
P O L S K A A K A D E M I A N A U K, I N S T Y T U T M A T E M A T Y C Z N Y

D I S S E R T A T I O N E S
M A T H E M A T I C A E
(ROZPRAWY MATEMATYCZNE)

KOMITET REDAKCYJNY

BOGDAN BOJARSKI redaktor
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Abstract

Let {τn, n ≥ 0} be a sequence of measure preserving transformations of a probability
space (Ω,Σ, P ) into itself and let {fn, n ≥ 0} be a sequence of elements of L2(Ω,Σ, P )
with E{fn} = 0. It is shown that the distribution of( n∑

i=0

fi ◦ τi ◦ . . . ◦ τ0
)(

D

( n∑
i=0

fi ◦ τi ◦ . . . ◦ τ0
))−1

tends to the normal distribution N(0, 1) as n→∞.

1985 Mathematics Subject Classification: 58F11, 60F05, 28D99.
Key words and phrases: conditional expectation, martingale differences, central limit

theorem; ergodic, mixing and exact transformations.



1. Introduction

It is well known (see [5, 10]) that for every stationary process {Xn, n ∈ Z}
there exist a probability space (Ω,Σ, P ), a transformation τ : Ω → Ω and
a random variable X ′0 : Ω → C (C is the set of complex numbers) such that
the process {X ′n = X ′0 ◦ τn, n ∈ Z} has the same joint distributions as {Xn,
n ∈ Z}. It is also easy to see that every sequence {Xn, n ∈ Z} of independent
random variables can be represented in the form Xn = Xn

0 ◦ τn, where
τ : Ω → Ω is a transformation of Ω into itself such that {τ−n(Σ0), n ∈ Z}
is a sequence of independent sub-σ-fields for some Σ0 ⊂ Σ and {Xn

0 , n ∈ Z}
is a sequence of Σ0-measurable random variables.

There exists many central limit theorems concerning the above two types
of processes. However, the two cases lead naturally to the question whether a
central limit theorem also holds for sequences of random variables of the type
Xn = Xn

0 ◦ τn with τ more general than those connected with independent
random variables; more generally, it is interesting to investigate whether a
central limit theorem also holds for random variables of the form

(1.1) Xn = Xn
0 ◦ τn ◦ . . . ◦ τ0

where {τn, n ≥ 0} is a sequence of admissible transformations.
Many biological, technical and economical problems lead to this type of

problems. For example, consider a population of annual plants. It is clear
that the number of plants next year depends on their number the previous
year. Therefore, we can write xn+1 = τ(xn), where xn is the number of
plants in the nth year and τ is a transformation. However, τ depends on
time because of weather, soil erosion, various disasters and so on. Thus, in
general, we have the relation xn+k = τn+k ◦ . . . ◦ τn(xn−1). Now, let Y be
a random variable depending on both quality and quantity of plants. For
example, let Y be the amount of honey obtained during a year. It is easy to
see that Y also depends on time and consequently, we deal with a sequence
of random variables Yn = Y n0 ◦ τn ◦ . . . ◦ τ1.

For more examples and interesting facts concerning the above questions
consult the very simple but interesting work [23].

The paper [16] provides us with a technological problem leading to a
process of the form (1.1). It turns out that with tool-drilling of rocks there
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is connected a C2 transformation τ of the unit interval into itself. Moreover,
the behaviour of certain velocities is described by processes of the form
Xn = f◦τn. The authors of that work have assumed that the transformation
τ does not depend on time. However, in fact, the tool wears down and also
the properties of the rock vary with depth. Therefore, τ must vary with
time and consequently, the processes considered must also be of the form
Xn = Y n0 ◦ τn ◦ . . . ◦ τ1.

The above examples show that only rarely do the practical problems lead
to stationary processes and thus it is interesting to consider more general
cases. The purpose of the present paper is to give a central limit theorem
for processes mentioned in the above two examples, that is, for processes of
the form (1.1).

There already exist some central limit theorems for such processes,
namely, for mixing ones (see for example C. S. Withers [27]). However, these
results require strong assumptions on the mixing coefficients. Of course, one
may try to approximate processes (1.1) by mixing processes with mixing co-
efficients sufficiently small and then a limit passage might yield a central
limit theorem for the general case; but it seems that this method is not suf-
ficiently efficient. This can be seen by comparing Keller’s [14] and Wong’s
[28] results for one piecewise C2 transformation and one function f . In this
paper, we approximate processes (1.1) by martingale differences. For this
purpose we formulate simple approximation theorems (Theorems 4.3 and
5.2), which are generalizations of Gordin’s theorem for stationary processes
[6]. Of course, Gordin’s theorem is a simple consequence of our theorems
and, moreover, our theorems give a clearer idea of the way of approximat-
ing processes (1.1) by martingale differences because we need not bother
whether the approximating processes are stationary.

In order to prove a central limit theorem for processes (1.1) we also need
a central limit theorem for martingale differences. There exists a large vari-
ety of such theorems. For almost complete literature see [7, 18]. However, in
applications, all these theorems require examining the limit behaviour either
of the sequence (1/D2

n)
∑n
k=1X

2
k or of (1/D2

n)
∑n
k=1E{X2

k |Xk−1, Xk−2, . . .}
(see for example Theorems 3.2 and 3.4 in [7]). For this reason we formu-
late and prove a new theorem (Theorem 2.1), which is more appropriate
for our purposes. In our theorem assumptions concerning the sequence
(1/D2

n)
∑n
k=1X

2
k are replaced by assumptions (2.7) and (2.11). Owing

to this theorem we can obtain a central limit theorem even for processes
Xn generated by a non-ergodic sequence of transformations τn and with
(1/D2

n)
∑n
k=1X

2
k divergent (see Examples 6.1, 6.2 and Counterexample 6.1).

Counterexample 6.1 also shows that Theorem 2.1 cannot be deduced
from the most general central limit theorem for martingale differences [7,
Theorem 3.4]; besides, the latter is rather difficult to apply because of a large
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number of technical assumptions not intuitive and difficult to check. It is also
interesting that all ergodic theorems concerning convergence of sequences
(1/D2

n)
∑n
k=1X

2
k with Xk given by (1.1) require a common invariant mea-

sure for all τn while (2.11) holds if we just assume that
⋂
n(τn◦. . .◦τ1)−1(Σ)

is the trivial σ-field. This condition is satisfied, for example, for sequences of
Rényi’s transformations (for definition see Section 4). Since in practise we
generally cannot expect the existence of a common invariant measure under
all the τn the fact that the existence of such a measure is not necessary to
obtain a central limit theorem may be very useful in applications. When
applying Theorem 2.1 we must check condition (2.7). This can be done by
direct estimations if the τn are sufficiently regular. Assuming, however, the
existence of a common invariant measure, it turns out that (2.7) holds for
every finite set of transformations {τn, 0 ≤ n ≤ k1} and every finite set of
functions {fn, 0 ≤ n ≤ k2}. For more general sets of transformations and
functions we can prove (2.7) using a method similar to that in the proof
of the Arzelà theorem. In order to facilitate the checking of (2.7) we in-
troduce the notion of a stationary family of processes and we formulate an
appropriate central limit theorem for its elements (Theorem 3.1). Now, us-
ing Theorems 3.1, 4.3 and 5.2 we can obtain a whole new class of central
limit theorems for processes (1.1). Theorems 4.5 and 5.4 and Examples 4.2,
6.1 and 6.2 are first examples of such results for piecewise C2 transforma-
tions. Moreover, Example 4.2 suggests that if a central limit theorem holds
for a stationary process then it also holds for the same process with small
perturbations. This problem and the proof of a central limit theorem for
families of transformations with no common invariant measure are subject
of another work.

In our paper we will be mainly concerned with piecewise C2 transforma-
tions because they have a simple analytic description and their properties
are well investigated. It is possible to prove similar theorems for transforma-
tions with non-positive Schwarzian derivative considered by M. Misiurewicz
[19], W. Szlenk [25], B. Szewc [24] and K. Ziemian [29], but the proofs
require more complicated computations.

For stationary processes generated by a transformation of the unit in-
terval central limit theorems were given by Tran Vinh Hien [26], H. Ishitani
[11], S. Wong [28], G. Keller [14], J. Rousseau-Egele [21], M. Jab loński
and J. Malczak [13] and K. Ziemian [29]. Tran Vinh Hien, H. Ishitani,
M. Jab loński and J. Malczak proved their theorems by estimating the mix-
ing coefficients and by using [10, Theorem 18.6.2]. S. Wong proved a central
limit theorem for a class of piecewise C2 transformations and for a class of
Hölder functions, using a version of Bunimovich’s method [4] together with
the fact, proven by R. Bowen [3], that the “natural” extension (see [20]) of
a weak-mixing transformation is isomorphic to a Bernoulli shift. F. Hof-
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bauer and G. Keller [8] and K. Ziemian [29] extended Wong’s method to a
class of piecewise monotonic transformations defined on an ordered space
and to a class of transformations with non-positive Schwarzian derivative
respectively. An interesting method of proof of a central limit theorem for
piecewise C2 transformation was given by G. Keller [14]. It uses Gordin’s
theorem [6], whose proof, in turn, is based on a central limit theorem for
martingale differences given by I. A. Ibragimov [9] and P. Billingsley [2].

The paper is divided into six sections. In Section 2 we give a central limit
theorem for martingales, which enables us to omit considerations concerning
the existence of limits of ergodic type. In Section 3 we introduce the notion
of a stationary family of processes and we apply the central limit theorem
from the previous section to the elements of a stationary family of martingale
differences. In Section 4 we apply the results of Section 3 to processes (1.1)
for non-invertible transformations.

It is well known (see [5, 10]) that problems concerning one-sided sta-
tionary processes {Xn, n ≥ 0} reduce to problems for two-sided stationary
processes {Xn, n ∈ Z}. It seems that this procedure is rather difficult in
the case of processes (1.1). In Section 5 we point out the main distinctions
between problems that arise in connection with central limit theorems for
non-invertible and invertible transformations. In Section 6, using the re-
sults of the previous sections, we compare the central limit theorem from
Section 2 with those given in [7].

2. A central limit theorem for martingale differences

A sequence {Xn, n ∈ Z} of random variables is said to be a sequence of
martingale differences if

sup
n∈Z

E{|Xn|} = c <∞ ,(2.1)

E{Xn|Xn−1, Xn−2, . . .} = 0 for each n ∈ Z .(2.2)

Let {Xn, n ∈ Z} be a sequence of martingale differences and let Bn
denote the σ-field generated by Xk, k ≤ n. We introduce the following
notations: σ2

n = E{X2
n}, B =

⋂
n Bn, Λ2

k = E{X2
k |B}, s2

km = E{X2
k |Bk−m},

s2
k = E{X2

k |Bk−1} = s2
k1 and Λ2

jM = E{X2
jM |B} where XjM = Xj1({|Xj | ≤

M}) and 1(A) is the indicator function of the set A.
For every sequence of martingale differences we have

(2.3) D2
( k∑
i=n

Xi

)
=

k∑
i=n

σ2
i .
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Moreover, the martingale convergence theorem implies

s2
km → Λ2

k as m→∞ almost surely ,(2.4)
E{|s2

km − Λ2
k|} → 0 as m→∞ .(2.5)

Let Ac = Ω \A denote the complement of the set A.

Theorem 2.1. Let {an, n ≥ 0} and {bn, n ≥ 0} be two sequences of
integers such that bn−an →∞ as n→∞. Suppose a sequence of martingale
differences {Xn, n ∈ Z} satisfies

(2.6) sup
n∈U

σ2
n = c1 <∞ , where U =

∞⋃
n=1

[an, bn] ∩ Z ,

(2.7) sup
k∈U

E{|s2
kp − Λ2

k|} → 0 as p→∞ ,

(2.8) {X2
n, n ∈ Z} is uniformly integrable,

(2.9) for every ε > 0,

1
D2
n

bn∑
k=an

E{X2
k1(Bckn)} → 0 as n→∞ ,

where Bkn = {|Xk| < εD
1/3
n σ

2/3
k } and D2

n =
∑bn−1
k=an

σ2
k,

(2.10) sup
n≥0

(bn − an)/D2
n = K <∞ ,

(2.11) there exists M0 > 0 such that for every M > M0

1
D2
n

bn∑
j=an

(Λ2
jM − E{Λ2

jM})→ 0 as n→∞ in L1 − norm .

Then

1
Dn

bn∑
i=an

Xi → N(0, 1) as n→∞ in distribution .

In the proof we will need the following simple fact.

Lemma 2.1. If the sequences {an, n ≥ 0} and n(
∑n
k=1 a

2
k)−1 are bounded ,

then (
∑n
k=1 a

4
k)(
∑n
k=1 a

2
k)−2 → 0 as n→∞.

P r o o f o f T h e o r e m 2.1. We shall prove the theorem for an = −n
and bn = 0. The general case is obtained by the same reasoning.

Set

Znk =
1
Dn

k−1∑
j=n

Xj for n ≤ k ≤ 0
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and let fn(t) be the characteristic function of Zn0 , i.e., fn(t) = E{exp(itZn0 )}.
We prove the theorem by showing that

|fn(t)− exp(−t2/2)| → 0 as n→ −∞ .

The desired result will be a consequence of the continuity theorem for char-
acteristic functions.

Let ϕnk (t), ψnk (t) and g(x) be given by

ϕnk (t) = exp(−t2D2
k/(2D

2
n)) ,

ψnk (t) = ϕnk (t)E{exp(itZnk )} ,
eix = 1 + ix+ (ix)2/2 + g(x) .

We have

fn(t)− exp(−t2/2) = ψn0 (t)− ψnn(t) =
0∑

k=n+1

(ψnk (t)− ψnk−1(t))

(we remind that D0 = 0). Using (2.2), we obtain

ψnk+1(t)− ψnk (t)

=ϕnk+1(t)
[
E{exp(itXk/Dn) exp(itZnk )} − exp

(
−σ

2
kt

2

D2
n2

)
E{exp(itZnk )}

]
=ϕnk+1(t)

[
E

{(
1 +

itXk

Dn
+

(itXk)2

2D2
n

+ g

(
tXk

Dn

))
exp(itZnk )

}
−
(

1− σ2
kt

2

D2
n2

+
σ4
kt

4

D4
n4
θn

)
E{exp(itZnk )}

]
=ϕnk+1(t)

t2

2D2
n

E{exp(itZnk )(σ2
k − s2

k)}

+ ϕnk+1(t)E
{(

g

(
tXk

Dn

)
+ θn

σ4
kt

4

D4
n4

)
exp(itZnk )

}
where |θn| < 1. Therefore∣∣∣∣fn(t)− exp

(
− t

2

2

)∣∣∣∣(2.12)

≤ t4

4D4
n

0∑
k=n+1

σ4
k−1 +

0∑
k=n+1

E

{∣∣∣∣g( tXk−1

Dn

)∣∣∣∣}

+
t2

2D2
n

∣∣∣ 0∑
k=n+1

ϕnk (t)E{(s2
k−1 − σ2

k−1) exp(itZnk−1)}
∣∣∣ .
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Since |g(x)| ≤ |x3|/6 and |g(x)| ≤ x2/2, for every ε > 0 we have

E

{∣∣∣∣g( tXk

Dn

)∣∣∣∣} ≤ |t3|6D3
n

E{|Xk|31(Bkn)}

+
t2

2D2
n

E{X2
k1(Bckn)}

≤ σ2
kε

3|t3|
6D2

n

+
t2

2D2
n

E{X2
k1(Bckn)}

where Bkn = {|Xk| ≤ εD1/3
n σ

2/3
k }. This gives

0∑
k=n+1

E

{∣∣∣∣g( tXk−1

Dn

)∣∣∣∣}(2.13)

≤ ε3|t|3

6
+

t2

2D2
n

−1∑
k=n

E{X2
k1(Bckn)} .

Therefore, by (2.3), (2.9), Lemma 2.1 and (2.13) the first and second terms
of the right side of (2.12) both converge to zero as n → −∞. The conver-
gence to zero of the third term will be shown in two steps. First we show
that

t2

2D2
n

∣∣∣ 0∑
k=n+1

ϕnk (t)E{(s2
k−1 − σ2

k−1) exp(itZnk−1)}(2.14)

−
0∑

k=n+1

ϕnk (t)E{(Λ2
k−1 − σ2

k−1) exp(itZnk−1)}
∣∣∣

=
t2

2D2
n

∣∣∣ 0∑
k=n+1

ϕnk (t)E{(s2
k−1 − Λ2

k−1) exp(itZnk−1)}
∣∣∣→ 0

as n→ −∞ ,

and next we show that

t2

2D2
n

∣∣∣ 0∑
k=n+1

ϕnk (t)E{(Λ2
k−1 − σ2

k−1) exp(itZnk−1)}
∣∣∣→ 0(2.15)

as n→ −∞ .

Fix ε > 0 and choose p > 0 so that

(2.16) E{|s2
kp − Λ2

k|} ≤ ε, k ≤ 0

(this is possible by (2.7)). For 0 ≥ k ≥ n+ p and n such that n+ p− 2 < 0
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we have

|E{(s2
k−1 − Λ2

k−1) exp(itZnk−1)}|(2.17)

≤
∣∣∣∣E{(s2

k−1 − Λ2
k−1) exp

(
it

Dn

k−p∑
j=n

Xj

)}∣∣∣∣
+
∣∣∣∣E{(s2

k−1 − Λ2
k−1) exp

(
it

Dn

k−p∑
j=n

Xj

)(
exp

(
it

Dn

k−2∑
j=k−p+1

Xj

)
− 1
)}∣∣∣∣

= I + II .

