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I. Methodological remarks

Sampling inspection. of merchandise consists in examining a sample
drawn from a lot and thus establishing a characteristic of the lot.

The theory of sampling inspection is usually based on the theory
of probability and mathematical statistics. In order to solve the most
important problems met with in the theory of sampling inspection we
accept certain hypotheses of mathematical or economical nature and
then awail ourselves of the circumstance that the problem concerns
a large number of objects. The masy character of the phenomenon ‘is
the necessary premise for the application of the theory of probability
with its well-developed apparatus.

This method, though sanctioned by tradmon, has some disadvan- .
tages. First, if we want to apply it, we must accept at the very outset
certain, definite statistical, economical, and sometimes other hypotheses,
and then, using the methods of the theory of probability we solve the
problem and obtain definite, strictly determined, results. If the results
or the hypotheses on which they are based give rise to any doubts, the
whole golution is useless, and in order to correct the results the whole
theory must be rebuild and problems corresponding to a different set
of hypotheses must be solved

Besides — and this is the gecond disadvantage of the methods used
hitherto — the method of selving those problems is often feirly com-
plicated and sometimes requires stronger mathematical means. There-
fore, for technical considerations, it is not always possible to introduce
into the calculations all hypotheses which sufficiently characterize the
phenomenon in question, and it becomes necessary to adopt certain
gschemes which are often unduly simplified. The results obtained in this
way are usually rigid, and if not wholly confirmed by practice they be-
come useless as a whole, so that no part of them can be accepted.

The third disadvantage consists in the circumstance that in the
theories of sampling inspection used hitherto the part played by experi-
ment and the experience of expert practicians has not been sufficiently
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taken into account, because it has not been clearly seen. The methods
used hitherto do not make it plain whether and.how the results obtained,
from theory can be compared with reality. The differences of opinion
between individual authors, concerning various details of theory are
usually not settled by means of experiment but left unquestioned as the
authors’ personal convictions.

The aim of the present paper is to present a theory of sampling
inspection free from the disadvantages mentioned above. This theory
is not based on the theory of probability. Mathematical statistics plays
a part in it but it is a different one to that it has played in the theories
mentioned above. The theory presented here is phenomenological.

It’s a matter of fact, any scientist who investigates reality, and any
one who applies the theory of probability to problems of natural science,
technology, economy, or other sciences, base their work on the con-
viction that there exigts an objective relation between the elements of
the phenomenon investigated. This relation can be disecovered by the
methods of the theory of probability and mathematical statistics, but
it can also be done without them.

In order to express this fact and its consequences in a clearer and
more definite way let us dwell for a while upon a special example. Let
us consider, by way of comparison, a theory describing certain real phe-
nomena, e.g. thermodynamics. Roughly speaking the historical devel-
opment of that science has been the following. First certain facts were
discovered and the connections between them were described phenome-
nologically. Thus, e. g. Boyle and Mariotte’s law of gases was discovered
and then the first and the second law of thermodynamics. The pheno-
menological theory of those phenomena did not make use at all of the
atomic properties of matter and of the probability methods. All the
same, it was a consistent theory, and — what is more important —
its results agreed with the results of experience to a sufficient degree.
It is a fact that the application of the theory of probability and mathe-
matical statistics to thermodynamics has enabled us to approach well-
-known faets from a different angle and has given us an insight into certain
more subtle phenomena, but the facts described in phenomenological
thermodynamics have remained true, although in a statistical sense.
For practical purposes, in physics and technology, phenomenological
thermodynamies has lost almost nothing of its value and its theoretical
foundations have even been strengthened.

In the theory of sampling inspection statistical methods have been
used from the very beginning. In this respect the history of its develop-

~

Mothodological remarks b

ment diftfers from the higtory of thermodynamics. However, the methods
of the thoeory of probability and. mathematical statistics often prove
t00 subtle for such gross problems as those encountered in sampling
inspection. Bosides, they have the disadvantages mentioned above.
Therefore it seems important — at least for praetical purposes — to
construct a phenomenological theory of sampling ingpection. )

The principal idea on which we base this theory is the conviction
that sampling inspection is o phenomenon determined to a sufficient degree.
We assumo that there exists a definite objective connection between the
investigatiod chavacteristic of the sample and the corresponding charac-
teristic of the lot. The assumptions concerning this connection are for-
mulated in Chapter LII in a general way, which — we think — well re-
flects Toalily. Ctenoral principles of this theory, formulated in Chapter IIX,
will resemable in character the principles of classical thermodynamics
or mechanics. _

On the basis of the principles thus formulated we ghall be able,
without applying the methods of probabilistic solutions, to golve in a suf-
ficiently exact way the most important problems encountered in the
theory of sampling inspection, e. g. we shall be able to deduce sufficiently
determined. formulae for the sample size. The calculations necessary
to solve those problems are quite simple and seem to require only the
knowledge of elomentary algebra. The method which we shall use is
callod the dimensional amalysis. It will enable us to solve many funda-
mental questions in a way that is general, uniform, and at the same time
very gimple.

The dimengional analysis has been known in physics and technology
for a long time, though it has not been sufficiently determined and fully
utilized. This method makes it possible to solve in a very efficient way

many concrete problems by elementary means. F.g. in mechanics it is

possible to deduce %he formula of the period of pendulum swing merely
on the ground of general considerations concerning the units of the quan-
tities in question. Owing to the method of the dimensional analysis if
is even sometimes possible to give a quantitative description of a phe-
nomenon for which no sufficiently developed other theory exists.
Ending this chapter we should like to point out a circumstance im-
portant for non-mathematicians, viz. that both the dimensional analysis
and the theory of sampling inspection, which we shall develop, are ab-
stract theories constructed axiomatically. Abstraction in mathematics
does not at all mean a breach with reality; it consists in singling out
common characteristics of different phenomena and studying the con-
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nections between those characteristics. Owing to this the abstract me-
thod has extraordinary power and generality. But there are dangers
to be avoided. Fundamental notions and postulates of abstract mathe-
matical theories are usually formulated in a very simple way and so as
to evoke intuitive understanding. This intuitiveness and the misleading
effect of the everyday meaning of the terms used may sometimes obscur
to a considerable degree the actual generality of the theory and lead to
false conclusions.

II. Dimensional analysis

Let us briefly state those principles of the dimensional analysis
which will' be necessary in the sequel?).

In the dimensional analysis we use certain quantities 4.,B,0,...,
among which are also positive numbers «,f,7,... The quantities
which are not numbers are called dimensional guantities. Such quan-
tities are e. g. 1 gram, 1 liter, 3 cubic meters, 4 amperes, 3 eggs, 4 dozen
buttons, 17 wagon-loads of coal, 7 pieces, ete.

-Ordinary numbers will sometimes be called dimensionless quantities.

We agsume that the following operations can be performed on
dimensional quantities. We can

1° multiply the quantity A by the quantity B; the result of the
multiplication is written: A B,

2° raise the quantity 4 to a power of an arbitrary real exponent a,
the result of this operation iy written: A®

The results of these two operations are, again always, dimensional
or dimensionless quantities. The rules of multiplication and involution
are flie same as for ordinary numbers. For every dimensional quantity 4

1) : 14=4 .
and : R
[¢) o A'=1.

We say nothing of addition for the present. It W1]l be discﬁssed at
the end of this Chapter.

The quantities 4,,4,,...,4,, will be called dimensionally indepen-
dent, if the equality

(3) A"‘A ) A"’"’

) Cf 8. Drobot, On the foundations of Dimensional Analysis, Studin Mathe-
matica 14, to appear.
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holdy if and only if
4y ==y, =0, a=I.

()bhm?wmu theso quantities will be (full(,d dzmenswnally depefndent

Wo assume that in the phenomena to.which dimensional analysis
can be applied there always oxist a certain number m. of dimensionally
independent quantities, any m--1 quantities being dimensionally depen-
dent. Bvery sot X,X,,...,X,, of such dimensionally independent quan-
tities will be ecalled 2 sa;swm of unsts. B. ¢. in classical mechanics the
system of units cm, g, sec is adopted. It is easy to prove that among
the quantitios Xy, Xay...y X, which constitute a system of units there
can bo 0o ordinary number, i. ¢. o dimensionless quantity.

Weo shall give four theorems without proof.

TunorEM 1. Bvery d@mmswml quantity A can be presented m o Uu-
nique manner in o chosen system of units X;,X,,...,X,, as follows:

(’)) - A=a XX, X,
where o 48 a positive number, and 0y, 0s,. vy Oy, OTE TEAL 'numbers

We say that two quantities 4 and B have the same dimension
it there oxists a mumber o such that B=aA. The class of quantities
of tho same dimension is called the dimension of those quantities.
The dimension of the quantity 4, glven in the system of umf,s
'-le-Xzy vy Xmy 18 : '
® [A]=[XREP.LX). |

TI{‘DORDM 9. In order that m dimensional . quantztws Al,Az, vy A,
whwh in the system of wwits X, X,,.. X have the followmg dimensions:

[4,]=[XP" X5 Xp],

(M

[Az]?[x?lxgm-’-xﬁﬁ']’ .
! ‘ o [4,,]=[Xi™ X . X,
Showld be dimensionally independent, it s azeaessmy and sufficient that
A1y Gy ... Oym .
Qo1 gy .. Qo £0.
(8) L 1
Apy Qe Fpm, o -
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E. g. let X,=cm, X,=g, X;=gec. In classical mechanics the follow-
ing dimensional quantities are used: velocity V, whose dimension is [V]
=[cmsec™" ]; acceleration A, whose dimension is [A]=[cm sec™7; den-
sity D, whose dimension is [D]=[gem™®]. These dimensional quantities:
velocity, acceleration, and density, are dimensionally independent,
because condition (8) is fulfilled, viz.

1 0 —1
1 0 —2|=10.
-3 1 0

In the sequel we shall use the mnotion of dimensional function
D(A;,4,,...,4,), whose arguménts are the dimensional quantities
A,,4,,...,4,, and whose values are also dimensional quantities. Fun-
ctions of amy kind cannot be used here, they must satisfy special con-
ditions. We are not going to state these conditions here in its procise
form. We only explain intuitively that it is required that a dimensional
function shall have the same form in every system of units.

A1l functions used in physies, technology and matural science in gen-
eral, satisfy this condition, which is also satisfied without any restric-
tions by all functions whose arguments and values are ordinary numbers
(dimensionless quantities). The formulae which we shall introduce in
the theory of sampling inspection also satisty this condition, because
only such functions will be used in deducing those formulae. Thus the
form of the formulae for the sample size which we shall deduce will
not depend, for example, upon the circumstance whether the size of
the lot iy measured in dozens or in packages, and the sample size in
pieces or in boxes; even the number of pieces which make up a dozen
is inessential.

THEOREM 3. If the quantities A,,A,,...,A,, are dimensionally inde-
pendent, then every dimensional function ®(Ay,A,,...,A,) which satisfies
the condition mentioned above must have the form '

f1 4t m
9) D(Ayy Agy.. s A)= AT AT .. AP,
where @ is a certain constant numerical factor, and fi,f,,...,fm are real
numerical constants.

THEOREM 4%). If By,B,,...,B, are dimensional quaniities dimensio-
nally dependent on the quantities A, A,,..., Ay, which are dimensionally
independent, i. e. if

*) Theorem 4 is known in the dimensional analysis under an odd name of
¢JI.theorem™.
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By Al Al 4%,
(10) : . Bz"—‘ﬁgA.lljgl.Ag”...A?ﬁm,
B, =, b 4. A%,

where Py,Ba,...,B, are positive mumbers and by (k=1,2,...,r; 1=1,2,
..., m) are real mumbers, then every dimensional function

(D(AlyAzr--;AmiBlaBz:---y-Br)
which satisfies the conditions mentioned above must have the form
(11) Q(Al,Az,,..,Am;Bl,Bz,...,B,.)=qo(/31,ﬁ2,...,ﬂ,_)A’;‘A’;"‘...A’;;'{

where @By Py Be) 18 an ordinary numerical function (4. e. a function
that assumes dimensionless numerical values) of numerical (dimensionless)
arguments By,Bay...y Py while fy,fs,...,f,, are certain real numbers indepen-
dent‘ Of A-17A2""’Am and Of .81:/927"-751" ’

Theorems 3 and 4 form the bagis of determining the shope of dimen-
gional functions. We ghall use them repeatedly.

The following two problems will complete this chapter.

So far the only operations on dimensional quantities have been mul-
tiplication and involution. However, for practical purposes it is conve-
nient to introduce also addition, subtraction and limit; these operations
can be performed on quantities of the same dimension only. The fol-
lowing equalities:

ad +BA=(a+p)A4,

ad —BA=(a—p)4,
lim (@, 4)=(lim a,)4,

. n—p o0 =00 .
are, formally, to be considered as the definition of these operations. In
order to make subtraction always possible it is natural to introduce also
the elements ad with non-positive coefficients. It must be emphasized
that the quantities ed with non-positive coefficients a do not bélong
to the original set of dimensional quantities.

