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Introduction

The investigations on the foundations of mathematics have both
& philosophical and & mathematical aspect. In this paper I am confining
myself to purely mathematical problems, 4. e. to problems connected
with sueh notions or methods as arve specific to mathematics and not
encountered in other branches of science. Moreover, I shall deal only
with those problems for the solution of whieh the deductive apparatus
of mathematics is or seems to be indispensable.

The present stage of investigations on the foundations of mathe-
matics opencd at the time when the theory of sets was introduced. The
abstractness of that theory and its departure from the traditional stock
of notions which arve accessible to experience, ag well as the possibility
of applying many of ity results to concrete classical problems, made it
necessary to analyze its epistemological foundations. This necessity
became all the more urgent at the moment when antinomies were dis-
covered. However, there is no doubt that the problem of establishing
the foundations of the theory of sets would have been formulated and
discussed. even if no antinomy had appeared in the set theory.

The discussions on the foundations of the theory of gets have
led to the following general problems concerning mathematics as
a whole:

A, Whati is the nature of notions considered in mathematicsd To
what extient are they formed by man and to what extent are they im-
posed from ontride, and whenee do we gain knowledge of their pro-
perties ¢

B. What ix the nature of mathematical proofs and what are the
criteria allowing us to digtinguish eorreot from false proofy?

These problems are of a philosophical nature and we can hardly
expeot to solve them within the limits of mathematicy alone and by
dpplying only mathematical methods. However, these general problems
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have given rise to more special ones which are capable of heing inves-
tigated mathematically, namely:

AL, The axiomatic method, its role in mathematics and the limits
of its applicability,

A2, The constructive trends in mathematios,

B1. The axiomatization of logic,

B2. The decision problems.

Problems Al and A2 originated in eonncetion with problem A and
probloms Bl and B2 were derived from problem B.

Undoubtedly, the list of these problems iy not complete, hut I he-
lieve it to comprise all the most important and most widely dixeussed
ones. Hence only these problems will be the subject of this paper. When
dealing with them I shall algo discuss the theories which are derived
from these problems and are now being intensively developed. As we
shall see, some of thege theories have departed far from the problem which
gave the impulse to form the theory in question, At the end of my paper
I shall mention two theories which to a certain extent wnify all previously
discussed. trends of investigation and put upon them a specific mark,
namely: ‘

0. The theory of reeursive functions and the algebraic methods.

Finally, I wish to draw attention to the fact that the above pro-
blemg are not independent of one another and that the results obtained
in diseussing one problem affect the remaining problems in an essential
way.

I am pregenting below some characteristic results obtained when
investigating individual problems and I take care not to omit any of the
more important ones. However, a congiderable number of results have
not bheen mentioned, since this paper iz informative in character and
does not aim at an encyeclopaedic completeness.

A. Theory of mathematical notions

A 1, The axiomatic method

This section divides naturally into two parts. In one of them, Ala,
I ghall disenss the genoral theory of structures defined by systems of axioms
and the agsociations of this theory with abstract algebra; in the other, Alb,
I shall deal with the application of the axiomatic method to the establish-
nent of individual mathematical theories. To begin with, however, I shall
give w general description (in section Alaa) of the systems of axioms and
discuss their divigion into elementary and non-elementary systems.

Ata. Elementary and non-clementary systems of axiows

Atao, General definitions. The axioms of elementary systems
contain only variables of the lowest type; they comtain no variables
running over sots, classes of ots, relations, ete. Hence these axioms are
sentences which inelude, bosides logical congtants, variables of the lowest
type and symhols of a certain number of constant operations and re-
lations. The quantifiers” appearing in these axioms are always restrieted
to a cerbain constant set J, known as the range of individuals of the system
and composed of objects on which we can perform operations denoted
by the symbols occurring in the axioms, or which stand in mutual rela-
tiong denoted by the gymbols oceurring in the axioms. In other words,
J is the union (as understood in the theory of sefs) of the fields of rela-
tions ag woll as of the domaing and counter-domaing of functions whosce
gymbols appoear in the wxioms,

The rules of inforence of an clementary system are in general the
rules of fihe lower functional caleulus (with identity). All the theorems
of an elemoentary system contain only variables of the lowest type and
those variables are hound by quantifiers Hmited to the set J.

The following throe axiows upon which the theory of groups is
baged may serve ag an oxample of an elementary set of axions:

() (g RYr (-] ) A 2= -t (Y- 2) 1,
() (W) () p (== - 2),
(@) (1) (o) (=2t 97).
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The quantifiers (#)y should be read: for each » belonging to J, and
the quantifier (z), should be read: there exists an @ belonging to J.
The + sign is the symbol of group operation.

Let us note that in many known elementary systems the number
of axioms ig not finite.

Apart from variables of the lowest type the axioms of non-elemen-
fary systoms contain variables running over arbitrary subsets of the
set J, relations between the elements of the set J, ete. The axiom of mathe-
matical induetion is an example of a non-elementary axiom:

(X){06X - (w); [we X Da+16X D (ir)s (we X))}

Here X i8 a variable running over arbitrary subsets of the set of
natural numbers and the quantifier (X); should be read: for each X con-
tained in J.

The systems of axioms of the arithmetic of natural and real numbers
are non-elementary. Namely, the axiom of induction and the axiom of
continuity are non-elementary. ‘

When deducing theorems from non-elementary axioms we make
use not only of the laws of logic but also of certain properties of sets,
6. g. the property affirming that there exists a seb

' - B 18]
zad
where @ (x) is an arbitrary sentential function. That is why nou-elementary
systems should be regarded as a fusion of two systems, one of which con-
stitutes a certain fragment of the theory of sets.

The question ariges in what way we establish the properties of sets
in those systems.

I shall deal below with two methods of establishing the theory ol
setg: the axiomatic and the constructive method (cf. Al and A2a).

If the theory of sets is based on axioms?!), those axioms must be
elementary. Otherwise there wouldl occur & petitio principié: in order
to prove the laws of the theory of gets we would be making use of that
theory itself. A non-elementary set of axioms for a theory I is therefore
(if the axiomatic method of establishing the set theory is chosen)
a union of two clementary systems: one ocontaining a complete or
a fragmentary set of axioms for the set theory and the other which
is the proper set of axioms of the theory I.

1y Some other methods of proving tho laws of the set theory (consisting, for
example in including this theory in logie interpreted as the so-called enlarged func
tional calculus) may be replaced equivalently by an appropriately chosen system o
axioms, Cf. p. 30,
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The division into elementary and non-elementary systems of axioms
is, therefore — if we apply the axiomatic method for establishing the
theory of sets — only apparent and reduced to operating with two sys-
tems of axioms without formulating one of them explicitly.

If wo choose for the theory of sets (or for its fragment appearing in
the system under consideration) not the axiomatic method but another one
whieh is not reducible to that method, then the difference between elem-
entary and non-elementary systems will become essential, as is the
cage, for example, when the theory of sets is established by means of one
of the constructive methods (cf. section A2a).

Mathematicians who operate with non-elementary systems of axioms
usually treat the theory of sets in a ‘“naive’” manner, i. e. they do not
give much thought to proving the laws of that theory. In practice the
reasonings of these mathematiciany may always be incorporated in the
axiomatie systems of the set theory. In spite of this the division of axioms
into elementary and non-elementary systems is most important as this
distinetion has given rise to special problems.

AlaB. The general theory of elementary systems:?). As we
know, congiderable branches of mathematics may be axiomatized, 4. e.
their theorems may be deduced from a certain, usually small, number
of axioms (elementary and non-elementary). We also know, that from
the time Hilbert published his “Grundlagen der Geometrie” up to the
twenties of this century, the axiomatization of various fragments of
mathematics was the main subject of studies on the foundations of
mathematics. :

At present we do not attach so much importance to the actual axio-
matization of various fragments of mathematics. Our interest is mow
concentrated on the general theory of models for structures charac-
terized by sets of axioms. I shall describe this theory below.

The fundamental notion of this theory is the motion of model.
A model for the axiomatic system § is a set and a system of functions
and relations defined in this set and having all those properties which
are oxpressed, in the axioms of the system 8 (further below I shall fre-
quently use the term ‘wtructure” ingtead of “system composed of a setl
and. of funetions and relations’). The class of all the models of the system
8 is ealled the arithmetical cdlass determined by the set of axioms of the
systom 89,

) In the whole section Alnp [ mean by amiomatic system a system based on
o findte or awn infinite number of elementary axioms.

) Tarski [98] uses the term “arvithmetical clags’ only if the number of axioms
of the systom S is finite; in cnse this number is not finite Tarski uses the term “clags
A0y, As vogavds the admissibility of the cluss of all models ef. p. 21.
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For example, the class of all gronps is an arithmetical class since
the axioms characterizing a group ave elementary. Likewise, the clags
of rings and the class of fields are arithmetical classes.

General algebraic notions such as homomorphigm, isomorphism,
free algebra, cte. which have been defined in algebra for concrete
arithmetical classes, e. g. for groups or rings, can bo transferred without
essential changes to theories of arbitrary arithmetical classes.

Thus for instance, by the sub-structure of the structure A defined
by the set J and the functions fy,f,...,fr 18 moeant the structure 4’
defined by the set /' contained. in J and the functions fi1fas-+ 1 f%, Which
for arguments belonging to J' are the same as the funetions fi,fo,...,fi;
the set J’ is closed with respect to the funetions fi,fs,.. . fe, .06, for
arguments belonging to J* the values of these functions Dbelong to JV.

To exemplify this we may mention that if the strasture 4 is a group
(understood as a structure with one operation --), then each semigroup
contained in 4 will be a sub-structure 4 in the sense of the above defi-
nition. On the other hand, if 4 is a group in the sense of a structure with
two operations a--b and «~', then cach group contained in A will be
a sub-structure A in the sense of the above definition.

Thus formed, the general theory of notions such as momorphwm,
homomorphism, sub -algebra, ete., is of considerable methodological
value ag it unifies special algebraic thoories. Moreover, it has didactical
value and may well gerve a8 an introduction to special algebraio theories,

It may be agsumed that there is more in this theory than the mere
unification and generalization of facts known from the elements of alge-
bra. Tarski[97], Henkin [19],and Robinson [74] have given examples
of extremely simple proofs of existential theorems obtained within the
framework of that theory by applying Godel’s completeness theorem.

By applying this theorem Tarskit) has shown that if there exists
at leagt ome ordered field then there existy a non-Archimedean ordered
field. Another example is due to Robingon [74] who has proved the
existence of such a non-Archimodean ordered field that the polyno-
mials with coefficients belonging to that field possess the Darboux
property.