Using (2.16) and the basic properties of conditional expectation, we ob-
tain

I =
∣∣∣∣E{E{(s2

k−1 − Λ2
k−1) exp

(
it

Dn

k−p∑
j=n

Xj

)∣∣∣∣Bk−p}}∣∣∣∣(2.18)

=
∣∣∣∣E{(s2

k−1,p − Λ2
k−1) exp

(
it

Dn

k−p∑
j=n

Xj

)}∣∣∣∣
≤ E{|s2

k−1,p − Λ2
k−1|} ≤ ε .

Setting Hkpn = {|Xk−p+1| + . . . + |Xk−2| ≤ εDn} and noticing that
| exp(ix)− 1| ≤ |x| and | exp(ix)− 1| ≤ 2 yields

II ≤ E

{∣∣∣∣exp
(
it

Dn

k−2∑
j=k−p+1

Xj

)
− 1
∣∣∣∣|s2

k−1 − Λ2
k−1|}(2.19)

≤ t

Dn
E{|s2

k−1 − Λ2
k−1|(|Xk−p+1|+ . . .+ |Xk−2|)1(Hkpn)}

+ 2E{|s2
k−1 − Λ2

k−1|1(Hc
kpn)}

≤ t

Dn
εDnE{|s2

k−1 − Λ2
k−1|1(Hkpn)}+ 2E{|s2

k−1 − Λ2
k−1|1(Hc

kpn)}

≤ 2tεσ2
k−1 + 2E{|s2

k−1 − Λ2
k−1|1(Hc

kpn)} .

Since E{|f |} ≤ E{f2}, from (2.6) it follows that

sup
k≤0

P (Hc
kpn) ≤ sup

k≤0

1
εDn

E{(|Xk−p+1|+ . . .+ |Xk−2|)1(Hc
kpn)}

≤ pc1
εDn

→ 0 as n→ −∞ ,

since Dn →∞ as n→ −∞, by (2.10). Therefore, by (2.6) and (2.8),

(2.20) sup
k≤0

E{|s2
k−1 − Λ2

k−1|1(Hc
kpn)} ≤ ε
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for sufficiently large n. Now, (2.6), (2.19) and (2.20) give us

II ≤ 2(tc1ε+ ε)

for sufficiently large n and 0 ≥ k ≥ n+ p. Together with (2.17) and (2.18),
this implies

|E{(s2
k − Λ2

k exp(itZnk−1)}| ≤ 2tc1ε+ 2ε+ ε

for n and k as previously. This yields (2.14) since Dn →∞ as n→ −∞, p
is fixed for fixed ε, {X2

n, n ∈ Z} is bounded in L1-norm and supn≤0 n/D
2
n =

K <∞.
To show (2.15), set

XkM = Xk −XkM ,

Λ̄2
kM = E{XkM |B} ,
µ2
kM = Λ2

kM − σ2
k .

From (2.6) and (2.8) it follows that

sup
k≤0

E{Λ̄2
kM} = E{X2

kM} → 0 as M →∞ ,(2.21)

sup
k≤0

E{µ2
kM} → E{Λ2

k − σ2
k} = 0 as M →∞ .(2.22)

Applying Abel’s transformation we obtain

t2

2D2
n

∣∣∣ 0∑
k=n+1

ϕnk (t)E{(Λ2
k−1 − σ2

k−1) exp(itZnk−1)}
∣∣∣(2.23)

≤ t2

2D2
n

∣∣∣ 0∑
k=n+1

ϕnk (t)E{µ2
k−1,M exp(itZnk−1)}

∣∣∣
+

t2

2D2
n

∣∣∣ 0∑
k=n+1

ϕnk (t)E{Λ̄2
k−1,M exp(itZnk−1)}

∣∣∣
≤ t2

2D2
n

∣∣∣ 0∑
k=n+2

E
{

[ϕnk (t) exp(itZnk−1)− ϕnk−1(t) exp(itZnk−2)]
0∑

j=k−1

µ2
jM

}∣∣∣
+

t2

2D2
n

∣∣∣E{ϕnn+1 exp(itZnn )}
0∑

j=n+1

µ2
jM

∣∣∣
+

t2

2D2
n

∣∣∣ 0∑
k=n+1

ϕnk (t)E{Λ̄2
k−1,M exp(itZnk−1)}

∣∣∣ = I + II + III .
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Applying Taylor’s theorem and using (2.2) we obtain

I =
t2

2D2
n

∣∣∣ 0∑
k=n+2

E
{
ϕnk (t) exp(itZnk−2)(2.24)

×
[
exp
( itXk−2

Dn

)
− exp

(
−
σ2
k−1t

2

D2
n2

)] 0∑
j=k−1

µ2
jM

}∣∣∣
=

t2

2D2
n

∣∣∣ 0∑
k=n+2

E
{
ϕnk (t) exp(itZnk−2)

( 0∑
j=k−1

µ2
jM

)
×
[ itXk−2

Dn
−
θnkt

2X2
k−2

D2
n

+
θnkt

2σ2
k−1

2D2
n

]}∣∣∣
≤ t2

2D2
n

∣∣∣ 0∑
k=n+2

ϕnk (t)E
{θnkt2σ2

k−1

2D2
n

exp(itZnk−2)
0∑

j=k−1

µ2
jM

}∣∣∣
+

t2

2D2
n

∣∣∣ 0∑
k=n+2

ϕnk (t)E
{θnkX2

k−2t
2

D2
n

exp(itZnk−2)
0∑

j=k−1

µ2
jM

}∣∣∣
= IV + V ,

where |θkn| < 1 and |θnk| < 1. Now we estimate successively: III, II, IV
and V.

Fix ε > 0. By (2.21) and (2.10) there exists M1 such that

(2.25) III ≤ εt2

for every M ≥ M1 and n ≤ 0. By (2.10), (2.11) and (2.22) there exists M2

such that

II ≤ t2

2D2
n

E
{∣∣∣ 0∑
k=n+1

µ2
kM − E{µ2

kM}
∣∣∣}+

t2

2D2
n

0∑
k=n+1

|E{µ2
kM}|(2.26)

=
t2

2D2
n

E
{∣∣∣ 0∑
k=n+1

(Λ2
kM − E{Λ2

kM})
∣∣∣}+

t2

2D2
n

0∑
k=n+1

|E{µ2
kM}| ≤ εt2

for every M ≥ M2 and n ≤ n2(M). Similarly, by (2.6), (2.10), (2.11) and
(2.22) there exists M3 such that

IV ≤ t4c1
4D2

n

0∑
k=n+2

E

{∣∣∣∣ 1
D2
k

0∑
j=k−1

(µ2
jM − E{µ2

jM})
∣∣∣∣}(2.27)

+
t4c1
4D2

n

0∑
k=n+2

1
D2
k

0∑
j=k−1

|E{µ2
jM}| ≤ εt4
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whenever M > M3 and n < n3(M).
We need a little more computations to estimate V. Since |µ2

jM | ≤M+c1,
for every L > 0 we have

V ≤ t4

2D2
n

0∑
k=n+2

E

{∣∣∣∣X2
k−2

D2
k

0∑
j=k−1

(µ2
jM − E{µ2

jM})
∣∣∣∣}(2.28)

+
t4

2D2
n

0∑
k=n+2

1
D2
k

E{X2
k−2}

0∑
j=k−1

|E{µ2
jM}|

≤ t4

2D2
n

0∑
k=n+2

2(M2 + c1)k
D2
k

E{X2
k−21(BkL)}

+
Lt4

2D2
n

0∑
k=n+2

E

{∣∣∣∣ 1
D2
k

0∑
j=k−1

(µ2
jM − E{µ2

jM})
∣∣∣∣}

+
t4

2D2
n

0∑
k=n+2

1
D2
k

E{X2
k−2}

0∑
j=k−1

|E{µ2
jM}|

= a(M,L) + b(M,L) + c(M) ,

where BkL = {X2
k−2 ≥ L}. By (2.6), (2.10) and (2.24) there exists M4 such

that for every M ≥M4 and n ≤ n4(M)

(2.29) c(M) ≤ t4c1
2D2

n

0∑
k=n+2

1
D2
k

0∑
j=k−1

|E{µ2
jM}| ≤ εt4 .

Setting M5 = max{M1,M2,M3,M4}, by (2.6), (2.8), (2.10) we can choose
L1 such that for every k, n ≤ 0

(2.30) a(M5, L1) ≤ εt4 .

Finally, by (2.11) we can choose n5(L1) such that

(2.31) b(M5, L1) ≤ εt4

whenever n < n5(L1). Now, adding (2.29)–(2.31) and using (2.28) we obtain

(2.32) V ≤ 3t4ε

whenever n ≤ min{n4(M5), n5(L1)}. Adding (2.27) and (2.32) and using
(2.24) we obtain

(2.33) I ≤ 4t4ε

for n ≤ min{n3(M5), n4(M5), n5(L1)}, and finally, adding (2.25), (2.26),
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(2.33) and using (2.23) we obtain

t2

2D2
n

∣∣∣ 0∑
k=n+1

ϕnk (t)E{(Λ2
k−1 − σ2

k−1) exp(itZnk−1)}
∣∣∣ ≤ ε(2t2 + 4t4)

for sufficiently large n, which establishes (2.15). This completes the proof
of the theorem for an = −n and bn = 0, n ≥ 0. Setting

Znk =
1
Dn

k−1∑
j=an

Xj , ϕnk (t) = exp
(
−D

2
nkt

2

D2
n2

)
,

ψnk (t) = ϕnk (t)E exp(itZnk )

for an ≤ k ≤ bn, where D2
nk =

∑bn−1
j=k σ2

j , we obtain the general case by the
same reasoning.

3. Stationary family of processes
and central limit theorems for its elements

First we extend some notions of the theory of stationary processes (see
[5, 10]) to a more general case.

Let (Ω,Σ, P ) be a probability space. We write A ⊂ B (mod 0) and
A = B (mod 0) iff P (A \B) = 0 and P ((A \B)∪ (B \A)) = 0, respectively,
and for two σ-fields Σ1, Σ2 ⊂ Σ we write Σ1 = Σ2 (mod 0) iff for every
A1 ∈ Σ1 and every B2 ∈ Σ2 there exist A2 ∈ Σ2 and B1 ∈ Σ1 such that
A1 = A2 (mod 0) and B1 = B2 (mod 0).

Let Σ1, Σ2 ⊂ Σ be two complete σ-fields, that is, containing all subsets
of Ω with measure 0. We say that two transformations T1 : Σ1 → Σ2

and T2 : Σ1 → Σ2 are equivalent iff T1(A) = T2(B) (mod 0) whenever
A = B (mod 0) and A,B ∈ Σ1.

Consider a transformation T : Σ1 → Σ2 satisfying the following condi-
tions:

Σ1 and Σ2 are complete,(3.1)

T
( ∞⋃
j=1

Aj

)
=
∞⋃
j=1

T (Aj) (mod 0), Aj ∈ Σ1, j = 1, 2, . . . ,(3.2)

T (Ω \A) = Ω \ T (A) (mod 0) ,(3.3)
T preserves the measure P, that is, P (A) = P (T (A)) for every(3.4)
A ∈ Σ1 .

It is easy to see that for every Σ1-measurable and integrable function f :
Ω → R there exists a transformation Tf : Σ1 → Σ2 equivalent to T such
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that the sets Ar = Tf ({f ≤ r}), r ∈ Q (Q is the set of rational numbers),
satisfy

Ar1 ⊂ Ar2 for r1 < r2 ,(3.5) ⋂
r∈Q

Ar = ∅ ,(3.6)

⋃
r∈Q

Ar = Ω .(3.7)

Therefore, the function Tff defined by

(3.8) (Tff)(ω) = s iff ω ∈
⋂
r>s

Ar \
⋃
r<s

Ar

is Σ2-measurable and

(3.9) E{(Tff)p} = E{fp}, p ≥ 1, f ∈ Lp(Ω,Σ, P ) ,

since Tf preserves the measure P . It is also obvious that Tff taken as an
element of Lp(Ω,Σ2, P ) does not depend on the choice of Tf and Tff =
Tgg almost everywhere whenever f = g almost everywhere. Thus, with
every T : Σ1 → Σ2 satisfying (3.1)–(3.4) there is associated an isometry
T : Lp(Ω,Σ1, P )→ Lp(Ω,Σ2, P ), p ≥ 1, given by (3.8).

Here we denote the set transformation and an operator by the same
letter. This will not lead to any confusion.

It is also obvious that T : Σ1 → Σ2 satisfying (3.1)–(3.4) is invertible if
and only if T : Lp(Ω,Σ1, P )→ Lp(Ω,Σ2, P ) is invertible for p ≥ 1.

Denote by Z− and Z+ the sets of all strictly negative and strictly positive
integers, respectively. The set of all functions f : A → B will be denoted
by BA.

Throughout this paper the expression “τ : Ω → Ω is an invertible trans-
formation” means that there exist sets Ω′ and Ω′′ of full measure such that
τ |Ω′ : Ω′ → Ω′′ is a strictly invertible transformation.

Let τ : Ω → Ω be an invertible transformation such that

(3.10) τ and τ−1 are measurable,

(3.11) τ preserves the measure P , that is, for every F ∈ Σ

P (F ) = P (τ−1(F )) = P (τ(F )) .

It is well known (see [5, 10]) that for every f ∈ L1(Ω,Σ, P ) the process
{Xn = f ◦ τn, n ∈ Z} is stationary and, if {Xn, n ∈ Z} is a stationary
process and Σ1 is the σ-field generated by Xn, n ∈ Z, then there exists
T : Σ1 → Σ1 satisfying (3.1)–(3.4) such that Xn = TnX0, n ∈ Z. Now we
extend this assertion to a more general case.
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Let {τa : Ω → Ω, a ∈ A} be a family of invertible transformations
satisfying (3.10) and (3.11) and let B be a subset of L1(Ω,Σ, P ). Put

(3.12) Γ = Γ (A,B) = A× B

where A = AZ−×{0}×AZ+
and B = BZ. It is easy to verify that the family

{Xγn, n ∈ Z}γ∈Γ of stochastic processes given by

(3.13) Xγn =


βn ◦ ταn ◦ . . . ◦ τα1 for n > 0,
β0 for n = 0,
βn ◦ τ−1

αn ◦ . . . ◦ τ
−1
α−1

for n < 0,

where γ = (α, β) ∈ Γ and αn, βn are the nth coordinates of α and β,
respectively, satisfies the following condition.

Condition A. For every k ∈ Z and for every γ ∈ Γ there exists γ′ ∈ Γ
such that for every m1 ≤ m2, m1,m2 ∈ Z, the random variables Xγi,
m1 ≤ i ≤ m2, and Xγ′i, m1 − k ≤ i ≤ m2 − k, have the same joint
distributions.

Indeed, for every k > 0, γ = (α, β) ∈ Γ , γ′ = (α′, β′) ∈ Γ such that

α′n =


αn+k, n > 0,
α0, n = 0,
αk−n+1, −k ≤ n < 0,
αn−k, n < −k,

(3.14)

β′n = βn+k ,(3.15)

and for any Borel set G ⊂ Rm2−m1+1 we have

P ({(Xγm1 , . . . , Xγm2) ∈ G})(3.16)
= P (ταk ◦ . . . ◦ τα1({(Xγm1 , . . . , Xγm2) ∈ G}))
= P ({(Xγm1 ◦ τ−1

α1
◦ . . . ◦ τ−1

αk
, . . . , Xγm2 ◦ τ−1

α1
◦ . . . ◦ τ−1

αk
) ∈ G})

= P ({(Xγ′m1−k, . . . , Xγ′m2−k) ∈ G})
and, similarly, for k < 0 and γ, γ′ ∈ Γ such that

α′n =


αn+k, n > −k,
αn+k−1, −k ≥ n > 0,
α0, n = 0,
αn−k, n < 0,

(3.17)

β′n = βn+k ,(3.18)

and for any Borel set G ⊂ Rm2−m1+1,

(3.19) P ({(Xγm1 , . . . , Xγm2) ∈ G})
= P ({(Xγ′m1−k, . . . , Xγ′m2−k) ∈ G}) .

Equalities (3.16) and (3.19) give the desired result.
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Now let {τa : Ω → Ω, a ∈ A} be a family of measurable (not necessarily
invertible) and measure preserving transformations, that is,

τ−1(F ) ∈ Σ for every F ∈ Σ ,(3.20)
P (τ−1(F )) = P (F ) for every F ∈ Σ .(3.21)

For such a family of transformations and a subset B ⊂ L1(Ω,Σ, P ) we
define a family of processes {Xγn, n ≥ 0}γ∈Γ+ by

(3.22) Xγn =
{
βn ◦ ταn ◦ . . . ◦ τα1 for n > 0,
β0 for n = 0,

where Γ+ = Γ+(A,B) = A+ × B+, A+ = {0} ×AZ+
and B+ = B{n≥0}. It

is easy to show that this family satisfies the following condition.

Condition A′. For every k > 0 and for every γ ∈ Γ+ there exists
γ′ ∈ Γ+ such that for every k ≤ m1 ≤ m2, m1,m2 ≥ 0, the random
variables Xγi, m1 ≤ i ≤ m2, and Xγ′i, m1− k ≤ i ≤ m2− k, have the same
joint distributions.

Indeed, similarly to the case of invertible transformations, one can show
that for k > 0 and γ = (α, β) ∈ Γ+ it is sufficient to choose γ′ = (α′, β′) ∈
Γ+ such that

α′n =
{
αn+k for n > 0,
α0 for n = 0,(3.23)

β′n = βn+k for n ≥ 0 .(3.24)

We now show that, conversely, every family of processes satisfying Con-
dition A can be regarded as a family of processes of the form

(3.25) Xγn =


Tα1 ◦ . . . ◦ Tαnβn for n > 0,
β0 for n = 0,
T−1
α−1
◦ . . . ◦ T−1

αn βn for n < 0,

where {Ta, a ∈ A} is a family of invertible transformations connected via
(3.8) with a family of transformations of σ-fields and, similarly, every family
of processes satisfying Condition A′ can be regarded as a family of processes
of the form

(3.26) Xγn =
{
Tα1 ◦ . . . ◦ Tαnβn for n > 0,
β0 for n = 0,

where {Ta, a ∈ A} is a family of (not necessarily invertible) transformations
connected via (3.8) with a family of transformations of σ-fields. For this we
need the following two lemmas.

