itZi')}
=1+ix + (ir)?/2 + g(x).

We have
0
fu(t) —exp(—2/2) = ¥ (t) —Yn(t) = > (@p(t) — vp_1 (1))
k=n+1

(we remind that Dy = 0). Using (2.2), we obtain
Vi (t) — V(1)
242

a0 Blexp(itu/ D) expi127) — exp (733 ) Elexptzp )]

n itXy  (itXy)? t Xy, -
—gpkH(t)[E{(l—i— D, + 2D2 +g D, exp(itZy])

(1 - D—,f2 - D4t4 ) E{exp( ZtZk)}:l
= 655z Elesp (it Z) (o} — )

N tX ortt
+ S%-s—l(t)E{ (9 (Dk> +0n Dk44> exp(thk)}

where |0,,| < 1. Therefore

Fullt) — exp (_g) |

<ap, 2, 2 o (5]

" k=n+1 k=n+1 Dy,

(2.12)

2 0

t " - n
Tt apr| 2 PROB{(sEy - o) exp(itZi)} -
T k=n+1
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Since |g(z)| < |23]/6 and |g(x)| < 22/2, for every € > 0 we have

p{Jo (52|} = dprExeP 1B

t2
+ 5y BAXFL(BE,)}

2D2
23|43 2
o€ |t | l 2 c

where By, = {|Xi| < ED}/?'G,?/S}. This gives

e 3 el (52))

k=n-+1

B U 71EX2 B¢
<% +2D72Lk§: {XZ1(Bg,)} -

Therefore, by (2.3), (2.9), Lemma 2.1 and (2.13) the first and second terms
of the right side of (2.12) both converge to zero as n — —oo. The conver-
gence to zero of the third term will be shown in two steps. First we show
that
tz : n 2 2 <y 7N
2D2 Z ok (O E{(sk—1 — 0k—1) exp(itZy_1)}
" k=n+1
0
= Y GOB{(A, — of_y) exp(itZi,)}|
k=n+1

(2.14)

2] ,
= 355| 2° GROB{(so — ALy exp(itZi_)} — 0
" k=n+1

asn — —oo,

and next we show that

2 0
So7| O GROB{(AL, — ol ) exp(itZi,)}| — 0
n k=n+1

(2.15)

asn — —00.
Fix € > 0 and choose p > 0 so that

(2.16) E{lsi, — Ai]} <e, k<0

(this is possible by (2.7)). For 0 > k > n+ p and n such that n+p—2 <0
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we have

(217)  |BE{(si_1 — 43_) exp(itZg_y)}]

< ’E{(sil = Af_y)exp <&§X1> }'
+ ‘E{(sil — A7) exp (&?;I:Xj) (exp (gn ki Xj) - 1)”

Jj=k—p+1
=1+1I.

Using (2.16) and the basic properties of conditional expectation, we ob-

tain
5o

., k—p
it
(2.18) I= ‘E{E{(si_l —A2_)exp <D ZXJ)

., k—p
it
= ‘E{(Sz—Lp — Af_y)exp (D ZXJ) }‘

< E{|Si—1,p —Apal} <e.

Setting Hypn = {|Xgp—p+1| + ... + |Xk—2| < eD,} and noticing that
|exp(iz) — 1] < |z| and |exp(iz) — 1| < 2 yields

it =2

" j=k—p+1

(219) I < E{ |sie1 — Af_1l}

t
< FE{|Si_1 — A (| Xp—pia| + -+ [ X2 )1 (Hipn ) }
+2B{|si_y — AZ_111(Hf,,)}

t
D,
< 2teoj_y +2E{|sj_, — Aifﬂl(ngn)}-

Since E{|f|} < E{f?}, from (2.6) it follows that

< ——eDnE{siy — AR 4 [W(Hipn)} + 2B{|s§_y — A5 |1(H,,)}

sup P(H; ) < sup
k<0 ( kpn) k<0 E.Dn

pc
eD,

since D,, — 0o as n — —o0, by (2.10). Therefore, by (2.6) and (2.8),
(2.20) Sup E{|sh_y — AR 1| L(HEp,)} <€

E{([Xk—ptal + - 4 [ X2 )L(H,0) }

<

—0 asn— —oo,
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for sufficiently large n. Now, (2.6), (2.19) and (2.20) give us
IT < 2(tcie +¢)

for sufficiently large n and 0 > k > n + p. Together with (2.17) and (2.18),
this implies

|E{(s% — AZ exp(itZy_ )} < 2tcie + 2+ ¢

for n and k as previously. This yields (2.14) since D,, — 0o as n — —00, p
is fixed for fixed €, {X?,n € Z} is bounded in L'-norm and sup,, <, n/D; =
K < o0.

To show (2.15), set
Xim = X — Xgm
Ainr = E{Xrum|B},
Hient = Afnr — -
From (2.6) and (2.8) it follows that
(2.21) sup B{A%,,} = E{}TiM} -0 asM — oo,
(2.22) 2&%E{Hiz\4} — E{A} —0}} =0 asM — .

Applying Abel’s transformation we obtain

2 0

t n .
(2.23) 2D2 ‘ Z k(t)E{(Az—l - 02_1) eXp(ZtZk_l)}’
N k=n+1
2 & ,
< 5p2 Z Z(t)E{Nk—l,MeXp(ZtZI?—l)}‘
" k=n+1
2 & >
* 2D2‘ > OBy exp(itzﬁ_l)}’
" k=n+1
2 0 » 0
<505 | 30 B{ler 0 ex(itziy) - cia (O exolitZiy)] Y wiul
n k=n+42 ]:k )

2D2‘E{‘pn+1eXp(”Z )} Z %M’
Jj=n+1
2 0
top ‘ > PROE{A exp(itZ;’Z_l)}) T4 II4TI0.
" k=n+1
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Applying Taylor’s theorem and using (2.2) we obtain

2| o ,
57| D B{ek® explitzi_y)

" k=n+4+2

it X o2 2 0
x e (S5 ) —ep(~Thay)] X s

t2

2D2
k=n+2 i

(2.24) I=

D, D2 * 2D2
0

X [ith—2 Ourt® Xy | Onit’of_ 1}}’

t2
2D2 ,
k=n+2 j=k—1
tz 0 n anXg,th . n 0 2
9D2 Z @k(t)E{TeXp(ZtZk—Q) Z HjMH
" k=n42 n j=k

—IV+V,

IN

_|_

where |01,] < 1 and [0,] < 1. Now we estimate successively: III, IT, TV
and V.

Fix € > 0. By (2.21) and (2.10) there exists M; such that
(2.25) ITI < et?

for every M > M; and n < 0. By (2.10), (2.11) and (2.22) there exists M,
such that

0

226) 1< 50 Y 5w Bt} + 55z O 1Bldar)]

k=n+1 " k=n+1
2
- 557 {] Z AM—E{AiM}>]} o7 O Bl < et?
" k=n+1

for every M > My and n < ny(M). Similarly, by (2.6), (2.10), (2.11) and
(2.22) there exists M3 such that

t4C1 0 0
(2.27) V<152 > {‘ > (5 — E{n}) }
" k=n+2 kE j=k—1
tte 0 1 0
1
tipe > 2 ) B{uy} < et

N k=n+2 K j=k-1
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whenever M > Mj and n < ns(M).

We need a little more computations to estimate V. Since | M? ul < M+,
for every L > 0 we have

t4 0 2 0
(228) V<o Do {‘ 52 > ujM—E{M?M})'}
" k=n+2 j=k—1
-
+2D2 Z DQE{Xk 2} Z |E{N1M}’
" k=n+2 j=k—1
N 2AAM2 4k
SQDQ Z ( D2 ) E{X13721(BkL)}
)~ -
+ o5 Dl {‘2 > (/@M—E{M?M})'}
2Dy, k=n-+2 Dy, j=k—1
-
tapr 2 Pt S Bl
" k=n+2 j=k—1

=a(M,L)+b(M,L)+ c(M),

where By, = {X?_, > L}. By (2.6), (2.10) and (2.24) there exists My such
that for every M > M, and n < ny(M)

t C1
(2.29) o(M) < 503 Z Z |E{2y )| < et*.
o= n+2 j -1

Setting M5 = max{Mj, My, M3, My}, by (2.6), (2.8), (2.10) we can choose
Ly such that for every k,n <0

(2.30) a(Ms,Ly) < et*.

Finally, by (2.11) we can choose n5(L1) such that

(2.31) b(Ms, L) < et?

whenever n < ns(L1). Now, adding (2.29)—(2.31) and using (2.28) we obtain
(2.32) V < 3tte

whenever n < min{n4(Ms5),n5(L1)}. Adding (2.27) and (2.32) and using
(2.24) we obtain

(2.33) I <4tle
for n < min{ng(Ms),ns(Ms),n5(L1)}, and finally, adding (2.25), (2.26),
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(2.33) and using (2.23) we obtain

2 o
57| o CROB{AE — ot exp(itZi))}| < (26 + at?)
" k=n+1

for sufficiently large n, which establishes (2.15). This completes the proof
of the theorem for a, = —n and b, = 0, n > 0. Setting

k—1
n 1 n D?th2
Zk;:Dnj; X, SDk(t):eXP( D22 ) ;

Vi (1) = @i () Eexp(itZy))

for a, <k <b,, where D? = Z?l;l 032, we obtain the general case by the
same reasoning.

3. Stationary family of processes
and central limit theorems for its elements

First we extend some notions of the theory of stationary processes (see
[5, 10]) to a more general case.

Let (£2,%,P) be a probability space. We write A C B (mod0) and
A= B (mod0) iff P(A\ B) =0 and P((A\ B)U(B\ A)) = 0, respectively,
and for two o-fields Xy, Xy C X we write Xy = Y5 (modO0) iff for every
Ay € X and every By € Y5 there exist Ay € Yy and By € X such that
A1 = Ay (mod0) and By = By (mod0).

Let Xy, X5 C X be two complete o-fields, that is, containing all subsets
of {2 with measure 0. We say that two transformations 17 : Xy — X
and Ty : Xy — Xy are equivalent iff T1(A) = T>(B) (mod0) whenever
A= B (mod0) and A, B € Y.

Consider a transformation T : Xy — X5 satisfying the following condi-
tions:

(3.1) 2y and Yy are complete,
(3.2) T( U Aj) = U T(4)) (mod0), 4;€ X1, j=12,...,
j=1 j=1

(3.3) T2\ A)=02\T(A) (mod0),
(3.4) T preserves the measure P, that is, P(A) = P(T(A)) for every
Ae .

It is easy to see that for every Yi-measurable and integrable function f :
2 — R there exists a transformation Ty : Xy — Y5 equivalent to T such
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that the sets A, = Tr({f <r}), r € Q (Q is the set of rational numbers),
satisfy

(3.5) A, CA,, forr <rg,
(3.6) () Ar=0,

reQ
(3.7) U4 =20

reQ

Therefore, the function Ty f defined by

(3.8) (Trf)w)=s iff we[)A\[]A

r>s r<s

is Ys-measurable and
(3.9) E{(Tf)P} = E{f"}, p>1, felP(2,X P),

since Ty preserves the measure P. It is also obvious that T f taken as an
element of LP({2, X5, P) does not depend on the choice of Ty and Ty f =
T,g almost everywhere whenever f = ¢ almost everywhere. Thus, with
every T : X1 — X5 satisfying (3.1)-(3.4) there is associated an isometry
T:LP(2,%,P)— LP(2,X5, P), p>1, given by (3.8).

Here we denote the set transformation and an operator by the same
letter. This will not lead to any confusion.

It is also obvious that T': Xy — X5 satisfying (3.1)—(3.4) is invertible if
and only if T': LP(£2, X1, P) — LP(£2, X5, P) is invertible for p > 1.

Denote by Z~ and Z™ the sets of all strictly negative and strictly positive
integers, respectively. The set of all functions f : A — B will be denoted
by BA.

Throughout this paper the expression “r : {2 — (2 is an invertible trans-
formation” means that there exist sets 2/ and 2 of full measure such that
Tl 2 — " is a strictly invertible transformation.

Let 7 : £2 — (2 be an invertible transformation such that

(3.10) 7 and 77! are measurable,
(3.11) 7 preserves the measure P, that is, for every F € X

P(F) = P(r=(F)) = P(r(F)).
It is well known (see [5, 10]) that for every f € L'(£2,X, P) the process
{X,, = for™ n € Z} is stationary and, if {X,,, n € Z} is a stationary
process and X is the o-field generated by X,, n € Z, then there exists

T : ¥, — X satisfying (3.1)—(3.4) such that X,, = T" Xy, n € Z. Now we
extend this assertion to a more general case.
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Let {r, : 2 — 2, a € A} be a family of invertible transformations
satisfying (3.10) and (3.11) and let B be a subset of L!(§2, ¥, P). Put

(3.12) I'=T(AB)=AxB

where A = A2 x {0} x AZ" and B = BZ. 1t is easy to verify that the family
{Xn, n € Z}cr of stochastic processes given by

Bn©Ta, ©...0Tq, for n > 0,
(3.13) Xon =14 bBo for n =0,

-1 —1
frnoTy, ©...07,  forn <0,

where v = (a,f) € I' and «,, B, are the nth coordinates of o and £,
respectively, satisfies the following condition.