By using similar methods Robingon [74] har obtained interesting
algebraic theovems showing, for example, that if a formula written in
terms of symbols meaningful in the theory of commutative fields it true
in fields with the characteristic 0, then it is also true for fields having
a sufficiently great characteristic p.

4) This proof was presented at the conference in Princeton in 1948
Cf. Tarski [97], p. T18.
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It should be noted that is was Malecev’s [45] idea to make use of
Godel’s theorem for the proofs of algebraic theorems.

In general, the concrete results thus obtained may be gained also
in another manner. Flowever, it is quite possible that the application
of the general methods I have described may in future lead to much
more important discoveries.

To find out how far-reaching these general methods are and what
further possibilities they may contain is an interesting subject for re-
search work.

Another trend of investigations has been initiated by G. Birkhoff®)
who showed that every class of structures closed with respect to oper-
ations of forming homomorphic images, direct products and sub-struc-
tures, is always an arithmetical clags. The system of axioms which
characterizes this class is composed of general sentences having the form

(1) (@) (@2

where W and V are polynomials constructed of the variables @y,a,. ..o,
and of the symbols of operations oceurring in the structures under consi-
deration.

In order to illustrate this theorem let us consider a class of all groups
{a growp is treated here as a structure with two operations a-+b and a™%).
This class is closed with respect to the operation of forming homomorphic
images, direct products and sub-structures. In aceordance with Birk-
hofl’s theorem it is therefore an arithmetical class. Indeed, the axioms

(W) @hs (24 (y4-2) = (2 +y) + 2],
(W)J(il/)J [ w=y by =at e =y 4y,
(@[t +y=y]

characterize the clasy of all groups.

Birkhotl’s theorem has been applied ¢. g. for proving that some
ghrugtures are homomorphic images of sub-structures contained in the
infinite divect product of one fixed structure. By an analysis of Birl-
hoff’s theorem Tarski has shown that each group is a homomorphic
image of a subgroup of the infinite direct product P@;, where each G
is o froo group with two generators (Tarslki [94]).

The rosults obtained by Birkhoff have been generalized and ex-
tended by Fio$¢) who has given a characteristic of arithmetical classes

( n)J[W .’1'1,3".,, ) V(xl,wz,...,m,,)],

%) 1t should be notod that the structuves considered by Birkhoff [2] are defined
by a set and a system of functions, but they contain no relations.
%) The paper of Lo# is not yet published.
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defined by axioms haviug o more general form than the axioms of type (1).
Liod has characterized namely the arithmetical clagses defined by axioms
obtained from equations of the type W=7 by applying to these equationy
arbitrary operations of the sentential caleulus and binding all variables
by general quantifiers placed at the beginning. An example is here the
general theory of rings without divisors of zero, one of the axioms of
that theory having the form

()7 ()7 [y == 0) D[ (=0} v (y=0) }.

T.0$ has obtained his results by introdueing so-called logical fields,
" which constitute s generalization of the notion of model. In a model
every relation either holds between two arbitrary elements or it doex
not hold between those elements; in other wordg, the sentence xRy has
one of two logical values: truth or falsehood. In a logical field we aseribe
to each sentence of this kind a certain weight which is an element of
a Boolean algebra. In case this algebra is rednced to a two-element algebra
2 logical field will he reduced to a model.

The theory of Lof brings many interesting results. Owing to thiy
theory it hag become possible to characterize the properties of structures
which are invariant with respect to homomorphic transformations.
Marczewski [46] has shown Dbefore that positive properties (4. ¢. pro-
perties which may be expressed in terms of quantifiers, of alternation
and conjuction) possessed by a structure are also possessed by all its
homomorphic images. Fio§ has proved that, conversely, any property
which passes from a structure to all its homomorphic images, is equi-
valent to a positive property.

The notion of categoricity, so important for non-elementary the-
ories, loses its significance for elementary systems. As we know, every
consistent elementary set of axioms has models of arbitrary power?),
hence no elementary system is categoric.

In connection with this phenomenon the introduction of the notion
of categoricity in a given power appears to be an important innovation.
This has heen done independently by ¥.oé [43] and by Vaught [103].
They call a system of axioms categoric in a given power if two of its ar-
bitrary modsls of that power are always isomorphic. X0 gives examples
of systems categorical in various powers, and Vanght makes the obger-
vation that a system which is categoric in at least one infinite power,
hag no finite models, and is baged upon a recursive gystern of axioms,
is decidable. Further investigations on the notion of categoricity in
a given power are most desirable.

) This result is duwe to Tarski; of. Skolem [83], p. 18l

Al The axiomatic method 11

The theory of axiomatic systems has absorbed the theory of so-
-called multivalued sentontiol calouli, studied moxt intensively in Poland
some twenty years ago. What had been termed a multivalued system
by logicians specializing in the sentential ealculus, proved in essence to
be & system characterized by axioms of a very peculiar type, namely
having the form

("I’I)J(‘IE)J- e (;l"n),/-W[(l'l,Ilfg, sy Tp)=1],

where W is & polynomial and 1 a designated eclement. The unotion of
matrix considered by logicians represents a special case of ‘the notion
of model. Some of the results obtained by logicians have proved to be
identical with results known before in algebra or such as are more easily
obtained by means of standard algebraic constructions. Thus, ¢. g. the
theorem of Lindenbaums?), stating the existence of an adequate ma-
trix for every system of the sentential caleculus has proved to be identical
with the theorem stating the existence of a free algebra which satisfies
an arbitrarily given system. of identities. Wajsberg’s theorem?®) on
the impossibility of axiomatizing the ordinary sentential ealeulus by
axioms containing only two variables, has been found to be a covollary
to the theorem stating that a structure with the operations 4, —, 7,
in which each sub-structure generated by two elements is a Boolean
algebra, need not itself he a Boolean algebra (cf. [5]).

Moreover, let us note that the consideration of multivalued logies
from the point of view of their models hag led to the study of deductive
systems in which not only the axioms but also all theorems have the form
of equations hetween two polynomials; the deductive rules permit only
the use of reflexiveness, symmetry, transitivity and extensionality of
identity when passing from one equation to another. The set of equations
which are valid for an arbitrary system of functions defined on two ele-
ments iz axiomatizable in the manner- described above by means of a
finite set of equations?9). This result cannot be generalized to functions
dofined in an arbitrary finite set1t). .

Some mulilvalued systems of the sentential caleulus have become
muah more interesting for mathematicians gince the moment they were
represented in the form of algebraic systems. Thus e. g. the system of the
so-called striot implication, created for the purpose of logical analysis
of the notions of necessity and possibility hag been found to be identical
8 Iindenbanm never published this proof. It was published for the fivst
time by MeKinsey [50].

Y Cf. Lukasiewicr and Tarski [44].

W) Lyndow [41].

) Lyndon [42]. -
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with the algebra of general topology which has been developed for more
than thirty years by Kuratowski and his pupils?).

Likewise Brouwer’s algebra, which is the theory of matrices for the
system of intuitionistic logic, has proved to be identical with the algebra
of closed sets in general topological spaces. In recent years both these
relationships have been made use of in many investigations: by Mo
Kingey and Tarski [51] and [52], Rasiowa and Sikorski [71],

Mostowski [B7].
' It is obvious that the discovery of such relations has facilitated
to a congiderable extent the study of the properties of multivalued
systems and it iy quite possible that it will also faeilitate the study of
general algebra by making the intuitions which logicians eonnected
with these systems available to mathematicians. ‘

Atay. The notion of categoricity and the theory of non-elemen-
tary systems. The nofion of model retains its signiticance algo in non-
-elementary systems. However, congidering that in non-elementary
gystems we speak not only of elements of the set J, hut also of arbitrary
subsets of the set J, of relations between the elements J, ete., in defining
the notion of model we must give an interpretation also to these set-
-theoretical notions. There are two ways open to us.

One consists in treating set-theoretical notions just as other primi-
tive notions. Hence sets are interpreted in the model as arbitrary
objects, the relation of “being a member of”? as an arbitrary relation,
provided it satisties (togother with the objects interpreting the sets)
the axioms of the theory of setis. Such models are called non- absolm(’ ones.

A mathematician who bases his investigations on a certain system
of the set theory, i. e. who, in his reasonings, has the notion of sot at his
disposal and knows how to apply it, may consider, moreover, tho so-
-called absolute models. In these models the notion of set appearing in the
axioms of the gystem is interpreted as that very notion of set with which
the mathematician operates intuitively in his reasouings.

Let us observe that two mathematicians adopting various methods
for establishing the theory of sets may arrive ot two ontively different
notions of an absolute model. In cousequence it seems to me that the
notion of an absolute model will gain essentially in value only when the
difficult problems of the foundations of the theory of sets ave solved;
this will enable mathematicians to agree on one method of establishing
that theory.

The fact is, however, that in practice most mathematiciany use
freely the notions of sef, relation, classes of gets, etc. and agree with

. 1) Weyl [L06].
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regard to the fundamental assumptions of these set-theoretical notions.
Such mathematicians may, therefore, use the notion of an absolute model
without any risk of being misunderstood. But in more subtle conside-
rations, bordering on problems of the foundations of the theory of sebs,
this notion is not precise enough.,

Non-absolute models made their appearance in mvestlgwt.lons on the
foundations of the set theory in connection with the so-called Skolem
paradox [84]. Reeontly they have become the subject of s number
of studies aimed either at clucidating their significance or at finding
gome of their applications?s),

In connection with the differentiation of absolute and non-abgolute
models it is necessary o observe some caution when investigating the
oategoricity of systems of axioms. The classical definition: a “system of
axioms is categoric if cach two of its models are isomorphic” is not sat-
isfactory since we do not know what two models are spoken of in this
definition. In particular, it is clear that if in the above definition the
word ‘‘model” were to stand for “arbitrary non-absolute model” no
system of axioms would be categoric.

‘When speaking of categoricity we wusually have in mind the
isomorphism of two arbitrary absolute models. The well-known
theorerns on the categoricity of the axioms of arithmetic and
geometry are then obtained on the basis of the simplest azioms
of the theory of sets accepted for those sets with which we operate
intuitively.

As has been mentioned before, there are mathematiciang who avoid
dealing with the notion of an absolute model in view of the still ungolved
problems of the foundations of the set theory. I shall give here a defi-

‘nition of categoricity which might be accepted by such mathematicians.

(For similar definition see Wang [105].)

Lot us treat the non-elementary system § as a union of two ele-
mentary systems 8, 8% 8’ containing only the primitive terms of the
theory of sets and §” also the primitive terms of the theory whose axioms
are under congideration.