Lemma 3.1. Let {Xn, n ∈ Z} and {Yn, n ∈ Z} be two stochastic processes
such that for some k ∈ Z and every m1 ≤ m2, m1,m2 ∈ Z, the random
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variables Xi, m1 ≤ i ≤ m2, and Yi, m1 − k ≤ i ≤ m2 − k, have the
same joint distributions. Denote by ΣX , ΣY , ΣXm and ΣYm the σ-fields
generated by the random variables Xn, n ∈ Z, Yn, n ∈ Z, Xn, n ≤ m, and
Yn, n ≤ m, respectively. If {Xn, n ∈ Z} ⊂ L1(Ω,Σ, P ) then there exists an
invertible and measure preserving map T : ΣY → ΣX such that

(3.27) T satisfies (3.2)–(3.3),

(3.28) for every m ∈ Z, T |ΣYm−k is an invertible map of ΣYm−k onto
ΣXm,

(3.29) if the maps T : L1(Ω,ΣY , P ) → L1(Ω,ΣX , P ) and T |ΣYm−k :
L1(Ω,ΣYm−k, P ) → L1(Ω,ΣXm, P ) are given by (3.8) then
Xn = TYn−k = T |ΣYm−kYn−k for every n ≤ m.

P r o o f. Without loss of generality we can assume that ΣX , ΣY , ΣXm,
and ΣYm are complete σ-fields. Obviously, the sets {(Xm1 , . . . , Xm2) ∈
G}, {(Ym1 , . . . , Ym2) ∈ G}, with m1 ≤ m2, and {(Xm1 , . . . , Xm2) ∈ G},
{(Ym1 , . . . , Ym2) ∈ G}, m1 ≤ m2 ≤ m, where G is a cube in Rm2−m1+1,
generate the σ-fields ΣX , ΣY , ΣXm, ΣYm, respectively, and there exists an
invertible map T : ΣY → ΣX satisfying (3.2), (3.3) and such that

(3.30) T ({(Ym1−k, . . . , Ym2−k) ∈ G}) = {(Xm1 , . . . , Xm2) ∈ G} .

Since Xi, m1 ≤ i ≤ m2, and Yi, m1 − k ≤ i ≤ m2 − k, have the same
joint distributions T preserves the measure P . Conditions (3.28) and (3.29)
follow directly from the definitions of T : ΣY → ΣX and T : L1(Ω,ΣY , P )→
L1(Ω,ΣX , P ). This completes the proof of the lemma.

By the same argument a similar lemma for one-side processes {Xn,
n ≥ 0} and {Yn, n ≥ 0} can be proved.

Lemma 3.2. Let {Xn, n ≥ 0} and {Yn, n ≥ 0} be two stochastic processes
such that for some k > 0 and every m2 ≥ m1 ≥ k, the random variables
Xi, m1 ≤ i ≤ m2, and Yi, m1 − k ≤ i ≤ m2 − k, have the same joint
distributions. Denote by ΣX , ΣY , ΣXm and ΣYm the σ-fields generated by
the random variables Xn, n ≥ 0, Yn, n ≥ 0, Xn, n ≥ m, and Yn, n ≥ m,
respectively. If {Xn, n ≥ 0} ⊂ L1(Ω,Σ, P ), then there exists a measure
preserving map T : ΣY → ΣX such that

(3.31) T satisfies (3.2) and (3.3),

(3.32) for every m ≥ k, T |ΣYm−k is an invertible map of ΣYm−k onto
ΣXm,

(3.33) if the maps T : L1(Ω,ΣY , P ) → L1(Ω,ΣX , P ) and T |ΣYm−k :
L1(Ω,ΣYm−k, P ) → L1(Ω,ΣXm, P ) are given by (3.8), then
Xn = TYn−k = T |ΣYm−kYn−k for every n ≥ m.
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Let {Xγn, n ∈ Z}γ∈Γ be a family of stochastic processes satisfying Con-
dition A. It is obvious that for every γ◦ ∈ Γ there exists a sequence {γ(k),
k ∈ Z} such that for every k ∈ Z and every m1 ≤ m2 the random variables
Xγ(k)i, m1−k ≤ i ≤ m2−k, and Xγ◦i, m1 ≤ i ≤ m2, have the same joint dis-
tributions. Therefore (by Lemma 3.1) for every k there exists an invertible
transformation Tγ◦k : L1(Ω,Σk, P ) → L1(Ω,Σk−1, P ), where Σp denotes
the σ-field generated by Xγ(p)n, n ∈ Z, such that Tγ◦kXγ(k)n−1 = Xγ(k−1)n,
n ∈ Z. But this implies

Xγ◦n =


Tγ◦1 ◦ . . . ◦ Tγ◦nXγ(n)0 for n > 0,
Xγ(n)0 for n = 0,
T−1
γ◦−1 ◦ . . . ◦ T

−1
γ◦nXγ(n)0 for n < 0.

This shows that the parameter set Γ can be regarded as a subset of a
Cartesian product of the form (3.12) and every Xγn can be expressed by
(3.25).

By the same reasoning we can show that the elements of processes be-
longing to a family satisfying Condition A′ can be expressed by (3.26).

Sometimes it will be useful to consider a family of processes {Xγn,
n ≤ 0}γ∈Γ satisfying the following condition.

Condition A′′. For every k ≤ 0 and every γ ∈ Γ there exists γ′ ∈ Γ
such that for every m1 ≤ m2 ≤ k the random variables Xγi, m1 ≤ i ≤ m2,
and Xγ′i, m1 − k ≤ i ≤ m2 − k, have the same joint distributions.

R e m a r k 3.1. It is obvious that Lemma 3.2 is also true for processes
{Xn, n ≤ 0} and {Yn, n ≤ 0} if we replace Condition A′ by Condition A′′ and
the conditions k > 0, m2 ≥ m1 ≥ k, m ≥ k, n ≥ m by k < 0, m1 ≤ m2 ≤ k,
m ≤ k and n ≤ m, respectively.

It is well known (see Rokhlin [20] that every statistical problem concern-
ing stationary processes of the form Xn = f ◦ τn, n ≥ 0, can be reduced to
one for stationary processes Xn = f ◦τn, n ∈ Z, with τ invertible. However,
in general, it is hard to expect that this procedure is possible for processes
given by a whole family of non-invertible transformations. For this reason
we must distinguish between the two cases.

A family of processes {Xγn, n ∈ Z}γ∈Γ , or {Xγ′n, n ≥ 0}γ′∈Γ ′ , or
{Xγ′′n, n ≤ 0}γ′′∈Γ ′′ , satisfying Condition A, A′ or A′′, respectively, will
be called a stationary family of processes.

We now proceed to the question of the validity of a central limit theorem
for elements of a stationary family of sequences of martingale differences.

Let Γ be a given parameter set and let{Xγn, n ∈ Z}γ∈Γ be a fam-
ily of sequences of martingale differences. Denote by Bγn the σ-field gen-
erated by Xγk, k ≤ n, and set σ2

γn = E{X2
γn}, Bγ =

⋂
n Bγn, Λ2

γk =
E{X2

γk|Bγ}, s2
γkm = E{X2

γk|Bγk−m}, s2
γk = E{X2

γk|Bγk−1} = s2
γk1 and
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Λ2
γjM = E{X2

γjM |Bγ}, where XγjM = Xγj1(B) and B = {|Xγj | ≤M}.
Theorem 3.1. Let {an, n ≥ 0} and {bn, n ≥ 0} be two sequences of

integers such that 0 ≤ bn − an → ∞ as n → ∞. Let {Xγn, n ∈ Z}γ∈Γ be a
family of sequences of martingale differences such that

(3.34) {Xγn, n ∈ Z}γ∈Γ satisfies Condition A,
(3.35) sup

γ∈Γ
E{|s2

γ0p − Λ2
γ0|} → 0 as p→∞.

Suppose a γ ∈ Γ satisfies

(3.36) sup
n∈U

σ2
γn = K <∞, where U =

∞⋃
n=1

[an, bn] ∩ Z,

(3.37) X2
γn, n ∈ U , is uniformly integrable,

(3.38) for every ε > 0

1
D2
γn

bn∑
k=an

E{X2
γk1(Bcγkn)} → 0 as n→∞ ,

where Bγkn = {|Xγk| ≤ εD1/3
γn σ

2/3
γk } and D2

γn =
bn−1∑
k=an

σ2
γk,

(3.39) sup
n≥0

(bn − an)/D2
γn = Kγ <∞,

(3.40) there exists Mγ > 0 such that for every M > Mγ

1
D2
γn

bn∑
j=an

(Λ2
γjM − E{Λ2

γjM})→ 0 as n→∞ in L1-norm.

Then

1
Dγn

bn−1∑
k=an

Xγk → N(0, 1) as n→∞ in distribution .

P r o o f. Fix γ, k ∈ Z and p ≥ 0. By (3.34) there exists γ′ such that
for every m1 ≤ m2 the joint distributions of the random variables Xγi,
m1 ≤ i ≤ m2, and Xγ′i, m1 − k ≤ i ≤ m2 − k, are identical. Therefore, in
virtue of Lemma 3.1, the random variables s2

γkp, Λ
2
γk and s2

γ′0p, Λ
2
γ′0 also

have the same joint distributions. This and (3.35) imply

sup
k∈Z

E{|s2
γkp − Λ2

γk|} → 0 as p→∞

for every γ ∈ Γ . Now, using Theorem 2.1 we obtain the assertion.

R e m a r k 3.2. It is obvious that Theorem 3.1 remains true if an ≤ bn ≤ 0
and {Xγn, n ∈ Z}γ∈Γ is replaced by {Xγn, n ≤ 0}γ∈Γ ′ satisfying Condi-
tion A′′.
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Without any difficulties we can prove the following fact.

Theorem 3.2. If a family {Xγn, n ∈ Z}γ∈Γ of stochastic processes sat-
isfies Condition A, then

P
({

(1/Dγn)
n∑
k=1

Xγk < u
})
→ (2π)−1/2

u∫
−∞

exp(−t2/2) dt as n→∞

uniformly in γ if and only if

P
({

(1/Dγn)
−1∑
k=n

Xγk < u
})
→ (2π)−1/2

u∫
−∞

exp(−t2/2) dt as n→ −∞

uniformly in γ, where Dγn = D(
∑n
k=1Xγk) for n > 0 and Dγn =

D(
∑−1
k=nXγk) for n < 0.

4. Central limit theorems for processes
determined by endomorphisms

In this section we prove some central limit theorems for elements of a
stationary family of processes determined by non-invertible transformations.
But first, for the sake of convenience, we gather some simple facts which we
need in the sequel.

Denote by ‖ · ‖p the norm in Lp(Ω,Σ, P ) and by Σ̃ the set of all sub-σ-
fields contained in Σ.

The following lemma can be proved in a standard way.

Lemma 4.1. If B is a bounded subset of L2+2ε(Ω,Σ, P ), then the set of
functions {(E{f |Σ1})2 : f ∈ B,Σ1 ∈ Σ̃} is uniformly integrable.

Lemma 4.2. Let Y be a finite set equipped with discrete topology and let
(X, ρ) be a metric space such that for every ε > 0 there exists a finite ε-net
of X. Let fn : X × Y N → R (N is the set of natural numbers) be a sequence
of functions such that

(i) for every x ∈ X and every y ∈ Y N, fn(x, y)→ 0 as n→∞,
(ii) there exists a constant L such that for every y ∈ Y N, x, x′ ∈ X

and n ∈ N
|fn(x, y)− fn(x′, y)| ≤ Lρ(x, x′) .

Then sup{|fn(x, y)| : (x, y) ∈ X × Y N} → 0 as n→∞.

P r o o f. It is sufficient to show that for every x ∈ X
sup
y∈Y N

|fn(x, y)| → 0 as n→∞ .
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Suppose that there exist ε > 0 and x ∈ X such that for every n ∈ N
there exist y ∈ Y N and k > n such that |fk(x, y)| ≥ ε. Set Y n = Y {1,...,n}

and denote by Bn the subset of Y n such that for every (y1, . . . , yn) ∈ Bn
there exists y ∈ {(y1, . . . , yn)} × Y {m>n} and k > n such that |fk(x, y)| ≥ ε
and, for every y ∈ Y N \ (Bn × Y {m>n}) and k > n, |fk(x, y)| < ε. Put
Gn = Bn× Y {m>n}. It is obvious that the Gn are non-empty, compact and
Gn ⊂ Gm whenever n > m. Therefore, G =

⋂
nGn 6= ∅ and for every y ∈ G

and n ∈ N there exists k > n such that |fk(x, y)| > ε. However, this is
impossible by (i). This completes the proof of the lemma.

Lemma 4.3. Let Y be a compact topological space and let (X, ρ) be a
metric space such that for every ε > 0 there exists a finite ε-net of X. Let
fn : X × Y N → R be a non-increasing sequence of functions satisfying

(i) for every x ∈ X, fn(x, ·) is a continuous function on Y N,
(ii) for any fixed x ∈ X and y ∈ Y N, fn(x, y)→ 0 as n→∞,
(iii) there exists a constant L such that for every y ∈ Y N, x, x′ ∈ X

and n ∈ N,

|fn(x, y)− fn(x′, y)| ≤ Lρ(x, x′) .

Then sup{|fn(x, y)| : (x, y) ∈ X × Y N} → 0 as n→∞.

P r o o f. As in the proof of the previous lemma it is sufficient to show
that for every x ∈ X

sup
y∈Y N

|fn(x, y)| → 0 as n→∞ .

Suppose that there exist ε > 0 and x ∈ X such that for every n ∈ N there
exist y ∈ Y N and k > n such that |fk(x, y)| ≥ ε. Hence, since {fn, n ≥ 0} is
a non-increasing sequence we have Bn = {y ∈ Y N : |fn(x, y)| ≥ ε} 6= ∅ and
Bn+1 ⊂ Bn, n ∈ N. Moreover, by (i), Bn, n ∈ N, are compact sets. Thus,⋂
nBn 6= ∅ and for every y ∈

⋂
nBn and n ∈ N, |fn(x, y)| ≥ ε. However,

this contradicts (ii), which completes the proof of the lemma.
The following lemma is a simple consequence of geometrical considera-

tions.

Lemma 4.4. If X and Y are two random variables, then for every ε > 0
and for every u ∈ R

P ({Y < u− ε})− P ({|X| ≥ ε}) ≤ P ({Y +X < u})
≤ P ({Y < u+ ε}) + P ({|X| ≥ ε}) .

As a corollary we obtain

Lemma 4.5. If {Xn, n ≥ 0} ⊂ L2(Ω,Σ, P ) is a sequence of random vari-
ables such that ‖Xn−X0‖2 → 0 as n→∞, then the sequence of distributions
P ({Xn < u}) converges to the distribution P ({X0 < u}).
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Without any changes in the proof of [20, Theorem 2.2] we can easily
prove the following theorem.

Theorem 4.1. Let {τa : Ω → Ω}a∈A be a family of measure preserving
transformations of a probability space (Ω,Σ, P ) into itself. Put ταn = ταn ◦
. . . ◦ τα1 for α ∈ A+ = {0} × AZ+

.Then
⋂
n>0 τ

−1
αn (Σ) is the trivial σ-field

if and only if for every F ∈ Σ such that P (F ) > 0 and ταn(F ) ∈ Σ,
n = 1, 2, . . . , we have

lim
n→∞

P (ταn(F )) = 1 .

Now, we proceed to the central limit theorem.
Consider a family of measure preserving transformations {τa : Ω →

Ω}a∈A of a probability space (Ω,Σ, P ) into itself. For α ∈ A+ put

ταn =
{
ταn ◦ . . . ◦ τα1 , n > 0,
I (identity), n = 0,(4.1)

Taf = f ◦ τa, f ∈ L1(Ω,Σ, P ) ,(4.2)
Tαnf = f ◦ ταn, f ∈ L1(Ω,Σ, P ) ,(4.3)
Σa = τ−1

a (Σ) ,(4.4)
Σαn = τ−1

αn (Σ) ,(4.5)
H0 = L2(Ω,Σ, P ) ,(4.6)
Ha = L2(Ω,Σa, P ) ,(4.7)
Hαn = L2(Ω,Σαn, P ) .(4.8)

Since τa, a ∈ A, are measurable, that is, τ−1
a (Σ) ⊂ Σ, by the above defini-

tions we have

(4.9) Σa ⊂ Σ for a ∈ A

and, hence,

(4.10) Σαn+1 ⊂ Σαn for α ∈ A+ and n ∈ N .

This implies

Ha ⊂ H0 for a ∈ A ,(4.11)
Hαn+1 ⊂ Hαn for α ∈ A+ and n ∈ N .(4.12)

It is also easy to see that

Ta(H0) = Ha, a ∈ A,(4.13)
Tαn(H0) = Hαn, α ∈ A+, n ∈ N .(4.14)

Moreover, since Ta, a ∈ A, preserve the measure P , Ta and Tαn are iso-
metries of H0 onto Ha and Hαn, respectively.
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Properties (4.11) and (4.12) enable us to define the orthogonal comple-
ments

Sa = H0 	Ha ,(4.15)
Sαn = Hαn 	Hαn+1 .(4.16)

It is obvious that

(4.17) Sαn⊥Sαk for n 6= k

and, since Tαn, α ∈ A+, are isometries, by (4.14)–(4.16) we have

(4.18) Sαn = Tαn−1(Sαn) for α ∈ A+ and n ∈ N .