This convention enables us to “add” dimensional quantities of the
same dimension and even to introduce the notion of integral and that
of infinite series. With quantities of the same dimension we can make
all operations that are known in mathematics, without restriction.
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1II. General principlés of the theory

We proceed to formulate the fundamental notions and postulates
of the theory of sampling inspection. They will form a bagis for further
reasonings, necessary to solve individual, concrete problems. The notions
and postulates of the theory of sampling ingpection can be introduced in
various ways, according to the degree of generality required. Here we
shail ‘confine ourselves to one of the possible ways, which is usnally suffi-
cient for practical purposes; for we primarily intend to show how & con-
sistent phenomenological theory of sampling ingpection can be construec-
ted, and not to develop this theory in its greatest generality. Therefore
the notions and postulates that we are going to accept serve as examples,
and by no means exhaust all possibilities. Given opportunity we shall
point out only some possibilities of generalization, not very significant
ones; deeper and more essential generalizations should form the subject
of a separate paper. ‘

A lot of merchandise is a set Q of objects which has the following
properties: ' ‘ L _

If 2,,0,,... are subsets of the set Q, 4. ¢. parts of the lot, then we
assne that we are able to add these parts of the lot and that the result
of the addition is always again a part of the lot (or the whole lot). The
addition will be denoted by the symbol U. We assume that for each
part of any lot there exist two definite measures, denoted by ¥ and W
and satisfying the following conditions: .

’ 1° The measures N.and W are dimensional quantities.
"~ 90 The measures N of all parts of a lot have the same dimension,
and the measures W of all parts of a lot have the same dimension.

30 The quantities N and W' are dimeusionally independent.

40 If Q, and Q, ave disjoint parts of the same lot 2, then

@y WeUe)-We)we)

The quantity N(Q) is termed the size of the lot Q; the quantity W(RQ)
is termed the wvalue of the lot 2. Analogously the quantity N,=N(2;)
is the size of the part Q, of the lot, and the quantity W,=W(Q,) is the
value of the part 2, of the lot. : ) , .

- “We shall clarify these notions and the postulates accepted by means
of examples. According to our assumptions, 20 wagon-loads of coal, for
example, constitute a lot. Let us assume that the addition U of two parts
of this lot, e..g. 3 wagon-loads and 5 wagon-loads. consists in heaping the
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coal together. Lot ws rogard the weight of the coal composing the -lot
(or its part) as the size N of this lot (or its part). The dimension of the
gize N is, for instance, kg or ton. The money-equivalent, ¢. e. the value
in the everyday sonse of the word, will be regarded as the value W of
the lot or its part. H.g. 20 wagon-loads of coal are worth 500 guineas.
Thus the dimension of the value W is guinea. We verify the fact that
the size N of the lot and its value W, thus accepted, satisfy all the con-
ditiong 1°-49. :

Lot us take another example. Let us regard as a lot 1000 barrels
of wine, not all of which. contain wine of the same sort. Let us assume that
the addition |J of two parts of this lot, e. g. 20 liters and 30 liters, not
necogsarily from, the same barrel, consists in pouring the wine together.
The number of litres will be the size N of the lot (or its part); litre is
therefore the dimension of the size N. The monéy-equivalent, ¢. ¢. the
value in the everyday sense of the word, is the value W of the lot (or
ity part). H. g. let 1000 barrels of wine be worth 25000 guineas. Then
guinea is the dimension of the value W. Now, the quantities N and W,
determined in this way, do not fulfil all the conditions 1°-4°% viz. condi-
tion (4') is not satisfied. For in wine-trade the amount paid for a mixture
of two sorts of wine is not always equal to the sum of the amounts paid
for the component parts of that mixture. Often by mixing two brands
of wine of high quality we obtain a poor sort of wine, of little worth.
Hence, the theory .which we are going o present does not apply to such
goods as the above mentioned 1000 barrels of wine of different brands.
'~ Howaover, the postulates of the theory could be formulated in such
a way as to comprise also such cases. This is not done here, because, as
has been mentioned above, we are concerned only with presenting a method
and not with increasing its generality. Besides, it seems that in many
practical instances of sampling inspection only such goods are concerned
(e. g: coal) as satisfy all postulates of our theory.

Before formulating further notions and postulates let us make a me-
thodological remark. In every axiomatic theory the terms of the
notions are purely conventional and one should not be misled by their
everyday meaning. Thus the term “value” may be used in this theory
both in its everyday and metaphorical sense. One thing is essential,
namely that the notion designated by the term should satisfy the con-
ditions that wo have accepted. Thus the value of a lot” may be for
ingtance its money-equivalent (e. g. a lot of iron-ore is said to be
worth 3000 guineas), or another quantity, for instance . the amount
of pure product (¢. g. the total amount of iron in the ore is 1000 t).
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In-most practical problems it is the money-equivalent that is regarded
ag the value of the lot. This circumgtance may account for the choice
of the term, but detracts nothing from the generality of the notion.

The term ‘“size”, too, i3 conventional. K. g. we.may regard the
weight of a lot of coal as its size, volume as the size of a lot of
timber, number of pieces as the size of a lot of bricks. The term ‘‘gize”
has been adopted for the sake of generality, regardless of particular
interpretations in ‘concrete cases.

The dimension of the size N of a lot (or its part) will be denoted by
the symbol “PIECE” (capital letters). Thus

(12) [N]=PIECE. :

The dimension of the value W of a lot (or-its part) will be denoted
by the symbol “GUINEA” (capital letters). Thus

(13) [W]=GUINEA.

The terms “PIECE” and “GUINEA” are of course entirely con-
ventional.

E.g. if we take the weight of a lot of coal as its size, it would be more
convenient perhaps to use the term “ton” for the dimension of size. Or
if we take the volume of a lot of timber as its gize, it would, be more con-
venient perhaps to use the term “m3” for the dimension of size. But
if we take the number of bricks in a lot as its size, it is convenient to
use the term “PIECE” for the dimension of size. For the sake of goneral-
ity of reasoning we accept the term “PIECE” regardless of particular
interpretations in concrete cases. .

The same applies to the term “GUINEA”. E. g. if we take the
money-equivalent of a lot of eggs as its value, it is eonvenient to use the
term “GUINEA” for the dimension of value. But if we take the number
of good eggs in a lot as its value, it would be more convenient perhaps
to use the term “good egg” for the dimension of value. However, for

the sake of gemerality of reasoning we accept the term “GUINEA” re-

gardless of particular interpretations in concrete cases.

These names are only necessary to fix the terminology in solving
various problems. Having solved the problems, we may use in practical
computations any convenient names of units, in accordance with the char-
acter of the problem considered; or we may even use no units at all.

~ Let us now introduce further notions. A sample is a singled out
subset @ of a lot. A sample must have the following properties:
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If wyywy,... aro subsets of the set o, ¢. . are parts of a sample, we
agsume that we are able to add them, and that the result of the addition
is again & paxt of the sample (or the whole sample). This addition will
be denoted by the symbol v. ' :

v-addition of parts of a sample need not be of the same kind as
U -addition of parts of a lot. ‘

Wo assumo that for each part of each sample of a lot two measures
have been defined, denoted by n and w, which satisty the following con-
ditions:

5® The measures n and w are dimensional quantities.

6° The moasures n of all parts of a sample have the same dimension
and. the moeagures w of all parts of a sample have the same dimension.

7° The quantities n, w, N, W, are dimensionally independent.
8 If o, and w, are digjoint parts of the sample w, then
(8) 7 (V@) =N (@) 4n(ws),
(8") W (wyV wg) =w (o) +w(w,).

The quantity n(w) iy called the size of the sample w, and the quantity
w(w) is called the value of the sample w.

‘We shall clarify these notions and. postulates by means of examples.
According to our conditions a quantity of coal, 1 em?® in volume, drawn
in a suitable manner from a lot of 20 wagon-loads of coal, ground and
compressed into briquottes, is a sample. If two briquettes are made
into one, this may be congidered ag v-addition of two parts of this sample.
Let us regard the volume of this briquette as the size n of the sample. The
dimengion of the size n is for ingtance cm? Lebt us regard the quantity
of heat obtained when the sample is burnt, as the value of the sample.
Then the dimengion of the value w is for instance calorie. We verify the
fact that if we take the weight of a lot of coal ag the the size N of this
lot, so that for instance ton is taken as the dimension of the size ¥, a,n_d.
if we take the money-equivalent of the lot of coal as the value W of this
lot, so that for instance GUINEA. is taken as the dimension of the value
W, then the size n and the value w of the sample satisfy all the postulates
50- 80,

It scem doubtful whether postulate 7° must always be satisfied
in this example; for we could regard as the size n of the sample not the
volume of the briquette, measured in em?3, but its weight measured, for
ingtance, in grams; then the quantities N (measured in tons) and n (mea-
sured in grams) would be dimensionally dependent, because a ton = 10° g,
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and, postulate 7° would not be fulfilled. Now, even in that case we shall
regard the size » of the sample as a quantity dimensionally independent
from the size N of the lot. In order to avoid misunderstandings we
could denote the dimension N of the lot size by the symbol Ton (capital
T), and the dimension » of the sample size by the symbol g (small g),
so as to emphasize the dimensional independence of those quantities.
The essential circumstance in the reasoning is that in such cases we shall
never make. use of the fact that 1 Ton=10¢g. The form of the formulae
that we shall deduce will not depend upon the circumstance whether
a sample of coal is measured in cm? or in g, and whether the lot is mea-
gured in toms or in kg; nor will it depend upon the number of grams in
a ton of merchandise. Practically speaking we do not know exactly how
many grams of coal there are in 20 wagon-loads and such caleulations
are never made. We shall not make such caleulations as a matter of prin-
ciple because we regard the size N of the lot and size » of the sample
as dimensionally independent quantities, which is required by postu-
late 7°.

The dimension of the size n of a sample will be denoted by the sym-
bol “piece” (small letters). Thug

(14) [n]= piece.

The dimension of the value w of a sample Wlll be denoted by the
symbol “guinea” (small letters). Thus

(15) [w]= guinea.

The terms “piece” and “‘guinea’ are entirely conventional a.nd one
should not be misled by their everyday meaning.

" H. g.if we take the length of the wire contained in a sample drawn
from a lot of 1500 kg of wire, as the size of the sample, then it would
be more convenient perhaps to use the term ‘“em” for the dimengion
of size. If we take the number of electric-light bulbs in a sample drawn
from a lot of 10000 bulbs, 6. g. 70 bulbs, as the size of the sample, it is
convenient to use the term ‘‘piece” (small letters) for the dimension
of size. For the sake of generality of reasoning we choose the term “piece’
regardless of particular interpretation in concrete cages.

- The same holds for the term ‘“guinea”. E.g. in the case of bulbs the
time of burning of a bulb (until it burns out) is expressed in hours. If
we take that time as the value of a sample drawn from a lot of 10000
bulbs (of.equal strength), it would be more convenient perhaps to use
the term “hour” for the dimension of the value of that sample. If we take
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yalue in the ordinary sense of the word, i. e. the money- equivalent, mea-
sured in gmnefw, af the value of a sample drawn, e. g. from 7000 m of
cloth; then it is' convenient to use the term “gmnea” (small le’uters) for
the dimension of value, of that sample.

In most cases the assumption of the dimensional mdependence
of sample value and lot value finds expression in the ciréumstance that
generally in testing sample a different characteristic is directly detet-
mined from that which interests us in the whole lot. . ¢. in the sampling
ingpection of coal the heat value of the sample is established in the lab-
oratory and not its money worth, which is established by the commer-
eial staff. In tho sampling inspection of electric bulbs the laboratory
measuros how long the bulbs burn and not the price af WhlGh they will
be gold. :

But even in the cases where the investigated chameﬁemstw of the
sample iy the samo as that which interests us in the whole lot (¢. g. when
we examine the acotylen content in a sample of caleium carbide in or-
der to agcertain its contont in a lot of caleium carbide) we shall consistently
and serupulously distinguish the dimension of lot value from the dimen-
sion of sample value. We do it asa matter of principle since it is-required
by postulate 7°. Thug in the case of calcium carbide the dimension of
acetylene content in a sample must be given a different notation, e. g.
gram, (with a small g) from the dimension of acetylene content in the
lot, e. g. Kilogram (with capital X), in order to point out that we shall
deduce the formulae without making use of the fact that 1Kg=103g.

Practically the most important assumption made hitherto is that
the lot size N, the lot value W, the sample size », and. the sample value w,
are dimensionally 111clependen‘t' We agsume, besides, that the four. quan-
tities: N, W, m, w, form a system of units of the theory of samphng in-
spection in Lhe senge defined in Chapter II.

Before introducing further notions and postulates let us make a re-
mark of mathematical nature. Postulates 1°-8°, by means of .which
we have introduced size and value of sample and of lot, are
known in mathematics in the abstract theory of measure. Lot
and sample may even, be understood as something -more general
than set, they may be elements of a Boolean algebra. For didactical
reasons, howover, it is not expedient to introduce those generalizations,
which ave .obvious for a mathematician, although — and this is note-
worthy — they are not without importance for practice. E.g. it may be
a question of some importance, whether the impurities found in the
coal should be considered as belonging to the lot or not, if a lot of goods
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is regarded ag a set. But it makes no difference if we regard a lot ag an

element of a Boolean algebra.

Using the notions introduced above and the postulates accepted let
us define further notions necessary to the theory.