CONDITION A. For every k € Z and for every v € I" there exists 7' € I’
such that for every m; < mg, mi,my € Z, the random variables X.;,
my < i < meo, and X5, m; — k < ¢ < mg — k, have the same joint
distributions.

Indeed, for every k > 0, v = (o, 8) € I', v/ = (¢/, 8") € I" such that

Untk, n > 07
/o Qo, n= 07
(3.14) TN ainr1, —k<n<o0,
Ap—F; n < _k7
(3.15) Br = Butk
and for any Borel set G € R™2™™ ! we have

(316)  PU{(Xymss- - Xomy) € G})
- P(Tak 0...0 Ta1({(X7m1a s 7X7m2) € G}))
=P{(Xym, 075 0 oot Xymy 070 o or ) € GY)
= P({(X'y’ml—ka - 7X'y’m2—k3) S G})

and, similarly, for k£ < 0 and v,~" € I" such that

On+tk, n > _kv
r_ Ontk—1, —k >n> 07
(3.17) =9 a. n=0,
AOn—k; n < 07
(3.18) Br = Bntk

and for any Borel set G ¢ R™2~™1+1
(3.19)  PU(Xyms- - Xoyms) € G})

= P({(XW’ml—kH B X’Y'm2—k) € G}) :
Equalities (3.16) and (3.19) give the desired result.
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Now let {7, : 2 — 2, a € A} be a family of measurable (not necessarily
invertible) and measure preserving transformations, that is,

(3.20) T Y F)e X forevery FeX,
(3.21) P(rY(F)) = P(F) forevery F € X.

For such a family of transformations and a subset B C L(£2, X, P) we
define a family of processes {X,,,n > 0}, e+ by

| BnoTa,0...074, forn>0,
(3.22) X’Yn{ﬁo for n =0,

where I't = I'(A, B) = AT x B, AT = {0} x A% and B+ = B{"20} It
is easy to show that this family satisfies the following condition.

ConDITION A’. For every k > 0 and for every v € I'" there exists
~" € I'" such that for every k& < m; < ma, mi,mg > 0, the random
variables X.;, m; < i < mag, and X,/;, m; —k <1 < mg — k, have the same
joint distributions.

Indeed, similarly to the case of invertible transformations, one can show
that for £ > 0 and v = (o, 8) € I'" it is sufficient to choose 7/ = (¢/, ') €
I't such that

; _ Japyr formn >0,
(3.23) n = {ao for n =0,
(3.24) Br = Btk forn > 0.

We now show that, conversely, every family of processes satisfying Con-
dition A can be regarded as a family of processes of the form

Ty, 0...0T,, By for n > 0,
(3.25) X.n =1 bBo for n =0,
T,  o...0oT '3, forn <0,

where {15, a € A} is a family of invertible transformations connected via
(3.8) with a family of transformations of o-fields and, similarly, every family
of processes satisfying Condition A’ can be regarded as a family of processes
of the form

[Ty o0...0T,, 0B, forn>0,
(3.26) Xon = {ﬁo for n = 0,

where {1, a € A} is a family of (not necessarily invertible) transformations
connected via (3.8) with a family of transformations of o-fields. For this we
need the following two lemmas.

LEMMA 3.1. Let {X,,,n € Z} and {Y,,,n € Z} be two stochastic processes
such that for some k € Z and every my < mo, mi,mo € Z, the random
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variables X;, my < i1 < mo, and Y;, m1 — k < ¢ < mo — k, have the
same joint distributions. Denote by Xx, Xy, Xxm and Xy, the o-fields
generated by the random variables X,,, n € Z, Y, n € Z, X,,, n < m, and
Y,, n < m, respectively. If {X,,n € Z} C L' (2, X, P) then there erists an
invertible and measure preserving map T : Xy — Xx such that

(3.27) T satisfies (3.2)—(3.3),

(3.28)  for every m € Z, T|x,, _. is an invertible map of Xy, —x onto
EXma

(3.29)  if the maps T : L'(2,Yy,P) — LY(2,Yx,P) and T|s,, . :
LY 2, Xy 1, P) — LY, Xxm,P) are given by (3.8) then
Xn=TY_r =Ty, Ynr for every n < m.

Proof. Without loss of generality we can assume that Xx, Xy, Yxm,
and Yy, are complete o-fields. Obviously, the sets {(Xy,,..., Xm,) €
G}, {(Ymy,---,Ym,) € G}, with m; < mg, and {(Xp,,..., Xm,) € G},
{(Ymys-. Yom,) € G}, my < my < m, where G is a cube in R™2~™1H
generate the o-fields YXx, Xy, Xxm, Xym, respectively, and there exists an
invertible map 7' : Xy — Y satisfying (3.2), (3.3) and such that

(3.30) T{(Ymy—kr- - Ymg—t) € GH) = {(Xmy+-- -, Xm,) € G}

Since X;, mqy <1 < mo, and Y;, m; — k < ¢ < mo — k, have the same
joint distributions 7" preserves the measure P. Conditions (3.28) and (3.29)
follow directly from the definitions of T : Xy — Xx and T : L' (§2, Xy, P) —
L'(£2, Xx, P). This completes the proof of the lemma.

By the same argument a similar lemma for one-side processes {X,,
n >0} and {Y,,n > 0} can be proved.

LEMMA 3.2. Let {X,,,n > 0} and {Y,,,n > 0} be two stochastic processes
such that for some k > 0 and every mo > my > k, the random wvariables
X, mi <i < mog, and Y;, mi — k < i < mg — k, have the same joint
distributions. Denote by Xx, Xy, Xxm and Xy, the o-fields generated by
the random variables X, n > 0, Y,, n > 0, X;,, n > m, and Y,, n > m,
respectively. If {X,,n > 0} C LY (Q2,%, P), then there exists a measure
preserving map T : Xy — Xx such that

(3.31) T satisfies (3.2) and (3.3),

(3.32)  for everym >k, T|s,,.
Z‘IXma

(3.33)  if the maps T : LY(2,Xy,P) — LY(2,Yx,P) and T|s,. , :
LY (2, Xy 1, P) — LY2,Yxm, P) are given by (3.8), then
Xn=TY_=T|5,, Yok for every n > m.

. 15 an invertible map of Xy, onto
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Let {X,n,n € Z}cr be a family of stochastic processes satisfying Con-
dition A. It is obvious that for every v° € I there exists a sequence {y(k),
k € Z} such that for every k € Z and every m; < msy the random variables
Xv(k)i, mi—k <i < mo—k, and X 0;, m; <1 < mg, have the same joint dis-
tributions. Therefore (by Lemma 3.1) for every k there exists an invertible
transformation Ther, : L'(82, Xy, P) — L'(£2, Xy_1, P), where X, denotes
the o-field generated by X, ), n € Z, such that Tor X (kyn—1 = Xy(k=1)n;
n € Z. But this implies

Tyoy0...0T 0, X o  forn >0,
Xyon, = X(n)o for n =0,

,y_olfl 0...0 T.y_olan(n)o for n < 0.

This shows that the parameter set I' can be regarded as a subset of a
Cartesian product of the form (3.12) and every X,, can be expressed by
(3.25).
By the same reasoning we can show that the elements of processes be-
longing to a family satisfying Condition A’ can be expressed by (3.26).
Sometimes it will be useful to consider a family of processes {X,,
n < 0}, ¢r satisfying the following condition.

CoNDITION A”. For every k < 0 and every v € I there exists v/ € I’
such that for every m; < mo < k the random variables X.;, m; <@ < mo,
and X./;, mi —k <1 < mg — k, have the same joint distributions.

Remark 3.1. It is obvious that Lemma 3.2 is also true for processes
{X,,n <0} and {Y,,,n < 0} if we replace Condition A’ by Condition A” and
the conditions £ > 0, me >m1 >k, m>k,n>mbyk <0, m <mg <k,
m < k and n < m, respectively.

It is well known (see Rokhlin [20] that every statistical problem concern-
ing stationary processes of the form X,, = f o 7™, n > 0, can be reduced to
one for stationary processes X,, = fo71™, n € Z, with 7 invertible. However,
in general, it is hard to expect that this procedure is possible for processes
given by a whole family of non-invertible transformations. For this reason
we must distinguish between the two cases.

A family of processes {Xyn,n € Z}yer, or {Xyn,n > 0}yers, or
{Xym,n < 0}yrvepr, satisfying Condition A, A’ or A", respectively, will
be called a stationary family of processes.

We now proceed to the question of the validity of a central limit theorem
for elements of a stationary family of sequences of martingale differences.

Let I' be a given parameter set and let{X,,,n € Z},cr be a fam-
ily of sequences of martingale differences. Denote by B., the o-field gen-
erated by X, k < n, and set 02, = E{X2 }, By, = N, By, 42, =

vk
E{X'%k’B’Y}a S?ykm = E{Xile»mfm}v Sik = E{Xik’Bwkfl} = Sim and
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A2 5 = E{X2;,|B,}, where X jar = X,;1(B) and B = {|X,;| < M}.

THEOREM 3.1. Let {an,n > 0} and {b,,n > 0} be two sequences of
integers such that 0 < b, — a, — 00 asn — oco. Let {Xn,n € Z} er be a
family of sequences of martingale differences such that

(3.34) {X,n,n€Z}yer satisfies Condition A,

(3.35) sggEﬂs%Op - A,Qy0|} —0 asp— oco.
gl

Suppose a v € I' satisfies

oo
(3.36) sup O‘,Qm =K <oo, whereU = U [an, bn] NZ,

nelU ne1

(3.37) X,Qm,n € U, is uniformly integrable,

(3.38)  for everye >0

b
1 n
Dz > B{XZ1(BS,)} =0 asn— oo,
M k=a,
b, —1
where Bygp, = {|Xqyk] < ED%:SJ%?’} and D%n = Z U,%k,
k=an,

(3.39) sg%(bn —ay)/D2, = K, < o0,

(3.40)  there exists M, > 0 such that for every M > M,

b

1 n

D2 Z (A0 — E{A2;,}) = 0 asn— oo in L'-norm.
M j=an
Then
=

Do Z Xy — N(0,1)  asn — oo in distribution.

k=an,

Proof. Fix v, k € Z and p > 0. By (3.34) there exists 7/ such that
for every m; < mo the joint distributions of the random variables X.;,
my <t < mg, and Xy, my — k <1 < mo — k, are identical. Therefore, in
virtue of Lemma 3.1, the random variables sgkp, Ag/k and s2,q,, A2, also
have the same joint distributions. This and (3.35) imply

zLEIIZ)EﬂS?yk:p - A3k|} —0 asp—o0

for every v € I'. Now, using Theorem 2.1 we obtain the assertion.

Remark 3.2. It is obvious that Theorem 3.1 remains true if a,, < b,, <0
and {X,n,n € Z} cr is replaced by {X,,,n < 0}, satisfying Condi-
tion A”.
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Without any difficulties we can prove the following fact.

THEOREM 3.2. If a family {Xn,n € Z} er of stochastic processes sat-
isfies Condition A, then

P({(l/DW)ink < u}) — (2m)71/2 f exp(—t?/2)dt asn — oo

— 00

uniformly in v if and only if

-1 u
P{/Dy) Y X <u}) = @m)7V2 [ exp(—2/2)dt asn — —oo
k=n —00
uniformly in vy, where D, = D p_; Xyk) for n > 0 and D, =
D(XL Xok) forn < 0.

4. Central limit theorems for processes
determined by endomorphisms

In this section we prove some central limit theorems for elements of a
stationary family of processes determined by non-invertible transformations.
But first, for the sake of convenience, we gather some simple facts which we
need in the sequel. B

Denote by | - ||, the norm in LP({2, X, P) and by X' the set of all sub-o-
fields contained in X.

The following lemma can be proved in a standard way.

LEMMA 4.1. If B is a bounded subset of L?>72¢(£2, X, P), then the set of
functions {(E{f|X1})?: f € B, X1 € X} is uniformly integrable.