Denote by PSαn , PSαn, PHαn , PHαn the orthogonal projections of H0 =
L2(Ω,Σ, P ) onto Sαn , Sαn, Hαn andHαn, respectively, and letB be a subset
of H0. It is easy to see that the family of processes {Xγn, n ≤ 0}γ∈Γ+(A,B)

given by

(4.19) Xγn = Yγ−n for n ≤ 0 and γ = (α, β) ∈ Γ+(A,B),
(4.20) Yγn = TαnPSαn+1(βn) for n ≥ 0 and γ = (α, β) ∈ Γ+(A,B),

is a family of sequences of martingale differences.

Theorem 4.2. Let {τa : Ω → Ω}a∈A be a family of measure preserv-
ing transformations of a probability space (Ω,Σ, P ) into itself , let B be
a bounded subset of L2+2ε(Ω,Σ, P ) for some ε > 0 and let {Xγn, n ≤
0}γ∈Γ+(A,B) be the family of martingale differences given by (4.19)
and (4.20). Suppose

(4.21) sup
γ∈Γ+

E{|s2
γ0k − Λ2

γ0|} → 0 as k →∞ .

Moreover , suppose a γ ∈ Γ+(A,B) satisfies

(4.22) inf
n≥0

D(PSαn+1(βn)) = δ > 0,

(4.23) there exists Mγ such that for every M ≥Mγ

1
D2
γn

−1∑
j=n

(Λ2
γjM − E{Λ2

γjM})→ 0 as n→ −∞ in L1-norm ,

where D2
γn = D2(

∑−1
j=nXγj) =

∑−1
j=n σ

2
γj.

Then (1/Dγn)
∑−1
k=nXγk → N(0, 1) as n→ −∞ in distribution.

P r o o f. We will use Theorem 3.1 and Remark 3.2. It is easy to see
that {Yγn, n ≥ 0}γ∈Γ+ given by (4.20) satisfies Condition A′. Therefore
{Xγn, n ≤ 0}γ∈Γ+ satisfies Condition A′′. Since the Tαn are isometries, we
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have
E{X2

γ−n} = E{(TαnPSαn+1βn)2} = E{(PSαn+1βn)2} ≤ E{β2
n}

≤ (E{β2+2ε
n })1/(1+ε) = ‖βn‖22+2ε , n ≥ 0 .

Thus, since B is bounded in L2+2ε and E{Xγn} = 0,

(4.24) sup{σ2
γn : γ ∈ Γ+, n ≤ 0} <∞ .

Now, let F ∈ Σ be any measurable set, F ′ = τ−1
αnF and n ≥ 0. Since τa,

a ∈ A, preserve the measure P , we have

E{X2
γ−n1(F )} = E{Y 2

γn1(F )} = E{(TαnPSαn+1βn)21(F )}
= E{(PSαn+1βn)21(F ′)} .

Therefore, by definition of Sαn+1 , we obtain

E{X2
γ−n1(F )} = E{(βn − PHαn+1βn)21(F ′)}
≤ E{β2

n1(F ′)} − E{βnPHαn+1βn1(F ′)}+ E{(PHαn+1βn)21(F ′)}

≤ E{β2
n1(F ′)}+

√
E{β2

n1(F ′)}E{(PHαn+1βn)21(F ′)}

+ E{(PHαn+1βn)21(F ′)} .
Hence, using Lemma 4.1 and the fact that the ταn preserve the measure P ,
we come to the conclusion that {Xγn, n ≤ 0}γ∈Γ+ are uniformly integrable.

Assumption (4.22) implies

(4.25) inf{σγn : γ ∈ Γ+, n ≤ 0} ≥ δ > 0

and this gives

(4.26) sup{|n|/D2
γn : γ ∈ Γ+, n ≤ 0} <∞ .

Assumption (3.38) is a simple consequence of (4.24), (4.26), and the uniform
intergrability of {Xγn, n ≤ 0}γ∈Γ+ . Assumptions (3.35), (3.40) are satisfied
automatically. This completes the proof of the theorem.

R e m a r k 4.1. It is obvious that Theorem 4.2 remains true if B is a
finite subset of L2(Ω,Σ, P ).

We now give some criterions for uniform convergence of E{|s2
γ0p−Λ2

γ0|}
to zero.

Lemma 4.6. Let B be a compact subset of L4(Ω,Σ, P ) and let {τa : Ω →
Ω}a∈A be a family of measure preserving transformations. Suppose that

(4.27) A is a compact topological space,
(4.28) for every α ∈ A+,

⋂
n∈N Σαn is the trivial σ-field ,

(4.29) for every fixed f ∈ B and n ∈ N, PHαn(PSα1f)2 and (PSα1f)2 are
continuous functions from A+ into L2(Ω,Σ, P ), where A+

is equipped with the product topology ,
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(4.30) sup
α∈A+

‖PSα1f‖4/‖f‖4 ≤ K <∞, f ∈ L4(Ω,Σ, P ).

Then for {Xγn, n ≤ 0}γ∈Γ+ given by (4.19) and (4.20) we have

sup
γ∈Γ+

E{|s2
γ0p − Λ2

γ0|} → 0 as p→∞ .

P r o o f. Since Bγn ⊂ Σα−n, n ≤ 0, and
⋂
n≥0Σαn is the trivial σ-field,

the intersection Bγ =
⋂
n≤0 Bγn is also the trivial σ-field, and consequently,

(4.31) Λ2
γ0 = E{X2

γ0|Bγ} = σ2
γ0 = ‖PSα1β0‖22 .

Therefore, using Hölder’s inequality and simple properties of orthogonal
projections, we obtain

E{|s2
γ0p − Λ2

γ0|} = E{|E{X2
γ0 − σ2

γ0|Bγp}|}
≤ ‖PHαp(X2

γ0 − E{X2
γ0})‖2 = ‖PHαp(PSα1β0)2 − E{(PSα1β0)2}‖2 .

Hence, since H =
⋂
n≥0Hαn = L2(Ω,

⋂
n≥0Σαn, P ) is the space of constant

functions,

(4.32) E{|s2
γ0p − Λ2

γ0|} ≤ ‖PHαp(PSα1β0)2 − PH(PSα1β0)2‖2 .
Moreover, by (4.12), for every fixed β0

(4.33) ‖PHαp(PSα1β0)2 − PH(PSα1β0)2‖2 → 0 as p→∞ .

Finally, by (4.30), we obtain

|‖PHαp(PSα1β0)2 − PH(PSα1β0)2‖2(4.34)

− ‖PHαp(PSα1β0)2 − PH(PSα1β0)2‖2|
≤ ‖PHαp[(PSα1β0)2 − (PSα1β0)2] + PH [(PSα1β0)2 − (PSα1β0)2]‖2
≤ 2‖(PSα1β0)2 − (PSα1β0)2‖2 ≤ 2‖PSα1(β0 − β0)‖4‖PSα1(β0 + β0)‖4
≤ 2K2‖β0 − β0‖4‖β0 + β0‖4 ≤ 2K22(sup

f∈B
‖f‖4)‖β0 − β0‖4 .

Now, since for every β0, ‖PHαn(PSα1β0)2−PH(PSα1β0)2‖2 is a non-increas-
ing sequence of continuous functions of α and B is a compact subset of L4,
the assertion of the lemma is a consequence of (4.32), (4.33), (4.34) and
Lemma 4.3.

Using a similar argument we can prove the following.

Lemma 4.7. Let B be a subset of L2(Ω,Σ, P ) and let {τa : Ω → Ω}a∈A
be a family of measure preserving transformations. Suppose that

(4.35) A is a compact topological space,
(4.36) for every α ∈ A+,

⋂
n≥0Σαn is the trivial σ-field ,

(4.37) for every fixed f ∈ B and n ∈ N, PHαnf is a continuous function
from A+ into L2(Ω,Σ, P ),
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(4.38) for every ε > 0 there exists a finite σ-net of
⋃
α∈A+{(PSα1f)2 :

f ∈ B} in L2(Ω,Σ, P ).

Then for {Xγn, n ≤ 0}γ∈Γ+ given by (4.19), (4.20) we have

sup
γ∈Γ+

E{|s2
γ0p − Λ2

γ0|} → 0 as p→∞ .

Using a simple modification of the proof of Lemma 4.2 we can easily
prove the following.

Lemma 4.8. If B is a finite subset of L2(Ω,Σ, P ) and {τa : Ω → Ω}a∈A
is a finite family of measure preserving transformations then for {Xγn, n ≤
0}γ∈Γ+ given by (4.19) and (4.20) we have

sup
γ∈Γ+

E{|s2
γ0p − Λ2

γ0|} → 0 as p→∞ .

Denote by Rαn the space H0 	 Hαn and by PRαn the orthogonal pro-
jection of H0 onto Rαn. In the sequel we need the following simple approx-
imation theorem.

Theorem 4.3. Let (Ω,Σ, P ) be a probability space, {τa : Ω → Ω}a∈A
a family of measure preserving transformations and B ⊂ L2(Ω,Σ, P ) a set
of functions with integral zero. Suppose a γ ∈ Γ+(A,B) satisfies

(4.39) for every k > 0 , Uγnk → N(0, 1) in distribution, where

Uγnk =

∑n
j=1 PSαj

∑n
i=0 PRαi+kTαiβi

D
(∑n

j=1 PSαj
∑n
i=0 PRαi+kTαiβi

) ,
(4.40) lim

k→∞
lim sup
n→∞

‖Uγn − Uγnk‖2 = 0 , where Uγn =
∑n
i=0 Tαiβi

D
(∑n

i=0 Tαiβi
) .

Then Uγn → N(0, 1) in distribution.

P r o o f. Lemma 4.4 implies

P ({Uγnk < u− ε})− P ({|Uγn − Uγnk| ≥ ε}) ≤ P ({Uγn < u})
≤P ({Uγnk < u+ ε}) + P ({|Uγn − Uγnk| ≥ ε})

for every ε > 0. Now (4.39) and (4.40), in virtue of Lemma 4.5, imply the
assertion of the theorem.

We now give some applications of the previous theorems to a class of
transformations of the unit interval into itself.

A transformation τ : Ω → Ω is said to be non-singular iff P (τ−1(A)) = 0
whenever P (A) = 0.

Given a non-singular τ we define the Frobenius–Perron operator Pτ :
L1(Ω,Σ, P )→ L1(Ω,Σ, P ) by

E{(Pτf)g} = E{f(g ◦ τ)}, f ∈ L1, g ∈ L∞ .
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It is well known that Pτ is linear, continuous and satisfies the following
conditions:

(4.41) Pτ is positive: f ≥ 0 ⇒ Pτf ≥ 0,

(4.42) Pτ preserves integrals: E{Pτf} = E{f}, f ∈ L1,

(4.43) Pτ1◦τ2 = Pτ1 ◦ Pτ2 ,

(4.44) Pτf = f if and only if the measure dµ = fP (dω) is invariant
under τ ,

(4.45) if P is invariant under τ , then the operator Tτ : L2(Ω,Σ, P ) →
L2(Ω,Σ, P ) defined by Tτf = f ◦ τ is an isometry and T ∗τ = Pτ ,

(4.46) if dµ = hP (dω) (h ∈ L1(Ω,Σ, P )) is invariant under τ , then Tτ :
L2(Ω,Σ, µ)→ L2(Ω,Σ, µ) is an isometry and hT ∗τ f = Pτ (fh).

A transformation τ : [0, 1] → [0, 1] will be called piecewise C2 if there
exists a partition 0 = a0 < a1 < . . . < ap = 1 of the unit interval such that
for each integer i (i = 1, . . . , p) the restriction τi of τ to (ai−1, ai) is a C2

function which can be extended to [ai−1, ai] as a C2 function.
A transformation τ : [0, 1] → [0, 1] will be called a Lasota–Yorke trans-

formation if τ is piecewise C2 and inf |τ ′| > 1. The set of all Lasota–Yorke
transformations will be denoted by G.

A transformation τ : [0, 1] → [0, 1] will be called a Rényi transforma-
tion if τ is a Lasota–Yorke transformation and τ([ai−1, ai]) = [0, 1] for
i = 1, . . . , p, where 0 = a0 < . . . < ap = 1 is the partition correspond-
ing to τ .

Denote by (G, ρ) the metric space with ρ given in the following way.
Let τ1, τ2 be two elements of G and let 0 = a1

0 < a1
1 < . . . < a1

p1 = 1,
0 = a2

0 < a2
1 < . . . < a2

p2 = 1 be the partitions corresponding to τ1 and τ2,
respectively. Denote by τ1i and τ2i the restrictions of τ1 and τ2 to [a1

i−1, a
1
i ]

and [a2
i−1, a

2
i ], respectively. Put

ρ1(τ1, τ2) =
{∑p

i=0 |a1
i − a2

i | if p1 = p2 = p,
1 otherwise,

ρ2(τ1, τ2) =
{∑p

i=0 |τ1(a1
i )− τ2(a2

i )| if p1 = p2 = p,
p1 + p2 otherwise,

ρi3(τ1, τ2) =


sup{|τ1(x)− τ2(x)| : x ∈ (a1

i−1, a
1
i ) ∩ (a2

i−1, a
2
i )}

if (a1
i−1, a

1
i ) ∩ (a2

i−1, a
2
i ) 6= ∅ , p1 = p2 = p,

1 if (a1
i−1, a

1
i ) ∩ (a2

i−1, a
2
i ) = ∅ , p1 = p2 = p,

ρ3(τ1, τ2) =
{∑p

i=1 ρ
i
3(τ1, τ2) if p1 = p2 = p,

p1 + p2 otherwise,
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ρi4(τ1, τ2) =


sup{|τ−1

1i (x)− τ−1
2i (x)| : x ∈ τ1((a1

i−1, a
1
i )) ∩ τ2((a2

i−1, a
2
i ))}

if τ1((a1
i−1, a

1
i )) ∩ τ2((a2

i−1, a
2
i )) 6= ∅ , p1 = p2 = p,

1 if τ1((a1
i−1, a

1
i )) ∩ τ2((a2

i−1, a
2
i )) = ∅ , p1 = p2 = p,

ρ4(τ1, τ2) =
{∑p

i=1 ρ
i
4(τ1, τ2) if p1 = p2 = p,

p1 + p2 otherwise,

ρi5(τ1, τ2) =


sup{|(τ−1

1i )′(x)− (τ−1
2i )′(x)| : x ∈ τ1((a1

i−1, a
1
i )) ∩ τ2((a2

i−1, a
2
i ))}

if τ1((a1
i−1, a

1
i )) ∩ τ2((a2

i−1, a
2
i )) 6= ∅ , p1 = p2 = p,

1 if τ1((a1
i−1, a

1
i )) ∩ τ2((a2

i−1, a
2
i )) = ∅ , p1 = p2 = p,

ρ5(τ1, τ2) =
{∑p

i=1 ρ
i
5(τ1, τ2) if p1 = p2 = p,

p1 + p2 otherwise,

and, finally,

ρ = ρ1 + ρ2 + ρ3 + ρ4 + ρ5 .

R e m a r k 4.2. If τ1, τ2 ∈ G, 0 = a1
0 < . . . < a1

p1 = 1 and 0 = a2
0 < . . . <

a2
p2 = 1 are the partitions corresponding to τ1 and τ2, respectively, and
ρ(τ1, τ2) < 1, then p1 = p2 = p, (a1

i−1, a
1
i ) ∩ (a2

i−1, a
2
i ) 6= ∅ for i = 1, . . . , p,

τ1((a1
i−1, a

1
i )) ∩ τ2((a2

i−1, a
2
i )) 6= ∅ for i = 1, . . . , p and

ρ(τ1, τ2) =
p∑
i=0

|a1
i − a2

i |+
p∑
i=0

|τ1(a1
i )− τ2(a2

i )|

+
p∑
i=1

sup{|τ1(x)− τ2(x)| : x ∈ (a1
i−1, a

1
i ) ∩ (a2

i−1, a
2
i )}

+
p∑
i=1

sup{|τ−1
1i (x)− τ−1

2i (x)| : x ∈ τ1((a1
i−1, a

1
i )) ∩ τ2((a2

i−1, a
2
i ))}

+
p∑
i=1

sup{|(τ−1
1i )′(x)− (τ−1

2i )′(x)| : x ∈ τ1((a1
i−1, a

1
i )) ∩ τ2((a2

i−1, a
2
i ))} .

A. Lasota and J. A. Yorke [17] have shown that for every τ ∈ G there
exists an absolutely continuous probability measure µ invariant under τ , and
the density gµ of µ is of bounded variation. Z. S. Kowalski [15] has shown
that supp gµ is a finite sum of intervals, τ(supp gµ) = supp gµ and, if (τ, µ)
is ergodic, gµ ≥ c > 0 µ-almost everywhere.

The above facts will be used in the proofs of the following lemmas.

Lemma 4.9. If {τn, n > 0} ⊂ G is a sequence of transformations pre-
serving an absolutely continuous measure µ with density gµ and for every
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f ∈ L1([0, 1], Σ,m) (m denotes the Lebesgue measure)

(4.47)
1∫

0

∣∣∣Pτnf − gµ 1∫
0

f dm
∣∣∣ dm→ 0 as n→∞ ,

where τn = τn ◦ . . . ◦ τ1, then
⋂
n>0(τn ◦ . . . ◦ τ1)−1(Σ) is the trivial σ-field

in the measure space ([0, 1], Σ, µ).

P r o o f. For every τ ∈ G the Frobenius–Perron operator

Pτ : L1([0, 1], Σ,m)→ L1([0, 1], Σ,m)

has the form (see [17])

(4.48) Pτf(x) =
p∑
i=1

f(τ−1
i (x))|(τ−1

i )′(x)|1i(x)

where 1i = 1([ai−1, ai]) and 0 = a0 < . . . < ap = 1 is the partition corre-
sponding to τ . Therefore,

(4.49) suppPτf =
p⋃
i=1

τi((supp f) ∩ [ai−1, ai]) = τ(supp f) .