The ratio of the value W of a part Q, of the lot (or of the whole lot)
to the size N of the same part 2, is called the price O of the lot or. commer-
cial price,

=(,

=

(16)

The ratio of the value w of the part w, of a sample (or of the
whole sample) to the size n of the same part w, is called the price ¢ of
the sample or laboratory price

w

an = 0.

N
The definitions of the prices ¢ and ¢ could be generalized. Instead
of the total price we could introduce “densﬂay” of value and assuroe,
for instance, tha.t

W= [0aN,
20

- w= [edn,
N

where C(N) and c¢(n) are certain assumed dimensional functions depen-
dent on N or n, respectively. But we shall not dwell upon these general-
1zat10ns, because they can easily be made if need be. The essential thing
here is the dimension of both those prices.

According to definitions (16) and (17) we establish the dimensions
of the prices O and ¢, viz.,

(18) [C]=GUINEA -PIECE™, [¢]=guinea - piece™

The notions of the price of a lot and that of & sample, thus defined,
are much more general than is suggested -by the terms used. We exem-
plify this as follows.

E. g. if we regard the weight of 'a lot as its value and its volume ag
its size, then its specific gravity will be its price. If we regard the money
worth of a lot as its value, and its weight as its size, then its price in the
everyday sense of the word will be its price. If we take the amount of
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heat produced when a sample of coal is burnt as the value of this sample,
and the volume of a briguette as the size of the sample, then the amount
of heat per unit of volume will be the laboratory price. If we regard the
number of good oggs in a sample as its value, and the total number of
eggs a8 its size, then the fraction of good eggs in the sample will be the
price of the sample. In the last example the dimension of sample value
might be called, for instance, “good, egg” instead of “guinea”, and the
dimension of size might be called, for instance, “egg” instead of “piece”,
and then the dimension of sample price would be good egg-egg™. But
in the general theory we retain the accepted terms: PIECE, GUINEA,
piece, guinea. In practical applications those dimensions may be termed
in a different way if need be.

Lot us formulate further agsumptions. Namely we assume that there
is a fixed mothod of calculating the commercial price ¢ when the laborat-

" ory price ¢ ig known. For simplicity of reasoning we assume, for instance,

that the commercial price ¢ is & linear function. of the laboratory price e,
4. €.

(19) - O=qe+0,

where ¢ and C, are constant quantities for a given lot. From definition
(19) it will be seen at once that the quantity 0, has the dimension of the
commercial price. The quantity €, may be interpreted, for instance,
ag o congbant investment cost. The dimension of the guantity ¢ is

(20) [¢]=GUINEA - PIECE" - guinea - piece.

The quantity ¢ defined by formula (19) we shall call conversion
coefficient.

B. g. let the heat value of 1 cm?® of coal, estabhshed in the laborat-
ory, be 30 calories, so that the laboratory price ¢ of the sample of coal
is 80 cal-em™; let the constant investment cost Oy be

1 GUINEA
ton

(i. . 0,1 GUINEAS are added to the price of each ton of coal, e. g. fqr
the amortisation of laboratory equipment), let the conversion coeffi-
cient ¢q be '

b

0,05 GUINEA - ton™" - cal™ - cm?.

Then the commercial price of the lot of coal is
0'=0,06 GUINBA - ton™ - cal™ - em?- 30 cal- o™
40,1 GUINEA—ton~"=1,6 GUINEA-ton™

3

ro

Rozprawy Matomatyesne V
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The assumption expressed by formula (19) is, of course, not the only
one that is possible and corresponds to all cases encountered in practice,
Other assumptions could also be made in this matter. F. ¢. if we congider
the concentration of sulphuric acid as its laboratory price e, then it is
‘agsumed in practice that the commercial price € of the acid is not a linear
function of the concentration ¢. Instead of the relation (19) another
and more general relation could be introduced, of the form

@y O=4,6"+ g™ +...+ 0,

where ¢,,¢1,... and C, are cerfain constant dimensional quantities, which
could be termed conversion coefficients, and m,,m,,... are certain real
numbers. A formula of the type (19') can always be adapted to any prae-
tical case. : ;

However, we shall not develop the theory with assumption (19');
for the sake of concreteness we shall confine ourselves in the sequel to
the relation (19), which corresponds to many cases encountered in prac-
tice.

Let us now introduce further notions. We are going to define the
mean value in the lot and the mean value in the sample.

Let 2, be a part of the lot Q. If N, is the size of the part 2,, N —
the size of the whole lot 2, whose value is W, and O=W /N — the price
of the lot, then the quantity

(21) | F=Wa2=0N,

iy termed the mean value-of the part Q, in the lot. In virtue of this de-
finition the dimension of the mean wvalue W in the lot is

[W]=[W]=GUINEA.

It will be seen from formula (21) that the parts whose size is equal
have the same mean value in the lot. *

We define analogously the mean value ¥ of the part w, of size n,
in the sample o of size n and value w, when the price of the sample is
c=w/n:

(22) f L
n
Hence the dimension of the mean value % in the sample iy

[@]=[w]=guinea.
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It will be seen from formula (22) that the parts whose size is equal
have the same mean value in the sample. .

Let us discuss one more notion, of fundamental importance in the
theory of sampling inspection, viz., the quantity which is the measure
of the dispersion of value in the lot or in the sample.

In mathematical statistics various measures of dispersion are used.
If the random variable & may assume only the numerical values E1y625.00,8,
and their probabilities are equal, then the number

- 1
§=;(5H—§z+---+fu)

is tormod tho moan value of the random variable £, and the following
meagures of dispersion, for instance, are assumed:

gtandard deviation = ]/1— (& — )2 (8, —E)2+...+ (£,—8)2,
f ,

1 - - -
(23) average deviation = " (1€ — &l4-1&—E|+. .. +]&,—¢|],

range = Max§,—Ming,.

The quantities used in this theory are not numbers but dimensional
quantities, so that the measure of dispersion of value in the lot or in the
sample will also be a dimensional quantity. One naturally asks what
the dimensgion of this measure of dispersion should be. It might seem
that it is sufficient to regard, in definition (23), &, as the value W, of
a PIRCE in the lot, whose dimension we know to be GUINEA, and u
a§ the size IV of the lot, whose dimension is PIECE; we should. then ob-
tain the dimension of the dispersion of value for a PIEOE in the lot.
But it is easy to verify the faet that the dimension of standard deviation
would then be GUINEA-PIECE", that of average deviation would be
GUINEA: PIROE™, and that of range would be GUINEA. On the other
hand, if a different measure of dispersion were used from those quoted,
as examples, in formulae (23), then that measure could also have another
dimension, In that case the theory which we are constructing would
depend upon convention and would have little scientific value.

Thorefore wo shall attempt to impose upon the measure of the
digpersion of value in the lot or in the gample certain conditions, which
will onable wus to determine the dimengion of dispersion in a unique
manner. The measure of dispersion will be defined axiomatically by

9%
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means “of ~postulates. The axioms will be formulated so as to be
abstractions of certain essential properties of the notions that are
being defined. In this way we shall only explain why we have chosen
such and such postulates instead of others, but, of course, thiy will
not constitute a ‘“proof” of those postulates, because in an axiomatic
theory the postulates are not objects of proof.
Let the part 2 of a lot of goods be a sum of 9N disjoint portions
02,Rs,...,00, 1. ¢
R=0,U02,U...U0;.

To simplify our reasoning, but without any essential limitation of
generality, we assume that all portions Q,,0,,...,02, have an oqual
size Ny. In virtue of definition (21) all those portions have an equal
mean value, viz., '

(24) W:W%ﬂ =0N,

where N is the size of the lot, W the value of the lot, and ¢ the price
of the lot. The size of the part 2 is, of course, N,=NN,.
Let the value of the portion @, be W, (y=1,2,...,0N). Let

S=SQ(W1,W21--meyW:NmNo)

be a dimensional function of the dimensional arguments: Wi Wayoo o, Wa;
W,N, and N,, which depends on the set 2 and which satistios certain
postulates to be formulated below. We call this function the measure
of the dispersion 8 of value of the portions 021,8;,...,2y in the part Q
of a lot. In virtue of Theorem 4 (Chapter II) wo find that

(25) S=¥, (%1,9332,...,‘28m,92)W“N3,

where ¥, is a numerical function of the numerical arguments LB, =W,/ w

(r=1,2,...,9) and N, a, b are real numerical constants. The form of
the function ¥, is dependent on the set Q.

Now we proceed to. develop the postulates mentioned above. Let
us observe that all measures of dispersion mentioned, for instance, in
formulae (?3) are homogeneous functions of the firgt degree with respect
to the variables £,, 4. e. if any of these measures of dispersion is denoted
by the symbol 7 (61582y-.4,€,), and A denotes an arbitrary number, then

F(ﬂ§1,252,...,ZEA)=ZF(£1,52,...,E#).
We make a postulate of this property and we assume that in formula (25)

(26) _ a=1.

4
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In ordor o determine the number b in formula (25) we assume
further postulates. :

Lot QF, 0", 0" bhe parts of a lot of merchandise. Let the. part @
(i=1, IT, I11) bo the sum of the same number, e.g. N, of disjoint portions
4, 0%,...,2%, oach of which has the size Ni. Hence the size of the part
o is ‘ ‘

Ni=0N Ni (¢=1, IT, III).
In virtue of (24) the mean value of each of the portions is
27) W,=0Nj,

where ¢ is the price of the lot. Let the value of the portion Q. be Wi
(i=1, 1T, IIT; y=1,2,...,9%). Lot
(28) 8=, (T}, 24, ..., W, MW, (NG and %;=W%
[

be the measure of dispersion of value of the portions QF,Qf,..., 0% in
the part ©° of the lot.

Finally, let the parts Qf,0Q™ be disjoint, and the part Q™ be their
sum consisting of N portions QI formed by joining the respective
portions QF and QF in pairs, 4. e.

a0y
In virtue of postulate 49, formulated at the beginning of this
chapter, we have -
(29) | N =N+ N

We assume now that the disjoint parts QF and Q™ satisfy the condi-
tion
(30) 8148t =S

We shall call the disjoint parts ©F and QM, which satisty the condi-
tion (30) wncorrelated random parts (i.e. uncorrelated in regard to the
measgure W). - _

Postulate (30) replaces in our theory the conditions of random in-
dependonce of parts of the lot, required in a theory based on mathematical
statistics. It is noteworthy that our postulate (30) is weaker than the
condition of random independenco. Coo

 In ordor to detormine the exponent b in formula (25) in & unique
manner wo formulate another.postulate, viz. we postulate that if the
disjoint parts Q' and Q% of a lot of merchandise. are uncorrelated, then

(y=1,2,...,N).
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there is a finite limit, lim ¥,, equal for all parts ©QF, QU QI
RN—>00 ¢
=0'u Q9 4. e.

31y lim ¥;= lim Y= hm ‘Pm—!P
R 00 N0
It would be useful perhaps to state more exactly the meaning of
Lim ¥o; we shall not do this, because it is done in the same way as in the

N—oc0

theory of probability.

Though postulate (31) rephees the limit theorem of the theory of
probability, still it may also be accepted as an empirical law, according
to the well-known saying of Lippman quoted by Poincaré?): “Hve-
rybody believes in the law of errors, the experimenters because they
think it iy & mathematical theorem, and the mathematicians, becanse they
think it is an experimental fact”. In order to construct consistently
a phenomenological theory of sampling inspection wo accept postulate
(31) as an experimental fact, particularly since there are mathemadti-
cians who consider applied mathematics not WJthout reason as an
empirical science.

Postulates (30) and (31) enable us to determine the exponent b in
formula (25); for, in virtue of (27) and (28) we have

8;=¥,0 (N}’
and it follows from postulate (30) that
Yﬂ 02 (Nl)z(b 1—1)+T2 02 (NII)%(Y)—I—I)=1I/2 02 (NIII)2((J+1)

(i =1, II, IIT),

Pasging on both sides of this equality to the limit for N—o00, We
find from the equality (29) and postulate (31) that

(32) (_Ng)z(b-{-l)+(.N§I)2(b+1)z(N}—l—N%I)z(b—'-l)

for all N§ and NT. Therefore we §ubstitute in particular Ni=NIX. Then
D) (Ng)z(b-}-l) =22(b+1) (Ng)z(b-l-l)’

whence it follows that 2(b41)=1, 4. e.

(33) -1

2

It is easily verified that for b=—1/2 equality (32) is true not only
in the particular case under eonmdera,tlon, but in all cases.

*) H. Cramer, Mathematical methods of statistics, Princeton 1946, p. 232
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In virtue of equalities (26) and (33) formula (25) assumes the
following form:

(34) S=WQ(QB17QBZ,--'7%W:W)WNF1/2-
Therefore a dimensional function whose dimension s
GUINEA-PIECE"

and which has the form (34), where ¥, iy an ordinary numerical
function of the numerical arguments B,,W,,...,Wy,N, with the finite

limit lim ¥,, will be termed the measure of the dispersion of value of
P--ro0

the portions 2y,2s,...,2¢ in the part 2 of Zot of merchandise.
The most important for the sequel of our theory is the dimension
of the dispersion 8, which, for every fumction ¥y, is always

(35) [§]=[W]:[N7*]=GUINEA -PIECE .