Bvery model M of the gystom § contains the submodel M’ of the
systom 87, 4. e. the model for the theory of sets upon which the system §
is basod. Tiet us eall M’ the set-theoretical part of M.

Drpinrrron. System § iy categoric if for each ftwo models MM,
of the system § each isgomorphic mapping of the set-theoretical part of M;
on the set-theoretical part M, can be extended to an isomorphic mapping
of the whole models M, and M,.

”’) Kemeny [31), Henkin [18], Mostowski [64], Rosser and Wang [79].
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T¢ §’ containg the axiomatic set theory of Zermelo, then the o?di-
nary theorems on the categoricity of the axioms of geopfatry‘and arith-
metic can he proved by means of the definition of ca.tegoncmy givenabove,

The theory of non-elementary systems is ab .prelssem; 'mcomp&mbly
poorer than the theory of elementary gystems. This is quite ‘underst:.m-l
dable if we take into account the fact that the diffieult problems concerning
the foundations of the theory of sety are involved in that‘ theory.

T shall mention certain negative resulis concorning models fmf non-
-elementary systems. As shown by Tarski [01] and Kur&tovfrakl [3.8],
the class of all relations well ordering their fields iﬂ. not an ﬂjnt.hr.netmayl
clags, 4. e. it cannot be characterized by either a :fim'.bo or an infinite sys-
tem of elementary axioms. Lo#™) has obtained similar results fo;' the{
clags of compact closure algebras (called compact if tt}e ‘theorem of
Cantor on the decreasing sequences of closed zefs iy valid in them).

The theory of axiomatic systems is at present & m.zuture mmlyho-
matical theory and it is most interesting to observe its lust‘,o?m.al evolu?u'on.
Having arisen from the necessity of systematizing and giving precision
to various special branches of mathematics, it subsequen‘bly became‘ &
means for defining the contents of many other branches of ma.thgmahqs
and began to evolve general notions applicable to a number of axtom.atm
systems. Today it concentrates on investigating the most general notu.)ns
which have been formed in the course of ity development. We are }ookm.gF
forward with the greatest interest to the continuation of 1‘:1195@ investi-

gations and, in particular, we hope that an wnswer will }00 given 1:'0 f}he
question whether notions formed in the general theory will be applicable
to more profound and more concrete mathematical problers.

Atib, The axiomatic method applied to concrete mathematical theories

The method of defining the object of mathematical investigations
by axioms has proved extremely fertile and useful in the 'foundla'l.:i(‘ms
of geomefry and in abstract algebra. On the other hand, the definition
ot the object of investigation of the arithmetic of natural numbers, or of
the arithmetic of real numbers by giving a set of axioms for these theo'-
ries, does not appear to be convineing. This is due to the fact discovered
by Godel [9] that every suificiently rich system of axioms iy incomplete.

A congequence of the incompleteness of a system of axiop’m is t»h.m;
it is posgible to find such an expression A that the system remains coOnsa-
tent both after adding to it the expression 4 and after adding the ex-
pression ~ 4. Referring to the so-called theorem of completeness ®) we

1) This result ix not yet published.
1) Godel (8] See BI, p. 31,
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obtain two non-absolute models of the system under consideration such
that the expression 4 is satisfied in one model and ~4 in the other.
Hence the models are not isomorphic and, what is more, they helong
0 two separate arithmetical clagses (determined by the axioms 4 and ~ 4).

The existence of various mutually non-isomorphic models for fhe
systers of axioms upon which a given theory is based is neither unusual
nor unnatural if that theory aims at studying the whole clags of struc-
tures. For example, it iz perfectly natural that the axioms of the theory
of groups are non-categoric since we investigate in this theory the ge-
neral properties of groups and not the properties of one concrete group.

The content of the ‘theory of groups is completely exhausted by its
axioms. Al the structures satisfying this system of axioms and only
these are the object of investigations in the theory of groups. Similar
conditions prevail in theories such as general topology, the abstract
theory of linear spaces, ete.

If follows from the ahove that the axiomatic method is of funda-
mental importance in theories which aim at investigating a whole class
of mathematical entities and not one defined entity.

If we were t0 adopt the view that with the aid of axioms it is possible
to define the content of branches of mathematics such as the arithmetic
of natural numbers or the arithmetic of real numbers, or clse the theory
of sets — we should arrive at the conclusion that it is not one defined
conorete notion but a whole class of equivalent notions that each of these
theories investigates.

In order to give more emphasis to this view, let us limit ourselves
to the arithmetic of natural numbers. It is now known that Peano’s
system of axioms does not characterize one defined set of natural numbers
and one defined set of operations which may be performed on these num-
bers, but a whole class of models belonging to that system of axioms;
the particular models belonging to that class are not mutually isomorphic
but possess essentially different properties (they helong to separate arith-
metical classes). If therefore, we were to assume that arithmetic is
a feience dealing with consequences derived from Peano’s system of
axjoms we should have to infer that a single defined notion of natural
numbers does not exigt and that it is in principle impossible to discover
certain properties of natural numbers,

The decision whether such a conelusion is acceptable does not belong
to mathematios but to philosophy; for our conclusion containg no in-
herent contradiction and has a distinetly epistemological character.

It seems to us that the standpoint which accepts the above men-
tioned conclusion is wrong. The only copsistent standpoint, conforming
t0 common sense as well as to mathematical usage, is that according
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to which the source and ultimate “raison &'étre” of the notion of number,
both natural and real, is experience and practical applicabilily. The
same refers to notions of the theory of sets, provided we consider them
within rather narrow limits, sufficient for the requirements of the clas-
gical branches of mathematics.

If we adopt this point of view, we are bound to draw the conclu-
sion that there exist only one arithmetic of natural numbers, one arith-
metic of real numbers and one theory of sets; therefore it is not possible
to define these branches of mathematics by systems of axioms which
are supposed to establish once and for all their seope and their content.

Systems of axioms play an important role in those theories: they
systematize a certain fragment of these theories, namely that which
ingludes our present knowledge; they often facilitate the exposition. of
the theory and are therefore of didactical value. However, the system
of axioms cannot play, in relation to arithmotie, that fundamental role
which Hilbert wished to aftribute to the axiomatic method, 4. e the
role of defining the content of a theory.

In wiev of the predominant influence which the school of Hilbert
and the Vienna neopositivists exerted upon mathematicians interested
in the problems of foundations, the discovery of the incompleteness of
all sufficiently rich systems of axioms was at first regarded as & result
spoiling the investigations on the foundations of mathematics and from
this fact far-reaching pessimistic conclugions were drawn. In roality,
however, the results obtained by Gddel giruck a blow not against the
investigations on the foundations of mathematics but solely against
those attempts to establish the foundations of mathematies which were
made by Hilbert and the neopositivists. Materialistic philosophy has since
long been opposed to such attempts and has shown the idealistic charac-
ter both of Hilbert’s program which consists in defining the content of
mathematies by its axioms and of the neopositivistic program consisting
in the explanation of the content of mathematics by an analysis of the
language.

Thus there are no reasons for drawing pessimistio conclusions from
Gidel’s discovery. The discovery of mnom-isomorphic models whothor
for arithmetic or for the theory of sets is an enrichment of our know-
ledge. Before their digcovery we believed that each two models for
Poano’s system of axioms are isomorphic and we thought that similar

. conditions prevailed with respect to the axioms of the theory of sebs.
We now know that for each of these systems of axioms there exists &
vast clags of mutually non-isomorphic models.

This fact, although it was discovered a fairly long time ago, seems
to have been properly appreciated and understood by mathematicians
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only recently. Of recent date are also the first attempts to make use of
this fact for mathematical purposes, independent of philosophical pro-
plems mentioned above. Thus, for example, Ryll-Nardzewski [80]
bas applied the non-categoricity of the axioms of arithmetic to prove
that the scheme of mathematical induction camnot be replaced in cle-
mentary arithmetic by & finite number of axioms containing only symbols
for addition and mmultiplication; the same fact has served Hasenjae-
ger [167 for the proofs of independence in certain fragmentary systems
of arithmetic. Applications have appeared also in the investigations of
the theory of sets where the fact of the existence of various models has
peen uged for the proofs of consistency and for a partial solution of the
problem of the independence of the axiom of choices). Besides, in current
literature may be found general considerations concerning nou-isofnorphic
models for the axioms of arithmetic and of the set theory (cf. e. g. the
study of Rosser and Wang [79] on so-called non-standard models).
The future will show whether further applications will appear.

I now proceed to discuss problems connected with the application
of the axiomatic method in special branches of mathematics.

Alba. The arithmetic of natural numbers. The arithmetic of
natural numbers was formerly described as a branch of seience dealing
with the operations of addition and multiplication satisfying Peano’s
system of axioms. At present this definition is no longer satisfactory and
the gemeral reasons why wo consider it to be erroneous have been given
above. With respect to arithmetic certain gpecial reasons have to be
added. We know many operations and classes having & decidedly arith-
metical character and yet not definable by moans of the operations of
addition and multiplication. Such operations and classes are defined
in an inductive manner by making use for example of the so-called seman-
tics as formulated by Tarski [90]. Namely, if we assign natural numbers
(the so-called numbers of empressions) to expressions belonging to the
gystem of arithmetic and denote by ¥V the class of numbers of true ex-
pressions (in tho sense defined by Tarski), we find that the class V is defi-
nable by induoetion, but that the definition used for this purpose cannot
bo written by the moeans which are available in Peano’s system.

There oxist various oxtensions of Peano’s system of axioms, consist-
ing e g. in ncoepting a greater number of primitive notions, but to
eaoch of thom refor the same romarks as those made with respect to tho
original systom of Peano, For each of these systems there exists a func-
tion (or olass) which eamnot be defined in this system and yet is defined

) adel [12], Fraenkel [7], Mcj‘ﬁ.howrski [83].
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by induction, hence belonging to intuitive arithmetic. None of these
systems is complete as there exists in such a system an induetively de-
tined function identically equal to 0 although it is not possible to prove
this fact on fthe basis of the axioms of the gystem.

The ahove remarks indicate the important role of inductive defi-
nitions and inductive proofs in the foundations of arithmetic. The in.
completeness of Peano’s arithmetic and the impossibility of oxpressing
in it all the definitions belonging to induetive arithmetic is due to the
fact that axiomatic systems do not provide sufficient grounds for osta-
blishing & theory of entirely arbitrary inductive definitions and induvetive
proofs. On the other hamd, it is exactly the principle of induction and
the inductive definitions that are accepted in the infuitive exposifion
of arithmetic as specitic methods which distinguish arithmetio from all
other mathematical theories.