Let A ∈ Σ be such that µ(A) > 0. By (4.47) we have
1∫

0

|Pτn(1(A)1(supp gµ))− gµm(A ∩ supp gµ)| dm→ 0 as n→∞ .

Hence, m(suppPτn(1(A)1(supp gµ)))→ m(supp gµ). This and (4.49) imply
µ(τn ◦ . . . ◦ τ1(A)) → 1. Now, the assertion of the lemma is a consequence
of Theorem 4.1.

Slightly modifying the proof of [12, Theorem 2] we can easily obtain the
following lemma.

Lemma 4.10. Let {τn, n ≥ 0} ⊂ G be a sequence of transformations such
that

(4.50) τn, n ≥ 0, preserve a measure µ with density gµ = dµ/dm,

(4.51) for every f ∈ L1([0, 1], Σ,m),
∫ 1

0
|Pτnf − gµ

∫ 1

0
f dm| dm → 0

as n→∞ (τn = τn ◦ . . . ◦ τ1),
(4.52) there exist constants s1 ∈ (0, 1), M1 > 0 and k ∈ N such that for

every n ∈ N and for every f with bounded variation
1∨
0

Pτnkf ≤ s1

1∨
0

f +M1

1∫
0

|f | dm
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where
∨b
a f denotes the variation of f over [a, b] and τnk

= τn+k ◦ . . . ◦ τn.

Then there exist constants M > 0, c > 0 and s ∈ (0, 1) such that∣∣∣Pτnf − gµ 1∫
0

f dm
∣∣∣ ≤ 1∨

0

(
Pτnf − gµ

1∫
0

f dm
)
≤ snM

( 1∨
0

f + c
1∫

0

|f | dm
)

whenever m(supp f \ supp gµ) = 0 and
∨1

0 f <∞.
In a standard way we can easily prove the following lemma.

Lemma 4.11. Let {τa}a∈A be a family of transformations such that

(4.53) {τa}a∈A is a compact subset of (G, ρ),
(4.54) for every a ∈ A, τa preserves a common absolutely continuous

probability measure µ with density gµ.

Then (A, ρ′), where ρ(a, a′) = ρ(τa, τa′), is a compact topological space and
the functions h1, h2 : A × Lq([0, 1], Σ, µ) → Lq([0, 1], Σ, µ), q = 2, 4, given
by h1(a, f) = Tτaf and h2(a, f) = (Pτa(fgµ))/gµ are continuous.

Lemma 4.12. Let τ ∈ G and let µ be an absolutely continuous τ -invariant
probability measure with density gµ. Then for every f ∈ L4([0, 1], Σ, µ)

‖Tτf‖4 = ‖f‖4, ‖T ∗τ f‖4 ≤ p(sup gµ/(inf gµ))‖f‖4 ,

where ‖ · ‖4 denotes the norm in L4([0, 1], Σ, µ) and p is the number of
elements of the partition corresponding to τ (inf gµ is taken over the set
supp gµ).

P r o o f. The first part of the assertion is obvious. By (4.46) and (4.48),
for f ∈ L4([0, 1], Σ, µ), we have

‖T ∗τ f‖4 =
∥∥∥∥Pτ (gµf)

gµ

∥∥∥∥
4

=
∥∥∥∥∑p

i=1(gµf) ◦ ϕi|ϕ′i|1i
gµ

∥∥∥∥
4

≤
p∑
i=1

∥∥∥∥ (gµf) ◦ ϕi|ϕ′i|1i
gµ

∥∥∥∥
4

where ϕi = τ−1
i = (τ/[ai−1, ai])−1, 1i = 1(τ((ai−1, ai))) (suppPτ (fgµ) =

τ(supp(fgµ)) ⊂ supp gµ, see (4.49) and the remark above Lemma 4.9). Since∥∥∥∥ (gµ ◦ ϕi)(f ◦ ϕi)|ϕ′i|1i
gµ

∥∥∥∥4

4

=
∫

τ((ai−1,ai))

(gµ(ϕi(x))f(ϕi(x))|ϕ′i(x)|)4

(gµ(x))4
gµ(x) dx
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≤ (sup gµ)4

(inf gµ)4
(sup |ϕ′i(x)|)3

∫
τ((ai−1,ai))

f4(ϕi(x))|ϕ′i(x)|gµ(ϕi(x)) dx

≤ (sup gµ)4

(inf gµ)4

ai∫
ai−1

f4(x)gµ(x) dx ≤ (sup gµ)4

(inf gµ)4
‖f‖44

(sup |ϕ′i(x)| < 1), the second assertion follows.

Lemma 4.13. Let {τa}a∈A ⊂ G be a compact family of transformations
preserving an absolutely continuous probability measure µ. Then

(4.55) (A+, ρ1), where

ρ1(α, α′) =
∞∑
i=1

2−iρ′(αi, α′i) =
∞∑
i=1

2−iρ(ταi , τα′i) ,

is a compact space,
(4.56) the functions h1n : A+ ×L4([0, 1], Σ, µ)→ L2([0, 1], Σ, µ), n ∈ N,

and h2 : A+ × L4([0, 1], Σ, µ) → L2([0, 1], Σ, µ) given by
h1n(α, f) = PHαn(PSα1f)2, n ∈ N, and h2(α, f) = (PSα1f)2

are continuous,
(4.57) sup{‖PSα1f‖4/‖f‖4 : α ∈ A+, f ∈ L4([0, 1], Σ, µ)} = K < ∞

where ‖· ‖4 denotes the norm in L4([0, 1], Σ, µ).

P r o o f. Let pa denote the number of elements of the partition corre-
sponding to τa. Since {τa}a∈A is a compact subset of G, Remark 4.2 implies

max
a∈A

pa = K1 <∞ .

Therefore, owing to Lemma 4.12,

(4.58) sup
α∈A+

‖T ∗α1
f‖4 ≤ K1

sup gµ
c
‖f‖4 , f ∈ L4([0, 1], Σ, µ) ,

where gµ denotes the density of µ and c = inf{gµ(x) : x ∈ supp gµ}. By the
definition of PSα1 we have

(4.59) PSα1f = f − PHα1f = f − Tα1T
∗
α1
f .

Therefore, since Tα1 preserves the norm in L4([0, 1], Σ, µ),

(4.60) sup
α∈A+

‖PSα1f‖4
‖f‖4

≤ 1 +K1
sup gµ
c

= K <∞ .

This gives us (4.57).
Continuity of h1n and h2 is a simple consequence of Lemma 4.11. Com-

pactness of (A+, ρ1) is obvious. This ends the proof of the lemma.

Theorem 4.4. Let ([0, 1], Σ, µ) be a probability space with absolutely con-
tinuous measure µ, let {τa}a∈A ⊂ G be a compact family of measure pre-
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serving transformations, and let B be a compact subset of L4([0, 1], Σ, µ).
Let {Yγn, n ≥ 0}γ∈Γ+(A,B) be a family of processes given by (4.20). Suppose
that for every α ∈ A+ and every f ∈ L1([0, 1], Σ,m)

(4.61) Pταnf − gµ
1∫

0

f dm→ 0 as n→∞

in L1([0, 1], Σ,m) norm, where Pταn is taken in the space ([0, 1], Σ,m).
Then for every γ = (α, β) ∈ Γ+(A,B) such that

(4.62) inf
n≥0

D(PSαn+1βn) = δ > 0

we have (1/Dγn)
∑n
k=1 Yγk → N(0, 1) as n→∞ in distribution.

P r o o f. By Lemma 4.9, for every α ∈ A+,
⋂
n>0 τ

−1
αn (Σ) is the trivial

σ-field in the space ([0, 1], Σ, µ). Therefore, all elements of the family of
processes {Xγn, n ≤ 0}γ∈Γ+ (Xγn = Yγ−n, n ≤ 0) satisfy (4.23) trivially.
Moreover, owing to Lemmas 4.6 and 4.13, {Xγn, n ≤ 0}γ∈Γ+ satisfies (4.21).
Now, the conclusion of the theorem is a simple consequence of Theorem 4.2.

Example 4.1. Consider the probability space ([0, 1], Σ,m), A = [b, c], a
family {τa}a∈A ⊂ G of transformations given by

τa(x) =


x

a
if x ∈ [0, a),

x− a
1− a

if x ∈ [a, 1],

and the set B = {1([0, d]) : b2/2 ≤ d ≤ b2} ⊂ L4([0, 1], Σ,m). Let {Yγn, n ≥
0}γ∈Γ+(A,B) be given by (4.20). We now show that

1
Dγn

n∑
k=1

Yγn → N(0, 1) as n→∞

in distribution.

P r o o f. It is easy to see that τa, a ∈ [b, c], preserves the Lebesgue
measure m. Therefore, by (4.45) and (4.48) we obtain

(T ∗τaf)(x) = (T ∗a f)(x) = (Pτaf)(x) = af(ax) + (1− a)f((1− a)x+ a) .

Hence
(PHaf)(x) = (TaT ∗a f)(x)

= af(x)1([0, a))(x) + (1− a)f
(

1− a
a

x+ a

)
1([0, a))(x)

+ af

(
a

1− a
(x− a)

)
1([a, 1])(x) + (1− a)f(x)1([a, 1])(x)
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and consequently,

(PSaf)(x) = f(x)− (PHaf)(x)

= (1− a)f(x)1([0, a))(x)− (1− a)f
(

1− a
a

x+ a

)
1([0, a))(x)

− af
(

a

1− a
(x− a)

)
1([a, 1])(x) + af(x)1([a, 1])(x)

where PHa and PSa are the orthogonal projections of H0 onto Ha and Sa,
respectively.

Now, let f ∈ B. Since b2 ≤ a, we have

‖PSaf‖22(4.63)

=
1∫

0

[
(1− a)1([0, d])(x)− a1([0, d])

(
a

1− a
x− a

)
1([a, 1])(x)

]2

dx

= (1− a)2
d∫

0

dx

− 2
1∫

0

(1− a)1([0, d])(x)a1([0, d])
(

a

1− a
(x− a)

)
1([a, 1])(x) dx

+
1∫

0

a21([0, d])
(

a

1− a
(x− a)

)
1([a, 1])(x) dx

= (1− a)2d+ a(1− a)d ≥ (1− c)b2/2 > 0 .

On the other hand, for every f of bounded variation and every a ∈ [b, c] we
have

1∨
0

Pτaf =
1∨
0

af(ax) +
1∨
0

(1− a)f((1− a)x+ a)(4.64)

= a

a∨
0

f(x) + (1− a)
1∨
a

f(x) ≤ max(a, 1− a)
1∨
0

f(x)

≤ max(1− b, c)
1∨
0

f(x) .

Hence, by an induction argument, for every f of bounded variation and
every α ∈ A+

1∨
0

[
Pταnf −

1∫
0

f dm
]

=
1∨
0

[
Pταn

(
f −

1∫
0

f dm
)]

(4.65)
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≤ (max(1− b, c))n
1∨
0

(
f −

1∫
0

f dm
)

and consequently, since
∫ 1

0
|f −

∫ 1

0
f dm| dm ≤

∨1
0 f ,

(4.66) Pταnf −
1∫

0

f dm→ 0 as n→∞

in L1([0, 1], Σ,m) norm. Since the set of functions of bounded variation is
dense in L1([0, 1], Σ,m), (4.66) holds for every f ∈ L1([0, 1], Σ,m) and for
every α ∈ A+. Now, Theorem 4.4 implies the desired result.

Theorem 4.5. Let ([0, 1], Σ, µ) be a probability space with absolutely con-
tinuous measure µ and let {τa}a∈A ⊂ G be a family of transformations such
that

(4.67) {τa}a∈A is a compact subset of the metric space (G, ρ),
(4.68) the transformations τa, a ∈ A, preserve the measure µ,
(4.69) for every α ∈ A+ and every f ∈ L1([0, 1], Σ,m)

1∫
0

∣∣∣Pταnf − gµ 1∫
0

f dm
∣∣∣ dm→ 0 as n→∞

where gµ is the density of µ.

Moreover , let B be a set of functions defined on [0, 1] such that

(4.70) for every f ∈ B,
∫ 1

0
f dµ = 0,

(4.71) sup
f∈B

1∨
0

f = K <∞.

Let ‖ · ‖2 denote the norm in L2([0, 1], Σ, µ) and Rαq = H0	Hαq. Suppose
a γ ∈ Γ+(A,B) satisfies

(4.72) infk>0D(Vγnk) ≥ δ > 0, n ≥ 0, where

Vγnk = PSαn

n∑
i=0

PRαi+kTαiβi ,

(4.73) there exist constants s1 ∈ (0, 1), M > 0 and k ∈ N such that for
every n ∈ N and every f of bounded variation

1∨
0

Pnkf ≤ s1

1∨
0

f +M
1∫

0

|f | dm

where Pnk is the Frobenius–Perron operator corresponding to
ταn ◦ . . . ◦ ταn+k .
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Then Uγn → N(0, 1) as n → ∞, where Uγn = Vγn/D(Vγn) and Vγn =∑n
i=1 Tαiβi.

For the proof we need three lemmas. The following two are simple facts
concerning sequences in L2(Ω,Σ, P ).

Lemma 4.14. Let (Ω,Σ, P ) be a probability space. Suppose {akn : Ω → R,
n, k ∈ N} and {bkn : Ω → R, n, k ∈ N} are two double sequences in
L2(Ω,Σ, P ) such that

(i) there exists δ > 0 such that infk≥1 ‖akn‖2 ≥
√
nδ for every n ∈ N,

(ii) supk,n∈N ‖akn − bkn‖2 <∞.

Then

lim
k→∞

lim sup
n→∞

‖akn/‖akn‖2 − bkn/‖bkn‖2‖2 = 0 .

Lemma 4.15. Let (Ω,Σ, P ) be a probability space and let {akn : Ω → R,
n, k ∈ N} ⊂ L2(Ω,Σ, P ) be a double sequence such that

(i) there exist constants M and δ > 0 such that for every n ∈ N

inf
k≥1
‖akn‖2 ≥

√
nδ +M ,

(ii) there exists a sequence {bk, k ∈ N} convergent to zero and there
exists a constant K such that for every n, k ∈ N

‖akn − a0
n‖2 ≤

√
nbk +K .

Then

lim
k→∞

lim sup
n→∞

‖akn/‖akn‖2 − a0
n/‖a0

n‖2‖2 = 0 .

The following lemma is a simple consequence of the definition of Hαn

and Sαn.

Lemma 4.16. Let (Ω,Σ, P ) be a probability space and let {τa : Ω →
Ω}a∈A be a family of transformations preserving the measure P . Then for
every α ∈ A+, every k, i,m ∈ N, m ≥ i, and every f ∈ L2(Ω,Σ, P ) we have

(i) PHαmTαif = TαiPHα′m−if ,
(ii) PRαm,m+kTαif = TαiPRα′m−i,m+k−if ,
(iii) PSαmTαif = TαiPSα′m−if ,

where Rαp,q = Hαp 	Hαq for p < q, PRαp,q is the orthogonal projection of
H0 onto Rαp,q and α′j = αj+i for j > 0, α′0 = 0.

P r o o f o f T h e o r e m 4.5. We apply Theorem 4.3. Fix γ = (α, β) ∈
Γ+(A,B) such that (4.72) and (4.73) hold and let {αi, i ≥ 0} ⊂ A+ be the
sequence defined by αij = αi+j , j > 0, and αi0 = 0, where αij is the jth
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coordinate of αi. First we show that γ satisfies (4.40). Put

V ′γnk =
n∑
i=0

PRαi+kTαiβi .

We have

‖Uγn−Uγnk‖2 =
∥∥∥∥ Vγn
D(Vγn)

− Vγnk
D(Vγnk)

∥∥∥∥
2

(4.74)

≤

∥∥∥∥∥ Vγn
D(Vγn)

−
V ′γnk

D(V ′γnk)

∥∥∥∥∥
2

+

∥∥∥∥∥ V ′γnk
D(V ′γnk)

− Vγnk
D(Vγnk)

∥∥∥∥∥
2

.

Let f be any function belonging to B and let i, k ≥ 0 be any natural
numbers. From (4.42), (4.46) and (4.71) we obtain

‖PHαikf‖22 = E{(TαikT ∗αikf)(TαikT
∗
αikf)}

= E{T ∗αikfT
∗
αikf} = E{fTαikT ∗αikf}

≤ KE{|TαikT ∗αikf |} = KE{|T ∗αikf |} .

This, in virtue of (4.46) and Lemma 4.10, implies

‖PHαikf‖22 ≤ K
1∫

0

|Pϕfgµ|
gµ

gµ dm = K
1∫

0

|Pϕ(fgµ)| dm(4.75)

≤ K
1∫

0

skK1

( 1∨
0

fgµ + c
1∫

0

|fgµ| dm
)
dm

≤ skKK1

( 1∨
0

f(max gµ) +K

1∨
0

gµ + c
1∫

0

|fgµ| dm
)

≤ skKK1

(
K
( 1∨

0

gµ + 1
)

+K

1∨
0

gµ + cK
)
≤ skK2

where ϕ = ταik and s ∈ (0, 1), K1, K2 are constants depending only on α.
Now, using Lemma 4.16, we obtain∥∥∥ n∑

i=0

PRαi+kTαiβi −
n∑
j=1

PSαj

n∑
i=0

PRαi+kTαiβi

∥∥∥
2

(4.76)

=
∥∥∥ ∞∑
j=1

PSαj

n∑
i=0

PRαi+kTαiβi −
n∑
j=1

PSαj

n∑
i=0

PRαi+kTαiβi

∥∥∥
2

=
∥∥∥ ∞∑
j=n+1

PSαj

n∑
i=0

PRαi+kTαiβi

∥∥∥
2

=
∥∥∥PHαn+1

n∑
i=0

PRαi,i+kTαiβi

∥∥∥
2
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≤
n∑
i=0

‖PHαn+1PRαi,i+kTαiβi‖2 ≤
n∑
i=0

‖PHαn+1Tαiβi‖2

=
n∑
i=0

‖TαiPHαin+1−iβi‖2 =
n∑
i=0

‖PHαin+1−iβi‖2 ≤
√
sK2

1−
√
s
.