LEMMA 4.2. Let Y be a finite set equipped with discrete topology and let
(X, p) be a metric space such that for every € > 0 there exists a finite e-net
of X. Let fr, : X x YN — R (N is the set of natural numbers) be a sequence
of functions such that

(i) for every x € X and everyy € YN, fu(x,y) — 0 as n — oo,
(i) there exists a constant L such that for every y € YN, x,2’ € X
andn € N

(@, y) — fula' )| < Lp(z,2') .
Then sup{|fn(z,y)| : (z,y) € X x YN} -0 as n — .
Proof. It is sufficient to show that for every x € X

sup |fa(z,y)| =0 as n—oco.
yey
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Suppose that there exist ¢ > 0 and z € X such that for every n € N
there exist y € YN and k > n such that |fi(z,y)| > e. Set Y™ = y{l-n}
and denote by B, the subset of Y™ such that for every (yi,...,yn) € Bn
there exists y € {(y1,...,Yn)} x YT} and k > n such that | fi(z,y)| > €
and, for every y € YN\ (B, x Y{™>"}) and k > n, |fe(z,y)| < e. Put
G, = B, x Y{I">"} Tt is obvious that the G,, are non-empty, compact and
G, C Gy, whenever n > m. Therefore, G =, Gy, # 0 and for every y € G
and n € N there exists & > n such that |fi(z,y)| > €. However, this is
impossible by (i). This completes the proof of the lemma.

LEMMA 4.3. Let Y be a compact topological space and let (X, p) be a
metric space such that for every € > 0 there exists a finite e-net of X. Let
fo: X x YN SR be a non-increasing sequence of functions satisfying

(i) for every x € X, fu(z,-) is a continuous function on YN,
(ii) for any fized v € X andy € YN, fo(z,y) — 0 as n — oo,
(iii) there ewists a constant L such that for every y € YN, x,2’ € X
and n € N,

‘fﬂ(xay) - fﬂ(xlay)’ < Lp(a:,a:') :
Then sup{|fn(z,v)| : (z,y) € X x YN} -0 as n — oc.

Proof. As in the proof of the previous lemma it is sufficient to show
that for every x € X

sup |fo(z,y)] —0 as n— 0.

yeyN
Suppose that there exist ¢ > 0 and z € X such that for every n € N there
exist y € YN and k > n such that | fx(z,y)| > e. Hence, since {f,,n > 0} is
a non-increasing sequence we have B,, = {y € YN : |f,(z,y)| > €} # 0 and
B,+1 C By, n € N. Moreover, by (i), By, n € N, are compact sets. Thus,
N, Brn # 0 and for every y € (), By, and n € N, |f,(z,y)| > . However,
this contradicts (ii), which completes the proof of the lemma.

The following lemma is a simple consequence of geometrical considera-

tions.

LEMMA 4.4. If X and Y are two random variables, then for every e > 0

and for every u € R
PUY <u—e}) - PHIX| = e}) < PUY + X < u})
< PHY <u+e})+ PH|X]| >¢€}).

As a corollary we obtain

LEMMA 4.5. If {X,,,n > 0} C L*(£2, X, P) is a sequence of random vari-
ables such that || X, — Xo||l2 — 0 as n — oo, then the sequence of distributions
P({X,, < u}) converges to the distribution P({Xo < u}).
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Without any changes in the proof of [20, Theorem 2.2] we can easily
prove the following theorem.

THEOREM 4.1. Let {1, : 2 — 2}aeca be a family of measure preserving
transformations of a probability space (§2, 3, P) into itself. Put Ton = Tq,, ©
... 0T, for a € At = {0} x AZ" . Then M=o Tan (X) is the trivial o-field
if and only if for every F' € X such that P(F) > 0 and 1on(F) € X,

n=12,..., we have
lim P(7an(F))=1.
n—oo
Now, we proceed to the central limit theorem.

Consider a family of measure preserving transformations {7, : 2 —
2} 4e of a probability space (2, X, P) into itself. For o € AT put

_fTa,0...07T0, n>0,
(4.1) Tan = {I (identity), n =0,

(4.2) Tof =fota, [eL'(2,X,P),
(4.3) Tonf=foTan, f€LY (2 %, P),
(4.4) To =1, (2),

(4'5) Yon = 7_07”1(2) )

(4.6) Hy = L*(2,%,P),

(4.7) H,=1*(2,%,,P),

(4.8) Heyp = L2(2, X, P).

Since 7,, a € A, are measurable, that is, 7, 1(X) C X, by the above defini-
tions we have

(4.9) YoCcX forac A

and, hence,

(4.10) Yont1 C Yon forae AT and n € N.
This implies

(4.11) H,CH, foracA,

(4.12) Hoyny1 C Hyp  fora€ AT andn €N,
It is also easy to see that

(4.13) T.,(Hy) =H,, a€cA,

(4.14) Ton(Ho) = Hop, a €AY, neN.

Moreover, since T,, a € A, preserve the measure P, T, and T,, are iso-
metries of Hy onto H, and H,,, respectively.
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Properties (4.11) and (4.12) enable us to define the orthogonal comple-
ments

(4.15) Se=Hy6 Hg,

(4.16) Son = Hon © Hant1 -

It is obvious that

(4.17) San L Sar  forn #k

and, since T, o € AT, are isometries, by (4.14)—(4.16) we have
(4.18) San = Tun—1(Ss,) for a € AT and n € N.

Denote by Psq,, , Psan, Pra,, s Pran the orthogonal projections of Hy =
L?(92,X, P)onto Sy, , San, Ha, and H,,, respectively, and let B be a subset
of Hy. It is easy to see that the family of processes {X,,,n < 0} cr+(a,p)
given by
(4.19) Xy, =Y,_, forn <0andy=(o,0) € ['T(4,B),

(4.20) Yy, = TanPsa,,,(Bn) for n >0 and v = (o, 3) € ' (A, B),

is a family of sequences of martingale differences.

THEOREM 4.2. Let {1, : 2 — 2}4eca be a family of measure preserv-
ing transformations of a probability space (§2,X, P) into itself, let B be
a bounded subset of L?>T2¢(£2,X,P) for some ¢ > 0 and let {X.n,n <
0}yer+(a,p) be the family of martingale differences given by (4.19)
and (4.20). Suppose

(4.21) sulPJr E{|S'2yOk: - A30|} —0 ask— 0.
ve

Moreover, suppose a v € 'V (A, B) satisfies
(4'22) iI;fOD(PSaMJ (ﬁn)) =0>0,
(4.23)  there exists M, such that for every M > M,

-1

1
2 Z(A%jM - E{A?ijD —0 asn— —oo in L'-norm,
SEp—
-1 —1
where D?,, = DQ(Z].:” Xoi) =2 ien agj.

Then (1/D.,,) Z,;:ln Xy — N(0,1) as n — —oo in distribution.

Proof. We will use Theorem 3.1 and Remark 3.2. It is easy to see
that {Y,,, n > 0},cp+ given by (4.20) satisfies Condition A’. Therefore
{X5n, n <0}yep+ satisfies Condition A”. Since the Ty, are isometries, we
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have
E{X0 0} = B{(TanPsa 1 n)°} = E{(Psa15n)"} < E{B,}
< (BB DY) = |Bull3 e, 0.
Thus, since B is bounded in L?7%¢ and E{X,,} =0,
(4.24) sup{a?m cye Il n<0}<oo.

Now, let F' € X be any measurable set, F’ = 7,1F and n > 0. Since 7,
a € A, preserve the measure P, we have

B(X3_, ()} = BV}, 1(EF)} = B{(TanPso, . )’ 1(F))
= B{(Psa, 5)"1(F)}
Therefore, by definition of S, _,,
B{X2,1(F)} = B{(Bs = Prtac1 5 1(F)}
< B{BA(F)) — B{BuPito s Bul ()} + B{(Pra,.., 5u)1(F)
< BUBLE)) + \JB{RLE ) E{(Pro,.. 0a)1(F')}

+ E{(PHO‘7L+16'”)2]‘(F,)} .
Hence, using Lemma 4.1 and the fact that the 7, preserve the measure P,

we come to the conclusion that {X,,,n < 0},cp+ are uniformly integrable.
Assumption (4.22) implies

we obtain

(4.25) inf{oy, :y €I, n<0}>6>0
and this gives
(4.26) sup{|n|/D2, :v € I'",n <0} < cc.

Assumption (3.38) is a simple consequence of (4.24), (4.26), and the uniform
intergrability of {X,,,n < 0},cp+. Assumptions (3.35), (3.40) are satisfied
automatically. This completes the proof of the theorem.

Remark 4.1. It is obvious that Theorem 4.2 remains true if B is a
finite subset of L2(£2, X, P).

. . . . 2 2
We now give some criterions for uniform convergence of E{|sZ,, — AZ,[}
to zero.

LEMMA 4.6. Let B be a compact subset of L*(£2, X, P) and let {7, : 2 —
R}aeca be a family of measure preserving transformations. Suppose that
(4.27) A is a compact topological space,

(4.28)  for every « € AT, (N, ey Tan is the trivial o-field,

(4.29)  for every fized f € B andn € N, Pyon(Psa, f)? and (Psq, f)? are
continuous functions from AT into L?*(2,X, P), where A%
s equipped with the product topology,
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(4.30)  sup ||Psa, flla/|lflla < K <oo, € LY, %, P).

acA
Then for { X n,n < 0},cp+ given by (4.19) and (4.20) we have
sup E{‘Sv()p A?VO‘}_)O as p—00.
yel't

Proof. Since By, C Xo_pn, n <0, and (), Zan is the trivial o-field,
the intersection By = (),,<o Byn is also the trivial o-field, and consequently,

(4.31) Ay = B{X3|B;} = 05 = || Psa, o3 -

Therefore, using Holder’s inequality and simple properties of orthogonal
projections, we obtain

E{’SWOp 20‘} :E{|E{X30_U»2yo|8w}|}
<N Prap(X30 — B{X50D 2 = [|Prap(Psa, £0)* — E{(Psa,00)?} |2 -

Hence, since H = ﬂn>0 H,y = L2(£2,(),;50 Xan, P) is the space of constant
functions, - a

(4.32) E{|s30p — Mol} < 1Prrap(Psai f0)* = P (Psay o)1z
Moreover, by (4.12), for every fixed [
(4.33) | Ptrap(Psa; f0)? = P (Psa, f0)ll2 = 0 as p— oo,
Finally, by (4.30), we obtain
(4.34) ||| Prap(Psay 00)? — P (Psay 50)? |12

HPHap<PSa1ﬁO> - PSalﬁo) 2]

< ”PHap[(PSa1ﬂO>2 - (PSauBO) ] + Pﬁ[(PSOqﬁO) - (PSauBO ]HQ
< 2/[(Psay50)* = (Psa, B0)?ll2 < 2/ Psay (B0 — Bo)llall Psa, (Bo + Bo) |14
< 2K3||Bo — BollallBo + Bolla < 2K22(JSC1£ | £1l4)1Bo = Bolla -

Now, since for every o, || Pran(Psa,B0)? — Pg(Psa; 50)?]|2 is a non-increas-
ing sequence of continuous functions of o and B is a compact subset of L*,
the assertion of the lemma is a consequence of (4.32), (4.33), (4.34) and
Lemma 4.3.

Using a similar argument we can prove the following.
LEMMA 4.7. Let B be a subset of L*(£2, X, P) and let {7, : 2 — Q}aca

be a family of measure preserving transformations. Suppose that
(4.35) A is a compact topological space,
(4.36)  for every ac € AT, (,50 Zan is the trivial o-field,

(4.37)  for every fized f € B and n € N, Pyanf is a continuous function
from AT into L*(02, X, P),
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(4.38)  for every e > 0 there exists a finite o-net of J,c s+ {(Psa, f)? :
f € B} in L*(2,%, P).

Then for {Xyn, n < 0} ep+ given by (4.19), (4.20) we have

sup Blsto, — A2/} =0 asp— oo,
yel'+

Using a simple modification of the proof of Lemma 4.2 we can easily
prove the following.

LEMMA 4.8. If B is a finite subset of L*>(£2, X, P) and {1, : 2 — 2}aca
is a finite family of measure preserving transformations then for {X,,, n <
0} er+ given by (4.19) and (4.20) we have

sup E{‘S’Qy()p - Aio|} —0 asp—o0.
yel't

Denote by R, the space Hy © H,,, and by Pg,, the orthogonal pro-
jection of Hy onto R,,. In the sequel we need the following simple approx-
imation theorem.