Thug the problem arises whether it is possible fio extend the notion
of an axiomatic system go as to be able to build within these extended
frames a system which would permit the wording of an arbitrary induetive
definition. Such a system could be accepted as the arithmetic of natural
numbers.

There are at present no grounds to suppose that such & system exists,
neither do we know in what direction we should seek ity construction.
Here Turing’s [102] studies on constructive ordinal nambers may per-
haps be helpful. It seems that even mueh more special resulls leading
in a similar direction might be significant. As we know, no axiomatio
gystem is adequate even for 'primitive recursive functiong in the sense
that it is not possible to prove in it all true theorems having the form
() [f(#)=10], where f is a primitive recursive function. As far as I know,
the problem whether a complete system for sentences of that form may
be obtained hy an appropriate modification of the notion of axiomatic
system has not yet been solved.

These difficulties confirm the thesis that the search for u definition
of arithmetic only by means of mathematioal methods ix nof possible
without having recourse to the origin of the notion of a natiral number
based on experience. The ultimate re-establishment of the foundations
of arithmetic belongs therefore to philogophy and not to mathematics,

There exist many other secondary but nevertheless important
and interesting problems connected with the axioms of the arith-
metic of natural numbers. I shall enumerate here some of Ghese
problems.

What kind of structure have the models of Penno’s arithmetic dif-
fering from a model composed of natural numbers; in partioular, what
is their ordinal type like$ After Rosser and Wang we term such models
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non-standard. Some initial results on these lines have been published
by Kemeny [32].

To find out whether by uging non-standard models it would be
possible to obtain proofs for the independence of eclasgical number-
-theoretical problems of the system. of arithmetical axioms.

To prove the incompleteness of the axiomatic arithmetic without
applying the method of arithmetization by giving suitable models showing
the congistency and independence of an appropriately chosen number-
-theoretical axiom.

A1bp. The axiomatic theory of sets. Many more epistemolo-
gical problems are connected with the establishment of the foundations
of the theory of sets than with the establishment of arithmetic. The
main source of the difficulties seems to be the axiom of the existence
of & set containing all the sub-sets of a given arbitrary set. As we know,
this axiom leads to the conclusion that there exist sets of a very high
power but we do not come ncrogs such sets either outside mathematical
practice or in the argwmentation of ordinary mathematics. It is there-
fore doubtful whether the axiom of the set of all sub-sets is epistemolo-
gieally admissible, and we gain the impression that this axiom has been
accepted for arbitrary sets only with reference to and analogy with finite
and denumerable sets where this axiom brings true resulfs, conforming
to mathematioal usage. In this connection it is significant that the in-
definiteness of the notion of an arbitrary set, hence of 2 notion which
appears most distinctly in the axiom of the set of subsets, seems tio be
the main source of the undecidability of such problems as for example
the generalized continuum hypothesis.

The axiom of choice also affords many subjects for epistemological
considerations. It ig striking that this axiom is indispensable for proving
many seemingly obvious theorems, leading at the same time to many
paradoxical eonclusions contrary to all intuition. Examples of such
paradoxical conclusions arve well known. (e. g. the paradox of the sphere).
The following theorem is an example of a seemingly obvious theorem
tor the proof of which the axiom of choice is indispensable: if fis a fune-
tion mapping o set N wpon a set M, then it is not true that the power
of tho set M is greater than that of the set N; we owe this example
to Sierpinski [83]. )

A particwlarly perturbing fact which calls for explanation is that
recently various new axioms have been added to the system of axioms
of the theory of sets or the formulations of axioms have been altered;
in congequence we have at present to choose between a great many essen-
tially different systems of axioms of the set theory, yet there are mo
criteria indicating the proper choice among all these numerous systems.

2
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Thus for example, Goédel [12] hax shown that it is possible without
any formal contradiction to add fo the axioms of the set theory the
so-called amiom of constructibility and that from this axiom follows the
axiom of choice and the generalized continuum hypothesis. Tarski [92}
has suggested the addition to the set theory of new axioms warranting
the existence of very large cardinal uumbers and he has shown that
with an appropriate formulation of these axioms the axiom of choice
may be deduced from them.

I shall deseribe here one more modifieation (due to Tarski) of the
axioms of the theory of sets not congiging in the addition of new axioms,
I shall begin by recalling the scheme of the axiom of subsets (Aussonde-
rungsaxiom) due to Zermelo. This scheme runs as lollows:

(2) (P (P2) -+ (Pa) (W) (H) (2) [Lew==(tey) B, pr,Pay s Pal ],

B(t,P1,..:,Pu) being here an arbitrary formula not containing the free
variable # and built up of the simplest formulae of the form wev or u=1v
by means of the operations of the sentential ealenlus and of quantifiors,

The modification consists in the fact that we admit in scheme (2)
only such gentential functions @, in which oecur solely limited quantifiers,
4. ¢. quantifiers having the form

(v)fvewD...] as well as (Ho)[(vew),..].

The system thus formed is indeed weaker than that of Zermelo,
The latter is not axiomatizable by means of a finite number of formu-
lae??), whereas the modified system is finitely axiomatizable.

The modifications of the axioms of the set theory described here
affect in an essential manner the bulk of arithmetical theorems which
may be established in the theory of sets. Therefore, if we want to make
use of the axioms of the set theory in mathematics we ought to choose

~one of those many systems. As I have mentioned before, we have no
ariteria for this. :

For reasons given above, it seems that the system of axioms of the
set theory is still very imperfect and that, apart fror general difficultios
connected with the application of the axiomatic method, there exist
special difficulties with respect to the set theory. The ultimate formule-
fion of the axioms of the theory of sets should be preceded by a discussion
on the fundamental assumptions of the theory, taking into aceount the
constructive viewpoint which will be dealt with below. :

In gpite of the decidedly negative estimation of the axiomatic foun-
dation of the theory of sets, we must state that some resulbs connected

1) Wang [104].
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with the axiomatic method will probably remain a permanent achieve-
ment although, in the theory of sets, the axiomatic method itself will
perhaps be discarded later on. These results are us follows:

1. The proving of the consistency of the continuum hypothesis, of
the axiom of choice and of some hypotheses of the descriptive theory
of functions. Thiy result obtained by Godel [12] is of great importance
hecause of ity mathematical content and also owing to the fast that thoe
method of proof applied by Gédel touches upon profound epistemolo-
gieal problems- of the theory of sets connected with the congtruetive
trend which will be discussed Turther below?s),

2. The enrichment of the theory of sets by the notion of class?)
(as distinguished from the motion of set) and showing thait such enrich-
ment does not lead to contradiction. Thin result facilitates a suitable
wording of many theorems and notiovs in general algebra owing to the
fact that e. g. we may speak, without running the risk of falling in an
antinomy, of a clags of all groups, o class of all fields, etc. We made use
of this in seetion AlaB when meutioning the theory of arithmetical classes.

Other more special results of the investigation of the system of
axioms of the get theory do mnot geem to be of equal importance. Within
the last years a cousiderable amount of work has been done in order
to compare the various systems of the set theory and to show the mutuul
independence of axioms as well ag the independence of some sentences
from the axioms of the set theory. These works have widened the under-
standing of the above mentioned ‘‘set-theoretical relativism’ which
depends upon the existence of non-isomorphic models for its axioms;
in connection with these investigations, our gkill in constructing various
models for the axioms of the set theory is developing and this should
in eongsequence lead to proving that the axiom of choice, the continuum
hypothesis and other set-theoretical hypothewes are independent of the
system of axioms of the set theory.

Alby. The axioms of the theory of real mumbers. T shull deal
briefly with the axiomatic theory of real numboers as &t present
it iy not an object of intensive studies and besides its problems do notb
seem to differ egrontinlly from. the problems of othoer theories,

Thereforve, I shall only draw attention to a faet worth noting, numely,
that i all cases T know the argumentation concerning the axiomatio
theory of sets oan bo re-formulated so ag to be applicable to the axio-
matic systom of the avithmetic of real numbers, Hore are some oxamples:

) Godel [L13]
Wy Bernays (1]
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1. Gédel’s method [12], showing the consistency of hoth the axiom
of choice and of other set-theoretical hypotheses, can he {ransferred
without any difficulty to the system of the arithmetic of real numbers,
This may be seen in Novikov’s paper [66], where the proofs of the
consistency of many hypotheses of the deseriptive theory of real functiony
have becn worked out in detail and published for the first time. (Some
of these results without proofs were previously anmounsed by G ddel [11].)

2. Tt is possible to give a proof of incompleteness for the theoty of
sets without making use of the notion of arithmetization, but applying
the clagsical method of models?®). A similar proof is applicable to the
theory of real numbers.

3. The proof of the impossibility of axiowmatization of the theory
of sets by meang of a finite set of sentences, given by Wang [104], is

- transferable without any essential changes to the axioms of the theory
of real numbers.

It follows from the above that the essential difference between
these problems is marked by passing from a theory with a denumerable
range of individuals (the arithmetic of natural numbers) to a theory with
a non-denumerable range of individuvals (the theory of sets, the theory
of real numbers).

From the point of view of the “naive” theory ol sets we examine
in the arithmetic of real numbers one concrete set of the power of conti-
nuum whereas in the theory of sets we investigate sets of arbitrarily
high powers, In spite of this, both theories give rise to similar problems
and the manner in which we approach these problems is in bhoth theories
the same. This result i3 in conformiby with the views of the representa-
tives of constructive trends in the theory of sets, who have stated many
times that the difference hetween denumerable and non-denumerable
setg is essential while the differentiation betwoen various non-denu-
merable powers is only apparvent.

The parallelism between investigations on the theory of sets and
on the arithmetic of real numbers suggests that more attontion then
before should be given to the arithmetic of real numbors. For instance,
it would be very much to the point to expound in strictly arithmetical
te.rms a theory corresponding to Godel’s theory of construetible suts.
Likewise, in the case of many other constructions hitherto considered
in connection with the theory of sets, their transfer to the domain of the
arithmetic of real numbers might boe useful, as this would enable a wider
circle of mathematicians o become acquainted with theso eonsbructions
and might lead to new discoveries,

#) Mostowski (58]

k]
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A2.' Constructive trends in foundations of mathematics

The insufficiency of the axiomatic method for arithmetic and the
theory of sets makes us search for another method of establishing the
foundations of these theories. The most interesting is the constructive
method. When applying it we do not define mathematical notions by
postulates but woe construct them. by means of certain operations defined
a priori. The basic problems are:

10 the choice of a sufficiently broad system of such operations, which
would make it possible to effect at least the majority of constructions
usually made by mathematicians;

20 g, discunsion of the problem whether the total of the notions gained
by these constructions is sufficient for mathematics.