On the other hand, assumption (4.72) implies

(4.77)
∥∥∥ n∑
j=1

PSαj

n∑
i=0

PRαi+kTαiβi

∥∥∥
2
≥
√
nδ .

This, together with (4.76), in virtue of Lemma 4.14, gives

(4.78) lim
k→∞

lim sup
n→∞

∥∥∥∥∥ V ′γnk
D(V ′γnk)

− Vγnk
D(Vγnk)

∥∥∥∥∥
2

= 0 .

We now estimate the first term of the right side of (4.74). We have∥∥∥ n∑
i=0

(Tαiβi − PRαi+kTαiβi)
∥∥∥

2
(4.79)

=
∥∥∥ n∑
i=0

PHαi+kTαiβi

∥∥∥
2

=
∥∥∥ ∞∑
j=0

PSαj

n∑
i=0

PHαi+kTαiβi

∥∥∥
2

≤
∥∥∥ n∑
j=1

PSαk+j

j−1∑
i=0

Tαiβi

∥∥∥
2

+
∥∥∥ ∞∑
j=n+1

n∑
i=0

PSαk+jTαiβi

∥∥∥
2
.

Inequality (4.75) and Lemma 4.16 imply∥∥∥PSαk+j

j−1∑
i=0

Tαiβi

∥∥∥
2
≤

j−1∑
i=0

‖PHαk+jTαiβi‖2 ≤
j−1∑
i=0

‖TαiPHαik+j−iβi‖2

=
j−1∑
i=0

‖PHαik+j−iβi‖2 ≤
j−1∑
i=0

s(k+j−i)/2
√
K2 ≤

√
K2s

k/2

1−
√
s
.

Therefore,

(4.80)
∥∥∥ n∑
j=1

PSαk+j

j−1∑
i=0

Tαiβi

∥∥∥
2
≤
√
n

√
K2s

k/2

1−
√
s
.

Similarly∥∥∥ ∞∑
j=n+1

n∑
i=0

PSαk+jTαiβi

∥∥∥
2
≤

∞∑
j=n+1

n∑
i=0

‖PSαk+jTαiβi‖2(4.81)

≤
∞∑

j=n+1

n∑
i=0

s(k+j−i)/2
√
K2 ≤

∞∑
j=n+1

s(k+j−n)/2

√
K2

1−
√
s
≤ sk/2K2

(1−
√
s)2

.
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Combining (4.79)–(4.81) we obtain∥∥∥ n∑
i=0

(Tαiβi − PRαi+kTαiβi)
∥∥∥

2
≤
√
n

√
K2s

k/2

1−
√
s

+
√
K2s

k/2

(1−
√
s)2

.

By using Lemma 4.15 together with (4.77) this gives

(4.82) lim
k→∞

lim sup
n→∞

∥∥∥∥∥ Vγn
D(Vγn)

−
V ′γnk

D(V ′γnk)

∥∥∥∥∥
2

= 0 .

Finally, (4.74), (4.78) and (4.82) imply (4.40). Now for the proof of the
theorem, it remains to prove that condition (4.39) is satisfied.

By Lemma 4.16 we obtain

PSαj

n∑
i=0

PRαi+kTαiβi = PSαj

j∑
i=0

PRαi+kTαiβi =
∑

PSαjTαiβi

=
∑

TαiPSαij−iβi =
∑

TαiTαij−iT
∗
αij−iPSαij−iβi

=
∑

TαjT
∗
αij−iPSαij−iβi = Tαj

(∑
T ∗αij−iPSαij−iβi

)
where

∑
is the summation over i such that 0 ≤ i ≤ j, j + 1 ≤ i + k.

Therefore, since T ∗αij−iPSαij−iβi ∈ Sαi,j−i+1 = Sαj+1 , the process

Y kγn = PSαj

n∑
i=0

PRαi+kTαiβi = Tαj

(∑
T ∗αij−iPSαij−iβi

)
= Tαjβjk ,

where βjk =
∑
T ∗αij−iPSαij−iβi, has the form (4.20). Thus, in view of

Theorem 4.4, it remains to prove that, for every k ≥ 0, the set {βjk, j ≥ 0}
is a compact subset of L4([0, 1], Σ, µ).

Let 0 = aa0 < aa1 < . . . < aapa = 1 be the partition corresponding to τa.
Since {τa}a∈A is a compact subset of G, supa∈A pa = p0 < ∞. Thus, for
every f of bounded variation and every a ∈ A

1∨
0

f ◦ τa ≤
pa∑
i=1

ai∨
ai−1

f ◦ τa + 2pa
1∨
0

f ≤ 3p0

1∨
0

f

and hence,

(4.83)
1∨
0

Tαiqf =
1∨
0

f ◦ ταiq ≤ (3p0)q
1∨
0

f

for each i ≥ 0 and q ≥ 0. Furthermore, (4.46) implies
1∨
0

T ∗αiqf =
1∨
0

Pϕ(gµf)
gµ

1({supp gµ})
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≤ sup
1({supp gµ})

gµ

1∨
0

Pϕ(gµf) +
1∨
0

1({supp gµ})
gµ

supPϕ(gµf)

where ϕ = ταiq. Therefore, since gµ(x) ≥ c > 0 for x ∈ supp gµ and∨1
0 gµ <∞, in virtue of Lemma 4.10 and (4.73) we have

1∨
0

T ∗αiqf ≤ K3

1∨
0

Pϕ(gµf)(4.84)

≤ K4s
q
( 1∨

0

gµf + c
1∫

0

|gµf | dm
)
≤ K5s

q
1∨
0

f

for each f of bounded variation and such that
∫ 1

0
fgµ dm = 0 and for some

constants K3, K4, K5, c and s ∈ (0, 1) depending only on α. Now, let f ∈ B.
Since j− i+ 1 ≤ k,

∫ 1

0
f dµ = 0 and

∫ 1

0
PSαij−iβi dµ = 0, inequalities (4.83)

and (4.84) imply

1∨
0

T ∗αij−iPSαij−iβi ≤ K5s
k

1∨
0

PSαij−iβi

= K5s
k

1∨
0

(PHαij−iβi − PHαij−i+1βi)

= K5s
k
( 1∨

0

Tαij−iT
∗
αij−iβi +

1∨
0

Tαij−i+1T
∗
αij−iβi

)
≤ K5s

k
[
(3p0)k

1∨
0

T ∗αij−iβi + (3p0)k
1∨
0

T ∗αij−i+1βi

]
≤ 2K2

5s
2k(3p0)k

1∨
0

βi .

Hence, since the set B consists of functions with variation bounded by the
same constant K,

1∨
0

βjk ≤ k2K2
5s

2k(3p0)kK .

This completes the proof of the theorem since every set of functions with
variation bounded by the same constant is compact in L4([0, 1], Σ, µ).

Example 4.2. Consider the probability space ([0, 1], Σ,m). Let A(h) =[
1
2 − h,

1
2 + h

]
, let {τa}a∈A(h) be the family of transformations of the unit
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interval into itself given by

τa(x) =


x

a
if x ∈ [0, a),

x− a
1− a

if x ∈ [a, 1],

and let B(h) = {fe : [0, 1]→ R; e ∈ A(h)}, where

fe(x) =
{

2(1− e) for x ∈ [0, e),
−2e for x ∈ [e, 1].

Then there exists h such that for every γ ∈ Γ+(A(h), B(h)), Uγn → N(0, 1)
in distribution.

P r o o f. For every f ∈ L1([0, 1], Σ,m) we have (see Example 4.1)

(4.85) T ∗a f(x) = af(ax) + (1− a)f((1− a)x+ a)

and so

T ∗a fe(x) =


2(1− e), x ∈ [0, (e− a)/(1− a)), e ≥ a,
2(a− e), x ∈ [(e− a)/(1− a), 1], e ≥ a,
2(a− e), x ∈ [0, e/a), e < a,
−2e, x ∈ [e/a, 1], e < a,

almost everywhere. Hence, since 1
2−h ≤ 1−e ≤ 1

2 +h, 1
2−h ≤ 1−a ≤ 1

2 +h
and |e− a| ≤ 2h, we have

‖T ∗a fe‖22 ≤



(
1
2

+ h

)2

4
2h

1
2 − h

+ 16h2

(
1− 2h

1
2 + h

)
if e ≥ a,

16h2
(

1
2 + h

)
1
2 − h

+ 4
(

1
2

+ h

)2(
1−

1
2 − h
1
2 + h

)
if e < a.

Thus, for every a, e ∈ A(h) and sufficiently small h

(4.86) ‖T ∗a fe‖22 ≤
24h

1
2 − h

.

It follows that there exists h1 such that for every h ≤ h1

‖PSafe‖2 = ‖fe − PHafe‖2 = ‖fe − TaT ∗a fe‖2(4.87)
≥ ‖fe‖2 − ‖TaT ∗a fe‖2 = ‖fe‖2 − ‖T ∗a fe‖2

≥ 2

√
1
4
− h2 − 2

√
6h

1
2 − h

≥ 1
2

since ‖fe‖22 = 4e(1 − e) ≥ 4( 1
2 − h)( 1

2 + h). On the other hand, since for
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every f ∈ L2([0, 1], Σ,m) with norm equal to 1

‖Pτaf‖22 =
1∫

0

[af(ax) + (1− a)f((1− a)x+ a)]2 dx

=
1∫

0

a2f2(ax) dx+
1∫

0

(1− a)2f2((1− a)x+ a) dx

+
1∫

0

2a(1− a)f(ax)f((1− a)x+ a) dx

≤ a
a∫

0

f2(x) dx+ (1− a)
1∫

a

f2(x) dx

+ 2
√
a(1− a)

√√√√ a∫
0

f2(x) dx
1∫

a

f2(x) dx

≤ 1
2

+ h+
1
2
≤ 1 + h

we have

(4.88) ‖Pτaf‖2 ≤
√

1 + h‖f‖2, f ∈ L2([0, 1], Σ,m) .

Hence, and from (4.86), it follows that there exist n0 and h0 such that for
every γ ∈ Γ+(A(h0), B(h0))

(4.89)
n0∑
i=0

(1 + h0)i/2‖Pϕβi‖2 + 4
( 1

2 + h0)n0

1
2 − h0

≤ 1
4

where ϕ = ταi . Finally, for every f with bounded variation
1∨
0

Pτaf(x) =
1∨
0

[af(ax) + (1− a)f((1− a)x+ a)]

= a

a∨
0

f(x) + (1− a)
1∨
a

f(x) ≤
(

1
2

+ h0

) 1∨
0

f(x)

and so, for each α ∈ A+ = A+(A(h0)),

(4.90)
1∨
0

Pψf ≤
(

1
2

+ h0

)n 1∨
0

f(x)

where ψ = ταn = ταn ◦ . . . ◦ τα1 .
We now show that the family {τa}a∈A(h0), the set B(h0) and each γ ∈

Γ+(A(h0), B(h0)) satisfy the assumptions of Theorem 4.5.
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It is obvious that {τa}a∈A(h0) is a compact subset of G and each τa
preserves the Lebesgue measure m. Inequality (4.90) implies∣∣∣Pψf − 1∫

0

f dm
∣∣∣ ≤ 1∨

0

Pψ

(
f −

1∫
0

f dm
)
≤
(

1
2

+ h0

)n 1∨
0

(
f −

1∫
0

f dm
)

where ψ = ταn. Therefore, since the set of functions with bounded variation
is dense in L1([0, 1], Σ,m), (4.69) is satisfied. (4.68), (4.70) and (4.71) are
satisfied trivially. (4.73) is a simple consequence of (4.90). Thus, it remains
to prove (4.72).

Fix γ = (α, β) ∈ Γ+(A(h0), B(h0)) and let {αi, i ≥ 0} ⊂ A+ be the
sequence given by αij = αi+j , j > 0, αi0 = 0. By Lemma 4.16 we obtain∥∥∥PSαn n∑

i=0

PRαi+kTαiβi

∥∥∥
2

(4.91)

≥ ‖PSαnPRαi+nTαnβn‖2 −
∥∥∥ n−1∑
i=0

PSαnPRαi+kTαiβi

∥∥∥
2

≥ ‖PSαnTαnβn‖2 −
n−1∑
i=0

‖PHαnTαiβi‖2

= ‖TαnPSαn0βn‖2 −
n−1∑
i=0

‖TαiPHαin−iβi‖2

= ‖PSαn1βn‖2 −
n−1∑
i=0

‖Tαin−iT ∗αin−iβi‖2

= ‖PSαn1βn‖2 −
n−1∑
i=0

‖Pϕi,n−iβi‖2

where ϕij = ταij = ταij ◦ . . . ◦ ταi1 . We now estimate the second term of the
right side of the above inequality.

Since
∨1

0 βi < 4 and
∫ 1

0
Pϕi,n−iβi dm = 0, using (4.90) we obtain

n−2−n0∑
i=0

‖Pϕi,n−iβi‖2 ≤ 4

(
1
2 + h0

)n0

1
2 − h0

.

Moreover, by (4.88),

n−1∑
i=n−1−n0

‖Pϕi,n−iβi‖2 ≤
n−1∑

i=n−1−n0

(1 + h0)(n−i−1)/2‖Pϕi1βi‖2 .
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Combining the above two inequalities and (4.89) we obtain
n−1∑
i=0

‖Pϕi,n−iβi‖2 ≤
n−2−n0∑
i=0

‖Pϕi,n−iβi‖2(4.92)

+
n−1∑

i=n−1−n0

‖Pϕi,n−iβi‖2 ≤
1
4
.

Now, (4.87) together with (4.91) and (4.92) give us∥∥∥PSαn n∑
i=0

PRαi+kTαiβi

∥∥∥
2
≥ 1

4
,

which completes the proof.

5. The central limit theorems for automorphisms

Let (Ω,Σ, P ) be a probability space and let {τa : Ω → Ω}a∈A be a family
of invertible transformations satisfying the following three conditions:

(5.1) for each a ∈ A, τa and τ−1
a are measurable,

(5.2) for each a ∈ A, τa preserves the measure P ,
(5.3) there exists Σ0 ⊂ Σ such that for each a ∈ A, τa(Σ0) ⊂ Σ0.

Similarly to Section 4 we introduce the following notations:

(5.4) ταn =


ταn ◦ . . . ◦ τα1 if n > 0,
I (identity) if n = 0,
τ−1
αn ◦ . . . ◦ τ

−1
α−1

if n < 0,

where α ∈ A,

Taf = f ◦ τa, f ∈ L1(Ω,Σ, P ), a ∈ A ,(5.5)
Tαnf = f ◦ ταn, f ∈ L1(Ω,Σ, P ), n ∈ Z, α ∈ A ,(5.6)
Σa = τa(Σ0), a ∈ A ,(5.7)
Σαn = τ−1

αn (Σ0), n ∈ Z, α ∈ A ,(5.8)
H0 = L2(Ω,Σ0, P ) ,(5.9)
Ha = L2(Ω,Σa, P ), a ∈ A ,(5.10)
Hαn = L2(Ω,Σαn, P ), n ∈ Z, α ∈ A .(5.11)

Condition (5.3) implies

(5.12) Σa ⊂ Σ0, a ∈ A ,
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and, hence,

(5.13) Σαn ⊂ Σαn+1, n ∈ Z, α ∈ A .

This, in turn, implies

Ha ⊂ H0, a ∈ A ,(5.14)
Hαn ⊂ Hαn+1, n ∈ Z, α ∈ A .(5.15)

It is also easy to see that

(5.16) Tαn(H0) = Hαn, n ∈ Z, α ∈ A .

Moreover, since τa, a ∈ A, preserve P , Tαn is an invertible isometry of H0

onto Hαn and of L2(Ω,Σ, P ) onto L2(Ω,Σ, P ).
(5.14) and (5.15) allow us to define

Sa = H0 	Ha, a ∈ A ,(5.17)
Sαn = Hαn 	Hαn−1, n ∈ Z, α ∈ A .(5.18)

It is obvious that

Sαn⊥Sαk for n 6= k, α ∈ A ,(5.19)
Sαn = TαnSαn , n ∈ Z, α ∈ A .(5.20)

Let B be a subset of L2(Ω,Σ, P ). It is easy to see that the family of
processes {Xγn, n ∈ Z}γ∈Γ (A,B) given by

(5.21) Xγn =
{
TαnPSαnβn if n > 0,
TαnPSαn−1βn if n ≤ 0,

where PSαn is the orthogonal projection of L2(Ω,Σ, P ) onto Sαn , is a sta-
tionary family of sequences of martingale differences.

Theorem 5.1. Let {τa : Ω → Ω}a∈A be a family of invertible transfor-
mations satisfying (5.1)–(5.3), let B be a bounded subset of L2+2ε(Ω,Σ, P )
for some ε > 0 and let {Xγn, n ∈ Z}γ∈Γ (A,B) be the family of processes
given by (5.21). Assume that

(5.22) E{|s2
γ0n − Λ2

γ0|} → 0 as n→∞

uniformly in γ and let {an, n ≥ 0}, {bn, n ≥ 0} be two sequences such that
bn − an →∞. Suppose a γ = (α, β) ∈ Γ (A,B) satisfies

inf
n∈U

D(PSαnβn) = δ > 0 (U =
⋃
n∈N

[an, bn] ∩ Z) ,(5.23)

there exists Mγ such that for every M ≥Mγ(5.24)

1
D2
γn

bn−1∑
j=an

(Λ2
γjM − E{Λ2

γjM})→ 0 as n→∞ in L1(Ω,Σ, P ) norm .
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Then the distributions of (1/Dγn)
∑bn−1
k=an

Xγk, n > 0, converge to the
normal distribution N(0, 1) as n→∞.