Weo define analogously the measure of the dispersion s of value in

the sample.
According to this definition the dimension of the measure of the dis-

persion § is always ;
(36) [s]=[®]" [15"*]= guinea - piece ",
where % is the mean value of a portion in the sample, and n, the size of

cach of these portions.
If we give special forms to the function ¥y, we ghall obtain the mea-

sures of dlspersmn used in mathematical statisties. Viz., if

!po: WD(QBUQBN see y%m;%)

‘/ —12+( p— 1)+ (Ve —1)7,

~ then the measure of dispersion of the form (34) will be called. the stand-

ard deviation of value of the portions 2,,%,,.. ., 25 in the part 2 of the
lot. In that case formula (34) may be written in the form

(37) S——]/*—[

where N, is the size of the part @, and W, the value of the portlon Q,
(fy——l 2,. ‘-ﬁ)

HWom WP+ (W — ),
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It )
Py, (T, By .., Ty ,%>=§12~u%1—1|+|%3;—11+...—H%m —1],

then the measure of dispersion will be called the average deviation of
value of the portions 2,,£2;,...,2y in the part 2 of a lot of merchandise.

In that case formula (34) may be written in the form

1 _ — e
=W, — a= T oo Wy — W1,
(38) S= G Wa— Tl W= Wl Wa = W),

where N, is the size of each of the portions Qy,%0,,...,0y.
If
Yo="Y0(B;, By, ..., Wy, N) =Max W, —Min B,
4 14
then the measure of dispersion will be termed the range of value of the
portions 2,,82,,...,2y in the part Q of a lot of merchandise. In that
cagse formula (34) may be written in the form

. 1
39 S=Max W,~Min W )——-
(39) ‘ T A
In practice only thosé three measures of dispersion are used in mosé
cases.
If
Ny=PIECE

then the form of the formulae (37), (38), (39) i identical with that of
formulae (23), used in mathematical statistics; for in formula (37) we
then have

N,=NPIECE.

Standard deviation, average deviation, and ra,nge' of value in a sample
of merchandise are defined analogously. :

‘Thus it makes no difference for the theory presented here which
form of the function ¥, appearing in the definition of the measure of
dispersion, is Qhosen. This is a conclusion drawn from the central limit
theorem of the theory of probability, expressed in a different terminol-
ogy. :

In connection with the above considerations concerning dispergion
let us make some methodological remarks. It might seem that since we
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quote the central limit theorem of the theory of probability, our theory
is not & phenomenological theory, but a statistical one. Now, we must
repoat that postulate (31) is accepted here as an experimental fact. I%
is not difficult to imagine a mental experiment, or even a practical ex-
periment, that would confirm this fact. Every phenomenological theory
must have not only definitions of certain notions but also laws obtained
by abstraction from oxperience. Similarly, for instance, in order to con-
struct such a phenomenological theory as classical mechanics it is not
sufficiont to introduce the notions of length, time, and mass, or even
to define the notions of velocity, acceloration, and force. If we restric-
ted mochanics to definitions it would be a barren nomenclature. It
acquiros sciontific value by the fact that it postulates, as an experimental
fact, Newton’s law oxpressed by the formula: force — mags - accelera-
tion. A similar role to that of Nowbton’s law in mechanics is played in
our theory by postulate (31), which we accept as an abstracted result
of experiments. It will not be out of place to remark, should anyone
agk about it, that we consider mathematical theorems, particularly those
of the theory of probability, also as facts. Postulate (30) is only necessary
to defino the meaning of the statement that the parts of the lot are un-
correlated. We cannot expect a phenomenological theory of sampling
inspection to work without the notion of such stochastic independence.
Postulate (30) requires that no selection shall be made in drawing samples.
Practicians know well how to achieve this, and our theory does not re-
strict this practice in any way; it is even less exigent for condition (30)
is wealcer than that of stochastic independence, which is fairly easy to
gecure in practice. )

It is true that postulate (31) could be verified directly by experi-
ment, but it would not be a reagonable way of confronting our theory
with reality. It is mueh more advantageous to verify the consequences
of the postulates that we have accepted, e.g. the formulae of sample
gize, which will be deduced in Chapter IV. Similarly, in mechanics we
verify experimentally not the principles of Newton’s mechanics but
their consequences. In some phenomenological theories a direct veri-
fication of postulates is extremely difficult, e. g. a verification of Hooke’s
law in the theory of elagticity; in other theories it is downright impossi-
ble, e.g. in thermodynamics a vorification of the first and the second
law, formulatod by means of a negation. In those theories it iy only con-
clugions resulting from the acceptoed axioms that are verified experimen-
tally. 'Wo ghall deal with the experimental verification of the consequen-
cog of our theory in Chapter V.
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The most essential remark ig that postulates (30) and (31) have
been necessary only to establish the dimension of dispersion of value
in the lot or in the sample. Therefore instead of those postulates we could
set up other ones, e. g. we could accept equalities (26) and (33) as postu-
lates, and then it would not be necessary even to mention the limit the-
orems and, statistics, because the postulates (30) and (31) would be inher-
ent in formula (33) in a disguised form. That would be quite correct
logically, but it would not be intuitive. Therefore, when formulating
postulates (30) and (31) we preferred to say explicitly what intuitions
underlie our assumptions. Those intuitions, borrowed from the theory
of probability, are not a “proof” of any kind, for, as we have mentioned,
in a deductive theory axioms are accepted without proof.

Finally, let us point out that in the sequel we shall no more mention
the limit laws and mathematical statistics. We shall need no more intui-
tions. from, those theories. In statistical theories of sampling inspection,
on the other hand, the limit laws are applied in the solving of almost
every problem, and the theory of probability is an instrument of constant
use.

In practical applications it is usually the standard deviation that
is taken as the measure of dispersion. That is why we shall congider here
a certain particular case of calculating the standard deviation of value
in the lot or in the sample, which is important in applications.

Formula (37) may be written in & simpler form if we assume that
the values W,,W,,..., Wy, may be equal only to a definite value W, or
to zero. Let 4 denote in thiz case the number of all those parts among
0,2,,...,9y whose value is W,. Formula (37) assumes the form

(40) 8= ]/—— (AW

In virtue of formulae (24) and (16) we have

o— 7Y (M —2)W72].

W
W=0N = 2.
| 0 0=4 7,

Besides

.NQ = quO
Further, it follows that ‘

_ A

W=_;R—-Wo

Hence, formula (40) may be written
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R e e 1

Lot I'=4/9N. Then

W
l/m

L. g.let 2 be a lot of merchandise and N,=1 PYROE. Let the num-
ber of “GOOD PIECES” be the measure of value of the lot and of its
parts as woll. Henco the values Wy, W,,...,Wy, may be equal only to
the value W,=1 GOOI PIECE or to zero. Let I" be the fraction of GOOD

PIECES in the lot, so that the price of the lot, which will be called im this
case the “goodness of the lot”, is

GOOD PIECE
PIECE

Then thoe standard deviation of value of one PIECE in the lot £ can be
caleulated from the formula

C=r

—— GOOD PIECE
Y/ PIECE

This formula has a wide application in that kind of sampling inspec-
tion. where the rule is either to accept or to reject. Sometimes instead
of the value whose dimension iy GOOD PIECE another value is used,
whose dimension is BAD PIECE. The price of the lot is then called
deficiency.

Analogously, if the measure of value both of the s‘\.mple o of mer-
chandise and of its parts is the number of “good pieces” and y is the
fraction of good pieces in that sample, 4.e. if the price of the sample,
which in that case will be called the ‘“goodness of the sample” is

(41) 8§ =yI@1-T)

good. piece
piece

(=1

then the standard deviation of value of one piece in the sample o can
be calculated from the formula :

wwwww good piece

4 piece
Finally let us formulate certain fundamental notions a.nd postulates
of economical nature. :
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We postulate first that sampling ingpoection involves expense, If
the inspection costs nothing, it would be more reasonable to inspect the
whole lot than to make sampling inspection. Therefore we introduce
a fundamental notion of énspection cost B. The meaning of thiy term
in our theory is broader than ity everyday sense. Any economical loss
occasioned by the process of ingpection will be regarded as inspection
cost B. Further, we assume that inspection cost is covered in the same
currency as the lot of merchandise in question. The explanation of this
agsumption is taken from practice. Inspection often damages the merchan-
dise, i. ¢. diminishes its value. Inspection sometimes involves loss of time,
and in economical relations the prineiple “time is money” is usually
accebted; this principle may give rise to doubts from the point of view
of the dimensional analysis (time and money are dimensionally inde-
pendent), but in practical life loss of time often causes loss of mongey.
Ingpection cost may also comprise other expenses, e.g. the payment
of persons engaged in the inspection, amortisation of the inspection
equipment, ete. All these expenses and the value of merchandise will
be measured with the same unit. In other words, we assume that
the dimension of the inspection cost B is GUINEA (capital letters);
thus '

{B]=GUINEA.

We shall say, for instance, that the value of the whole lot of mer-
chandise is 5000 GUINEAS, and the inspection costs 20 GUINEAS,
the unit GUINEA being the same as that used in paying for the mer-
chandise.

The price k of the inspection of a sample whose size is n is

W =2

T

Therefdre, the dimension of the price % of sample inspection is

(43) (k]= % = GUINEA - piece™.

In this chapter we have dealt with fundamental notions, postulates,
and definitions of notions, necessary to formulate general principles of
sampling inspection of merchandige. It is easy to see that here merchan-
dise is only a concrete interpretation of certain experimental material
and that the theory which we are setting forth may be applied without
any essential modifications to every method of representation. :
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IV. Sample size

One of the most important problems in the theory of sampling in-
gpection is to establish what should be the sample size. The question
formulated in this way is vague of course, 80 long as we have not stated
the conditions which the size should satisfy. Those conditions will be dealt
with in Chapter V. However, in this chapter we are going to show how our
theory enables us, in various concrete cases, to obtain the form of formulae
expressing sample size, provided we know on what quantities the
size m is to depend, regardless of other conditions which the size must
satisfy. '

We give again the symbols of the notions which we shall use and
their dimensions. : :

TABLE I
X < Number Dimenasion
wm- Jm-| of for-
ber Name of (llllhlltlty bol zghlsgrin PIECE % - piece @ + GUINEA% - guineal:
text
ay 223 ag a;
1 | Size of the lot N (12) o 0 0 0
2 | Size of the sample n (14) 0 ‘ 1 0 0
3 | Value of the lot Wl (13) o . 0 1 0
4 | Value of the sample w (18) 0 0 0 1
5 | Price of the lot o | (18 | -1 0 1 0
6 Price of the sample ¢ (18) 0 —1 0 1
7 Conversion coofficient q (20) —1 1 1 —1
8 | Dispersion of value of
one PIECE in the lot | S | (38 | —1/2 0 ! 0
9 | Dispersion of value of | ' _
one piece in the sample 8 (36) 0 -1 0 1
10 | Price of the inspection ) .
of the sample k (42) 0 -1 ! v

We are going to solve, by way of example, certain problems concern-
ing the sample size n. In those problems we shall assume only that it
is known on what quantities rising the lot or the sample the sample
gize n dopends. We assume, for example, that the quantities on which
the sample size n can depend are some of the quantities shown. in Ta-
ble L. Of course, we could also define other quantities, besides those men-
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tioned in Table I, and make the sample size n dependent on them, but
we shall not do this here, because — as mentioned before — we only
want to illustrate the method and not to make a detailed discussion
of its assumptions and results. That should be the subject of separate
studies.

The problems which we are going to formulate and solve will be
divided into two groups, according to the choice of different quantities
which are contained in Table I and on which the sample size will be
made to depend. :

To the first group will belong those problems in which the sample
gize n.depends on the dispersions s or §, and — of course — on some
other quantities from Table I perhaps.

To the second group belong those problems in which the sample
size n depends neither on the dispersion s nor on §, but may depend
on other gquantities from Table I.

There are deeper reasons for this division. It follows from the con-
siderations in Chapter III that in the problems of the first group wo
use postulates concerning the measure of dispersion, and in the problems
of the second group we do not make use of those postulates. The problems
of the fixst group are called problems of statistical type, and the problems
of the second group are of non-statistical type.

In the practice of sampling inspection different formulae for the
sample size n are used. Some of those formulae are based on methods
of mathematical statistics and the theory of probability; others are said
t0 be taken from experience.

Our aim in this chapter is to deduce by the methods of our theory
various formulae for the sample size , among which there will also be
all well-known formulae used in practice, both those which are said to
be taken from experience and those which are bagsed on methods of mathe-
matical statistics; we shall also deduce other formulae.

We are going now to formulate and solve, by way of example, cer-
tain problems of the first group, ¢.e. those in which the dispersion s or §
is among the quantities on which the sample size n depends.

1.1. Let us assume that the sample size n depends only on the size N
of the lot, the price of the inspection k, the dispersion s of value of a piece
in the sample, and the conversion coefficient g. Thus

(44) ' ' n=90(N,k,s,q)

where & is a dimensional function. We agk what is the form of the
funotion .@. :
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Before solving this problem, we shall discuss the meaning of the
assumptions made.