THEOREM 4.3. Let (£2, X, P) be a probability space, {74 : 2 — R}ueca
a family of measure preserving transformations and B C L?(2, X, P) a set
of functions with integral zero. Suppose a v € I'T (A, B) satisfies

(4.39)  for every k >0, Uy — N(0,1) in distribution, where
I > im1 Psaj >izo Prai+kTaiBi
’I’Lk - n n )
! D(Y27_1 Psaj i PraitkTwiBi)

E:Zzojaﬁ% )
( Z?:O Taiﬂi)

(4.40)  lim limsup ||Uyn — Uynill2 = 0, where U,,, = D

k—oo n—oo
Then U, — N(0,1) in distribution.
Proof. Lemma 4.4 implies
P{Uynk <u—¢}) = P({{Uyn = Uynk| 2 €}) < PUyn < u})
S P{Uynk <u+e}) + P{|Uyn — Uyni| = €})
for every e > 0. Now (4.39) and (4.40), in virtue of Lemma 4.5, imply the

assertion of the theorem.

We now give some applications of the previous theorems to a class of
transformations of the unit interval into itself.

A transformation 7 : 2 — 2 is said to be non-singulariff P(171(A)) =0
whenever P(A) = 0.

Given a non-singular 7 we define the Frobenius—Perron operator P, :
LY(2,X,P) — L'(2, X, P) by

E{(P;f)g} = E{f(goT)}, felL', gelL™.
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It is well known that P, is linear, continuous and satisfies the following
conditions:

P, is positive: f >0 = P, f >0,

P, preserves integrals: E{P,f} = E{f}, f € L},

PT10T2 — P‘I‘l OPT27

P,f = f if and only if the measure dy = fP(dw) is invariant

under T,

(4.45) if P is invariant under 7, then the operator T} : L(£2, X, P) —
L?(02, X, P) defined by T, f = f o7 is an isometry and T* = P;,

(4.46) if du = hP(dw) (h € L'(£2, X, P)) is invariant under 7, then 7T} :

L2(82, X, 1) — L*(2, X, u) is an isometry and AT f = P.(fh).

A transformation 7 : [0,1] — [0,1] will be called piecewise C? if there
exists a partition 0 = agp < a1 < ... < ap =1 of the unit interval such that
for each integer i (i = 1,...,p) the restriction 7; of 7 to (a;_1,a;) is a C?
function which can be extended to [a;_1,a;] as a C? function.

A transformation 7 : [0,1] — [0, 1] will be called a Lasota—Yorke trans-
formation if T is piecewise C? and inf |7/| > 1. The set of all Lasota—Yorke
transformations will be denoted by G.

A transformation 7 : [0,1] — [0,1] will be called a Rényi transforma-

tion if 7 is a Lasota—Yorke transformation and 7([a;—1,a;]) = [0,1] for
t=1,...,p, where 0 = ap < ... < ap, = 1 is the partition correspond-
ing to 7.

Denote by (G, p) the metric space with p given in the following way.
Let 7'1, Ty be two elements of Gand let 0 = a} < al < ... < a},l =1,
0=ad<a?<...< a = 1 be the partitions corresponding to 71 and To,
respectlvely Denote by 71; and 7y; the restrictions of 71 and 72 to [a}_;,a}]
and [a?_,, a?], respectively. Put

P 1 2]
- im0 lai —ai| if pr=p2=p,

pi(T1,72) { 1 otherwise,
po(T1,72) = o Im(a;) = m2(a?)] if py =p2=p,

P11+ D2 otherwise,

Sup{\ﬁ(x) —no(z)] 12 € (aj_1,a;) N (af_y,af)}
93(7_1,7'2)— (azl 17az1) (a? 14 )7é® pP1=Dp2=Dp

1 if (aj_1,ai) N (a7 y,a7) =0,p1 = p2 =p,
p3(m,m2) = Zz 1:03(7'1,7'2) ifpp = =P2=D

p1+ p2 otherwise,
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sup{|73; ' (2) — 73;" (2))] '9:671((6%1 1,0 Z))ﬂfz(( ? 107))}
Tl’T2 lle a7:,l 1,6%))0’7’2(( a;_1,a z))#w b1 = =D
lle 11 17az))m7—2(( : -1 1))_@ b1 =p2=Dp,
4(T1,72) , 1P4 (11,72) if pr =p2 =p,
’ p1+ P2 otherwise,
sup{|(7;')'(z) — (73;")' ()] + @ € mi((a}_y,a})) N72((ai_y, af))}
5(11,72) if 71((ai_1,a7)) N 72((af_y,a7)) # 0, p1 = p2 = p,
lle a’Ll 17a11>)m ((azz 17%2)):@;171:172:]77
5(1,72) > e 1P5 (11,72) if pr =p2 =p,
’ p1+ P2 otherwise,
and, finally,

p=p1+p2+ps+ps+ps.

Remark 4.2. Ile,Tgeg,O:a(1]<...<a,}71zlandO:a%<...<

agz = 1 are the partitions corresponding to 71 and 7o, respectively, and
p(T1,72) < 1, then p1 =pe =p, (al_j,a})N(a? ;,a?) #Dfori=1,...,p,

m1((al_1,a Z))ﬂTg(( a?_i,a?)) #0fori=1,...,p and
p(m,72) = Zla —a2I+Z!ﬁ ) — 72(af))|
+Zsup{\ﬁ ) = 2(x)] s @ € (aj_y,05) N (a4, 07)}
+;SUP{|TM1($)Tzil(x)’:xeﬁ(( a;_1,0;)) N m2((aiy, 7))}

+Zsup{|(71§1)’(w)—(7221)’(93)!! v € 1i((aj_y,a;)) N7a((a7_y, a7))} -

A. Lasota and J. A. Yorke [17] have shown that for every 7 € G there
exists an absolutely continuous probability measure p invariant under 7, and
the density g, of p is of bounded variation. Z. S. Kowalski [15] has shown
that supp g, is a finite sum of intervals, 7(supp g,) = supp g, and, if (7, p1)
is ergodic, g, > ¢ > 0 p-almost everywhere.

The above facts will be used in the proofs of the following lemmas.

LEMMA 4.9. If {7,,n > 0} C G is a sequence of transformations pre-
serving an absolutely continuous measure pn with density g, and for every
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f € LY(]0,1], X, m) (m denotes the Lebesque measure)

1

(4.47) |
0

1
P;nf—guffdm‘dmﬂo asn — oo,
0

where Ty = Ty 0...071, then (,o(Th 0 ... 071) (X)) is the trivial o-field
in the measure space ([0,1], X, ).

Proof. For every 7 € G the Frobenius—Perron operator
P, : L*([0,1], X, m) — L*([0,1], X, m)
has the form (see [17])

P
(4.48) Pf(z) = f(r H(@))l(7 1) (2)|Lil=)

i=1
where 1; = 1([ai—1,a;]) and 0 = ap < ... < a, = 1 is the partition corre-
sponding to 7. Therefore,

P
(4.49) supp P, f = U 7i((supp f) N [ai—1,a;]) = T(supp f) .

i=1

Let A € X be such that u(A) > 0. By (4.47) we have
1
f |P=, (1(A)L(supp gu)) — gum(ANsuppg,)|dm — 0 asn — oco.
0

Hence, m(supp Px, (1(A)1(suppg,))) — m(suppg,). This and (4.49) imply
p(tp o...o7(A)) — 1. Now, the assertion of the lemma is a consequence
of Theorem 4.1.

Slightly modifying the proof of [12, Theorem 2] we can easily obtain the
following lemma.

LEMMA 4.10. Let {7,,,n > 0} C G be a sequence of transformations such
that

(4.50) 7, n >0, preserve a measure p with density g, = dp/dm,
(4.51)  for every f € L*([0,1],X,m), fol |P-. f — gu folfdm|dm — 0
asm — 00 (T, =Tp 0...0Ty),

(4.52)  there exist constants sy € (0,1), My > 0 and k € N such that for
every n € N and for every f with bounded variation

1 1 1
\/ Prof <si\/f+ M [|f|dm
0 0 0
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where \/Zf denotes the wvariation of f over la,b] and T
= Tn+k©...0Tp.

Then there exist constants M > 0, ¢ > 0 and s € (0,1) such that

Tn

jfdm‘S\I/(PTnf—nglfdm> gs”M(\1/f+cfl|f|dm)
0 0 0 0 0

whenever m(supp f \ supp g,) = 0 and \/(1) f < .
In a standard way we can easily prove the following lemma.

LEMMA 4.11. Let {7, }aca be a family of transformations such that

(4.53)  {Tataca is a compact subset of (G, p),

(4.54)  for every a € A, 1, preserves a common absolutely continuous
probability measure p with density g,,.

Then (A, p'), where p(a,a’) = p(Ta,7Tar), is a compact topological space and

the functions hy,he : A x L9([0,1], X, n) — L2([0,1], X, p), ¢ = 2,4, given

by hi(a, f) =T-, f and ha(a, f) = (Pr,(f9u))/gu are continuous.

LEMMA 4.12. Let 7 € G and let u be an absolutely continuous T-invariant
probability measure with density g,. Then for every f € L*([0,1], X, u)

17 flla = Ifllas 11T Flla < p(sup g,/ (inf g))[[ £1la,

where || - |4 denotes the norm in L*([0,1], X, 1) and p is the number of
elements of the partition corresponding to T (inf g, is taken over the set

Supp g,.)-

Proof. The first part of the assertion is obvious. By (4.46) and (4.48),
for f € L*([0,1], X, u), we have

HZ 1(guf) o il
9u

1T Flla = H

P
<y
=1

where ¢; = 77! = (7/[ai-1,ai]) ", L = 1(r((ai-1,a:))) (supp Pr(fg,) =
7(supp(fg,)) C supp g, see (4.49) and the remark above Lemma 4.9). Since

4
guf o 80i|902‘|1i
Iu

4

4
H (gu © @) (f o @i)|ei|1;
9y .

- (eI )@
R T((ai{ai)) (gu(z))4 gu(z)d
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IN

S 9" up @) [ F @)@ lgulone) da
(inf g,.) ((ai_1,a:)

DR [ e e < SEB

(sup |p}(z)] < 1), the second assertion follows.

IN

aj—1

LEMMA 4.13. Let {7a}taca C G be a compact family of transformations
preserving an absolutely continuous probability measure p. Then

(4.55)  (A*,p1), where

22 Oél, 22 pTalaTa ’

is a compact space,

(4.56)  the functions hy, : AT x L4([0,1], X, n) — L23([0,1], X, ), n € N,
and hy : At x LA([0,1],X,u) — L%*([0,1],X,p) given by
hln(avf) = PHan(PSalf)Q, n € N7 and hg(&,f) = (PSOl1f)2
are continuous,

(4.57)  sup{||Psa, flla/llflla : 0 € A*, f e LY[0,1], 5, 1)} = K < o0
where || ||4 denotes the norm in L*([0,1], X, p).

Proof. Let p, denote the number of elements of the partition corre-
sponding to 7,. Since {7, }4c4 is a compact subset of G, Remark 4.2 implies

maxpa K| <.
a€A

Therefore, owing to Lemma 4.12,

su
(4.58) sup |75, flla < Ky == 2\ flla f € LH(10,2], ..
acA

where g,, denotes the density of ;1 and ¢ = inf{g,(z) : * € suppg,}. By the
definition of Ps,, we have

(4.59) Psa,f == Pua,f=f—Ta,T5, [
Therefore, since T, preserves the norm in L*([0,1], 2, i),
Pgq,
(4.60) sup WFseaflla g | g SUPIL g
acat | flla ¢

This gives us (4.57).
Continuity of hy, and hs is a simple consequence of Lemma 4.11. Com-
pactness of (AT, p1) is obvious. This ends the proof of the lemma.

THEOREM 4.4. Let ([0, 1], X, 1) be a probability space with absolutely con-
tinuous measure p, let {To}taca C G be a compact family of measure pre-
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serving transformations, and let B be a compact subset of L*([0,1], X, u).
Let {Yyn,n > 0} cr+(a,p) be a family of processes given by (4.20). Suppose
that for every o € AT and every f € L*([0,1], X, m)

1
(4.61) PTmf—ngfdm—>0 as n — oo
0

in L*([0,1], X, m) norm, where P, is taken in the space ([0,1],X,m).
Then for every v = (o, 3) € I'" (A, B) such that

(4.62) inf D(Psa,.;,fn) =8> 0

we have (1/Dyy) > 7 _; Yor — N(0,1) as n — oo in distribution.

Proof. By Lemma 4.9, for every a € A", (), Tan (X) is the trivial
o-field in the space (]0,1], X, ). Therefore, all elements of the family of
processes {Xy,,n < 0} ep+ (X = Yy_p,n < 0) satisfy (4.23) trivially.
Moreover, owing to Lemmas 4.6 and 4.13, {X,,,,n < 0}, p+ satisfies (4.21).
Now, the conclusion of the theorem is a simple consequence of Theorem 4.2.