P r o o f. It is easy to see that the random variables Xγi, m1 ≤ i ≤ m2,
and Xγ′i, m1 − k ≤ i ≤ m2 − k, with γ′ given by (3.14), (3.15) and (3.17),
(3.18) for k > 0 and k < 0, respectively, have the same joint distributions
for each m1,m2 ∈ Z and m1 ≤ m2. Therefore, {Xγn, n ∈ Z}γ∈Γ satisfies
Condition A. Now, by the same argument as in the proof of Theorem 4.2,
{Xγn, n ∈ Z}γ∈Γ and γ satisfying conditions (5.23) and (5.24) satisfy the
assumptions of Theorem 3.1. This gives the assertion of the theorem.

R e m a r k 5.1. It is obvious that Lemmas 4.6–4.8 remain true if
{τa : Ω → Ω}a∈A satisfies (5.1)–(5.3) and Xγn is given by (5.21).

The following theorem is a simple modification of Theorem 4.3.

Theorem 5.2. Let {τa : Ω → Ω}a∈A be a family of invertible trans-
formations satisfying (5.1)–(5.3), let B be a subset of L2(Ω,Σ, P ) such that
E{f} = 0 for f ∈ B and let {an, n ≥ 0} and {bn, n ≥ 0} be two sequences of
integers such that bn−an →∞ as n→∞. Suppose a γ = (α, β) ∈ Γ (A,B)
satisfies

(5.25) there exist functions u(k) and v(k) such that for every k > 0,
Vγnk/D(Vγnk)→ N(0, 1) as n→∞ in distribution, where

Vγnk =
bn∑

j=an

PSαj

bn+u(k)∑
i=an−v(k)

PRαi−k,i+kTαiβi ,

Rαi−k,i+k = Hαi+k 	 Hαi−k and PRαi−k,i+k is the orthogonal
projection of L2(Ω,Σ, P ) onto Rαi−k,i+k,

lim
k→∞

lim sup
n→∞

∥∥∥∥ Vγn
D(Vγn)

− Vγnk
D(Vγnk)

∥∥∥∥
2

= 0 , where(5.26)

Vγn =
bn∑
i=an

Tαiβi .

Then Vγn/D(Vγn)→ N(0, 1) as n→∞ in distribution.

The proof is the same as that of Theorem 4.3.

We now give a simple application of Theorems 5.1 and 5.2.
Let Σ1 and Σ2 denote the σ-fields of Lebesgue sets in [0, 1] and [0, 1]2,

respectively, and let mi, i = 1, 2, denote the i-dimensional Lebesgue mea-
sure. For Σ ⊂ Σ1 we write [0, 1] × Σ = {[0, 1] × F : F ∈ Σ} and
Σ × [0, 1] = {F × [0, 1] : F ∈ Σ}.
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Consider a family of transformations τa : [0, 1]2 → [0, 1]2, a ∈ [b, c] ⊂
(0, 1), and a family of transformations τa : [0, 1]→ [0, 1], a ∈ [b, c], given by

τa(x, y) =


(x
a
, ya
)

if (x, y) ∈ [0, a)× [0, 1],(
x− a
1− a

, y(1− a) + a

)
if (x, y) ∈ [a, 1]× [0, 1],

(5.27)

τa(y) =


y

a
if y ∈ [0, a),

y − a
1− a

if y ∈ [a, 1].
(5.28)

It is easy to see that τa and τa preserve m2 and m1, respectively, and that
τa is an invertible transformation of the probability space ([0, 1]2, Σ2,m2).

Set

(5.29) Σ0 = [0, 1]×Σ1 .

For every F ∈ Σ1 we have

(5.30) τa([0, 1]× F ) = [0, 1]× τ−1
a (F )

and consequently,

(5.31) τa(Σ0) ⊂ Σ0 .

Thus, {τa}a∈[b,c] satisfies (5.1)–(5.3).

Theorem 5.3. Let {τa}a∈[b,c] be given by (5.27), let B be a compact
subset of L4([0, 1]2, Σ2,m2) and let {Xγn, n ∈ Z}γ∈Γ be defined by (5.21).
Moreover , let {an, n ≥ 0} and {bn, n ≥ 0} be two sequences of integers
such that bn − an →∞ as n→∞. Suppose a γ ∈ Γ ([b, c], B) satisfies

(5.32) inf
n∈U

D(PSαnβn) = δ > 0

where U =
⋃
n≥0[an, bn] ∩ Z. Then

1
Dγn

bn−1∑
k=an

Xγk → N(0, 1) as n→∞ in distribution.

We preface the proof of this theorem with three lemmas.

Lemma 5.1. Let {τa}a∈[b,c] and {τa}a∈[b,c] be the families of transforma-
tions given by (5.27) and (5.28), respectively , and let Σ0 be given by (5.29).
Then

(a) each function f(x, y) ∈ H0 = L2([0, 1]2, Σ0,m2) is independent of x,
(b) the transformation J : H0 → L1([0, 1], Σ1,m1) given by (Jf)(y) =

f(x, y) is a linear and bijective isometry ,
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(c) for each a ∈ [b, c] and each f ∈ H0

(JQ∗af)(y) = (T
∗
a(Jf))(y) = (PτaJf)(y)

where T ag = g ◦ τa, g ∈ L2([0, 1], Σ1,m1), and Qa : H0 → H0 is the
transformation given by Qaf = T−1

a f ,
(d) (JQaf)(y) = (T aJf)(y), f ∈ H0.

P r o o f. We prove (c). The remaining parts of the lemma are obvious.
It is easy to see that T−1

a (H0) = L2([0, 1]2, Σa,m2) = Ha ⊂ H0. Therefore,
Qa(H0) ⊂ H0. Now, let F ∈ Σ0 and f ∈ H0. We have F = [0, 1] × F for
some F ∈ Σ1 and∫
F

(Q∗af)(x, y) dx dy =
∫

[0,1]2

1(F )Q∗af dm2 =
∫

[0,1]2

fQa1(F ) dm2

=
∫

[0,1]2

fT−1
a 1(F ) dm2 =

∫
[0,1]2

f1(τa(F )) dm2

=
∫

[0,1]2

f1([0, 1]× τ−1
a (F )) dm2 =

∫
[0,1]

(Jf)(y)1(τ−1
a (F ))(y) dy

=
∫

τ−1
a (F )

(Jf)(y) dy =
∫
F

Pτa(Jf)(y) dy =
∫
F

(J−1PτaJf)(x, y) dx dy .

This implies (c) and completes the proof of the lemma.

Lemma 5.2. Let {τa}a∈[b,c] and Σ0 be given by (5.27) and (5.29), respec-
tively. Then for each α ∈ A = A([b, c]),

⋂
n∈Z Σαn is the trivial σ-field.

P r o o f. From (5.4), (5.8), (5.29) and (5.30), for n < 0, we have

Σαn = τ−1
αn (Σ0) = τα−1 ◦ . . . ◦ ταn(Σ0)(5.33)

= [0, 1]× τ−1
α−1
◦ . . . ◦ τ−1

αn(Σ1) = [0, 1]× τ−1
αn(Σ1) .

However, from (4.66) (see considerations in Example 4.1) and Lemma 4.9
it follows that

⋂
n≤0 τ

−1
αn(Σ1) is the trivial σ-field. This and (5.33) give the

assertion of the lemma.

Lemma 5.3. Let {τa}a∈[b,c] be given by (5.27). Then

(a) (A, ρ1), where A = A([b, c]), ρ1(α, α′) =
∑∞
i=−∞ 2−|i||αi − α′i|, is a

compact metric space,
(b) for every n < 0, PHαn(PSα1f)2 and (PSα1f)2 are continuous func-

tions of A× L4([0, 1]2, Σ2,m2) into L2([0, 1]2, Σ0,m2) = H0,
(c) there exists K such that

sup
α∈A

‖PSα1f‖4
‖f‖4

≤ K, f ∈ L4([0, 1]2, Σ2,m2) .
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P r o o f. Since Tαn is an isometry of L2([0, 1]2, Σ2,m2) into itself, (5.15)
and (5.16) imply

PHαn = PHαnPH0 = Tαn|H0(Tαn|H0)∗PH0, n ≤ 0 .

Therefore, in view of Lemma 5.1, for n ≤ 0, we have

PHαn = Tα−1 |H0 ◦ . . . ◦ Tαn |H0 ◦ (Tαn |H0)∗ ◦ . . . ◦ (Tα−1 |H0)∗PH0(5.34)
= J−1PHαnJPH0

where Hαn = Tαn(L2([0, 1], Σ1,m1)), Tαn = Tα−1 ◦ . . . ◦ Tαn . Similarly,
since PSα1f = PSα1PH0f = PH0f − PHα1PH0f , we have

(5.35) PSα1 = PH0 − J−1PSα1
JPH0

where Sα1 = H0 	Hα1 , H0 = L2([0, 1], Σ1,m1) and Hα1 = Tα1(H0). On
the other hand, since (PH0f)(x, y) = E{f(x, y)|Σ0} =

∫ 1

0
f(x, y) dx, by the

Hölder inequality we obtain
1∫

0

(PH0f)4 dy =
1∫

0

( 1∫
0

f(x, y) dx
)4

dy ≤
1∫

0

( 1∫
0

|f(x, y)| dx
)4

dy

≤
1∫

0

( 1∫
0

f4(x, y) dx
)
dy = ‖f‖44

for every f ∈ L4([0, 1]2, Σ2,m2). Therefore, PH0f ∈ L4([0, 1]2, Σ2,m2)
whenever f ∈ L4([0, 1]2, Σ2,m2) and

(5.36) ‖PH0f‖4/‖f‖4 ≤ 1, f ∈ L4([0, 1]2, Σ2,m2) .

Now, since {τa}a∈[b,c] is a compact subset of (G, ρ) and τa, a ∈ [b, c], preserve
the Lebesgue measure m1, in view of Lemmas 4.13 and 5.1 the assertion of
the lemma follows from (5.34)–(5.36).

P r o o f o f T h e o r e m 5.3. It is obvious that the family of transforma-
tions given by (5.27) satisfies (5.1)–(5.3), and thatB ⊂ L2+2ε([0, 1]2, Σ2,m2)
with ε = 1. Therefore, for the proof of the theorem it is sufficient to examine
assumptions (5.22) and (5.24) of Theorem 5.1. However, (5.24) is a simple
consequence of Lemma 5.2 while (5.22) follows immediately from Lemmas
5.3, 4.7 and Remark 5.1. This completes the proof of the theorem.

Theorem 5.4. Let {an, n ≥ 0} and {bn, n ≥ 0} be two sequences of
integers such that bn − an → ∞ as n → ∞, let {τa}a∈[b,c] be the family of
transformations given by (5.27) and let B be a set of functions f : [0, 1]2 → R
such that

∫
[0,1]2

f dm2 = 0 and |f(x, y) − f(x′, y′)| ≤ L(|x − x′| + |y − y′|)
for every (x, y), (x′, y′) ∈ [0, 1]2 and for some L independent of f . Suppose
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a γ ∈ Γ ([b, c], B) satisfies

(5.37) inf
k>0

inf
n≥0

D(Vγnk) = δ > 0

where Vγnk = PSαn
∑bn+k
i=an

PRαk−i,k+iTαiβi. Then Vγn/D(Vγn) → N(0, 1)
as n→∞ in distribution (here Vγn =

∑bn−1
i=an

Tαiβi).

We preface the proof with three lemmas.
Let Rαp,q denote the space Hαq 	Hαp, q > p, and let PRαp,q denote the

orthogonal projection of L2([0, 1]2, Σ2,m2) onto Rαp,q. Similarly to Lemma
4.16 the following is a simple consequence of the definition of Hαn and
PSαn.

Lemma 5.4. Let (Ω,Σ, P ) be a probability space and let {τa}a∈A be a
family of invertible transformations satisfying (5.1)–(5.3). Then

(a) for every α ∈ A and i,m ∈ Z, there exist α′ ∈ A such that τα′m−i◦ταi
= ταm, and for such α′ and for every f ∈ L2(Ω,Σ, P ) we have PHαmTαif =
TαiPHα′m−if ,

(b) for every α ∈ A and k, i,m ∈ Z, k > 0, there exist α′ ∈ A such that
τα′m−i ◦ ταi = ταm and τα′m+k−i ◦ ταi = ταm+k, and for such α′ and every
f ∈ L2(Ω,Σ, P ) we have PRαm,m+kTαif = TαiPRα′m−i,m+k−if ,

(c) for every α ∈ A and i,m ∈ Z there exist α′ ∈ A such that τα′m−i ◦
ταi = ταm and τα′m−1−i ◦ ταi = ταm−1, and for such α′ and for every
f ∈ L2(Ω,Σ, P ) we have PSαmTαif = TαiPSα′m−i.

Lemma 5.5. Let {τa}a∈[b,c] be given by (5.27) and let f : [0, 1]2 → R be
such that∫

[0,1]2

f dm2 = 0 and |f(x, y)− f(x′, y′)| ≤ L(|x− x′|+ |y − y′|)

whenever (x, y), (x′, y′) ∈ [0, 1]2. Then

‖f − PHαnf‖2 ≤ L(max{1− b, c})n, n ≥ 0, α ∈ A ,(5.38)
‖PHαnf‖2 ≤ L(max{1− b, c})−n, n ≤ 0, α ∈ A .(5.39)

P r o o f. We have

τ−1
a (Σ0) = {τ−1

a ([0, 1]× F ) : F ∈ Σ1}
= {τ−1

a1 ([0, 1])× τa1(F ∩ [0, a]) ∪ τ−1
a2 ([0, 1])× τa2(F ∩ [a, 1]) : F ∈ Σ1}

= {τ−1
a1 ([0, 1])× F1 ∪ τ−1

a2 ([0, 1]) ∩ F2 : F1, F2 ∈ Σ1}

where τa1 = τa|[0,a], τa2 = τa|[a,1] and τa is given by (5.28). Therefore,
using an induction argument, and setting ∆n

ηα = τ−1
α1η1 ◦ . . . ◦ τ

−1
αnηn([0, 1]),
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where η is an element of {1, 2}N and α ∈ A , we obtain

Σαn =
{⋃
η

∆n
ηα × Fnη : Fnη ∈ Σ1

}
,

sup
η,α
{m1(∆n

ηα)} ≤ [max{1− b, c}]n, n ≥ 0 .

This implies

(5.40) (PHαnf)(x, y) = E{f |Σαn}(x, y) =
1

m1(∆n
ηα)

∫
∆nηα

f(u, y) du

for x ∈ ∆n
ηα and consequently,

‖f − PHαnf‖22 =
∫

[0,1]2

(f − PHαnf)2 dm2

=
∑
η

∫
∆nηα×[0,1]

∣∣∣∣f(x, y)− 1
m1(∆n

ηα)

∫
∆nηα

f(u, y) du
∣∣∣∣2 dx dy

≤
∑
η

∫
∆nηα×[0,1]

(Lm1(∆n
ηα))2 dx dy

≤
∑
η

L2(sup
η,α
{m1(∆n

ηα)})2m1(∆n
ηα)

≤ L2(sup
η,α
{m1(∆n

ηα)})2 ≤ L2(max{1− b, c})2n ,

which is (5.38).
Now we show (5.39). It is easy to see that

(JPH0f)(y) = (JE{f |Σ0})(y) =
1∫

0

f(x, y) dx

where J is defined as in Lemma 5.1. Therefore,

|(JPH0f)(y)− (JPH0f)(y′)| ≤
1∫

0

|f(x, y)− f(x, y′)| dx ≤ L|y − y′|

and consequently,

(5.41)
1∨
0

(JPH0f) ≤ L .

Moreover, by Lemma 5.1, for n ≤ 0, we have

‖PHαnf‖2 = ‖PHαnPH0f‖2 = ‖Qα1 ◦ . . . ◦Qαn ◦Q∗αn ◦ . . . ◦Q
∗
α1
PH0f‖2

= ‖J−1Tα1 ◦ . . . ◦ Tαn ◦ Pαn ◦ . . . ◦ Pα1JPH0f‖2
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= ‖J−1Pαn ◦ . . . ◦ Pα1JPH0f‖2
where Pαj is the Frobenius–Perron operator corresponding to ταj . Hence,
in view of (4.65) (see Example 4.1) and (5.41) we obtain

‖PHαnf‖2 ≤
1∨
0

Pαn ◦ . . . ◦ Pα1JPH0f ≤ L(max{1− b, c})−n

since
∫ 1

0
JPH0f dm1 =

∫ 1

0
f dm2 = 0. This completes the proof of the

lemma.

Lemma 5.6. Let {τa}a∈[b,c] be given by (5.27) and let f : [0, 1]2 → R be
such that

|f(x, y)− f(x′, y′)| ≤ L(|x− x′|+ |y − y′|)
for every (x, y), (x′, y′) ∈ [0, 1]× [0, 1]. Then for every α ∈ A = A([b, c]) and
every j ≥ 0 we have

1∨
0

JPSα0T
−1
αj f ≤ 8L2j ,

1∨
0

JPSα0Tαjf ≤ 4L(max{1− b, c})j−1 .

P r o o f. By the definition of Sα0 (see (5.18)) we have

PSα0T
−1
αj f = PSα0PH0T

−1
αj f = PH0T

−1
αj f − PHα−1PH0T

−1
αj f .

Thus, by the definition of Qa, we obtain

PSα0T
−1
αj f = PH0T

−1
αj f −Qα−1Q

∗
α−1

PH0T
−1
αj f .