‘When we assume that the sample size n depends on the size N of
the lot, we apparently do so in order fo inspect a large lot in a different
way from a small one. Perhaps it would be better to make the sample
gizo n dependent not only on the size N of the lot, but also on the price
¢ of the lot (and thus — on the value of the lot W=CXN). But we shall
do 80 in the next example. :

When. we assume that the sample size n depends on the price of the
ingpection &, we apparently do so because we anticipate the inspection
cost B=Ikn, and do not want this cost to be too high and to destroy
the economical offect of the inspection. We may have other reasons
besides.

‘When, we make the sample size n depend on the measure of the
digpersion s of value of a piece in the sample, this is apparently done 80,
because from the results of the inspection of a sample we want to ob1.3a1n
information concoerning the whole lot. This may be done as a precaution-
ary meagure or because we do not trust the producer or for other rea-

ons.

i Finally, the assumption that the conversion coefﬁciexllt q is an ar-
g‘umén‘o of the function @ is important for the very technique of inspec-
tion. But we should not forget that assumption (19) in Chapter IIT was
made as an example only. -

Let us now determine the form of the function ®. We verify that
the arguments N,%,s,q, of this function are dimens_ionall;r independent.
Using Table I, we construct the determinant mentioned in Theorem 2,
Chapter II. We obtain

- 1 0 0 0
o 1o,
o =, 0 1l 2
11 1 —1]

Hence, in virtue of Theorem 3, Chapter II, we haive
(45) n=a N*E"s%g™,

where o is a constant numerical factor, d,,a,,a,,a, are real numbers,
which must be caleulated. It follows at once that

[n] =[N LK (s (g™
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Substituting for [n],[N]1,[%k],[s],[¢] the corresponding dimensions
taken from Table I and comparing the exponents of the units of the
systemn PIECE, piece, GUINEA, guinea, we obtain in virtue of Theo-
rem 1, Chapter II, the following equations:

1
ay—ay,=0, ““2_'2_“3+“4=1a

a’2+a4=07 @y —a;=0,
whose solutions are

2 2
a:i=a/3=a4=-——7 a,2=-—--—§-~

3
Substituting them in (45) we finally obtain

. Nqs 2/3

where a is a constant numerical factor, independent of N,q,s,k; our
theory does not enable us to state anything concerning this factor. For-
mula (46) in the case of ¢ =1GUINEA-PIEOE™: guinea™ - piece has
been deduced by the methods of mathematical statistics by H. Stein-
haus?), who obtained
( Ns)2/3
n={-—— .

5k

Thus the question how to determine the constant coefficient a re-
maing ungettled. This problem, which concerns all formulae deduced
by the methods of this theory, will be dealt with in Chapter V.

1.2. Let us discuss another problem, more general than 1.1. Let
us assume that the sample size n depends not only on the size N of the
lot,, the price of the inspection %, the dispersion s of value of a piece in the
sample, and the conversion coefficient ¢, but also on the price O of the
lot. Thus ‘

(47) n=¢(N7k:s)Q70)3

where @ is a dimensional function, whose form must be determined.

3 Cf. H. Steinhaus, Statistical appraisal, Colloguinm Mathematicum 11. 3-4
(1951), p. 813, and Wycena statystyorna jako metoda odbiory towaréw produleji
masowej, Studia i Prace Statystyczne 2 (1950), p. 3.
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The assumption that the sample size n depends also on the price ¢
of the lot is made, apparently, because we want to ingpect more expen-
sive lots in a different way from less expensive ones; this has been men-
tioned in problem 1.1. As far as we know such an assumption is not intro-
duced in the theory of sampling inspection based on mathematical sta-
tistics, probably because the calculation difficulties involved in solving
such a problem by the methods of mathematical statistics would be
too great. '

We proceed to determine the form of the function @. We have ver-
ified by calculation that the quantities N,%,s,q, are dimensionally inde-
pendent; therefore in virtue of Theorem 1, Chapter II, the price C of
the lot must be expressed by means of N,k,s,q, and using Table I we
obtain by easy calculations ‘

kq?s?\"*
o=l
where f; is a dimensionless guantity, namely
(48) By =0N"’(Fegrs2y™?,
Hence, in virtue of Theorem 4, Chapter II,
.N 8 2/3
(49) - %= (f) (—%) )

where ¢(f;) is a numerical function of the numerical variable g,; our
theory does not enable us to say anything about this function; we can
only say that ¢(8,)>0. However, even without knowing the form of the
funetion @(B,), we have found that it depends on a special product of
variables written out in (48). The number :

By=0 N1 q—.-z/s s/

is the. characteristic parameter for this method of inspection. In other
words, if in the inspection of various lots of various merchandise the
quantities C,N,k,q,s, are different, but their parameters p, are equal,

" then the coefficient ¢(B;) will be equal for all the lots concerned. Number

B, is called the parameter of similitude of lots of merchandise for a given
method of ingpection, ¢. e. when it is settled on which quantities (e. g.
O,N,k,q,s) the method of inspection depends. .

However, we can make fairly general additional assumptions con-
cerning the function ¢(By) and then we shall find its more precise form.
E. g. we. can assume that the function can be developed.into a power
3

Tozprawy Matemntyezne V
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geries in the neighbourhood of the point f,=0, and we can contine our
considerations to a few terms of this series. H.g. if we confine our con-
siderations to the firgt two terms, 4. e¢. if we assume that

¢(B1)=0ao+a1 1,

where a, and o; are certain dimensionless constants, then in virtue of
(48) and (49) we shall obtain

__(Nwrs 0N
(50) n=oo| =) +a—-

Formula (50) is a generalization of formula (46) and it iy transformed
into (46) for a;=0, ay=a. The second right-hand term of formula (50)
is noteworthy. Using definition (16) we have

W=0ON,.

so that the additional term o, W /k is proportional to the value W of the
lot, and inversely proportional to the price % of the inspection, what
agrees with intuition. : ‘

The assumption that the function ¢(B,) can be developed into a pow-
er series is, of course, not the only one possible. The form of the function
¢ (£,) may be found from experience. This will be dealt with in Chapter V.

In the same way as in problems 1,1 and 1.2, we could algso assume
other quantities besides N,%k,q,s,0, as arguments on which the sample
size n is to depend, e. g. the nominal price 0, of the lot, which is generally
different from the price C, established by means of sample inspection,
or other quantities still. By the same method wé should obtain formulae
which would be further generalizations of formula (49). But instead of
doing this we shall proceed to another kind of problems of the first group.

1.3. Let us assume that the sample size n depends on the gize N of
the lot, the price ¥ of the inspection, and the dispersion § of value of
a PIECE in the lot. :

This assumption differs from the assumptions of problem 1.1 first
of all in the following point: we take into account not the digpersion s
of value in the sample but the dispersion § of value in the whole lot.
This assumption is economically less cautious than the assumption of
problem 1.1, because by means of an inspection of a sample we can mea-
sure the dispersion s in the sample but not the dispersion § in the lot.
Some authors, however, assume that the dispersion § of value of a
PIECE in the lot is known from other data, e. g. from the inspection
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of provious supplies of merchandise received from the same producer.
This assumption is made for instance in the acceptance method used
in the United States. ’

Another difference between the assumptions of problem 1.3 and
those of problem 1.1 lies in the fact that in 1.3 we do not assume any
dependence of » on the conversion coefficient g. ‘

We could explain this intuitively reasoning that, as a matter of
fact, in those assumptions we do not consider an inspection of individual
pieces in the sample, since we do not investigate the dispersion s of value
of these pieces. ‘ :

Such an explanation, however, might seem unsatisfactory; in order
to avoid doubtful points let us introduce the coefficient ¢ as an argument
on which, a priori, the sample size n may also depend, and let the cal-
culation mechanism itgelf settle the doubts.

Thus, we assume that

(61) ‘ n=0(N,8,k,q). , »

In order to determine the form of the function @ we state that the
quantities N,8,%k,q are dimensionally independent; for, using Table I,
we find the determinant ' ’ '

1 0 0 o

=, 0 1 0
s 1o
0 -1 1 0

—1 1 1 -1

Thus, analogously to the solution of problem 1.1, we have
[n] =[N [T [k]"[a]", |
where the real nmumbers b,,b,,bs,b, Wwill be found by substituting for
(n],[N1,[81,[%],[¢] the corresponding dimensions taken from Table I,

and by comparing the exponents of the units of the system PIECE,
piece, GUINEA, guinea. We obtain the following system of equations:

1 ‘ )
bl'—gbg—b":(), _b3+b¢=1, ‘

bybgtb,=0, * b=0,
whose solution is the following:
1

bl='§', b2=1, b3=—1, b‘.=0-

3%
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ﬁrheré 5 is & constant numerical factor. We have found that the sample

size n really does not depend on the conversion coefficient g.

_Formula (52) is used in practice, and — as far as we know — the
authors do not explain it by the methods of mathematical stabistics.
‘ Let us observe that the sample size n, ealculated from formula (46)
18 caeteris paribus of a higher order with respect to N than the sample
size n, calculated by means of formula (52), and the ratio of these two
gizes is of the order NYS. Therefore, if we do not know the dispersion §
of value of a PIECE in the lot and know only the dispersion s of
value of a piece in the sample, then — generally speaking — we must
draw samples of greater size. This agrees with intuition.

1.4. Formula (52) can be generalized if we assume — similarly to
example 1.2 — that » is dependent not only on N,s,k, but also on
the price € of the lot, <. e. :

(53) - - a=®(N,8,k,0).

The quantities N,8,%,0, are dimensionally dependent beca,use
the respective determma,nt

-1 0 0 : 0
=y 0 1 0 _o.
0—-1 1 0
-1 0 1 0
Therefore we express ¢ by N,8,%, and find
6 . oFnsT=p,

where f is a dimensionless quantity. Thus the ca,lculatlon made in prob-
lem 1.3 gives a generalization of formula (52):

N
(55) n=v(t)

where u(f) is a numerical functlon of the characterigtic parame-
ter f. If we assume that the function p(8) can be developed into

& power series and if we then confine our congiderations to the first two
terms of that series, we shall obtain
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SN2 CN
56 =4 2
(56) n - + 6y %

where 8, and d; are numerical congtants.

In practice it is sometimes required that the formula of sample size n
shall be such that 1° if the size N of the lot increases infinitely, then = is
finite, and 2° if the value W= CN of the lot is equal to zero, then # is
equal to zero, which is natural, because there is no sense in inspecting
worthless merchandise. From formulae (54) and (55) it follows that these
sonditions -can be written in the following form:

‘ Lim By (B) = const 0,

N—+00
p(0)=0.

One of the simplest functions satisfyin'g the first condition is the
function

042405819
ﬂ*ﬂ(ﬁ)z—é—z”‘j‘—'—j
01%+0; 843, .
where 6y,d,,...,0; are certain numerical constants. From the second
condition we find that there must be
65=65=0

and we can always assume J,=1. Hence we choose

Substituting for p the value from formula (54) we obtam, in virtue
t (55),
O’N Kt

T 8,0 NS 6,0N S+ 5,
which may also be written in the form

1 k k

Tn‘l" + 2 1/2 + 63 N

where 8,,8,,d, are numerical constants. If we assume d,=68;=0, we ob-

tain formula (52); and if we assume 6,=0, we obtain formula

1 k kG
. —‘,’{= 58 + 61 SZ
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J. Oderfeld has printed out that this formula is used in praectice
in a slightly less precise form. .
Finally, if we substitute J,=3J;=0, we obtain formula
s
ik |
where dy==1/6; is a numerical constant. This formula iy noteworthy on
account of the circumstance that it does not contain the size N of the
lot at all. v ‘ ‘ '
In assumptions (51) or (53) we could also introduce other quantities
as arguments, according to. the point of view adopted, and obtain va-

rious formulae by the method shown above. We_ shall not do this, as it
is only a matter of simple calculations.

1.5. As an example, we shall now deduce a formula, using greatly
simplified assumptions of the statistical type. Let us assume that

(57) . ) n==0(s,0),

i. e. that the sample size n depends on the dispersion s of value of a
piece in the sample and on the price of the sample; and that this size n
‘does not depend on the size N of the lot, its price, or the price & of the
ingpection. '
Then
8 2
(58) n=e(~—-) )

4

”:60

where ¢ is a certain constant numerical factor.

Sometimes formula (58) is also proved by the methods of mathemat-
. ical ‘statistics. ' o ’

1.6. We are going to consider certain particular cases of the for-
mulae deduced hitherto. If the ““goodness” or the “deficiency™ of the
sample, defined in Chapter III, is taken as its price, then in all the exam-
Ples so far considered we should substitute

good (bad) piece
/ piece

where y is the fraction of good pieces or bad pieces, respectively, in the
sample. Analogously, if the “goodness” or fhe “deficiency” of the lot
is taken as the price in the lot, we should substitute )

GOOD (BAD) PIECE
V PIEOR ’

3=l/y(1~ )

)

8=VI(1—T)
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where I' is the fraction of GOOD PIECES or BAD PIECES, respec-
tively, in the lot, according to the reasoning in Chapter IIT. '
Those cases occur in practice when the principle adopted in the
sampling inspection is either to accept the lot or to reject it.
We proceed now to congider one problem of the second group, 4. 6.
& problem in which the measure of dispersion s or 8 is not among the
quantities on which the sample size n depends.

2.1. Let us assume that the sample size n depends on the size N of
the lot, the price C of the lot, and the price % of the inspection, 7. e.

(59) n=0(N,C,k).