EXAMPLE 4.1. Consider the probability space ([0, 1], X, m), A= [b, ], a
family {7,}sca C G of transformations given by

z if z € [0,a),
ma(2) =4
T:Z if z € [a, 1],

and the set B = {1([0,d]) : b*/2 < d < b*} C L*([0,1], X, m). Let {Y,,,,n >
0}yer+(a,B) be given by (4.20). We now show that
1

i) ZYWHN(O,l) as n — 00

M k=1
in distribution.

Proof. It is easy to see that 7,, a € [b,c|, preserves the Lebesgue
measure m. Therefore, by (4.45) and (4.48) we obtain

(T7, /(@) = (T; f)(@) = (Pr, f)(z) = af(az) + (1 — a) f((1 — a)z + a).
Hence

(Pataf) (&) = (LT f)(2)
— af()1(0,a))(x) + (1 — a)f (

1—a

T+ a) 1([0,a))(x)

#af (12~ 0) 1 1)) + (1 - 0) @)1 D)
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and consequently,
(Psaf)(x) = f(x) = (Praf)(x)
~( - af@Dw)e) - (1 - af (2

T+ a> 1([0,a))(x)

~af (5= @) e D) +af(@(fa 1))

where Py, and Pg, are the orthogonal projections of Hy onto H, and S,
respectively.
Now, let f € B. Since b < a, we have

(4.63) || Psafll3

- [ |a- 1) - a.a (5

d

:(1—a)2fdx

0

a

z— a) 1([a, 1])(95)} o

1

~2 [ @ - aua@aroa) (14 - 0 ) 1a 1)) o

0

1

+ [ a®1((0,d)) <1 ¢ (x—a)) 1([a, 1])(z) dz

—a
0

=(1—a)’d+a(l —a)d> (1 —¢c)b*/2>0.

On the other hand, for every f of bounded variation and every a € [b, c] we
have

(4.64)  \/ Pr.f =\ af(az) + \/(1 - a)f((1 - @)z + a)
0 0 0
=a\/f(x)+ (1 -a)\/ f(z) < max(a,1 —a)\/ f(z)
0 a 0

< max(1l —b,c) \/f(a:) .
0

Hence, by an induction argument, for every f of bounded variation and
every a € AT
1

165) /[Py [ ran] =\ [P (5 [ ram)

0
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1

1
< (max(1—b,¢))" \/(f - f fdm)
0 0
and consequently, since fol If — fol fdm|dm < \/(1) f,
1

(4.66) P f— ffdm—>0 as n — oo
0

Tan

in L'([0,1], ¥, m) norm. Since the set of functions of bounded variation is
dense in L'([0,1], X, m), (4.66) holds for every f € L'(]0,1], X, m) and for
every a € AT. Now, Theorem 4.4 implies the desired result.

THEOREM 4.5. Let ([0, 1], X', 1) be a probability space with absolutely con-

tinuous measure p and let {T,}aca C G be a family of transformations such
that

(4.67)  {7a}taca is a compact subset of the metric space (G, p),
(4.68)  the transformations T4, a € A, preserve the measure ,
(4.69)  for every a € AT and every f € L'(]0,1], X, m)

1

0
where g,, 1s the density of L.
Moreover, let B be a set of functions defined on [0, 1] such that

(4.70)  for every f € B, fol fdu=0,

1
PTanf—g“ffdm‘deO as n — oo
0

1
(4.71)  sup \/f = K < oc.
feB |

Let || ||l2 denote the norm in L?([0,1], X, u) and Raq = Ho© Hay. Suppose
avy € I't (A, B) satisfies

(4.72)  infyo D(Vypk) > 0 >0, n > 0, where

n
V‘mk = PSom Z PRa’i+kTO¢iﬂi )
=0

(4.73)  there exist constants s; € (0,1), M > 0 and k € N such that for
every n € N and every f of bounded variation

1 1 1
\/ Pt <si\/ F+M [|fldm
0 0 0

where P,y is the Frobenius—Perron operator corresponding to
Ton © v+ O Tapipe
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Then Uy, — N(0,1) as n — oo, where Uy, = Vi /D(V,,,) and V,,, =
2?21 Taiﬂi-

For the proof we need three lemmas. The following two are simple facts
concerning sequences in L2(£2, X, P).

LEMMA 4.14. Let (2, X, P) be a probability space. Suppose {a* : 2 — R,
n,k € N} and {b* : 2 — R, n,k € N} are two double sequences in
L?(92, X, P) such that

(i) there exists § > 0 such that infy>1 ||ak |2 > /nd for every n € N,

(i) supy ,en llar, — bill2 < co.

Then
tim limsup ok /a2 — b/ all2 = 0.

n—0o0

LEMMA 4.15. Let (£2, X, P) be a probability space and let {ak : 2 — R,
n,k € N} C L*(£2, X, P) be a double sequence such that

(i) there exist constants M and 6 > 0 such that for every n € N
. k
jnf flap|lz > v/nd + M,

(ii) there exists a sequence {by,k € N} convergent to zero and there
exists a constant K such that for every n,k € N

HafL — a%”z <+nb, + K.
Then

lim limsup [|a;;/|laz]|2 — ap/llag 2]z = 0.
k—oo p—oo

The following lemma is a simple consequence of the definition of H,
and Syp,.

LEMMA 4.16. Let (§2,X, P) be a probability space and let {1, : 2 —
R}aeca be a family of transformations preserving the measure P. Then for
every a € At every k,i,m € N, m > i, and every f € L?(2, X, P) we have

(1) PHamTaif = ToziPHo/m—ifa

(11) PRam,m—i—kTaif = TaiPRa’m—i,m—‘,-k:—ifa

(111) PSamTaif = ToziPSa’m—if’
where Rapq = Hop © Hog for p < q, Prap,q 5 the orthogonal projection of
Hy onto Ryp,q and a; =,y for 7 >0, af = 0.

Proof of Theorem 4.5. We apply Theorem 4.3. Fix v = (o, 3) €
I't (A, B) such that (4.72) and (4.73) hold and let {@;,i > 0} C A" be the
sequence defined by @;; = a5, 7 > 0, and @0 = 0, where @;; is the jth
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coordinate of @;. First we show that v satisfies (4.40). Put

n
/
ynk — Z PRai—i—kTaiﬂi .

i=0
We have
V. n V. nk
(4.74)  ||Uyn=Uynill2 = H AL —
K K D(V‘m) D(V‘mk) 2
V’yn V’y,nk V’y,nk ank

+
2

D(Vie)  D(Vank)

S ‘

Let f be any function belonging to B and let 7,k > 0 be any natural
numbers. From (4.42), (4.46) and (4.71) we obtain
| Pra,fl3 = E{(TaxTa 1 ) (Taik Ta 1 f)}
= E{Tgikaa*ikf} = E{fTaik?Ta*ikf}
< KE{|T&,0 15, f1} = KE{|TZ . f1} -

D(Vy)  D(V],) ‘

This, in virtue of (4.46) and Lemma 4.10, implies

1 1
Pofg
@) WPumadlp < K [P, an = & 127,01 am
0 ® 0

1 1 1
§KfSkKl(\/ng+cf|ng]dm>dm
0 0 0
1

1 1
< s*KK, (\/f(maxgu) + K\/gu +c f |fgul dm)
0 0 0

1 1
< KK (K(\ g+ 1) + K\ g+ oK) <K,
0 0

where ¢ = 74, and s € (0,1), K7, K» are constants depending only on a.
Now, using Lemma 4.16, we obtain

n n n
(4.76) HZ ProitrTwiBi — Z Ps Z ProiyrToiBi
i=0 j=1 =0

2

= HZ Psaj Y ProiskTaiBfi — Y Psaj ¥ ProitrToiBi
=1 i=0 i=1 i=0

0o n
= H Z Ps Z Prai+iToili
j 1=0

=n+1

2

n
)= HPHan+1 Z PreiiviToiBi
i—0

2
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n n
<Y Paant1PraiitkTaiBills < | Prant1Taibill2
i=0 =0

n n
sK.
= ; | Twi Prra;nt1—ifill2 = ; | Pra,n+1—iBill2 < 1= \/25 .

On the other hand, assumption (4.72) implies

(4.77) HZ Psaj Y PrairiTaiBi , 2 Vnd.
=1 i=0

This, together with (4.76), in virtue of Lemma 4.14, gives

/
ynk _ V’ynk —0.

We now estimate the first term of the right side of (4.74). We have

(4.78) lim lim sup

k—oo nooo

n
4.79 H Tai i P ai Tai %
(4.79) Zz%( Bi = Prai+rTaili)|
= HZ PraitiToifi|| = HZ Psaj Y PraitkTaifi ,
i=0 =0 i=0

) .

n j—1 fe'e) n
< HZ Psakts Y Tai; T H > PsartiTaili
Jj=1 i=0 j=n+1i=0

Inequality (4.75) and Lemma 4.16 imply

Jj—1 Jj—1 Jj—1
HPSak—i-j > ToiBi , S > N PuarsiTaiBillz <> I TwiPera,esi—iBill2
1=0 =0 =0

k)2

j—1 Jj—1
. VEKss
- Z ”PHaik+j7’iﬁi‘|2 < Z 3<k+]71)/2\/ Ky < 1%\/; .
i=0 i=0

Therefore,
n 7j—1
(4.80) HZ Psak+; Z Toifi
j=1 i=0
Similarly

(4.81) H Z ZPSoszroaiﬂz‘ , S Z ZI!PSak+jTai5iH2

j=n+1i=0 j=n+11i=0

[T k)2
S\/EKL_
2 1—4/s

oo n 0o
i—i . K2 Sk/2K2
< S(kJrj i)/2 Ky < s(kJr] n)/2 \/7 < .
jzn;i-l ZZ; j;l 1—+/s = (1—4/5)2
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Combining (4.79)—(4.81) we obtain

n /K2sk/2 /KQSk/Q
ToiBi — PraivkTaifBi)|| < :
H;( Bi = PraitrTaifi)|| vn — /s +(1_\/§)2

By using Lemma 4.15 together with (4.77) this gives

V'yn ’y/nk
D(Vyn) DV |,

Finally, (4.74), (4.78) and (4.82) imply (4.40). Now for the proof of the
theorem, it remains to prove that condition (4.39) is satisfied.
By Lemma 4.16 we obtain

(4.82) hm lim sup

k—oco n—oo

n J
PSaj Y PraiskTailli = Psaj > PraitkTaiBi = Psa;jTaib;
=0 =0

= ZTaiPSEij—iﬁi = ZTO"LTEU —1% oij zPSOL,] zﬁz
:ZT T;] zPSal] zﬁzz O‘J(Z @ii— zPSal] zﬁz)

where ) is the summation over ¢ such that 0 < ¢ < j, j+1 < i+ k.
Therefore, since T3 . _;Psa,j—i3i € Sa; ;_;,, =S the process

a;j—1 Q5419

Y, = Psa; Z ProitiTwiBi = Ta; (Z Ta*ij—iPSEij—iﬂi> = TajBj
=0
where 3, = > T . Pss,j—i0i has the form (4.20). Thus, in view of

Theorem 4.4, it remains to prove that, for every k > 0, the set {ﬁﬂm] >0}
is a compact subset of L*([0,1], X, ).

Let 0 = ag < af < ... <ay =1 be the partition corresponding to 7.
Since {7q}aca is a compact subset of G, sup,cs Pa = po < 0o. Thus, for
every f of bounded variation and every a € A

Pa  a;

\/foTa<Z \/ foTa+2pa\/f<3p0\/f

7,].0111

and hence,

(483) \/ Taqu \/ f o Talq 3P0 \/ f

for each i > 0 and ¢ > 0. Furthermore, (4.46) implies

\/T*zqf \/ g“f 1({supp g,.})
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1 1
1({supp g,.}) 1({supp g, })
SSUpgiu\/Pgo(guf +\/ . SupP@(g,uf)
14 0 0 M

where ¢ = 75,4. Therefore, since g,(z) > ¢ > 0 for z € suppg, and
\/é gy < 00, in virtue of Lemma 4.10 and (4.73) we have

1 1
(4.84) \/Ta*iqf < K3 \/ Ptp(g,uf)
’ ' 1 1 1
< Kus'(\/ guf + [loufldm) < Ksst\/ f
0 0 0

for each f of bounded variation and such that fol fg, dm =0 and for some
constants K3, K4, K5, cand s € (0,1) depending only on o. Now, let f € B.