The investigations which are just being carried on with regard to

" the constructive method are, to a considerable extent, a continuation

of previoug attempts made by Russell and Whitehead, Weyl, Brouwer,
and Hilbert. I shall deal, in turn with the most important trends con-
nected with constructive methods.

A20, The axiom of constructibility

Tu 1939 Godel [11] published the proof of the consistency of the
continuum hypothesis and of the axiom of choice. This proof was closely
connected with the congbructive trend. Namely, Godel defined a finite
number of eertain simple operations (I shall refer to them. as elementary
operations) permitting the construction of new sets from already known
gets and he showed that if these operations were applied to the empty
set and this procedure was iterated an arbitrary transfinite number of
times, one obtained a clags of sets (so0-called constructible sets) in which all
the axioms of the theory of sets as well as the axiom of choice, the conti-
nmuum hypothesis and some other hypotheses of the set theory were satisfied,

The connection of Gadel’s iden with former studies is evident: if we
{terate the procedure of constructing sets as described by him a finite
but arbitrary number of times, we arrive at 2 class of sets which is ac-
oupted in the so-called ramified theory of types duo to Russell and White-
hend, Thoe entire structure of proof is analogous to the plan which
Hilbort [21] made (but never oarried into effect) for proving the consis-
tency of the continuum hypothesis by successively iterating the process
of forming recursive functions.

From u point of view of method, Godel's result is important for
two reasons. Firstly, he has shown that studies on constructive mathe-
matics sy be applicable to probleras not in the leagt connected with
the philogophical program of the construetive trend. Secondly, his work
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has made it clear that the aceeptance of the postulatic of construetivity
(according to which the existence of only such sets is admitted ag ape
congtructible in a cortain way) is not necessarily connocted with the
elimination of some parts of classical mathematios or of the theory of
sets and, what is still more important, that by aceepting sueh o postulate
and arriving in comsequence at o precise formulation of assumptions,
we may get results which probably cannot be obtained in the ‘najve”
or axiomatic theory of sets.

Until now no attempts have been made to socepl Godel’s theory
a8 4 definite basis for the theory of sets. Gédel himself was dovidedly
opposed to such an idea [13]. Howover, thore does not seem o be any
reason why the adherents of the axiomatic thoory of sets should abstah
from including the postulate of constructibility (which states that ever
sot iy consfructible) as one of the chiof postulates of the theory among
the gets of axioms usually accepted.

The obvious problem of the independence of tho axiom of construet-
ibility of other axioms of the set-theory, e.g. Zermelo’s, has not heen
solved as yet.

The following method might perhaps lead to the solution of thir
problem. Let Og(@) denote a class of sets produced by an ab most &-fol
iteration of elementury operations on the set . It is casily proved tha
for each set @ contained in the set

WZ{AO,AI?—AM"-L

where Ay is the empty set and Ay, =4Ay-+{ 4y}, there exists such an ordinal
number £ that in the elass O,(x) all the axioms of the theory of sets ave
satisfied. The least of these nuumbers is donoted hy &(m).

Let us further denote by #(z) the smallest ordinal number such
that 2e0,(4). If it were possible to prove the existencs of suoh an #Ca
that &(v) <n(z), the problem of the independence of the axiom of
congtructibility would be solved.

Other theories which aim at establishing the foundations of mathe-
matics by constructing mathomatiosl notions (ay  distinguished from
defining them by axioms) have not such & wide range of application as
Godel’s theory and they are connected with a pavtial rujua{;i(m of the
more advanced parbs of classical analysis or of tho theory of sets, T am,
of course, unable to deal here with all theso theories and, therofors, T shall
limit myself to the more important ones.

A2b. The ramified theory of types

. This theory — ag I have already mentioned — assumes only the
exisbence of such sets as are obtained from certain primitive gets by
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iferating elemettary operations a finite number of times. As a unique
primitive set we may for example accept a set of natural numbers.

This theory has recently been the object of interesting studies under-
taken by Fiteh [6] and Lorenzen [40], who arrived at the proof of
consistency of fhiy theory through means that can bhe formalized in a
rather weak systom of arithmetic. This indicates the profound dif-
ference botween the system of the ramified theory of types and other
manners of egtablishing the theory of sets (e. g. the uxiomatic system of
Zermelo or the gimple theory of types). This result proves also that
an arithmetic which may be built in the ramified theory of types is incom-
parably wealer than the classical arithmetic. As far as I know, the ques-
tion of what mathematics based on the ramified theory of types would
be like has not yet been discussed in detail.

A2c. The computable analysis

As far back as 1936, Banach and Mazur®) began to investigate
a fragment of analysis admitting only numbers whose expansion into
decimal fractions is represented by primitive recursive functions. These
investigations are ab present being continued by Mazur who has replaced
the clags of primitive functions by the more natural class of generally
recursive functions.

N

In this theory numbers of the form 3 f(»)/10™ where f is o general

N=0
recurgive function, are known as computable numbers. The sequeuces

of real numbers satisfying the inequality
f(n, k) 1
n--1 w17

where f ix & general recursive function of two variables, are called com-
putable sequences. Lastly, a function of a real variable which carries every
computable sequence into u computable sequence, is termed computable.

Investigations made go far of a fragment of analysis in which only
computuble numbers, sequences, and functions are admitbed, have led
1o the conclugion thut discontinuous functions are not computable, That
in why this theory can take into consideration only those sections of
analysis which treat exclusively of continuous functions. It has not yet
been possible to find out whether the entire classical theory of continuous
functions is obtainable in computable analysis since it is not known
whether & computable function defined in a computable cloged interval
agsumes the maximum of its values at a computable point. Mazur has

#1) Annales de ln Soe. Pol. de Math. 16 (1887), p. 223,
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shown, however, that nwmerous theorems of the theory of contingous
funetions are transferable to computable anulysis,

He has proved ¢.g. that a computable function sssuming u negative
value, at the computable point a and » positive value ut the computable
point b assumes the value 0 at & computable point o (@ <Zo<2h). Mazur
has algo proved that the set of computable numbers is o real closed fald ),

The definition given by Banach and Mazur of the computable fune-
tion of a real variable is very general but not consistent. The same objeo-
tion applies to another definition formulated by Specker [86] tor
similar purposes. When formulating this definition wo sysumine ag l'mi‘ng'
known from eclassical analysis the general notion of functions among
which we distinguish & narrower class of computabls funetions, Another
procedure would better answer the aims of computalhle analynis, namely,
we ghould define the class of computable funetions by means of oerta&n
operations performed on’simple primitive LTunections.

A definition satisfying these requirements has heen given by Grze-
g‘o%'czyk“), who made use of the notion of functional, 4. 6, » funotion
which assigns numerical values to every system of arguments compoged
not only of numbers but algo of funetions. ‘

According to Grzegorezyk thé functional Dfryoosfrryyen,iy) 18
computable if it is derived from the primitive funetionsls

Ui(f,q,2)=f(w), Us(fyg,2)== g(a),
8(f,@)=w--1, M(f o, y)=a -y, P(f,,y) = a?

by a‘fiuite number of the following operations: the substitution of the
functional for the numerical variable, the identification of vaviubles
_the effective minimum. The latter operation leads from the fuuctimm{
D(f1,e sty @1y v,y @,) 10 the funetional
}[/(;f“, o ,fk; Tyyons ,wn_1)=minm,,[di(f1,. ’e 7flu Wyyeonyity) == 0],

if‘ we assume that for arbitrary numbers Bryoonyilyy 0d arbitrary func-
tions fi,...,f, there exists such , that D(fry..., 7,0,;:71,..‘,%)% 0. TE this
assumption is not satisfied the operation of minimum 1y not performable,
' The real function () detined in the interval [ayb], where 0<a<h
is called. computable by Grzegorozyk it there oxists sush x,m (m.tn]jnl‘l;wl)il(:

functional @(f,n) that for each w (a<w<b) und each function f with
natural valuey satigfying the condition

Fm| 1

"7' [

tor n==1,2,.,,

22) T]}B Proofs of these theorems uve not yol published,
*) His paper has not yet been published, ‘
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the following inequality is satisfied:

Plw)— (Ii(f ’_q?f)

k10

1
<— for m=I1,2,...
n

In other words, the functional @ transforms the function f(n)/n
approximating the argument » into the function @(f,n)/n approximating
in the same degree the value @(z).

The velationship of this definition with the definition given by Bu-
nach and Mazur has not been explained as yet. It is only known that
a computable function, as understood by Grzegorczyk, iz computable
in the sense of Banach-Mazur, therefore, that it is continuous.

On the basis of certain results obtained by Mazur, Grzegorezyk
has shown that o computable function (in the sense given by him) defined
in the interval [e,b] with computable endpoints; assumes its maximum
value at the computable point of the interval [a,b]. ‘

It should be mentioned here that the notion of computable functional
appears implicitly in the works of Kleene [36] as the notion of a function
which is uniformly reeursive in other functions. The relationship be-
tween this definition and that giver by Grzegorezyk has not yel been
examined. '

‘When replacing il the definitions accepted by Banach and Mazur
the class of computable functions by other broader clagses, we arrive
at further concepts of computable analysis, Studies along this line have
been made by Grzegorcezyk?), whose point-of issue was the class of
elementarily definable functions, 4.e. such as may be obtained from
recursive functions hy repeatedly applying the operation of substitution
and the operation of minimum:

X the least y such that f(x,y)=0,
(uy) [ (@, y)=0] = o -
. 0, provided such y does not exist.

‘Prohlems concerning continunous funetions which appear to be very

ditficult in aomp'u‘lmblc analysis are easily and naturally solved in tho

analysis haged on the notion of definable function. However, it has not

yot heen ascertained in what exactly the definable analysis deviates
from. the olassical analysis.

A2d. The intuitionistic logie

The mathemationl and logical systems developed for many years
by Brouwer aim at establishing mathematics on constructive founda-

My Grzegorezyk’s paper hus not yot boon published.
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tions. Contrary to the frends so far diseussed, reprosentatives of the
intuitionistic school think it very important that the logical constants
“or”, “if then”, “‘exists” and rome others o given another meaning than
that usually aseribed to them. Ior example, the sentence “p or ¢ i
interpreted thus: it is possible either to prove the truth of p or to prove
the truth of ¢.