Hence, in virtue of Lemma 5.1,

JPSα0T
−1
αj f = JPH0T

−1
αj f − JQα−1J

−1JQ∗α−1
J−1JPH0T

−1
αj f

= JPH0T
−1
αj f − Tα−1Pα−1JPH0T

−1
αj f

where Tα−1h = h ◦ τα−1 and Pα−1 is the Frobenius–Perron operator corre-
sponding to τα−1 . As a consequence, since

(5.42)
1∨
0

T ah ≤
a∨
0

h ◦ τa1 +
1∨
a

h ◦ τa2 +
1∨
0

h ≤ 3
1∨
0

h

where τa1 = τa|[0,a] and τa2 = τa|[a,1], and

(5.43)
1∨
0

Pτah ≤ (max{a, 1− a})
1∨
0

h
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(see (4.65)), we have

(5.44)
1∨
0

JPSα0T
−1
αj f ≤ 4

1∨
0

JPH0T
−1
αj f .

Thus, for the proof of the first assertion it remains to estimate∨1
0 JPH0T

−1
αj f .

By Lemma 5.4 we have

(5.45) PH0T
−1
αj f = PH0Tα′−jf = Tα′−jPHαjf = T−1

αj fPHαjf

where α′ is such that α′k = αj+1−k, k = −j, . . . ,−1. On the other hand,
using the same notations as in the proof of the previous lemma and applying
(5.40) we obtain

|(PHαjf)(x, y)− (PHαjf)(x′, y′)| ≤ L|y − y′|
whenever (x, y), (x′, y′) ∈ ∆n

ηα × [0, 1], and

|(PHαjf)(x, y)− (PHαjf)(x′, y′)| ≤ L
for every (x, y), (x′, y′) ∈ [0, 1]2. Consequently, since

ταj ◦ . . . ◦ τα1(∆j
ηα × [0, 1]) = [0, 1]× τ−1

αjηj ◦ . . . ◦ τ
−1
α1η1([0, 1]) ,

we have

|(T−1
αj PHαjf)(x, y)− (T−1

αj PHαjf)(x′, y′)| ≤ L|y − y′|

for every (x, y), (x′, y′) ∈ [0, 1]× ∆̃j
ηα, where ∆̃j

ηα = τ−1
αjηj ◦ . . .◦ τ

−1
α1η1([0, 1]),

and
|(T−1

αj PHαjf)(x, y)− (T−1
αj PHαjf)(x′, y′)| ≤ L

for every (x, y), (x′, y′) ∈ [0, 1]2. Hence, using (5.45), we obtain∨
∆̃jηα

JPH0T
−1
αj f ≤ L

and
|(JPH0T

−1
αj f)(y)− (JPH0T

−1
αj f)(y′)| ≤ L

for every y, y′ ∈ [0, 1]. This implies

(5.46)
1∨
0

JPH0T
−1
αj f ≤ L2j+1

since
1∨
0

JPH0T
−1
αj f ≤

∑
η

∨
∆̃jηα

JPH0T
−1
αj f

+ sup{|(JPH0T
−1
αj f)(y)− (JPH0T

−1
αj f)(y′)| : y ∈ ∆̃j

ηα, y
′ ∈ ∆̃j

η′α}
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where η′ is such that sup{∆̃j
η′α} = inf{∆̃j

ηα}. Now (5.44) and (5.46) give
the first inequality of the lemma.

We now show the second. As previously, we have

PSα0Tαjf = PH0Tαjf − PHα−1PH0Tαjf = PH0Tαjf − PHα−1Tαjf .

Since for every m ≤ 0, PHαmTαjf is a function independent of x, it is
sufficient to show that for every m ≤ 0

(5.47)
1∨
0

JPHαmTαjf ≤ 3mL(max{1− b, c})j−m .

In virtue of Lemma 5.4 we have

PHαmTαjf = TαjPHα′m−jf = TαjPHα′m−jPH0f

where α′ is such that α′k = αk+j , k = m− j, . . . ,−j − 1, and α′k = αk+j+1,
k = −j, . . . ,−1. Now we have

PHαmTαjf

=Tα1 ◦ . . . ◦ Tαj ◦Qα′−1
◦ . . . ◦Qα′

m−j
◦ (Qα′−1

◦ . . . ◦Qα′
m−j

)∗PH0f

=Tα1 ◦ . . . ◦ Tαj ◦ T−1
αj ◦ . . . ◦ T

−1
α1

◦Qα′
j+1
◦ . . . ◦Qα′

m−j
◦ (Qα′−1

◦ . . . ◦Qα′
m−j

)∗PH0f

=Qα′
j+1
◦ . . . ◦Qα′

m−j
◦ (Qα′−1

◦ . . . ◦Qα′
m−j

)∗PH0f .

Hence, applying Lemma 5.1, we obtain

JPHαmTαjf = Tα′
j+1
◦ . . . ◦ Tα′

m−j
Pα′−1

◦ . . . ◦ Pα′
m−j

JPH0f

where Tα′
j
h = h◦τα′

j
and Pα′

j
is the Frobenius–Perron operator correspond-

ing to τα′
j
. This, in view of (5.42) and (5.43), gives (5.47) and completes the

proof of the lemma.

P r o o f o f T h e o r e m 5.4. By using the same reasoning as in the
proof of Theorem 4.5 the conclusion of the theorem is a simple consequence
of Theorems 5.2 and 5.3 and Lemmas 5.4–5.6.

R e m a r k 5.2. Theorem 5.4 can be proven for more general sets B. For
example, the set B may consist of all functions such that

max
y

∨
x

f(x, y) + max
x

∨
y

f(x, y) ≤M

where
∨
x f(x, y) is the variation of f(x, y) with fixed y and

∨
y f(x, y) is

the variation of f(x, y) with fixed x. The idea of the proof in this case is
the same, but the proof is more technical and not interesting.
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6. Final remarks

The following theorem shows that the assumption of ergodicity of the
sequences ταn in the central limit theorem is not necessary.

Theorem 6.1. Let (Ω,Σ, P ) be a probability space, let {τi : Ω → Ω,
i = 1, . . . ,m} be a finite family of invertible transformations satisfying (5.1)–
(5.3) and let B be a finite subset of L2(Ω,Σ, P ). Assume that

⋂
n τ

n
i0

(Σ0)
is the trivial σ-field for some i0, 1 ≤ i0 ≤ m. Let {Xγn, n ∈ Z}γ∈Γ be
the family of sequences of martingale differences given by (5.21). Suppose a
γ ∈ Γ ({1, . . . ,m}, B) satisfies

(6.1) inf
n≥0

D(PSαnβn) = δ > 0 .

Then (1/Dγn)
∑n
k=1Xγk → N(0, 1) as n→∞ in distribution.

P r o o f. Fix γ ∈ Γ such that (6.1) holds. Let γ′ ∈ Γ be such that
γ′n = (α′n, β

′
n) = (i0, βn) for n ≤ 0 and γ′n = (α′n, β

′
n) = (αn, βn) for n > 0.

Since Λ2
γ′jM = E{Λ2

γ′jM} for every M > 0 and j ∈ Z, the statement of
the theorem for Xγ′j is a simple consequence of Theorem 5.1, Lemma 4.9,
Remark 5.1 and Remark 4.1 (the latter is also true in the case of invertible
transformations). However, Xγ′j = Xγj for j > 0 and, therefore, the same
assertion is true for Xγj . This ends the proof of the theorem.

Under slightly stronger assumptions the assertion of Theorem 6.1 also
holds if n→ −∞. For the proof we need two lemmas. The first one can be
proved in a standard way.

Lemma 6.1. Let F be a distribution satisfying the Lipschitz condition
and let {Fn, n ≥ 0} be a sequence of distributions such that Fn → F as
n→∞. Then Fn(s)→ F (s) uniformly in s as n→∞.

Slightly modifying the proof of Lemma 4.2 we can easily obtain the
following.

Lemma 6.2. Let X be a set , Y a finite topological space with discrete
topology and fn : Y N × X → R a sequence of functions such that
supx∈X |fn(y, x)| → 0 as n → ∞ for every fixed y ∈ Y N. Then
supx,y |fn(y, x)| → 0 as n→∞.

Theorem 6.2. Let the family of transformations {τi : Ω → Ω, i =
1, . . . ,m} and the set B satisfy the assumptions of Theorem 6.1 and , in ad-
dition, assume that min1≤i≤m minf∈B D(PSif) = δ > 0. Let {Xγk, k ∈
Z}γ∈Γ be the family of processes given by (5.21). Then for every γ ∈
Γ ({1, . . . ,m}, B), (1/Dγn)

∑−1
k=nXγk → N(0, 1) as n → −∞ in distribu-

tion.
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P r o o f. In view of Theorem 6.1, for every γ ∈ Γ ({1, . . . ,m}, B),
(1/Dγn)

∑n
k=1Xγk → N(0, 1) as n → ∞ in distribution. In virtue of Lem-

mas 6.1 and 6.2, the convergence is uniform on Γ . Now, the desired result
is a simple consequence of Theorem 3.2.

R e m a r k 6.1. Using an approximation method, we can easily prove the
assertions of Theorems 6.1 and 6.2 also in the case where B is a compact
subset of L2.

Example 6.1. Consider the probability space ([0, 1]2, Σ2,m2) and the
following three families of partitions of [0, 1] : 0 = a0jrk < a1jrk < . . . <
anjrkjrk = 1, j = 1, . . . ,mr, r = 1, . . . , p, k = 1, . . . , v; 0 = b0r < b1r < . . . <
bmrr = 1, r = 1, . . . , p; 0 = c0jr < c1jr < . . . < cqjrjr = 1, j = 1, . . . ,mr,
r = 1, . . . , p. It is easy to see that {Arij , i = 1, . . . , qjr, j = 1, . . . ,mr}pr=1,
where Arij = [ci−1,jr, cijr) × [bj−1,r, bjr), is a family of partitions of [0, 1]2.
It is also easy to see that each partition {Arij}i,j , r = 1, . . . , p, can be
obtained in the following way: first we divide [0, 1]2 into mr strips of the
form [0, 1] × [bj−1,r, bjr), and then each strip [0, 1] × [bj−1,r, bjr) into qjr
rectangles of the form [ci−1,jr, cijr)× [bj−1,r, bjr).

Besides this, consider a family of transformations τrk : [0, 1]2 → [0, 1]2,
r = 1, . . . , p, k = 1, . . . , v, defined by

τrk(x, y) = Sijr ◦ τ̃jrk ◦ S−1
ijr(x, y)

for (x, y) ∈ [ci−1,jr, cijr) × [bj−1,r, bjr), i = 1, . . . , qjr, j = 1, . . . ,mr, where
Sijr : [0, 1]2 → [ci−1,jr, cijr)× [bj−1,r, bjr) is of the form

Sijr(x, y) = (x(cijr − ci−1,jr) + ci−1,jr, y(bjr − bj−1,r) + bj−1,r)

and τ̃jrk : [0, 1]2 → [0, 1]2 is given by

τ̃jrk(x, y) =
(

x− ai−1,jrk

aijrk − ai−1,jrk
, y(aijrk − ai−1,jrk) + ai−1,jrk

)
for (x, y) ∈ [ai−1,jrk, aijrk) × [0, 1], i = 1, . . . , njrk. It is easy to verify that
τrk, r = 1, . . . , p, k = 1, . . . , v, are not ergodic and {τrk, r = 1, . . . , p, k =
1, . . . , v} ∪ {τw}, where τw is given by (5.27) for some w ∈ (0, 1), satisfies
the assumptions of Theorems 6.1 and 6.2 with Σ0 given by (5.29) (since
on each rectangle of the same strip [0, 1] × [bj−1,r, bjr) we apply the same
transformation τ̃jrk, we have τrk(Σ0) ⊂ Σ0). Therefore, for every finite set
B ⊂ L2([0, 1]2, Σ2,m2) such that

min
a∈A

min
f∈B

D(PSaf) = δ > 0 ,

where A = A0 ∪ {w} and A0 = {(r, k) : r = 1, . . . , p, k = 1, . . . , v},
we have (1/Dγn)

∑n
k=1Xγk → N(0, 1) as n → ∞ in distribution and

(1/Dγn)
∑−1
k=nXγk → N(0, 1) as n → ∞ in distribution uniformly on
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Γ (A,B) as well as on Γ (A0, B), where {Xγk, k ∈ Z}γ∈Γ is the family
of sequences of martingale differences given by (5.21).

Example 6.2. Consider the probability space ([0, 1], Σ1,m1) and the
following two families of partitions of [0, 1] : 0 = a0jrk < a1jrk < . . . <
anjrkjrk = 1, r = 1, . . . , p, k = 1, . . . , v, j = 1, . . . ,mr and 0 = b0r < b1r <
. . . < bmrr = 1, r = 1, . . . , p. Moreover, consider a family of transformations
τ rk : [0, 1]→ [0, 1], r = 1, . . . , p, k = 1, . . . , v, defined by

τ rk(y) = Sjr ◦ τ̃ jrk ◦ S
−1

jr (y)

for y ∈ [bj−1,r, bjr), j = 1, . . . ,mr, where Sjr : [0, 1]→ [bj−1,r, bjr) is of the
form

Sjr(y) = y(bjr − bj−1,r) + bj−1,r

and τ̃ jrk : [0, 1]→ [0, 1] is given by

τ̃ jrk(y) =
y − ai−1,jrk

aijrk − ai−1,jrk

for y ∈ [ai−1,jrk, aijrk], i = 1, . . . , njrk.
Let A = {(r, k) : r = 1, . . . , p, k = 1, . . . , v}, let Sa, a ∈ A, be given

by (4.15), let PSa be the orthogonal projection of L2([0, 1], Σ1,m1) onto
Sa, let B be a finite subset of L2([0, 1], Σ1,m1) and, finally let {Xγn, n ≤
0}γ∈Γ+ be the family of processes given by (4.19) and (4.20). We now show
that (1/Dγn)

∑−1
k=nXγk → N(0, 1) as n → ∞ in distribution uniformly on

Γ+(A,B) whenever

min
a∈A

min
f∈B

D(PSaf) = δ > 0 .

For the proof consider the family of transformations τrk : [0, 1]2 → [0, 1]2

given by

τrk(x, y) = Sjr ◦ τ̃jrk ◦ S−1
jr (x, y)

for (x, y) ∈ [0, 1] × [bj−1,r, bjr), j = 1, . . . ,mr, where τ̃jrk : [0, 1]2 → [0, 1]2

and Sjr : [0, 1]2 → [0, 1]× [bj−1,r, bjr) are defined by

τ̃jrk(x, y) =
(

x− ai−1,jrk

aijrk − ai−1,jrk
, y(aijrk − ai−1,jrk) + ai−1,jrk

)
for (x, y) ∈ [ai−1,jrk, aijrk) × [0, 1] and Sjr(x, y) = (I(x), Sjr(y)), where
I(x) = x. Moreover, consider τw given by (5.27) for some w ∈ (0, 1). It
is easy to see that {τrk : r = 1, . . . , p, k = 1, . . . , v} ∪ {τw} and the set
B = J−1B satisfy the assumptions of Example 6.1. Therefore,

1
Dγn

−1∑
k=n

Xγk → N(0, 1) as n→∞ in distribution



60 A central limit theorem

uniformly on Γ (A,B), where Xγk is given by (5.21), and consequently, since
Xγk is independent of x for k ≤ 0 and (JXγk)(y) = Xγk(y),

1
Dγn

−1∑
k=n

Xγk → N(0, 1) as n→∞ in distribution

uniformly on Γ+(A,B). This completes the proof of our assertion.
Now we will give an example to show that Theorem 2.1 cannot be de-

rived from the most general central limit theorem for martingales given as
Theorem 3.4 in [7].

Counterexample 6.1. Let τw be given by (5.27) for some w ∈ (0, 1)
and let τ : [0, 1]2 → [0, 1]2 be given by

τ(x, y) =


(2x, (y − 1

2 ) 1
2 + 1

2 ) if (x, y) ∈ [0, 1
2 )× [ 1

2 , 1],
(2(x− 1

2 ), (y − 1
2 ) 1

2 + 3
4 ) if (x, y) ∈ [ 1

2 , 1]× [ 1
2 , 1],

(2x, 1
2y) if (x, y) ∈ [0, 1

2 )× [0, 1
2 ),

(2(x− 1
2 ), 1

2y + 1
4 ) if (x, y) ∈ [ 1

2 , 1]× [0, 1
2 ).

Put A = {τ, τw} and let f1 and f2 be two bounded functions independent
of x and such that supp f1 ⊂ [0, 1] × [0, 1

2 ], supp f2 ⊂ [0, 1] × [ 1
2 , 1] and

mini mina∈AD(PSafi) = δ > 0. Example 6.1 shows that for every γ ∈ Γ
the distributions of (1/Dγn)

∑n
k=1Xγk, where the Xγk are given by (5.21),

converge to the distribution N(0, 1). We now show that there exists γ ∈ Γ
such that (1/D2

γn)
∑n
k=1X

2
γk is not convergent in probability as n → ∞,

that is, Sγni = (1/Dγn)
∑i
k=1Xγk, i = 1, . . . , n, n ∈ N, does not satisfy the

condition (3.19) of [7, Theorem 3.2]. Indeed, it is sufficient to take γ such
that αi = τ for i 6= 0, α0 = 0, βi = f1 if i ∈ [2(2n)2 , 2(2(n+1))2) and βi = f2

if i ∈ [2(2(n+1))2 , 2(2(n+2))2). However, it is easy to notice that for the above
γ the condition (3.30) of [7, Theorem 3.4] is not fulfilled by Sγni. Indeed,
we have

lim
δ→0

lim inf
n→∞

m2

({
1

D2
γn

n∑
j=1

X2
γj > δ

})
≤ 1

2
.
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