Since j —i+1 <k, [, fdu=0and [, Psa,;j—ifi du = 0, inequalities (4.83)
and (4.84) imply

1 1

k
\/Ta*ij—ipsaij—iﬂi < Kss \/PSEij—iﬁi
0 0

1
= K5s" \/(PHaijfiﬁi — Pya,j—it15:)
0

1

:K5Sk(\/Taij ( oc] zﬁl—i_\/Td H‘lT o j— 16’)

0
1 1
< KSSk [(3po)k \/Ta*ij_iﬁi + (3p0)k \/Ta*ij_i_yhgi}
0 0

1

S 2K5282k(3p0)k \/,61 .
0

Hence, since the set B consists of functions with variation bounded by the
same constant K,

1
\/Bjk < k2K25%%(3po)* K .
0

This completes the proof of the theorem since every set of functions with
variation bounded by the same constant is compact in L*([0,1], X, u).

EXAMPLE 4.2. Consider the probability space ([0, 1], X, m). Let A(h) =
[% —h, % + h], let {7a}aca(n) be the family of transformations of the unit
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interval into itself given by
z if x € [0,a),
a

1_2 if z € [a, 1],

and let B(h) = {f.:[0,1] — R; e € A(h)}, where

_[2(1—e) forxel0e),
fe(z) = {_26 for z € [e, 1].

Then there exists h such that for every v € I' (A(h), B(h)), Uy, — N(0,1)
in distribution.

Proof. For every f € L'(]0,1], X, m) we have (see Example 4.1)

(4.85) T, f(z) = af(az) + (1 —a) f(1 —a)z + a)
and so
. a—e), zE€|le—a —a),1], e>a,
Tofe(w) = 2(a—e), x€][0,e/a), e < a,
—2e, x € le/a,1], e<a,

almost everywhere. Hence, since %—h <l-e< %—1—]1, %—h <l—-a< %—i—h
and |e — a| < 2h, we have

1 2 9 2h
—+h) 4 16R% (1 — if e >
<2+> %—h+6 < §+h> if e > a,

16h% (3 +h 2 3—h
(2h+)+4<1+h> (1—3 ) if e < a.
2

175 fell3 <

2 5+h

Thus, for every a,e € A(h) and sufficiently small h

. 24h
(4.56) IT:felE < T
1
It follows that there exists h; such that for every h < hy
(4-87) ”PSafeHQ - er - PHafeH2 - er - TaT;feH2

2 fella = 1TaTg fellz = I fell2 = 175 fell2

O LRV TR
4 T—n=2

since ||fe]|3 = 4e(1 —e) > 4(2 — h)(3 + k). On the other hand, since for
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every f € L?([0,1], X, m) with norm equal to 1

1P f13 = [ laf(az) + (1 — a)f((1 — a)z + a))? do
0

= fa2f2(aw)d:1:+ f(l—a)zfQ((l—a)x—i—a)dx
0 0

+ f 2a(1 —a)f(ax)f((1 —a)x + a) dx
0

1

fA(z)dz + (1 — a) f f?(x) dx

a

<a

S

1

+2\/a(1a)¢ ffz(z)dx ffz(x)d:z
0

a

1 1
<-—+h+-<1+h
=5 + h+ 5 = +
we have
(488) HPTafHQ <v 1+ thH27 f € L2<[0,1L2, m) .

Hence, and from (4.86), it follows that there exist ny and hg such that for
every v € I't(A(ho), B(ho))

ng . (l + ho)no
(4.89) > (1 + hy) /2HP<P51'||2+42;_7]10

1
=1
1=0 2

where ¢ = 7,.. Finally, for every f with bounded variation

V Pr fa) = \laf(az) + (1 = a) f((1 — @)z + a)]

1 1

—a\/ @)+ (1—a)\/ f(2) < (;mo) \/ @)
0 0

a

and so, for each a € AT = AT (A(ho)),

(4.90) \/ Puf < (; + ho> \ f(x)
0 0

where 1 = Tqp = Tq,, ©...0Tq, .
We now show that the family {7,}.ca(n,), the set B(hg) and each v €
I't(A(hg), B(ho)) satisfy the assumptions of Theorem 4.5.
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It is obvious that {7,}s,ca(n,) is @ compact subset of G and each 7,
preserves the Lebesgue measure m. Inequality (4.90) implies

‘Rpf—Ojfdm‘é\:/Pw(f—jfdm)§<;+ho>n\2(f—jfdm)

where 1) = 7,,. Therefore, since the set of functions with bounded variation
is dense in L'([0,1], X, m), (4.69) is satisfied. (4.68), (4.70) and (4.71) are
satisfied trivially. (4.73) is a simple consequence of (4.90). Thus, it remains
to prove (4.72).

Fix v = (a,8) € I'"(A(ho), B(hg)) and let {az,7 > 0} C A" be the
sequence given by a;; = a4, 7 > 0, ajo = 0. By Lemma 4.16 we obtain

(491 |[Psan Y PrastiTuili|
=0

n—1
Z ||PSanPRai+nTanﬁn||2 - H Z PSanPRai—f—kTai/Bi 9
i=0

n—1
Z HPSanTanﬁn”2 - Z HPHanTaz/BzHZ
=0
n—1
= | TanPss,08nll2 = > | Tai Prra,n—iB3ill2
=0

n—1
= || Ps@, Bullz = D 1 Tain—iTa —iBill
=0

n—1

= 1P, Bullz = Y 1PprBilla

i=0
where ¢;; = Tg,j = Ta,; ©...9Tg,,- We now estimate the second term of the
right side of the above inequality.
Since \/(1) B; < 4 and fol Py, ._.Bidm = 0, using (4.90) we obtain

n—=2—ng no

s+h
> P, Bill2 < 4(212)

i=0 2~ 70
Moreover, by (4.88),

n—1 n—1

Yo NP, Billa< D> ko) TYRP,, Bl

i=n—1—ng i=n—1—ng
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Combining the above two inequalities and (4.89) we obtain

n—2—ng

n—1
(4.92) S P, Billa < Y 1PpiBill
1=0

=0

n—1
1
T Z HPsoi,n_iﬂz‘H2§1.

i=n—1—ng
Now, (4.87) together with (4.91) and (4.92) give us

1
>

0= 4’

HPSan Z PRai—i—kTaiﬁi
i=0

which completes the proof.

5. The central limit theorems for automorphisms

Let (£2, X, P) be a probability space and let {7, : £2 — 2},c4 be a family
of invertible transformations satisfying the following three conditions:

(5.1)  for each a € A, 7, and 7, ! are measurable,
(5.2)  for each a € A, 7, preserves the measure P,
(5.3)  there exists Xy C X such that for each a € A, 7,(Xy) C Xp.

Similarly to Section 4 we introduce the following notations:

Ta, O .. 0Ty, if n >0,
(5.4) Tan = < I (identity) if n=0,
Tolo. oyt ifn <O,
where o € A,
(5.5) T.f=foTa, [fELY 2,5, P), acA,
(5.6) Tonf=foTan, [fELY(2,2,P),ne€Z acA,
(5.7) Yo =T14(%0), acA,
(5.8) Don =T (X0), ne€Z acA,
(5.9) Hy = L*(£2, Xy, P),
(5.10) H,=1°(2,%,,P), acA,
(5.11) Hyp = L322, 500, P), nEZ, acA.

Condition (5.3) implies
(5.12) Yo CXy, a€cA,
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and, hence,

(5.13) Yon C Xant1, nN€EZ, a€A.

This, in turn, implies

(5.14) H,CHy, acA,

(5.15) Hyn CHopny1, neZ, aeA.

It is also easy to see that

(5.16) Ton(Hy) =Hyny nEZ, acA.

Moreover, since 7,, a € A, preserve P, T, is an invertible isometry of Hj
onto H,, and of L?(£2, X, P) onto L?(£2, X, P).
(5.14) and (5.15) allow us to define

(5.17) Se.=HyoH,, a€cA,

(5.18) Son =Hon ©Hppn—1, neZ acA.
It is obvious that

(5.19) SanlSar forn#k, ac A,
(5.20) Son =TonSa,, MNEZ, ac A.

Let B be a subset of L?(£2, X, P). It is easy to see that the family of
processes { Xyn, n € Z}ycr(a,p) given by

TOLTLP [0 n 'f 07
X,yn _ { S nﬂ irn >

(521) TanPSanf1ﬂn ifn < Oa

where Ps,, is the orthogonal projection of L?(f2, X, P) onto S, , is a sta-
tionary family of sequences of martingale differences.

THEOREM 5.1. Let {7, : 2 — 2},ca be a family of invertible transfor-
mations satisfying (5.1)—(5.3), let B be a bounded subset of L*12¢(02, X, P)
for some e > 0 and let {Xn, n € Z},cra,p) be the family of processes
given by (5.21). Assume that

(5.22) E{]s%on—/lio\}%() asn — oo

uniformly in v and let {ay,, n > 0}, {b,, n > 0} be two sequences such that
by, — a, — 00. Suppose a v = («, ) € I'(A, B) satisfies

(5:23) inf D(Psa,fn) =0>0 (U= U lan b2l nZ),

neN
(5.24) there exists M, such that for every M > M,
=
DT Z (Asz — E{AijM}) — 0 asn— oo in L'(2,%, P) norm.

n Jj=an
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Then the distributions of (1/D.,) Z"::Li X g, m > 0, converge to the
normal distribution N(0,1) as n — oo.

Proof. It is easy to see that the random variables X.;, m; < i < mo,
and X,;, m; —k <1i < mg — k, with 7/ given by (3.14), (3.15) and (3.17),
(3.18) for k > 0 and k < 0, respectively, have the same joint distributions
for each my,mg € Z and m; < mgy. Therefore, {X,,, n € Z} ¢ satisfies
Condition A. Now, by the same argument as in the proof of Theorem 4.2,
{Xyn, n € Z},cr and v satisfying conditions (5.23) and (5.24) satisfy the
assumptions of Theorem 3.1. This gives the assertion of the theorem.

Remark 5.1. It is obvious that Lemmas 4.6-4.8 remain true if
{7a : 2 — 2}, 4 satisfies (5.1)—(5.3) and X, is given by (5.21).

The following theorem is a simple modification of Theorem 4.3.

THEOREM 5.2. Let {1, : 2 — 2},ca be a family of invertible trans-
formations satisfying (5.1)-(5.3), let B be a subset of L?(§2, X, P) such that
E{f} =0 for f € B and let {a,, n > 0} and {b,, n > 0} be two sequences of
integers such that b, —a,, — 00 as n — oo. Suppose a v = (o, ) € I'(A, B)
satisfies

(5.25)  there exist functions u(k) and v(k) such that for every k > 0,
Vink/D(Vynk) — N(0,1) as n — oo in distribution, where

by, bn+u(k)
V'ynk = Z PSaj Z PRai—k},i—i—kTaiﬁi )
Jj=an i=an—v(k)

Ruyi—kjivk = Huivr © Hoi—p and Prui—givrx is the orthogonal
projection of L*(£2, X, P) onto Rui—k. itk

’ V'yn _ V'ynk
D(V*m) D(ank)

=0, where
2

(5.26)  lim limsup

— 00 n—oo

bn,
V’yn = Z Taiﬁi .

Then Vi, /D(Vyy) — N(0,1) as n — oo in distribution.
The proof is the same as that of Theorem 4.3.

We now give a simple application of Theorems 5.1 and 5.2.

Let ¥y and X5 denote the o-fields of Lebesgue sets in [0, 1] and [0, 1]?,
respectively, and let m;, i = 1,2, denote the i-dimensional Lebesgue mea-
sure. For X C Xy we write [0,1] x ¥ = {[0,1] x F : F € X} and
Y x[0,1]={F x[0,1]: F € X'}.
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Consider a family of transformations 7, : [0,1]? — [0,1]?, a € [b,c] C
(0,1), and a family of transformations 7, : [0,1] — [0, 1], a € [b, ¢], given by

[ <g7ya> if (xz,y) €10,a) x [0,1],
5.27) Tu(x,y) = _
( ) (z,y) <x a, y(l—a)+a> if (z,y) € [a,1] x [0,1],
1—a
Y if y €[0,a),
(5:28)  Ta) =1 y_a
4 if y € [a,1]

It is easy to see that 7, and 7, preserve mo and my, respectively, and that
7, is an invertible transformation of the probability space ([0, 1]?, X2, mz2).
Set

(5.29) Yo=10,1] x Xy.

For every F' € Y1 we have

(5.30) 7.([0,1] x F) = [0,1] x 7, *(F)
and consequently,

(5.31) To(Xo) C X .

Thus, {74 }aep,c satisfies (5.1)—(5.3).

THEOREM 5.3. Let {Ta}acp,q be given by (5.27), let B be a compact
subset of L*([0,1]%, X2, ma) and let {X.,, n € Z}cr be defined by (5.21).
Moreover, let {a,, n > 0} and {b,, n > 0} be two sequences of integers
such that b, — a, — o0 as n — 0o. Suppose a vy € I'([b,c], B) satisfies

(5.32) inf D(Psa,0) =6 >0
where U =, >qlan, by] NZ. Then
=
) Z Xy — N(0,1) asn — oo in distribution.
n k=an

We preface the proof of this theorem with three lemmas.