Whatever one might think of it indispensability, the mere shange
of interpretaion of logical constants oecurring in the sentential onleulus,
is not directly connested with thoe constructive program. The change of
interpretation of the existentisl quantifier i of course more closely
connected with constructive views; however, it s not & nocessary
condition for introducing this view into practice.

The really constructive fendencies of the intuitionistic trend be-
come manifest in the acceptance of a notion of sequencos and
sets which is entively different from the classical one. Unfortunately,
the respective definitions were formulated by Brouwer in a manner
that was very complicated and not precise so that they have not
played as yet any considerable role outside the cirele of Brouwer's
collaborators. An explanation of those definitions will probably appear
in Kleene’s recent work [33] in which he interprots the notions of
intuitionigts by means of notions taken from the thoory of recursive
functions.

General appreciation

The constructive trend might play an important role in giving more
precision to the foundations of those branches of mathematics whieh
are rather loosely conneeted with experience (e g. the theory of setw).
The problem whether the systems formed in constructive mathematics
are eagy in their applications and whether they will lead, In & natural
way, to fundamental classical resulty should play » decisive vole in esbi-
mating the results obtained in construetive mathematios. (The classical
resulls — a8 & whole — have Dheen confirmed by thelr applicability to
practical problems.) 8o far all atbempts ot torming u Mabisfaetory gystem
of constructive mathematios have failed; howoever, it seams ndvisable t6
continue making such attempts.

Furthermore, the above mentioned problem of fhe independence of
the axiom of constructibility connected with the problen. of the indepen-
dence of the axiom of choice and the econtinum hypothesis, of the

axioms of the set theory, must be regarded as the mogt important problom
0 be solved in this bhranch.

B. Theory of mathematical proofs

B1. The axiomatization of logic

T now proceed to discuss the second group of fundamental problems
of the fonndations of mathematics, namely, the problem of the criteria
permitting the differentiation hetween correct and false proofs.

In an ordinary axiomatic exposition of this or that branch of mathe-
matics we formulate as a rule only axioms, while the drawing of conclu-
sions from. these axioms is left to the mathematical intuition of the reader
or hearer. This is of course suitable for a mathematician not interested
in the foundations; on the other hand, for the legician, it is exactly the
process of drawing conclusions that constitutes the most interesting
olemont in the whole procedure.

The analysis of conerete mathematical proofs has led, as wo know,
to the formulation of a number of rules of inference whieh allow us to
obtain from some statements further statements (I include here among
the rules of inference the go-called logical amioms). Thiy analysis was
crowned by the completeness-theorem obtained by Gddel [8] in 1931
who showed that for each elementary expression W, not resulting from
the elementary axioms Ai,...,4, by the application of the rules of in-
ference, it is possible to construct a model in which the axioms 4,,...,4,,
are satigfied, but the expresion W is not satisfied.

The significance of this result may be explained as follows.

It is olear that an cxpression originating from the axioms 4,,...,4,
by the sneeessive application of rules of inference is a conclusion correctly
drawn from these axioms, Tor each rule of inference presents a very simple
and obviously correct argumentation,

If thore exists a model satisfying the axioms 4;,...,4, and not
sntisfying the expression W, it is evident that W cannot be treated as
A eongequence of the axioms. Hence, in conformity with the comple-
teness theorem, the conseqnences of axioms Ay,...,4, are those and
only those expressions which are obtainable from A,,..., 4, by applying
the rules of inferenco.

The notion of the consequence of one elementary sentence from
othor clementary sentences is thus fully explained.
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I shall now disouss in brief the problem of chavactorizing the
* relaiion of consequence hetween non-elementary sentences.

If we adopt the view that the theory of sets lying st the base of
a non-elementary system may be represented in the form of wn axio-
matic system, then — as set forth in seetion Alae — the difference
between elementary and non-clementary systems disappears and the
relation of consequence betweon arbitrary sentences iz wholly reduced
to the rules of inference. On the other hand, if we adopt another poin
of view with respect to the foundations of the set theory, we can no longer
attribute such fundamental importanse fo the completencss fheorem,

Most mathematicians wsing non-clementary formulae avoid analys.
ing the foundations of the theory of sets. It is quitic natural that the
notion of consequence between non-elemontary sentencos is not precisely
defined for those mathematicians and it cannot he made procise unless
they give up adopting the so-called “naive” view on thoe theory of sets

However, there exists a hetter. chance of characterizing the relation
of congequence between non-elementary sentences if we acoept & construe-
five view with regard o the theory of sets, Suszko hag drvawn attention
to the fact that, thus conceived, the problem of the completeness theorem
for non-elementary sentences leads to quite conerete problems which
so far have not been dealt with by anybody.

The completeness theorem hag exerted a distinet influence on our
views regarding the so-called formalized logical and mathematioal sysiems,
We believe that at the present time these systems ure only of higtorical
value.

Under the influence of Hilbert’s works and the philosophical views
of thé neopositivistic school, it was imagined in the twenties of this cen-
tury that the most important problem of the foundations of mathematios

ig to construct artificial “languages” with precisely defined syntactioal '

rules and that there will be among them one universal and most perfect
language which can Ve identified with mathematios.

Some of the systems constructed under the influence of suoh views
oan be easily re-formulated so as to become ordinary elementary axio-
matio systems. To these belong 6. g. the simple theory of types, the sys-
tem of the so-called ontology formulated by Ledniewski®) and the ra-
mified theory of types. In view of thig it is not at all clear what would
be the point of working out, for these systems, separate rules of inference
clogely linked with the syntactical rules adopted in them, since it is pos-
sible to represent these systems at once in the form of olemontary axio-

) Thig system is discussed in detail by J. Stupecki, $tudis Toglea 3 (under
press).
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matic systems for which the notion of consequences is worked out with
ahrolute precigion. '

T am not sure whether every one of the hitherto suggested formalized
systems may he equivalently formulated in the form of an axiomatic
system. At any rate, I believe that if such a system existed, there would

" bhe no advantage at all in using ib, even if its “‘syntactical”’ rules were

formulated with utmost precision. A system that would have no inter-
pretation (4. e. no model) in the ordinary sense of the word could not
bhe understood as the description of a class of objects existing indepen-
dently of linguistic congtruetions. It might play some role, ¢. g. as 2 formal
calenlus  facilitating the description of recursive functions. Its role
could, however, only be auxiliary.

T have enlarged upon this in order to emphasize that the attempt
to establish the foundations of mathematics by means of construecting
a ‘“language’ deprived of all inferpretation (or a ‘“language” whose in-
terpretation hecomes possible only in the course of using it) is nowadays
considered of a complete failure.

The fundamental role of fhe completeness theorem seems to be
fully appreciated. This is evidenced by the considerable number of stu-
dies which have recently been devoted to the new simplified proofs of
this theorem (Henkin [17], Rieger [73], Rasiowa-Sikorski [71],
Robinson [74]). These studies have shown that the completeness theo-
rem hos a very distinet algebraic gontent, which was not at all apparent
in Godel’s original proof. I shall outline below Rasiowa and Sikorgki’s
proof, drawing special attention to the algebraic apparatus which these
authors used in their argumentation,

Let us assume that the formula W does not result from the axioms
Ay,...,45 by the application of the rules of inference. For the sake
of simplicity let us further assume that the axioms A4,,4,,...,4; as
well as the formula W confain only one extra-logical constant, e.g. the
symhol of the binary relation R.

Wa congider the Boolean algebra formed of all formulae containing B,
as tho only oxtra-logical eonstant (without excluding formulae contain-
ing free variables). In this algebra we define the sum of two formulae 4
and B as their alternation, the product — as their conjunetion and the
comploment of the formula 4 — as the negation of 4. Two formulae 4
and B are ealled equal if the formula 4==B ig obtainable mﬁhout any
axioms, solely by applying the rules of inference.

Lot s now fiake some concrete binary relation E, with a denume-
rable field, e. g. composed of natural numbers. Formula 4 (Rja,...,%)
ot Boolean algebra denotes a certain property of the relation R and, the
clements @y, ..., @, which may or may not be true of the relation E, and
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of the arbitrarily chosen natural numbers ky,..., ks Wo assign to each
variable a natural number, e. g. tho number § to the variable . If R,
and the numbers 1,2,...,% have the property A(R;ay,...,r), we say
that B, satisfies the formula A(R;ay,...,Tp), and, in Lhe opposite case,
that R, does not satisfy that formula.

The set J of formulae satistiod by the relation & is the prime ideal in -

the Boolean. algebra composed of formulae. Thiv means that the following
conditions are satisfied:

(a) It A and B belong to J, then AB belongs lo .
(b) It A belongs to J, then A--B belongs to J for an arbitrary B.
(6) If A-+B belongs to J, then either A or B belong to JJ.

The condition (u) follows from the fact that it the velation Ry sabis-
fies formulae A and B it also satisfies their counjunction; (h) follows
from the fact that if the relation R, satisfies formuln A, it also satis-
fies the alternation A--B for an ‘arbitravy Bj; finally (¢) resulty from
the fact that if R, satisfies the albernation 4--B thon By satisties one
of the formulae 4 or B.

In a similar manner we verify that the ideal J has the properly

() - If the formula (Hay) A (R; ay,...,0) belongs to the ideal J, then there
ewists such o natwral number p that A(R; my, ..., 0.1,0,) belongs to J.

Every relation R, determines, therafore, the prime ideal J having
the property (d).

Conversely, it is easy to prove that every prime ideal having the
property (d) determines a relation R, satisfying all formulac belong-
ing to J. It is namely sufficient to assume that & bears the relation R,
to ¢ if the formula o, R belongs to J.

In order to construct a relation satisfying tho formulae A,,...,44
and not satisfying the formula W it suffices to prove that thore exists
a prime ideal J satisfying condition (d) and countaining the formulae
Ay, Ayy~W. For this purpose we first state that the prinoipsl ideal
generated by the element 4,:... Ay ~W does not contnin all the elemoents
of the algebra (otherwise there would exist sueh formulae X, ¥ thab

Ay Ay W X Yo (oY),

hence W would be obtainable from 4,,...,4, by applying the vules of
inference). We then apply the theorem which states thot every ideal not
containing all the elements of the algebra may he extonded (o a prime
ideal satisfying the condition (d). I shall abstain here from giving the
proof of this theorem.
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As may be seen from the above outline, we actually apply the appa-
ratus of algebra in the proof of the completeness theorem. It is of inter-
et to note that the notion of ideal created for the requirements of the
algebraic number theory finds an unexpected application in formal logie.

The algebraic method of proving Gddel’s theorem is not only inte-
resting with regard to method but it has moreover the quality of being
transferable to systems of logie other than the classical two-valued system.