Theso assumptions can be interpreted in the same way as the as-
sumptions in the preceding problems chosen as examples. Besides, the
conversion coefficient g could be introduced as an argument of the fune-
tion @, but calculation, as in example 1.3, would show that with these
assumptions # does not depend on g. The formula:

. ON
(60) ‘771=a1—‘—,

where « is a constant numerieal factor, follows from the assumption (59)
in 9 way illustrated in the preceding examples. Formula (60) may also
be regarded as a particular cage of formulae (50) and (56). Formula (60)
is used in practice.

Finally, let us make some methodological remarks. It was not been
our aim to make the assumptions formulated in the problems which
we have solved cover all possible cases. Neither have we given a detailed
interpretation of those assumptions. It is even possible that some of
the interpretations outlined above do not agree- with reality. That ‘is
because we have not aimed at developing the theory of sampling inspec-
tion and discussing its various problems and their solutions; we have
only intended to illustrate the method of solving those problems by means-

of concrete examples.

It can be seen from those examples that this mbthod is very simple,
a8 it requires very easy calculations. We think that in this respect it is
superior to probabilistic methods, which sometimes require considerable
mathematical apparatus. Owing to this simplicity it is possible to put

forth and tackle problems which would be very difficult to c.lez!.lt‘with
by means of the theory of probability and mathematical statisties. B<.3-
gides, in our method the set of assumptions accepted when a problem is
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formulated stands out very clearly. Practice or economical requirements
may very often suggest assumptions or interpret them; in a mothod
based on the theory of probability the complicated mathematical appara-
tus sometimes obscures the view of the whole.

Our method has also disadvantages, the most important of which
is the appearance of undetermined numerical coefficients or- numerical
functions of numerical arguments in the formulae ohtained. Those num-
bers cannot be given by our theory; they can be and should be taken
from experience. This problem is dealt with in Chapter V. However,
in the cases where formulae deduced in our theory contain undetoer-
mined numerical functions, our method enables us to determine cha-
racteristic .parameters of the problem. An example of such a para-
meter and its role has been discussed, for insgtamce in problem 1.2,

V. Aim -of inspection and accordance with expertence

All formulae that we have hitherto deduced in the theory of sampling
inspection of merchandise contain numerical coefficients or numerical
functions dependent on numerical arguments. Those coefficients and
functions cannot be calculated by means of the dimengional analysis.
But in order to make the formulae obtained practically useful it.is ne-
cessary to determine those coefficients or functions. It is the aim of this
chapter to present an idea which can and should be realized in order
to determine the numerical value of those coefficients or funections.

In order to clarify this idea let us observe a circumstance which
seems rather surprising at first, viz. that we have deduced all formulae
for sample size assuming only on which guantities the size should depend;
‘we have made no more assumptions stating what we require from the size
in question. Therefore we can and should impose on all those formulae
additional conditions, enabling us to determine numerical coefficients.

We shall give a general outline of those conditions. First of all they
should state more precisely the aim of sampling inspection; then they
must lead to formulae agreeing with reality. This very vague state-
ment requires, of courge, detailed explanations.

We shall first consider the notion of the aim of sampling inspection.
Let us take an example. When we receive a lot of coal we make a sampling
inspection. Why is it done? We may do so, for instance, in order to know,
more or less accurately, how muech the consumer ig to pay for the lot
to the producer, so that neither the former nor the latter should incur
too heavy a loss. The acceptance of merchandise inspected by sampling
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iy therefore a game for a certain stake. This stake is always a quantﬂ;y
meagured with. the same tnits as the value of the lot.

From these observations, made by way of example, we draw by
abstraction the following common clnracterlstw, which we shall regard
a8 @ postulato:

It N,n,W,w,C,e,q,k,8,8 are quwntlmes from Table I, then in
every %mplmg mspeetmn ‘rhore is a defined funchon R, dependent on
at least some of the enumerated arguments

(61) . Tu——d)(N n,W,w,C,c,q,%k,8,s),
whose (lunenmou it the same ag that of the value W of the lot, i. e.
(62) . [R]= GUINEA. )

Tho function R will be called the risk of inspection.

Dimengional analysis, however, enables us to deduce certain. char-
actoristics of the risk R. Let ug first obgerve that in (61) we can omit W
and w as arguments without loss of generality, because by definitions
(16) and (17) v

W=0N and W ==¢N,.

Let us now choose among the remaining arguments four dimension-
ally independent quantities, e. g. N,n,8,s, and let us regard them as
a system of units. In virtue of the theorems of Chapter II, which we have
repeatedly applied, we can express the remaining quantities by means

of N,n,8,s. In this way we obtain the following characteristic numerical

parameters of the risk R:
. 51____ 0 N1/z S—l,

‘ Ey=on"s,

(63) E,= quz —1ag-1
£ =Tkn N8,

Moreover

[R]=[N"8].
Hence, in virtue of Theorem 4, Chapter II,
(64) , B=g(&1,60, 60,8 N8,

where ¢ 'is a numerical function of numerical arguments &,,&,,&s,&,.
The numerical function ¢ should be given by the economists. How-
ever, let us make, by. way of example, the fairly general assumption that



i2 Diménsional Analysis in sampling inspection

the function o ¢an be developed into a power gories of the wvariables
£.,E,,E5, and let us confine our considerations to the terms of firgg
degree, i. e.

(65) ' Q=Qo+@1§1+9252+9353+0454,

where 'g,,...,04 are certain numerical constants, whose numerical va-
Iues should be established in each case by the economists.

Let us substitute the values (63) in (65) and the result in (64). We
obtain
(66) R=0, 8N+ 0,ON + 0,002 N2 + 0, N gsn ™ - o Jom.

Let us illustrate this assumption by examples.

"1. Let us consider a method of sampling inspection in which only
the following quantities are considered: the sample size m, the size N
of the lot, the dispersion § of value of a PIECE in the lot, and the
price k& of the inspection. Let us assume that the rigk K also depends
on the quantities s,N¥,8,k, only. Therefore in formula (66) we substituto

‘ ' 01=0:=0;=10
and obtain ‘

I : R=g, SN2+ g len. ‘

- We have seen in problem 1.4, Chapter IV, that if the sample size n
depends on N,8, and k, only, then -

ERER ‘ SNV = lom,

,v#here 5 is a coﬁstant numerical factor, ¢.e. in the method of sampling
inspection deseribed in problem 1.4, Chapter IV, the risk E is propor-
tional to the inspection cost kn. S

2. Let us now consider a method of sampling inspection described -

in problem 1.1, Chapter IV, 4. e. a.method in which the quantities
n,N,8,k,q alone are considered. From formula (66) we obtain

(67) R=0,Ngsn + o lem.
Substituting formula (46), Chapter IV,
2/3

n:a(ﬂi)
I

we observe that also in this case the risk R is proportional to the inspec-
tion -cost %m, 4. 6. '
- " R=ykn,

where -y is a- constant numerical factor. -
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In the same way we could also examine other methods of inspection
congidered in Chapter IV, But we shall not do this, because these examples
make it obvious that the notion of risk R ig noteworthy.

When the risk B is established it-is necessary to define the condi-
tion which that risk is to satisfy in the given method of sampling inspec-
tion. It may be, for instance, the condition that the risk R should be
constant or that it should not exceed a certain value fixed in advance,
or that it should be reduced to minimum, ete. The condition imposed
upon the risk R iy called the economical condition €; it can and should
be defined by the producer and the consumer or by economists in general.

Tn the light of the preceding considerations we can determine the
aim of inspection more precisely. The aim of sampling inspection is to
determine the value of the lot by inspecting a. sample so that the risk of
ingpoction should satisfy the economical condition G. ’

We shall now explain what we mean by saying that the formulae
obtained in the theory of sampling inspection should agree with reality.
Since one of the most important problems of sampling inspection is .to
determine the sample size n, we shall confine ourselves to taking as exam-
ples the formulae deduced in Chapter IV. ‘

It has been mentioned in Chapter I and IIT that in our opinion the
theory of sampling inspection, as a science of objective and determined
phenomena, can and should be based on experience. This opinion is
certainly shared by many practicians who are able to determine correctly
at first sight the sample size in accordance with the aim of inspection.

They say that they can do that owing to long years of experience. But we -

should clearly understand what is meant by experience and formulate
rules of procedure, which would enable us to ascertain objectively the
agreement with reality of a given formula of sample size, without

referring to the authority of practicians and their vaguely defined knack

of “first sight” decisions. _ a

In order to make our point clearer we shall confine ourselves to an
example. Let us suppose that we are making a sampling inspection of
a lot of coal, using the method described in problem 1.1, Chapter IV,
and in example 2 of the present Chapter. Let us consider the following
problem. o '

'We are given a lot of coal, whose size N is known. We draw from this
lot a sample of size n and we measure the dispersion s of value of one
piece in the sample. The conversion coefficient ¢ and the price & of inspec-
tion are known. We also know the inspection risk R, i.e. we not only
know that the risk B is expressed by formula (67), but we also know-the

5
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numerical values of the coefficients p, and p,, ostablished by a statement
of the producer and the consumer or of economists in general. The eco-
nomical condition € is also established, e. g. the condition that the xigk R
shall be reduced to minimum.

We ask what the sample size n should be in order to mmfy all the
requirements given above.

In virtue of formula (46), Chapter IV, we know that regar(lless of
the definition of the risk R and regardless of the economical condition €,
the sample size n must be expressed by the formula

(Nqs)z/a'
W= a|——}]
k

'where a is a congtant numerical factor. The problem therefore consists
in finding the numerical value of the coefficient a.
This problem could be solved in the following way. Since Lhe risk R
is expressed by formula (67), in which we know the coefficienty oy and g,,
and since the economical condition requires that R shall be reducod. to
minimum, we -calculate the minimum of Lhe function R (n). Hence, we
must have

(68) ar

dan .

An essential difficulty of this solution is that the dispersion s is
also a function of n. If we assumed that # would be sufficiently large

ds
- and that then we could assume e 0, then the condition (68) would
give
l~ —3/2

— 5 0 Ngn ™ +0,k=0,

e 22 (%‘i@f)’
204\ Kk

and the coefficient « in the formula would be determined, because the
numbers g, and g, are known. By a similar reasoning H. Steinhawuy
has established®) formula analogous to (46).

However, certain doubtful points still remain unsettled. Rirstly, are
‘we entitled to assume that s does not depend upon 7% Secondly, can we
be sure that the obtained formula agrees with reality? Tlmdly, what

whence

9 L e
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does it mean that this formula agrees with reality? K. Widniewskis)
has ‘made expoeriments towards the solution of these problems. It
appears, however, that the sample size m in those experiments did
not exceed & few pieces. In view of this can we regard as justified the
agsumption that s does not depend on n?

We believe that the coefficient a can and should be determined by
experiment. The reasoning underlying that experiment is the following.
From a lot of coal of a given size N we draw as many samples of various
sizes n a8 possible. For each sample we measure the dispersion s of value
of a piece in the sample. The values obtained from the measurements
are entered on a diagram in the system of coordinates, whose axis of
abseissae is n, and the axis of ordinates is

(69) . R=g,Ngsn~ V2L ogkem.
We thus get a ‘“‘graph” determined by the points representmg the
values entered (Iig. 1).

R

Rui T

Fig. 1.

If this diagram proves to have a distinet minimum for n=n,, then
in formula (46) we substitute for » the quantity n, and we compute the
coefficient a.

We cannot expect tio determine the number a by means of a smgle
meagsurement. Such meagurements must be. repeated for a lot of coal
of a different size N and the coefficient a for that lot must be establish-
ed in the same way. We should make as many such measurements with
lots of coal of different gizes N as possible. If we get the same number o
each time, regardless of the size N, the conversion coefficient g,.the

%) K. Widniewski, Metody statystycznej kontroli jakoéei w fwietle doéwiad-
czert, Wiadomogdei PEN 10/561, Warszawa 1951.
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measure of the dispersion s, and the price % of the inspection, we ghall
be able to say that formula (46) with the constant «, thus established
and universal for all lots of coal, agrees with reality.

Simultaneously we shall obtain an experimental verification of all

assumptions that had led to formula (46). Among them are the assumptions '

which we have made in Chapter III, when establishing the dimengion
of the dispersion s, the assumptions concerning the coofficients o,
and g,, necessary to determine risk, and finally the assumption that
the sample size depends on N,k,s,q alone.

If we find that the number « is not the same for different N,q,s,%,
then the only conclusion that can and sghould be drawn is that formula
(46) does not agree with reality; therefore some of the agsumptions on
which it is based are false. Still, the method of dimensional analysis
enables us to obtain other formulae by means of easy calculation.

Apparently it is not difficult to make such experiments in practice.
And even if it required more time, this would be amply repaid by the
result: if formula (46) were confirmed by experiments, the numerical
constant a, established in this way, would best agree with reality. As a

matter of fact it is on this that the experience of the practicians is based,

although they are not always aware of it.