LEMMA 5.1. Let {Ta}acp,q and {Ta}acp,q be the families of transforma-
tions given by (5.27) and (5.28), respectively, and let Xy be given by (5.29).
Then

(a) each function f(x,y) € Hy = L?([0,1]2, Xy, msa) is independent of z,
(b) the transformation J : Hy — L'([0,1], X1, m1) given by (Jf)(y) =
f(z,y) is a linear and bijective isometry,
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(c) for each a € [b,c] and each f € Hy

Qi) = (TL(TN)) ) = (P, Tf)(y)

where Tog = go T4, g € L*([0,1],X1,m1), and Q. : Hy — Hy is the
transformation given by Q.f = T, 1 f,

(d) (JQaf)(y) = (Tan)(y)7 f € HO'

Proof. We prove (c¢). The remaining parts of the lemma are obvious.
It is easy to see that T, ' (Ho) = L*([0,1]?, Xy, m2) = H, C Hp. Therefore,
Qa(Ho) C Hy. Now, let F' € Yy and f € Hy. We have F' = [0,1] x F' for
some F € X and

[@ih@ydedy= [ UF)Qifdma= [ fQu1(F)dms

F [0,1]2 [0,1]2

= f fTM(F) dmo = f fL(7a(F)) dms
(0,1 [0,1]*

= [ Ao Ux7 (F)dme = [ (JH@1F(F)() dy
(0,1 [0,1]

= [ Uhwdy= [P, (JHw)dy= [ (J7'Pr,Jf)(x,y)dxdy.
7 H(F) F F

This implies (c) and completes the proof of the lemma.

LEMMA 5.2. Let {74 }aepp,q and Xo be given by (5.27) and (5.29), respec-
tively. Then for each a € A= A([b,cl), ez an 15 the trivial o-field.

Proof. From (5.4), (5.8), (5.29) and (5.30), for n < 0, we have
(5.33) Bom =T (20) = Ta_, © ... 0Ta, (20)
=[0,1] x 7' 0. o7 H(21) =[0,1] x Toh (21) -
However, from (4.66) (see considerations in Example 4.1) and Lemma 4.9

it follows that (), <o Tan(Z1) is the trivial o-field. This and (5.33) give the
assertion of the lemma.

LEMMA 5.3. Let {Ta}acp,q be given by (5.27). Then
(a) (A, p1), where A = A([b,c]), p1(a,a’) =3¢ 27|, —all, is a
compact metric space,

(b) for every n < 0, Pgan(Psa, f)? and (Psq, f)? are continuous func-
tions of A x L4([0,1]?, Xo,m2) into L2([0,1])%, Xy, m2) = Ho,
(c) there exists K such that

[ Psa, fl4
sup —————

§K7 f€L4([O? 1}2,22,777/2)'
acd || flla
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Proof. Since T,, is an isometry of L2([0,1]%, X5, my) into itself, (5.15)
and (5.16) imply
PHom:PHomPHO:Tan|Ho(Tan|Ho)*PH07 nSO

Therefore, in view of Lemma 5.1, for n < 0, we have

(5.34) Pron =To_,|lm,0...0Tu, |1, o (Ta,lm,)" 00 (Ta_y|,) PHo

=J 'Pg,. JPpo

where Hop = Ton(L?([0,1], 21,m1)), Tan = To_, 0...0T,, . Similarly,
since PSalf = PSQIPHof = PHOf — PHa1PH0f7 we have

(5.35) Psa, = Pro — ™' P, J Pro
where gal :H()@Hal, HO :LQ([O 1] El,ml) and Hal :T ( )
the other hand, since (Pyof)(z,y) = E{f(x,y)| X0} = fo f(z,y)dx, by the

Holder inequality we obtain

1 1

[ (Puof)*d fl(ffwydx) y<f(f xy\dw)4y

0
< J( ff4<x,y> dz) dy = | 4
0

0

for every f € L*([0,1]%, X3, mz). Therefore, Pyof € L*([0,1]2, X2, ms)
whenever f € L4([0,1]?, X5, m2) and

(5.36) 1Proflla/lIflla <1, f € LH([0,1]% 2o, ma).

Now, since {74 }aep,q) is a compact subset of (G, p) and 7, a € [b, c], preserve
the Lebesgue measure my, in view of Lemmas 4.13 and 5.1 the assertion of
the lemma follows from (5.34)—(5.36).

Proof of Theorem 5.3. It is obvious that the family of transforma-
tions given by (5.27) satisfies (5.1)—(5.3), and that B C L?>72¢([0,1]2, X5, ma)
with € = 1. Therefore, for the proof of the theorem it is sufficient to examine
assumptions (5.22) and (5.24) of Theorem 5.1. However, (5.24) is a simple
consequence of Lemma 5.2 while (5.22) follows immediately from Lemmas
5.3, 4.7 and Remark 5.1. This completes the proof of the theorem.

THEOREM 5.4. Let {a,, n > 0} and {b,, n > 0} be two sequences of
integers such that b, — a, — 00 as n — 00, let {Ta}acp, be the family of
transformations given by (5.27) and let B be a set of functions f : [0,1]> — R
such that [io 1. fdms = 0 and |f(z,y) = f(z',y)| < Lz — 2’| + |y — ¥/))

for every (x,y), (z',y') € [0,1]* and for some L independent of f. Suppose
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a~y € I'([b,c], B) satisfies

(5.37) 111;% Tl&f(‘)D(Vwk) =6>0
where Vynk = Psan Y0t Prak—ik+iTaiBi. Then Vi /D(Van) — N(0,1)
as n — oo in distribution (here V., = Zf;;j Twif3i)-

We preface the proof with three lemmas.

Let Rqp,q denote the space Hog © Hap, ¢ > p, and let Pry, 4 denote the
orthogonal projection of L2([0,1]2, X2, m2) onto R4y 4. Similarly to Lemma
4.16 the following is a simple consequence of the definition of H,, and
PSan-

LEMMA 5.4. Let (£2,X, P) be a probability space and let {T,}aca be a
family of invertible transformations satisfying (5.1)—(5.3). Then

(a) for every o € A and i, m € Z, there exist o/ € A such that To/m—ioTai
= Tam, and for such o and for every f € L?(2, X, P) we have PyamTuif =
TaiPHa’mfifa

(b) for every a € A and k,i,m € Z, k > 0, there exist o/ € A such that
Ta'm—i © Tai = Tam N Tarmik—i © Tai = Tam+k, and for such o and every
f € LQ(Qv Ea P) we have PRam,erkTaif = TaiPRa'mfi,erkfifv

(c) for every o € A and i,m € 7Z there exist o' € A such that To/m—; ©
Tai = Tam and Torm-1—i © Tai = Tam—1, and for such o' and for every
f € L?(02,%,P) we have PsamTuif = ToiPsarm—i.

LEMMA 5.5. Let {Ta}acpp,q be given by (5.27) and let f : [0,1]* — R be
such that

[ fdmy=0 and |f(z,y) - f(2',9)| < L(lw— 2| + ]y~ ')
[0,1)*
whenever (z,y), (z/,y') € [0,1]%. Then
(5.38) If — Paanfll2 < L(max{1 —b,¢})", n>0, a€ A,
(5.39) |Praonfllze < L(max{l —b,c})™, n<0, a€A.

Proof. We have
7 (%) = {7, 1([0,1] x F): F € ¥}

= {7.1([0,1]) X Ta1 (F N [0,a]) UT 5 ([0,1]) X Taa(F N a,1]) : F € 3}
= {7,1([0,1]) x FLUT,([0,1]) N Fy: Fi, Fy € 21}

where Tq1 = Tal[0,a], Ta2 = Tal[a,1) and T4 is given by (5.28). Therefore,
using an induction argument, and setting Ay, =75 o...o7. 1 ([0,1]),
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where 7 is an element of {1,2}" and a € A , we obtain
Zan = {2 x By B e 3},
n

sup{mi(4,,)} < [max{1 —b,c}]", n>0.
n,x

This implies
1

5.40 Puanf)z,y) = BE{f|Xan}(x,y) = ————— u,y) du
(540 (Prton £)w:9) = ES1ZonHoo) = g [ 00
for z € A}, and consequently,
||f*PHoznf||§ = f (fiPHanf)2dm2
[0,1]?
1 2
:Z f ‘f(x’y)_ml(A") ;L[ flu,y)du| dxdy
n A7, x[0,1] nesAr,
<> [ (Lma(4y,)) dedy
n A7, x[0,1]
<Y LP(sup{ma(4;,)})*ma(A7,)
n e
< L2 (sup{m1(4},)})* < L?(max{1 - b, c})*",
n,x

which is (5.38).
Now we show (5.39). It is easy to see that
1

(JPuof)(y) = (JE{f|£o}) (W) = [ f(z,y)d

0

where J is defined as in Lemma 5.1. Therefore,
1

((JPuof)(y) = (JPuo /)W) < [ 1f(2y) = fla,y)|de < Ly —¢/|
0

and consequently,
1

(5.41) \/(JPuof) < L.
0

Moreover, by Lemma 5.1, for n < 0, we have
HPHaanQ = HPHom,PHOfHQ = HQal 60...0 Qan o an ©...0 QZIPHOJCHQ
=||J Ty, 0...0T,, 0Py, o...0P, JPyofl2
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= ||J_1Pan 0...0 PO”JPHofHQ

where P,; is the Frobenius-Perron operator corresponding to 7,;. Hence,
in view of (4.65) (see Example 4.1) and (5.41) we obtain

1
|Prranfll2 <\ Pa, ©...0 Pa, JPgof < L(max{1 —b,c})™"
0

since fol JPyofdm, = fol fdms = 0. This completes the proof of the
lemma.

LEMMA 5.6. Let {7 }acpp,q be given by (5.27) and let f : [0,1]* — R be
such that

(2, y) = f(@', )] < (e — 2" + ]y —o'])
for every (z,y), (z',y") € [0,1] x [0,1]. Then for every o € A = A([b,c]) and

every j > 0 we have
1
\/ JPsa0T,;' f < 8L,

1
\/ JPsaoTa;f < 4L(max{1 — b,c})’
0

Proof. By the definition of S,o (see (5.18)) we have
PsaoT,; f = PsaoProT,; f = PuoT,, f — Pro—1PuoT,; f -
Thus, by the deﬁmtlon of Q),, we obtain
PsaoTo; f = ProTy) f = Qa Qb ProT,; f -
Hence, in virtue of Lemma 5.1,
TPsaoTy; | = JPuoT, ;) f = JQa , J =1 Q4 T T PuoT,;' |
= JPpol,; 'f —Teo_,Po_,JPuoT,, f

where T',_,h =hoT,_, and P,_, is the Frobenius—Perron operator corre-
sponding to 7,_,. As a consequence, since

1 a 1 1 1
(5.42) \/Tah <\/hoFar+\/hoFaz+\/h <3\/ P
0 0 a 0 0

where 7,1 = ?a|[0,a} and Tqo = Fa|[a,1], and

(5.43) \/ P, h < (max{a,1—a}) \/ h
0 0
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(see (4.65)), we have

1 1
(5.44) \/ JPsa0T, ;' f <4 \/ JPuoT, ) f .
0 0
Thus, for the proof of the first assertion it remains to estimate
1 _
Vo JPuoT, ) f.
By Lemma 5.4 we have
(5.45) PuoT,}' f = PuoTw—jf = Tar—jPuajf =Ty, [Prajf
where o' is such that o), = a;11-x, Kk = —j,...,—1. On the other hand,

using the same notations as in the proof of the previous lemma and applying
(5.40) we obtain

|(Praj f)(2,y) = (Prag f)(#",y') < Lly = ¢/|
whenever (z,y), (2',y’) € A}, x [0,1], and
(P f) (@, y) = (Paai )2, y)] < L
for every (z,y), (2/,y') € [0, 1]?. Consequently, since
Ty © -0 Tay (A x [0,1]) = [0,1] x T}, 0. o7}, ([0,1]),

we have
(T} Pria £)(2,y) = (To; Prai (&', y')| < Lly — ¢/|

~ . ~ . _7_1 7_1
fordevery (z,y), (@',y') € 0,1] x A}, where A}, =7, o...07, . ([0,1]),
an

(T2 Prasi f)(@.y) — (To) Prag F)(@,y) < L

for every (z,y), (z/,y") € [0,1]?. Hence, using (5.45), we obtain

V JPuoT, ' f < L

Al
and

|(JProT,; f)(y) — (JPuoTo; f)(y) < L

for every y,y’ € [0,1]. This implies

1

(5.46) \/ JPuoT,} f < L2
0
since
1
\/IPoT f <>\ JPuoT} f

+ sup{|(JProT ) (y) — (JPuoT f) )] sy € Al oy € A1, )
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where 7’ is such that Sup{ﬁ%,a} = inf{AN%a}. Now (5.44) and (5.46) give
the first inequality of the lemma.
We now show the second. As previously, we have

PsooTo;f = PuoTwo;f — Pua—1PuoT o f = PuoTajf — Paa—1To;f -

Since for every m < 0, PgamTa;f is a function independent of x, it is
sufficient to show that for every m < 0

1
(5.47) V I PramTo;f < 3™ L(max{l - b,c})) ="
0

In virtue of Lemma 5.4 we have

PHamTajf = ToszHa’mfjf = TajPHa’mijHOf

where o is such that o), = ap4j, k=m—j,...,—j— 1, and o), = ap4j+1,
k=—j,...,—1. Now we have
PHamTajf

:TozlO-‘~0Tapoa’710"'oQa;n7jO(Qailo"'oQa;nij)*PHUf

_ -1 ~1
=Ta,0...0T; 0T, 0...0T,

° Qo O~--0Qa;n7jo(Qo/71O---OQa;nij)*PHOf

j+1
=Qus,, 0-0Qu_ ©(Qar, ©-..0Qur ) Prrof.
Hence, applying Lemma 5.1, we obtain

JPHamTajf :Ta;'+1 o... OTa'lm,—jPal—l o... OPa;n_jJPHOf

where Ty h = ho7T, and P, is the Frobenius-Perron operator correspond-
J

ing to 7o/ . This, in view of (5.42) and (5.43), gives (5.47) and completes the
proof of the lemma.