It is for a long time that non-classical logics have aroused a great
interest not only among mathematiciang, but, to an even greater extent,
among philosophers, who regard these gystems of logic, not without
reagon, a8 an evidence that formal logic is not of aprioristic character.
An ultimate estimation of the importance of these logics will not be
possible until we succeed in constructing on their basgis some mathematical
systems, ¢. g. fragments of the theory of sets. The first step toward achiev-
ing this aim i8 to investigate the logic of guantifiers. This problem has
been the subject of a number of studies by Rasgiowa and Sikorski?s),
who show that if the notion of model is suitably extended then funda-
mental logical theorems (Godel’s completeness theorem, the theorem of Sko-
lem-Lowenheim) are transferable to systems based on non-classical logies.

We ghall explain the generalized notion of model by means of an
example. Let us assume for simplicity’s sake, that we consider the system
of the axioms A, in which the binary relation R is the only extra-logical
congtant. We define a model in the ordinary sense as a set J and a func-
tion which maps the set of pairs @,y of the elements of J upon the set
{0,1} of values 0,1 (falsehood, truth). A generalized model is defined as
a set J and a function which maps the set of pairs x,y of the elements
of J upon a structure B. With respect to the structure B we assume in
addition that it contains operations by means of which we inter-
pret logical operations (alternation, conjunction, implication, negation,
quantifiers).

Tor example, if we consider a system baged on the sentential cal-
culus of Heyting [20], we choole as B the class of closed snbsets of an
arbitrary topologioal space X, wnd we interpret the logical operations
a8 follows®): alternation — set-theoretical union, conjunction — set-
-theoretical intersection, negation — closure of complement, implication —
elosure of difference, general quantifier — infinite intersection, existential
quantifier — clogure of infinite union, ' )

In an arbitrary model every formula (without free variables) has
a value which iy an element of the structure B, If we distinguish an ar-

) Rasiows [72]. Seo also [71].
37} Tarski [93).
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bitrary slement (e. g. the space X in the above example) in the strueture B,
we can define the notion of satisfaction: a formula is satisfiod in & mogde
if itg value is the degignated elemioent of tho strueture.

‘When applying this notion we may transfer various notions ang
theorems known from the theory of ordinary sysiems o fhe theorie
of axiomatic systems basod on non-classical logics. Thuw, for exomple,
Godel’s theorem of eompletencas for wystems hased on Ieyling’s logi
reads as follows?28):

There ewisis such a lopological space Xy that if a formula W does no
follow from the amioms Ay,,.., 4, by means of the vules of inference acoepied
in Heyting’s logic, then theve ewists @ generalized model in whioh we acoop
as B the siructure of closed subsets of the space Xy and in which the amioms
Ay, ... Ay are satisfied while the formula W is not satisfied.

Whether it is possible %o take in the above theorem a straight
line (with ordinary topology) as X,, remaing an opon question.

It is difficuls to foretell at the moment whether munltivalued logles
will find applications. At any rate they constifute an interesting objed
of research and the results so fax obtained bring out thoe specific features
of ordinary, two-valued logic. The continuation of sueh invesbigations
will undoubtedly bring further regults.

B2. The decision problems

Owing to the results discussed in gection B1, the notion of o mathe-
matical theorem which can be proved on the basis of a given mystem
of elementary axioms hag been strictly defined. Thin affords a possibility
of expressing precisely the decision problems.

At the present time it is easiost to formulate this problem with the
aid of notions taken from the theory of recursive functions, Tt we map
formulae in & one-to-one manner on natural numbers, then each set of
formulae will become a set of natural numbers. Tho set of theorems of
an elementary theory which is finitely axiomatiznble (01 based on a re-
curgively denumerable gystem of axioms) i a rocwsivoly denumerable
set.

The theory is decidable if this sot in goneral recursive. The thesis
which identifies the notion of decidability with goneral recursivencs
is due to Ohurch. Today this thesis is probably accepted without any
exception by all mathematicians engaged in studies on deocigion problems,

In relation to an arbitrary axiomatio theory the decision procedurs
consists in finding out whether the set of theorems of that theory is re ‘

) Tarski [93], Stone [87]. |

B2. The dectsion problems 35

cursive or recursively denumerable. This problem may be formulated
algo in relation to other gets of numbers and in this generalized form it
comprises for example the familiar word problem of the theory of groups.

In order to define precisely the decision problem one might mse
instead of recursive functions also algorithms in the sense attributed to
them by Markov [47]. For this purpose the expressions of the theory
should be treated ag words in a given alphabet. We term a theory deci-
dable if there exists a normal algorithm which is applicable to all these
words and which carries the expressions provable in the theory into
an empty word, and expressions not provable in the theory — into a
non-empty word.

Since the time when mathematical logic was first introduced, much
intensive work has been devoted to the decision problem. At the begin-
ning investigations were restricted to the recursively denumerable set
of all logical statements and in this set some recursive subsets were dis-
tinguished, such as for example the class of logical statements written
with the aid of functors with one argument. Another class of problems
concerned the reduction of the decision problem: it was shown that the
problem could be solved positively if a given class of formulae of first
order (e.g. the class of logical statements having the form (Hw,...,,)
(¥15---,Ym)4) were recursive. By applying the new terminology, intro-
duced by Post [69], we may characterize this clags of problems as a pro-
blem of reduction of a decision problem for the set of all statements
to & decigion problem for a set of statements having a special form. This
type of problems has recently been investigated by some logicians such
ag Kalmér [28], [30], Surdnyi [88] and others.

A great number of regults have been obtained regarding the de-
cision problem of various axiomatized theories. I quote here ag examples:
the results of Tarski [98] proving the decidability of the elementary
arithmetic of real numbers, of Jadkowski [26] concerning the decida-
bility of Boolean algebra, of Szmielew [89] regarding the decidability
of the theory of commutative groups. Some of these results may be
applied in purely mathematioal problems. For instance, from Tarski’s
regults [98] the conclusion may be drawn that each theorem written
with the aid of logical symbols and constant operations -+, X, and true
in the arithmetic of real numbers, is also true in every ordered real
clogod field.

The proofs of undecidability are of special importance in philogophi-
cal digeussions on mathematics becauge they show the essentially ore-
ative character of mathematics. The basis for these proofs is formed
by the famous theorem of Godel [9] on the incompleteness of arith-
maetie,
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In general we obtain the proofs for the wndecidability of thoovies by
reducing the decision problem of arithmetic to the decision prohlem of
the theory under consideration.

An example of the application of this method is the result obtained
by J. Robinson [758]. She has found that in tho elementnry artthmetic
of rational numbery (with the primitive notions of “sum’ and “])roduot”)
it is possible tio define the notion of & natural number; the dementary
arithmetic of rational numbers is therefore wndecidable (whereas the
elementary arithmetios of veal and of complex numbers wee docidable), By
the same method sbmilar vesults have hoen obtnined by J. Rohingou [75)
and B. M. Robhingon [78].

The range of applicability of this niethod was considerably exten.
ded at the moment when it was discovered thati even very weak fragments
of arithmetic are undecidable, indeed, that thoy are “ossentially unde-
cidable™ (4. e. they cannot be complementiod by adding 2 recursive set
of axioms to form a consistent and decidable theory). An example of a very
weak but already essentially undecidable fragment of arithmotic is the
theory of non-densely ordered rings20). Other still nimpler examples of
essentially undecidable fragments of arithmotic have boen given by
R.M.- Robingon [77], but their algebraic coutent is not o cloar.

It follows from the definition of essentially undecidable theories
that 8 theory I' (based on a finite or recursive systern of elomentary
axioms) 18 essentially undecidable if we can interpret in it an essentially
undecidable theory. A theory derived from an undecidable theory by
omitting a {inite number of axioms is also undecidable, Despite their
obviousness, these statements make it possible to prove the undecida-
hility of many axiomatic theories.

A much more interesting result on similar lines has rocently boen
obtained by Tarski [99]. He shows that a theory T is undecidable if it
can be strengthened (by adding an arbitrary finite or infinite number
of new axioms and a finite number of eonwtants denoting individuals of
the lowest type) to sueh an extent that an egsentially undecidablo and
finitely axiomatizable theory can be intorproted in the extendoed theory,

On. the basis of this theorom Targki hag proved tho undecidability
of many theories, 6. g. of the elomentary theory of groups, tho clomentary
theory of lattices, ote, ), The same mothod has hoen appliod by Grze-
gorezyk to prove the undecidability of closure algebra and related the-
ories®). I may mention hore also an interesting rosult which Janiazak

*) Mostowski and Tarski [63].

") Tarski [96] and [$9).

) Grzegorezyk [14]. Some of Grzogorezyk’s vomullh wara proviously oh-
tained by Tadkowski [25] using another method,
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[24] hag obtained by the same method. He shows, namely, that a theory

- with two extra-logical constants R, R, denoting binary relations and

with axioms stating that the relations R, and R, are reflexive, sym-
metric and transitive, is undecidable.

The decision problems retain their significance not only for systems
based on sots of axioins bubt also for many other theories. Thus, for
exanmple, a decision problem can e formulated for every systemn of the
sententinl caloulus. Pilezak [67] and Vorohiev [107] have recently
arrived at interesting resulty concerning some systems of the sentential
caleulus, However, of much greater importance are the results obtained
with respect to the word problem for groups and other algebraic
systems. In this domain the works of Post [68] are of fundamental im-
portance; on the hasis of these works Markov [48] and Post [70] have
golved. the word problem for semigroups and Novikow [64] has solved
the famous word preblem for groups, which mathematiciang have tried
to solve in vain for at least 30 years.

Attempts at solving Hilbert's Xth problem have so far not been
successful #2),

The aim of the most recent studies of the decision theory is to obtain
general methods and results. I have already mentioned the general me-
thod of Tarski [99] for proving the incompleteness of theories and the
reswlt of Vaught [103] linking completeness with categoricity. It has
already been proved that a complete theory is always decidable 33) and
also that the system of axioms of a decidable theory can be extended to
& recursivo complete system?®!). Investigations are also being made to
tind out whether the decidahility of elementary theories of certain struc-
tures iy followed by the decidability of theoriex of other structures
obtained by means of one of the standard processes of general algebra
(product, homomorphism)®). Finally, a rational basis has been formed
for investigations which aim not directly ab solving the decision problem
bub at redueing this problom to another decision problems, The funda-
mental conoepts on this line are due to Post [69]. The problem which
he formulated regarding the existence of the weakest decision problem
has not yet been solved. .