We cannot expeet that the results of the measurements made to
ascertain whether the number « is independent of N,q ,8,%, will present
an ‘“orderly” line and give one exact value o for all N,q,s,k. Every
experimenting scientist, even dealing with phenomena as well determin-
ed a3 physical phenomena, knows that the results of a number of mea-
surements of one and the same quantity are not really invariable, but
show certain fluctuations. The methods of mathematical statistics can
and should be wused in treatment the results of experiments. Thus math-
ematical statistics in the phenomeonlogical theory of sampling inspection
which we have presented has the same role to play as in any other empiri-
cal science, viz. it is wused in treatment the results of experiments.
Thus the role of mathematical statistics in this theory has been ghifted
but not eliminated altogether. It would be preposterous to attempt this.

Finally, let us point out again that the main intention of this
paper is not the discussion of various problems of sampling ingpection
but the presentation of a method. That. is why certain problems have
not been treated, perhaps, with sufficient exhaustiveriess or generality.

AHAIHE PASMEPHOCTH B BLIBOPOIIHOM HCHBITAHHH TOBAPORB
C.OpoGor m M. Bapmyc (Bpomnaz).

I. Metopomoruyeckue samMeuanus. BHOODOUHOE HCUHTAHWE TOBAPOB CO-
CTOMT B TOM, 4TOGH Ha OCHOBAHWM WMCHHTAHNHA BHOOPKM M3 HAPTMH TOBAPA OIpe:
BENHTL HEKOTOPYIO XAPAKTepHCTHKY Beelt mapruu. Teopus BHGOPOYHOr0 MCIEITAHIS
OGLIYIIO OCLOBAIA HA TEOPNI BEPOATHOCTEN! U MaTeMATHYECKOH cTaTHeTHKEe. X OTA METO IH
TCOPHHM BOPOATHOCTOHR NALT OTBETH A MHOTUE IIPAKTHYECKEE BONPOCH Bmﬁopoqnoro .
HCNBITAHNSA, HO CTPAZAI0T HOKOTOPHMM HEAOCTATHAMH: YACTO OHN IPOMOBIKME, TPY-
NOBMIIE, BACTABIMIOT CXEMATHMSMPOBATH SBIEGHNHME M He BCEISA KAKT DEBYIBTATE
BIONEG COMACHBIE ¢ NOHCTBUTENLHOCTHI0. BHpOYeM DOAL OMBITA B HTHX METOAX
HE[OCTATOUHO ACHA. : ) )

Tax KaK BePOATHOCTHHE CY:RAGHHA BHPArKAiOT cofo#f HEeKOTOpPHE OGHEKTHBHEE
CHOMCTRA WBYUAGMEIX SBJEHMI, TO MOMKHO IOTLITATHEH CHOPMYIMPOBATE (BEHOMEHO-
JOrMYECKYI0 TOOPHIO BLIGOPOYHOrO MCHHTAHMA. AHANOIMYHO, HAOpUMED, (EHOMEHO-
JOTHUECHAd M CTATHCTHICCKAS TEPMONMHAMMKA ONHCHBANT ONME W TOT-HE KIACC
anxenuit. CTaTHCTHYECKAS TEOPWs OMHCHBAGT ARIEHHA §0ojee TOHKO, HO B CTOJE IPY-
6uX BONpOCAX, KAKME BCTPEYAIOTCS B BHOOPOUHOM MCIHTAHEA 1aKAA TOHKOCTE
KaMkeTcA mammnraelt, Tem Gomee, UTO OHA TpefyeT CHOKHHX MATEMATHYECKHX
epemeTn. ’

Ilpenmerom Hacromuwiedt paGoTHL M eCTh onum Henomeronozuneckoll meopuu aul-
Gopounoeo UCn LML, )

II. 06 aumanuse pasMepHOCTH, MaTeMATHUECKHM MHCTDYMEHTOM oroit
TEOPMM FBIACTCH anasus passeprocmu. CHopmynupyem [OHATHA H TEOPEMH aHa-
nMBA PASMEPHOCTH, KOTOPEE HCIONL3YIOTCA B HalpHelimeM.

Paamepunte Bemuuunst A ,B,0,... CYMTAIOTCA 2JIEMEHTAMH HEKOTOPOTe IHHEH-
HOTO IPOCTPAHCTBA, B KOTOPOM OIPENeNeHO KOMMYTATHBHOE M 4CCONUATHBHOE TPO-
nasenenne AB peamumm A m B, a TarKe NOTeHIMpoBaHHE A% ¢ [efCTBHTENHHEIM
NmoKAsaTeNeM a, MMeoIle CIeRYIOUKe CBOlCTBA:

'_Aa+b=_A‘Abl

(AB)*=A4"B",
(Au)b=Aab
At=A4.

Ionommrepune yucaa (GespasMepHEe BeNMUUHH) «,f,9,... TOMe CYUMTAOTCA
DNeMEHTAMY BTONO HPOCTPAHCTBA. Bemmyumnm 4i,..., Ay HABHBANTCA PAIMEPHO HEB(~

sucCuMMML, ©CIIN N3 DABEHCTBA

[

a,
At A) =«
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CIeNYeT ay==...=0p=0 (u a==1). [Ipn oTOM UPCANONALAGTCSA, YTO CYL[ECTBYET TOUHO

7 DPa3MEPHO HEe3aBMCHMMX Beaumuun. Beawan cuerema Xy,...,X, pasmepuo mesanu-

CUMHX BedMUNH HA3HBAGTCH cucmemoli edunuy. Hampan peaumunmua A supamaercs
B cucreme eamEny Xi,...,X, eguHCTBeHHLIM 0(pasoM B Buje

(13 a,

A=aoX. X

n ?

TAe a — 6espasMepHas BEIMUNHA H (y,..., 0y —- BEI[ECTBEHHEE uucia. Bemmuuna
. . o :
[A)=[X,"...X"T,
HA3NBAETCHA padmeprocmuvio A B cucreme Xi;...,X,.

Paccmarpusaiorea gynruun @ (Z,,...,2,), oupefendunse NIA PABMOPHLIX apry-
MEHTOB Zy,...,Z, ¥ OPUHUMAlOIWE pasmepHsie smauenna. Ila oru Qymrgum mama-
rawrea TpefoBanuA, uToGE BUE 5TMX (PyHRIME He BABHCEN 0T BHOOPA CHCTOMH eXH-
HON ¥ YTOGH WX PasMEpPHOCTH COXPAHANAChH BMECTE C PABMOPIOCTLIO APIYMONTOD.

. Torga cupaBegimBa CaemyIOMasg : o ‘

Teopema II. Ecau Py,...,P; paamepro 306ucuMsi. Om DUaMepio  14esaoucusui

seawiure Ay,...,d,, m. e. ecau cywecmeyom marue Oeapasmeprivle Ty enns Ty HIMO
2, P
Pi=m A" 4",

— Pq1 Pygm
P=m 4,5 AN,

2depy (k=1,...,q;1=1,...,m) — deticmeumenvunie wucia, -mo

B(Ayseens A5 Py, PY =l .o, m) AL AT

ot
ede @(@y,...,m) — Geapaamepras (Wucaosas) @yHKYws Geapasmepunz (wucsaoeuws) nepe-
MEHHBIL TTys. vy T, & fl,...,fm — Oeticmeumeansie wucaa, He aasucawpue e om Ay, ..., 4,
HU O 0y, vessTye ‘
Pamn dopmamsEOro yxoGersa BBOmEM emd CTeNyoIue OMpeXeNeRus;

ad+ fAd=(a+p)4,

od — A = (a— B4,

lim(e,4) = (lima,) 4.

n—>00 n—>00

Biaromapa 9ToMy MOMHO HA BeNWYMHAX ORHON PAIMEPHOCTH TPOUBBOAUTE
(opMasbHEe BEMHCISHNA HAK HA OGHIKHOBEHHHX ReHCTBETENBHHX UHCIAX.

IIl. O6mue mpmHLHUOH Teopuu. B opMynmpPOBKE OCHOBHHIX AKCHOM W
HOBATRE TEOPWH BEIGOPOYHOrO MCIHTAHUA M OIpPAHHIMBAEMCA TAKOM CTOHEHDLIO OG-
I(HOCTH, KOTOPAA BINOJHE NOCTATOYHA ANA GONBIIMHCTBA IPAKTHYIECKUX CIyuaes.

ITapmueti TOBapa HYyCTh HA3HBAETCH MHOMKECTED S TIPeIMETOB, KOTOPOE HMEET
CAEAYIOIME CBOICTBA. '

Ecmux 0,,0,,... TOAMHOKECTBa (JacTu) mapruu’ 2, TO  ONPEJEIEHO CA0MHCEHIUE
U BTHX qacTel, a pesyapTar 2, 2, — Tome vacts maprau. IIna Bcex vacrett TapTHK
CYymecTBYIT fiBe MepEl N m W, yHOBIETBODPAIIIME AKCHOMAM:. SV

1°Meput N m W — pasmepHHe ‘BeJUYHEH T DASMEPHO HEBaBMCHMEL,
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20 Mepit N Bcex uacred o0 U Tolf-dKe MAPTHH HMEOT ofmryo pasmepuoctn

— MHl eb rasnmaem ,, JITYRON” — u mepumt W ncex uacrelt ool u Toit-me mapTuHm |

POIKE UMEIOT O0INYI0 DPABMEPHOCTH -- MBI 68 masmmaem “PYBJIIRM”.
3 Hean @, u Q, ne wmeror obuelt wacru,. To

'N(‘Ql U £2,) = N('Ql) -+ -N(Qz)a
W (2 U Qs) = W (2,) -+ W (2,).

Mepy N mur nasnsaem o6eéaom napmuw 2, a mepy W -— emoumocmvio napmuu 2.

Buboproli w3 WAPTUH TOBAPA ME HABLIBAGM UEKOTOPOE IIOIMIOMKECTBO » MHO-
IMECTDA L2, MMEIONIHEe CIGNYIOUHEe CcnolcTna.

Lemt @y, wy,... 48CTH BHOOPKH @, TO ONDPEJNEIEHO Ca0scenue Y DTUX 9acTeil
(1eoGa3aTENBIO COBNMANAOIIEE CO CHOMKENHEM U), & PesyinTaT @,V @, — TOHE YaCTL
sbopru. Jlus ncex wacrell BHOOPKH CYL(ECTBYIOT JBe MEPH % M 1w, YNOBICTBO-
PAIOUINE CJICIYIONIUM  AKCHOMAM:

5° Mopnt » m w pasMmeplnie BemmdaHEL ¥ BMecte ¢ N 1 W ofpasyor cucremy
Q/MIMIL

6° Mepnt » Beex wacrell ool i Tof-mke BHGOPHM MMElT OTHIYI0 Pa3MEpPHOCTL

o= MLL 8 MasniBaeM ,,IITYRON — M MepH w Beex dacTeil OAHOH I Toii-me BHGOPKIT

umelor o6IIy10 pasMeprocTh — MBL €8 HasnBaeMm ,,pyGmém’.
7 Beun oy M w, He umeroT obmel wacru, To
n(w; V wy)=n(w,)+n(w,),
W (w1 V @g) =w (1) +w (w,).
Mepy » uasmBaem ofwémom ewbopru w, & MEPYy W — cmoumocmuio eulopru w.
Camponnt IITVHKA, PVBIb, wmryxka, py6ab - KOHEYHO — YCIOBHHE Hall-
Menosanua o0Umx NoHATHH, 00pasyoLIuX CHCTeMY eXHHHIL. °
Benn N — o6séM, W —- CTOMMOCTL NAPTHH TORAPA, TO YEHOU NAPMUU MBI HABLI-
BAEM BeIHINILY
U=WIN:
Ananrornyno, yenoll ewbopru (Miu sabopamoproti yenoll) ME Ha3HBAGM BEIHIMHY
e=w/n.
PasMepuoCcTH IeH CHexylolme:
[0]1=PYBIb: TV KA, [¢]1=py6ns- mryra—l
ITpepmonaraem, 4ro .
! . . U:(_I(H' Go’
rie g HABHBAETCA Oyreaameperus xodgfiuyuenmor M HMEET PAZMEPHOCTDH

[¢]=PVBJb - UITY KA~ py6as~. mryxa,

a (), — nocroAgHan BeamywHa pasmepmocry PVYBJIb (manmagume pacxonst). Ilycris
N, oGném vacru 2, maprmu Q. Iycre N — 06sém, a W — croumocts maptum 2. Torpa
epedneil cmoumocmuio W ¢ wacmu nepmuu §2; ME Ha3HBaEM

— N,
W=W ¥ =(N.
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A=

AHQIIOTHUHO OUPCACIAEM cPedluoio cmoumMocmy W .o wuermiy @y oufopriu. Pamepiocs
Ax pea "

_OTHX CPeJIHMX CIeLYIOIUe:
[W]=[W]=PVYBIb, [@] == [w]=pyGan.