Proof of Theorem 5.4. By using the same reasoning as in the
proof of Theorem 4.5 the conclusion of the theorem is a simple consequence
of Theorems 5.2 and 5.3 and Lemmas 5.4-5.6.

Remark 5.2. Theorem 5.4 can be proven for more general sets B. For
example, the set B may consist of all functions such that

m3XVf(x,y) +max\/ f(z,y) < M
z y

where \/, f(z,y) is the variation of f(x,y) with fixed y and V, f(z,y) is
the variation of f(z,y) with fixed . The idea of the proof in this case is
the same, but the proof is more technical and not interesting.
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6. Final remarks

The following theorem shows that the assumption of ergodicity of the
sequences T, in the central limit theorem is not necessary.

THEOREM 6.1. Let (£2,X, P) be a probability space, let {r; : 2 — {2,
i=1,...,m} be a finite family of invertible transformations satisfying (5.1)—
(5.3) and let B be a finite subset of L*(2,X,P). Assume that (), 7" (X0)
is the trivial o-field for some iy, 1 < ig < m. Let {Xy,, n € Z} er be
the family of sequences of martingale differences given by (5.21). Suppose a
veI'({1,...,m}, B) satisfies
(6.1) inf D(Psq, Bn) =0 > 0.

n>0
Then (1/Dp) > r_y Xy — N(0,1) as n — oo in distribution.

Proof. Fix v € I' such that (6.1) holds. Let 1/ € I' be such that
v = (o, B1) = (ig, Bn) for n < 0 and ~), = (o, 5),) = (ap, Bn) for n > 0.
Since A2, = E{A2,;,} for every M > 0 and j € Z, the statement of
the theorem for X/, is a simple consequence of Theorem 5.1, Lemma 4.9,
Remark 5.1 and Remark 4.1 (the latter is also true in the case of invertible
transformations). However, X,; = X ; for j > 0 and, therefore, the same
assertion is true for X, ;. This ends the proof of the theorem.

Under slightly stronger assumptions the assertion of Theorem 6.1 also
holds if n — —oo. For the proof we need two lemmas. The first one can be
proved in a standard way.

LEMMA 6.1. Let F be a distribution satisfying the Lipschitz condition
and let {F,, n > 0} be a sequence of distributions such that F,, — F as
n — 0o. Then F,(s) — F(s) uniformly in s as n — oo.

Slightly modifying the proof of Lemma 4.2 we can easily obtain the
following.

LEMMA 6.2. Let X be a set, Y a finite topological space with discrete
topology and f, : YN x X — R a sequence of functions such that
supyex |fu(y, )] — 0 as n — oo for every fived y € YN. Then
sup, , | fn(y,z)] — 0 as n — oo.

THEOREM 6.2. Let the family of transformations {r; : 2 — 2, i =
1,...,m} and the set B satisfy the assumptions of Theorem 6.1 and, in ad-
dition, assume that mini<;<,, mingcp D(Ps,f) = 6 > 0. Let { Xk, k €
Z}yer be the family of processes given by (5.21). Then for every v €
r'({1,...,m},B), (1/Dyn) S5l Xk — N(0,1) as n — —oc in distribu-
tion.
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Proof. In view of Theorem 6.1, for every v € I'({1,...,m},B),
(1/Dyn) > p—; Xy — N(0,1) as n — oo in distribution. In virtue of Lem-
mas 6.1 and 6.2, the convergence is uniform on I'. Now, the desired result
is a simple consequence of Theorem 3.2.

Remark 6.1. Using an approximation method, we can easily prove the
assertions of Theorems 6.1 and 6.2 also in the case where B is a compact
subset of L2.

EXAMPLE 6.1. Consider the probability space ([0, 1]2, X3, m2) and the

following three families of partitions of [0,1] : 0 = agjri < @1jrk < ... <
njjrk =L j=1,...omp,r=1,...,p,k=1,...,0; 0 =bo < b1, <...<
bpr =1, 7 =1,...,p; 0 = cojr < cCrjr <...< Cqjrjr = 1,7=1,....my,

T

r=1,...,p. It is easy to see that {A};, i =1,...,¢jr, j=1,...,m}_},
where A7, = [Ciz1,jrs Cijr) X [bj—1.,bjr), is a family of partitions of [0, 1],
It is also easy to see that each partition {Aj;};;, » = 1,...,p, can be
obtained in the following way: first we divide [0, 1]? into m,. strips of the
form [0,1] X [bj_1,,bjr), and then each strip [0,1] x [bj_1,r,bj,) into gj,
rectangles of the form [¢;—1 jr, ¢ijr) X [bj—1r,bjr).

Besides this, consider a family of transformations 7,4 : [0,1]%> — [0, 1],
r=1,...,p, k=1,...,v, defined by

7_7“143($7 y) = Sijr o ?jrk o S;i(l’, y)

for (x,y) € [ci—1,jr» Cijr) X [bj—1,0,0jr), 0 =1,...,¢jr, j = 1,...,m,, where
Sijr : [0, 1]2 — [ci_l’jr,cijr) X [bj—l,r;bjr) is of the form

Siine(@,y) = (@(Cijr — Ci1.4r) + Ci1m Y(bjr — bj—1.0) + bj—1.)
and T, : [0,1]> — [0,1]? is given by

ﬂrk(w,y) = < T~ Gizljrk 7y(aijrk - ai—l,jrk) + ai—l,jrk)
Qijrk — Qi—1,jrk
for (z,y) € [ai—1 jrk, aijrr) X [0,1], 1 =1,...,njpp. It is easy to verify that
Tk, ¥ =1,...,p, k =1,... v, are not ergodic and {7, 7 =1,...,p, k =
1,...,v} U{ry}, where 7, is given by (5.27) for some w € (0, 1), satisfies
the assumptions of Theorems 6.1 and 6.2 with X given by (5.29) (since
on each rectangle of the same strip [0,1] x [bj_1.r,bj,) we apply the same
transformation 7, we have 7,5(X) C Xy). Therefore, for every finite set

B c L?([0,1])%, X5, m3) such that

in min D(Ps, f) = ,
min min (Psaf)=6>0

where A = Ap U {w} and 4y = {(r,k) : r = 1,...,p, k = 1,...,0},
we have (1/Dyn) Y p_y Xy — N(0,1) as n — oo in distribution and
(l/D,m)Z,;:ln Xy — N(0,1) as n — oo in distribution uniformly on
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I'(A,B) as well as on I'(Ag, B), where {X,r, k € Z},er is the family
of sequences of martingale differences given by (5.21).

EXAMPLE 6.2. Consider the probability space ([0,1], X1, m1) and the

following two families of partitions of [0,1] : 0 = apjre < G1jrr < ... <
an;jrk = Lr=1,...,p, k=1,...,v, 7 =1,...,m, and 0 = by, < by, <
co. <bp,r=1,7r=1,...,p. Moreover, consider a family of transformations

Trk 1 [0,1] = [0,1), r=1,...,p, k=1,...,v, defined by

_ s =~ a1

Trk(y) = Sjr 0 Tjrk 05, ()
for y € [bj—1,,b;r), j =1,...,m,, where S; : [0,1] — [bj_1,,,b;r) is of the
form

Sjir(y) = y(bjr — bj—1,r) +bj—1,
and 7, ¢ [0,1] — [0,1] is given by
Y — Gi—1,jrk
Qijrk — Qi—1,5rk

%ka (y) =

for y € [ai_ldrk,aijrk], t=1,... s Mjrk-

Let A= {(r,k):r=1,...,p, k =1,...,v}, let S,, a € A, be given
by (4.15), let Ps, be the orthogonal projection of L?([0,1],X7,m) onto
S., let B be a finite subset of L2([0,1], X1, m1) and, finally let {X.,, n <
0},cr+ be the family of processes given by (4.19) and (4.20). We now show
that (1/D+y) Z,;:ln Xk — N(0,1) as n — oo in distribution uniformly on
I't (A, B) whenever

inmin D(Psqf) =6 .
min i (Psaf) >0

For the proof consider the family of transformations 7., : [0,1]? — [0, 1]?
given by
Tk (2, y) = Sjr 0 Tjrw 0 55,1 (0, y)

for (z,y) € [0,1] X [bj—1,7,bjr), j = 1,...,m,, where Tjx : [0,1]*> — [0,1]?
and Sj, : [0,1]2 — [0,1] x [bj—1,,,bj.) are defined by

~ T — Ai—1,jrk
Tirk(2,Y) = < JY(@ijrk — @it jrk) + az’l,jrk)
Qijrk — Qi—1,5rk

for (2,9) € [ai-1mksasje) X [0,1] and So(w,9) = (I(2), S50(y)), where
I(x) = x. Moreover, consider 7,, given by (5.27) for some w € (0,1). It
is easy to see that {7, : ¥ =1,...,p, k = 1,...,v} U{7r,} and the set
B = J~ 1B satisfy the assumptions of Example 6.1. Therefore,

—1
1
—_— Z Xy — N(0,1) as n — oo in distribution
D'yn k=n
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uniformly on I'(A, B), where X, is given by (5.21), and consequently, since

X, is independent of = for £ < 0 and (JX4)(y) = Xk (y),

1
D

-1
Z X, — N(0,1) as n — oo in distribution
T k=n
uniformly on I' (A, B). This completes the proof of our assertion.
Now we will give an example to show that Theorem 2.1 cannot be de-

rived from the most general central limit theorem for martingales given as
Theorem 3.4 in [7].

COUNTEREXAMPLE 6.1. Let 7, be given by (5.27) for some w € (0,1)
and let 7 : [0,1]% — [0,1]? be given by

(2z,(y—3)5 + 3) if (z,y) € 10,3) x [5,1],

r(z,y) = (2(37_%),(:9—%)%4‘%) if (z,y) € [%71] X [%71]7
’ (22, 3y) if (z,y) €10,3) x [0, 3),
2z —3),3y+3) if (z,y) €[3,1] x [0, 3).

Put A = {7,7,} and let f; and fy be two bounded functions independent
of z and such that supp fi C [0,1] x [0, 3], supp fo C [0,1] x [5,1] and
min; minge 4 D(Psq fi;) = 0 > 0. Example 6.1 shows that for every v € I’
the distributions of (1/D.,,) > 7 _, Xk, where the X5, are given by (5.21),
converge to the distribution N(0,1). We now show that there exists v € I’
such that (1/D2,)> ;X 3,{ is not convergent in probability as n — oo,
that is, Syni = (1/D4y) ZZZI Xyk, t=1,...,n,n €N, does not satisfy the
condition (3.19) of [7, Theorem 3.2]. Indeed, it is sufficient to take  such
that a; =7 for i1 #0, a9 =0, B; = f1if i € [2(2”)2,2(2(”“))2) and 3; = fo
if i € [22(+1)* 2(2(n+2))”) However, it is easy to notice that for the above
7 the condition (3.30) of [7, Theorem 3.4] is not fulfilled by S.,,;. Indeed,

we have
o I s oo 1
(%I_I)I%)hnl’ll)gfmg Dz g X, >0 §§.

M =1
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