. Tho division of -sets of formulae into recursive and recursively de-
numerable is ingufficiont for many applications. If, for example, we are
interestod in a set of formulne satisfied in a model of arithmetic,
we can eagily ascerfain that it is not recursively denumerable and even

®) Davis [3]

) Taniczak [23).
) Tarski [99].

) Mostowski [60].
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that it iy not definable. Likewise, according to Trachtenhrot [100)
and Kalmér [29], a set of formulae which are true in every finite seg
of individuals is not recursively denumerable but it is a comploment
of such a set. The proper apparatus for studying the nature of such gets
has been created by Kleene’s clagsification of sots of natural numbery
depending upon the number of quantifiers occurring in the dofinition
of the investigated set (atter reducing this definition to its normal form)ss),

This clagsifioation hag many analogios whith the classitication of pro.
jective sots, Some theorems known from. the theory of projective Mg
are without any change transferable to Kleene’s theory. We have,
for instance, the following theorem analogous o Saslin’s theorem: a set
which is itself recursively denumerable and has o recursively denwmerable
complement, is recurgive®?). On the other hand, the separation theorems
frue in the theory of projective sets are not tramsferable fo the theory
of Kleene?®),

The method of estimating a projective class of sets introduced by
Tarskiand Kuratowski[39]is transferable without change to Klecne’s
theory. This fact has numerous applications. It suffices, for example,
to write down the definition of a class of formulue investigated by Trach-
tenbrot and Kalmér to conclude quite automatioally, that it ix a comple-
ment of a recursively denumerable set (which, incidentally, does not
exclude the possibility of its being recursive). However, both in the theory
of projective sets and in the theory of Kleene the wuight of the problem
always rests upon an estimation of the class from below.

For each set of natural numbers we may ask to which of the classes
defined by Kleene this set belongs. In many cases this question is dif-
ficult to angwer and it is of importance for logical investigations.

In thig connection let us mention the following problem sot forth
by Hilbert and Bernays [22], p. 191

_ Let us consider a system of elementary axioms with primitive no-
tions denoting relations, e g. binary relations. The depmmerable model
for such a system consists of binary relations defined in the set of natural
numbers, 4. e. of the sets of pairs (w,yd>, where @ and. y arve natural num-
bers. By substituting the number 2%(2y—1) for the palr {w,y> we find
that the model may be treated as o systom composed of & finite mumber
of sets of matural numbers.

_ It all the gets of the model belong to tho nth clasy in Kleene’s clas-
sification, we say that the model belongs to the nih class. The problem
formulated by Hilbert and Bernays reads as follows: cam a rooursive

30) Kleene [33].
) This theorem was proved by Kleono [33) wnd Yost [69].
) Kleeno [34], Trachtonbrat {101]. '
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model (4. e. belonging to the zero clags) always be found for a consistent
system of axioms?

The answer to this question is in the negative: there exist systems
of axioms no model of which is recursively denumerable or is a comple-
ment of a recursively denumerable seb (4. . it belongs neither to the first
nor to the second class3?). However, as shown by Kleene [36] (p- 294),
for every system of axioms a model may be found belonging to the
third clags. By applying the method of Kuratowski and Tarski we can
namely jrove that such o model is the model defined by Hilbert and
Bernays in their proof of the theorem of completeness.

It is not known as yet whether every consistent system of axioms
has a model that may be presented in the form

(Ay=By)+(Ay—By)+... -+ {dn—Bn),

where Ai,..,4,,By,..., B, are recursively denumerable gets.

The stadies on Kleene’s classification cannot be considered com-
plete. They should be continued first of all for the sake of investigations
directed towards elucidating the analogies and differences between this
clagsification and the classification of projective sets®?). Besides, for
many problens this classification iz not broad enough.

The mere consideration of the class of formulae satisfied in a model
of arithmetic exceeds the scope of sets contained in Kleene’s clas-
gification. An extension of this classification to transfinite classes is
an up-to-dateproblem. Some initial work on these lines has already been
doned), but tre subject requires further elaboration.

General appreciation of the present state of the decision problem

Studies on thig problem are of importance for forming a correct
view on the naure of mathematies and they are beginning to find applic-
ation outside tie scope of considerations pertaining strietly to the foun-
dations of matlematics. It may well be that they will lead in future to
finding algoritlms for solving mechanically certain classes of problems
which wo are 1ot yet able to solve. At present we are in the need
of a synthetic reatment of various special methods and of discussing
their theorotics foundations. In this respect some achievements can
already be recorled which may be utilized for obfaining more detailed
results. The vale of such achievements need not to be emphasized.

‘“‘; :l{roiwl 371, Mostowski [62].
) Mostowsi [56], (56], Kleeno [34], Trachtenbrot [101]
1) Mostowsi [59], Davis [4].



C. The theory of recursive functions
and the algebraic trend

There remain to be discussed two treuds in the investipntions on the
foundations which appear to affect docisively the course of these inves.
tigations.

The firgt and most essential of these trends is the theow of reur
sive functions. It was initiated in o very imperfeet form by thoe sehool
of Hilbert. The general theory was formulated at the momext when the
notion of a general recursive fuuction was introduced. A wisive infly-
ence on the formulation and development of {his theory was exerted
by the fact that axiomatized systems of arithmetio woero presented in a
formalized form (Gddel’s definition of recursive functions®). Thus, al-
though for the moment we do not attribute a particulsr iportance to
formal systems with stictly defined syntactical rules, novirtholesy they
have played a considerable vole in the ovolution of the wience of the
foundations of mathematios owing to the fact that they hive givon. rige
to a method of defining and utilizing the notion of a recusive function.

In my previous considerations I have tried to show tiat the notions
and methods of the theory of recursive functions porvide almost all
the branches of the foundations. They appear not only ininvestigations
of the foundations of arithmetic, where they are ohviouslr an extremely
natural instrument, but algo in atbempts at building w o system of
a;nailysis conforming to the postulate of construstivity, i:iim;urpretatiuns
of intmitionistic conceptions and, shove all, in investigtions on deoi-
dability. “

. The considerable number of studies devobed o the heory of voour-
sive functions is an evidence of the great importance woribod to that
theo?y. T have mentioned above some problems whid appoar fio e
partl.ogla,rly up-to-date, e. g. those concerning the oxtontion of Kloene's
classification beyond the number w and the developmert of the theory
of gonstruetive ordinal numbers, Investigations ave alsobeing made on
classes narrower than the class of rocursive funetions, Such s olass is
formed . g. by elomentary functions introduced by Kalnér [27], which

) Godel [107], Mostowski [81].
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have lately been investigated in detail by Grzegorezyk [15]. Besides,
much attention is being given to questions concerning method, 6. g. to
an equivalent and possibly simple definition of these functions (Robin-
gon [76], Post [68], Markov [49]).

An evidence that the theory of recursive funetions has already
reached a certain degree of maturity, is the publication of a monograph
treating of these functions (Péter [667).

Another characterigtic feature of the investigations on the founda-
tions is their inereasingly close associations with algebra. I have already
mentioned some of these associations. We have seen that the so-called
general algebra is o branch to which equal contributions have been made
Dby algebraists and by specialists in the foundations. We have also seen
that some branches formerly included in logic have been absorbed by
algebra, as for example the multivalued systems of the sentential cal-
culus, and that algebraic methods allow us to unfold and extend the
range of applicability of fundamental logical theorems, 6. g. the Skolem-
-Léwenbeim theorem. The influence of the algebraic trend is manifest
algo in the decision theory.

Somewhat deviating from the main trend in logical investigations,
but historically and as regards their subject matter closely connected
with logie, is the vast branch of algebra dealing with Boolean ficlds.
This branch has numerous applications in the theory of probability and
in congequence it constitutes a link between investigations on the founda-
tions and other branches of mathematics. It is worth noting that the
Boolean algebra or, more exactly, its most primitive fragment which is
in point of fact identical with the ordinary sentential ealculus, finds
application in the theory of electric circuitst®).

These facts show that invesbigations of the foundations of mathe-
matics, though constituting a rather restricted Dbraneh and different
from other branches of mathematics with regard to subject matter and
method, are not isolated from the main trend of development of
mothematics; they themselves draw their subject matter and methods from
other branches and, to a certain extent, also find their application outside
the foundations.

To conelude wo may pub the question whether, owing to the résults
obtained so far, the problem of the foundations of mathematics has been
golved. Thus formed, the question is wrong. The problem of the founda-
tions of mathematics is not a single con¢rete mathematical problem which,
onee solved, may be forgotten. The considerations regarding the founda-

) Shannon [82), Suzestakow [81], Greniewski, Marezyhski and ‘Bo-
chenel, Studia Logica 2 (under press).
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tions of science axe just as old as seience ibself and mathematios 18 ne
exception to this rule. For many centurics the essence and contont of
mathematies have been, and probably will remain also in fufure, an
object of considerations for philosophers. In {he course of time matho.
matics itself changes and this also necessitiates o chango of views on iy
foundations. It is a peculinr foatnre of contemporary considerations on the
foundations of mathematics that they have partly lovt thelr philosophical
character having adopted a mathemabical chavacter, I have fried in
this paper to give a brief review of the present stato of just that mathe-
matical fragment of investigations on the founduions and to show that
they have enabled us to oxplain various essential methods of modoern
mathematics.

However, ag I have omphasized more than once, considerations on
the foundations by the mathematical method play only an auxiliary
role. An explanation of the nature of mathematics does not belong to
mathematics but to philosophy, and is possible only within tho lmits
of a broadly conceived philosophical view treating mathematios not
a8 detached from other sciences but taking into account it heing rooted
in natural sciences, its applications, its associntions with other seiences
and, finally, its history.

The investigations on the foundations by the mathematioal method
obviously affect the formation of such a broad philosophical view. As
has been menfioned above, the discovery of the incompletensss of arith.
metic has discredited the attempt at a formalistic foundation of mathe-
matics which tried to reduce this science to a formal “game” one xpres-
sions. Of considerable philosophical importance are also the unsucoossful
attempts made by intuitionists to base mathematios solely on the intu-
ition of & natural number.

These and other negative vesults obtained by the mathematical
method confirm therefore the assertion of materialistio philosophy that
mathematics is in the last resort a natural geienco, that its notions and
methods are rooted in experience and that attormpts b establishing the
foundations of mathematics without taking into aceount its originating
in natural seiences are bound to fail. ' ‘

'Thus, a8 we see, the investigations of the fowndations by the mathe-
matical method are not without importance althongh thoy do nob stand
for & full investigation on the foundations of mathematios. Their results
are of use for mathematios as well a5 for philosophy. In this sense they
fulfil the tasks assigned to them. '
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