Paccesmue cmousocmu 6 noapmuu (I«I COOTBETCTREULO B nmﬁoptw) OULpeLedem ua
OCHOBAHUYM HEKOTOPGLIX AKCHOM, KQTOPLIE Qopmynupyem Hmie.
IlIycres nawas-To wacTh £, mapTHX TOBAPA COCTOMT M3 N JOael ..",,Jﬁ,.,,,[)m
Ges ofmmx uacTei, T.e.
Q‘,:.Q]U.QQU...U.QW.

ycrs (nis onpegesdunocrtd, Ho 0e3 uapymweuns obnyoctn) ooméM Beex) gouek
2,,0Q,,...,02q oguuaxos u paneit Ny, & CroMMOCIH JLOJIH £, paita W (1,209,

r

Torpa cpepuss crouMocrs Wy, B RAIOH M3 OTHX Jloseld ojmnatona v paniy
: o No
W W_N:-,—;UN(,,

vae N — ofnbéy, a W — croumocts veett napruu 2. OGsdm wacrw &y pasen Ng, =MN,,
Mu cunraeM, BO-UEPBHX, 4T0 #epa S paccestun cmoumocmu ¢ waemu €,

napmuu SABIAAETC pasmeprol pynryuel Sg,, KOTOPAS BABMCHY OT MIOIKCCIBRN ) W or-

PagMepHIX Beamumy W, TfVa,...,Wm,Ngo, W,Ny, . ¢.
S"’:SQOUVI""’W'*N’ N.()uv W, N,).
Beej@m Gespasmepithie apryMeHTH
w.
W, = et ]9 5
Wy == W (=12, 0,0,
Torga, na ocronanuy reopemst I, moiyuasm
. - 3\ TR0 D
S=Wo (Wy, Wa,..., Wy, N) W* Ny,
riae Yo, - GespasmMepHas QYUKIMA, BIA KOTOPOU BABHCHT 0T MUONKCCTR £y, @ noas
saTenn a,b — KedcrsMTenhULIe WU,
Mur monaraem, BO-BTOPHX, uTO @==1.
Yro0H ONpeReNuTh MOKABATENE b, MBL UPHIIMACM (IS opuy arcuomy. Hyern 9T,

QU QUL wakue - T0 TPI 9ACTH NAPTHHN TOBADA, YAODISTROP SIOLIHE BCEM Aleuoman chop-
YANPOBAUHRM JLf wacTH Q. Iyers umemo N Gy per obmmun jrs LT, Q1L QUL wyaque

A
S . (] i "
4 (i=I,I1,1II) cocrour m3 N pomei £,02;,..., 2y (Ges olwux wacreit), ofbim

i v . » PR ¢ 1] .
HOTOPEIX pasen N,, Tax yro ofséM N? wactit QF pancu Nys== NN, Tean  crou-
5 )
e . ) T .
MOCTE 01K Q,, (t=I1,11,111; y=1,2,...,R) pasna W,,, TO €& Cpeiuds CrOMMOCTE PABIa
L '
W,=CNy .
lyern, panee, paccesinue 8, croumocT B wactTH £° Oy ger

B=P,(Wi,..., Wy, |y W, v{)? (o 1,010,100,

rje GespasMepHbIe BeaM ML W:, (i==1, 11, 110; p==1,..., M) panmn

AN PAAMEPHOCT B BHGOPOMHON HCMBITAHLE TOBAPON . ol

IMycrs Q0w QU we umenr obmmx wacreii u QU ¢oeront ma 0 Hodeii .Q,I,H (y=
=1,2,..,R), nosunumux  myrés coepmmenms B mapm COOTRBETCTBYOIINX  J{odeli QII
" Q,I,I, T, e,

(?,!::1,2,....9}).

Torpa, n Cwily aremoms 3°, noiygaes
ArIIT X
Nt N4 N
Hacr Q1 1 QT mapruy HasuBaeM Hexopeaupoeannuiy, SCII
8 2 2
St + Str="8711+

. Tperns areloMa COCTOMT B TOM, UTO eCUM ¥acrl 2y 1 Ly HeKOPEAHPOBALITLE,

TO eymectsyer ofigui guIa Beex wacreli Qp, Qpp, Qppp npeaea

lim ¥p== lim Wype= lim Yy,
N-r00 N-roc N-roo
U3 oroil axcHOMLI yie . "CIepyer, 4ro b= —1/2.
(oBepPIEHHO AHATIOIHUTIO ONPEJCAAEM PACCEAHNE § CTOUMOCTH B sulopre. Pasvep-
HOCTIL paccestunit S 1 § TMOoTYUAOTCS TAKUM OGDPA3OM CIEXLYIOIHE:

' [$]=PYBIb-IITYRA™Y2,  [s]=py6as- mryxa—:

Tican Ny=THTY KA, o dopmyns na paccesnue, YIOTpelIseMble B CTATHCTHEE, HMEIT
GIENY NN BHL:

. o (=T (W -T2

Cratpapmioe oTRIAOHeNHe == ' 5 Vo A AN

) [Ty T | W — TP 1
Cpepuee  OTRIAOHBIIHE == e oenn W R e
. 2 VY HITVHA

SR 1
lllupora == (Max W, — Min 7/ R e —
¥ v ¥ MTYHA

Tawum oGpasom, pasMepnoers pactesuns crommocts oxrol UITYKY B napran
{wim COOTBETCTBEHHO OLHOL IUTYHH B BHOOPKE) 0JHA H Ta-:Ke ANA BCEX Mep PACCER-
MY, YHOTPeGIsAeMbIX B CTATHCTHKE.

B sanraiodenme oTOH TJIABHL LAKTCH ONPEIENEeHHA H AKCHOME HKOHOMMYECKOIO
xapaxrepa. Msr cunraeM, uTo paexox B, sarpaueHHHH Ha HCILITaHHe, MMEST pasMep-
nocrs PYBJID, a pacuenwa K UCHBTANHM, T. €. PACXOJ HA HCIHTAHHE OXHON INTYKH
B prtfopke, pania

- . B
A
"
N, CHeJOBATEIILIG, uMeeT pasMepHoCcTL

[k]=PYB/Ib: mryra—t.
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IV. O6bém pmGopwxu Mcxopss m3 eMUCTBEIHOIO HPEAIOJIOMCIUN 0 TOM,.

OT KAKMX aprymenToB sapucnt 00mEM BHOOPKU, MOIKHO oupexenuTL GOJee Tounmi
BHJ{ 9TOH 3aBUCHMOCTH. BOT HECKOJBKO NMPHMEPOR.

1.1. IIpegmonomum, uro 00BéM n BHOOPKE 3aBMCHT TOALKO OT oGBéMa N nap-

THUY, DACUEHKY &k MCUMITAHHMA, PACCEAHMA § CTOUMOCTH WTYKH B BHOopKre m Gyxram-

Tepekoro koadhurmenra ¢, T.e.

n=0(N,k,s,q).

Tax nrax aprymenrst N, k, s, ¢ pasMepHO HeBaBMCHME, TO HQ OCHOBANME TEOPEMH

IT nosnyuaem
n=q

qu)2/3

R

rae @ — NOCTOALHBEI OeapasMepHmilt oadduument. AHATOPHYMYI0 BABUCHMOCThH 110-
ayunn gpyruym nytém H. Steinhaus,
1.2. IIpegnoyomuy, 4TO
n=@(N,k,s,q,0),

rae ¢ — nerma nmaprid. Ha ocmoBammm meopemur I moayuaem Torga

h’=¢(ﬂl) (F'kgf )?/3:

roe ¢ — OespasmepHad QyERUMs GespasMepHON nepeMennoB
ﬁ1=0N”3 (kqisz)-—-ljz_

Ecun xpoMe TOTO TPEAmONOMUTE, YTO @ (B,) Pasiaraerca B Crememmol PAN X orpa-
HUYATHCS PACCMOTPEHMEM TOIBLKO ABYX IEPBHX €r0 4JeHoB, T0
Ngs )2/3 w

oy =
I Y%

-
k

THe ,a, — Hocrosumue Oespasmepmmie xoa(duumuents, a W crommocrs napraw

ToBapa. . . '

1.3. IIpexmonoskuM, 9T0 00BEM -0 BEGOPKY * BABMCHT TOJBKO OT N, or &k u or

‘paccearna S croumoctr IITVHKHY B maprmu. Torma

nzBS‘/N

3

rae 6 — TOCTOAHHLIA OespasMepHEi Koaddunument. Hra dopmyna cunraerca npax-
THKAMHA SMONPHYECKOMN.

ARATOTHYHEM 00pasoM MOMKHO HONYYHTH Npyree. opMyIs ma mBex
BHOOPKHM, B BABHCHMOCTA OT NPHHATHX NPEAIIONO0MKEeHHH,

V. llens ACOHTAHMA H COrIacHe € ONOHTOM. AHanmsoM pasmepHrocTeit
HeNb3A IONYYUTH YUCIEHHEIE BHAYEHHA 6espasMepHEX Koaddunmenrop (umf dyu-
nuit), KOTOpKE BEHCTyNAkT B fopMynax Ha o6LEM BHOOpKW. Tak wak pry dopmymnr
TONY4EHH HA OCHOBAHHA eXMHCTBEHHOrO HPEJIONOHEHHA O TOM, 0T KaKuX apry::elg;om

HUMILYy N

-
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sapuct OOBGM BHOOPKM, TO HA oTH (OPMYNB MOMHO M HYMHO HAJIORHTE emé
ApYTHe MONONHUTeINbHHIE Tpedosanusa. OOGmas MEesa COCTOUT TYT B CIeAYyIOUIEM.
ITpepmosaraeM, 4TO BO BCAKOM BHOOPOYHOM HCHMTAHMHE OOpENeNeHa HEKO-
ropasg pasMepHAn QyHRUMA K, HABHBAGMAR DPUCKOM UCRBMOHUSL, 3HAYEHHA KOTODOH
umeloT pasmepHocts [R]=PVYBJIb.
B wauecrse aprymenToR pmcxa K jocTarouHo paccMoTpeTh, B 0fmeM cirydae,
ronsko N,n, W,w,q,k,S,s. Urax

R=®(N,n, W,w,q,k,8,8).
IIo reopeme II moayuaem, 4TO

B=g(&,&,&, &) NS,

rue @ (&,&,&,&) GespasvepHada QYHKUHMA (espasMepHHX TepeMeHHHIX

51 = WVYN_I/ZS—-I )

vre

g =wn—12g1,

L= g N2~ 12581,
& =knN—128—1,

Bupg $yurnum p HyMKHO ONPeNedaMTh 0 JROHOMHMYECKHM coobpaskenusaM. Ecam cum-
TaTh, UTO0 YMCIOBAR (YHKIUA @ PABIATAETCA B CTENEHHON PAN M OrPAHRHUMTLCA Pac-
CMOTpEHUEM YIeHOB [0 TepBOI CTemeHm, TO

R=p SN2+ 0, W 0 wn—L2NY2%—18 + 0y =22 Ns+p,Irn,

I TOTAA HUOHOMUCTEI KOJHHEL ONPENeNNTh TONBKO IATH (e3pasMepuLlX NOCTOAHHLIX
Q05Q1502,08504- )

Kpome pupa QYHHROUE @ HY:KHO ONpefeNuTh em yCiIoBme, KOTOPOMY ROII-
HEH YIOBIETBOPATH puck B, 4TOOM yess BHIGOPOUHOro MCHHITARUA OLIga XOCTHIHYTA.
9T0 YCIOBME — MBI HABHIBAGM €I0 SKOMOMUMECKUM UMINEpecom — MOMKET, HAIpHMep,
cocrosTs B ToM, UTO0H puHer B Ouia HaltweHbIUMI, MaH 4TOGE OH HE NPeBOCXOMH.I
ompejexéunoro amaverna. Moryr GuTh em@ mpyrue yCJIOBHUA.

Ecnu puj pucka B nsBecTed M pKOHOMHYECKHH HHTEepec yxaaaw, T0 Oeapagmep-
geie Ko3(p@uuuenTH B (OpMyIax Ha BeJIHYMHY BEIGOPKH JyYlIE BCEro ONpelelATsH
ontmom. B TaKOM ONBITE HY:KHO HCHETATH BCIO NapTHIO ONPEJeréHHOr0 BHAA TOBapa.

TakuM ONETOM HE TONBKO IPOBEDPAETCA NPAaBHIBHOCTh NPUHATHX TIUIIOTES,
HO TMOIYYAIOTCA ToMe POPMYIE, KOTOPEE HaitGolee COOTBETCTBYIOT XeiCTRHTENLHOCTIL.
Hy®HO KOHEYHO IPOUSBECTH HECKOJBKO TAKUX ONLITOB, & HX Pe3yIBTATE MOMKIO
06paGoTaTh N0 METORAM MATEMATHYECKOH CTATHCTHEN, KOTOPAg MIPAeT POIb TOMBKO
Ha 9roM 9rame. Ha IepBHIl B3rJAN MOMKET KA3aTLCS, YTO BHINONHEHME TAKMX ONEHTOB
COMITKOM IpomMo3gko. Ha camom feme »T0 OJHAKO He TAaK, M MOMHO C YCIEXOM ®
MCHONLBOBATE HMEIOIUECH B KAKAOM mpefupuarHn uadopmanum. ,OnurHuit raas"
CHeIMAaNNCTOB TO0 BHGOPOYHLIM MCHOETAHUAM COCTOMT MMEHHO B TOM, YT0 OHH —
XOTA, MOMET OBITh, HECO3HATEAbHO — HAKONMIN MHOTO PE3YIbTATOB TAKMX ONEBITOL.
Ho Rmame B TOM Ciyyae, KOrga HIA HEKOTOPHX COPTOB TOBApA TaKme ONHTE MOraubur
0KABATHCH TPYMOSMRHMI, TO IOIBBH OT HHX Hmoaxydamocs Onl ropaspo Godbuie, weM
pacxonoB.
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