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Introduction

In this paper an increasing sequence ¢°,61,... of the classes
of recursive functions is examined. Bach class ¢" is closed under
the operations of substitution and under the operation of limited
recursion. The initial functions are primitive recursive ones. There-
fore ¢*CR where ‘R= the clags of primitive recursive functions.
Strictly speaking “R=Y'C". Hence in the definiton of the class %

n

the operation of recursion cannot be eliminated or exchanged into
the operation of limited recursion.

The classes €0 and ¢3 shall be examined in particular. For
each function fe¢® there exists a number k, such that f(n)<n-k,.
However, each recursive enumerable set is enumerable by some
funetion of the class ¢°. We start with the investigation of the
class €3 It is the class of elementary computable funetions of
Kalmar.



§ 1. Preliminary notions

1. Pairing functions. We shall call the pairing functions cvery
triplet of funections P,Q,R, defined over non-negative integors
which satisfies the following conditions:

(1) P(Qz,Rz)=2,
(2) QP (x,y))=
3) - R(P (z,y))=y.

The functions which satisfy these "three formulae ogtablish
a one-one correspondence between the set of pairs of non-negative
integers and the whole set of non-negative integers. The functions @
and R are inverse to the functions P. The first element of the pair
represented by = is the value of the function @z, and the second
element is-the value of the function Rz.

For instance, the following three functions are pairing fune-
tions with the above mentioned properties:

P(z,y)=2"(2y+1)—
Qz= the largest integer u such that z--1 is divisible by 2"
2+ 1

Qz
Rz= 2
2

-1

Another example of the pairing functions present the functions
I1,R,L :

I(z,y)=(z+y)*+u=,
Kz=2—[)/2]?,
Le=[y/2] —Ke,

- where [V/2] is the integral part of the root.

Preliminary motions 5

We have:
I(Kz,Lz2)=2,  K(I(x,y))=ux, L(I(xy))=

The pairing functions permit us to form functions of triplets,
e .

-'1'(%’:%3)=P(39,P(?/,z)) or S("”:'y)z):l'(w;](y;z))

which establish a- correspondence between the set of triplets and
the set of numbers. The functions inverse to T are:

Tu=0Qu; Tyu=QRu; Tsu=RRu.

Analogically, all finite complexes of numbers can, of course, be
ropresented by natural numbers.

The letters P,Q,R and I,K,L will subsequently denote any
triplet of pairing functions.

2. Universal functions. All functions considered in the follow-
ing are defined over the set of non-negative integers and
assume only the integral values. We shall use the names “integer”
and “number” only in the sense of ‘“‘non-negative integer”. The
capitial letters 9,°Y, R, ¢™ will denote classes of funcfions. If X
is a class of functions, then &, is the class of functions of n argu-
ments which belong to the class .

The class X is closed under the operations of substztutwns X

~ is closed under the following three operations:

1. The operation of the substitution (superpo'si-
tion) of functions. If X includes the functions f and ¢ symbo-
lisod by the expressions

f(‘”lr Y] 7m1c7mlc+1 PR 1wn)2 g(yla e )'ym)5
fhen it includes the function called the substitution of the funclion g
in the function f for the k-th variable, and symbolised thus:
f(ml PAR 7‘277«:—179(?/1 g 7ym)7wlc+17' . 7mn)-

2. The operation of the identification of variables.
If the class & includes the function f(@y,...,%;,...,%,...,%,) then

it also includes the funefion which is obtained by the identifi-

cation of the variables x;, and ®, and their replacing by the
variable ¥, and is symbolised DY f(®yy.- \¥;ser-yYse-- @) The
variable y differs from all variables ;.
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3. The operation of the subgtitution of a constant.
If the class X includes the funection f(xy,...,2,,...,2,), thon it
also includes the funetion f(w,,...,0,...,2,), obtained from the
function f through the substitution of zero for the &-th variable.
For ingtance the class < of linear functions, 4. e. the class of
the functions f of the form:
fleg, ) =kywy ottt Ak, 0, 4%y,  Where ky,..., k>0,

is the smallest class containing the initial functions w--1, @}y
and closed under the operations of substitution.

The function F(2y,...,%,,t) of n-41 arguments is o wniversal
function for the class X, provided that, for each function f(x,,...,mz,)
of n-arguments, the function f belongs to X, if and only if there
exists - a number ¢ such that, for each wy,...,3,, fl@y,...,x,)=
=F(®1,... ,8,1). '

E.g. the function F(z,t)=(@t--1)z-+Rt is universal for the
class @ly, F(wy,3,,t)=(T8+1) 2+ (Tot-+1)2,--T3t is universal for
the clags of,.

It is evident that, if a class X contains pairing functions and
is closed under the operations of substitution, then the universal
function F,(2,...,%,,5) for the class &, can be defined by means
of the universal function F(z,t) for the eclass 9. Namely we
can set '

Fz(ml:wzat)=F(I(mlawa)’t)-
Generally

F’n(mla”' an)t)=1’7(1(w171(w27"' s L (g y ) ))yt)

If a class X is closed under the operations of substitution and
containg the function x-+1, then the wuniversal function for the
class &, does not belong to the class (. If F(wx,t) is universal for
the class X;, when F belongs to the class &, then the function
F(x,z)+1 belongs to %,. Hence for some {: F(o,2)+1=F(z,1).
This leads to a contradiction: F(t,t)4-1=F(¢,1).

3. The relations of a given class. We shall identify the
sets with the relations of one argument. The notion of relation
will be related to the notion of the function of a given class. We
say that the relation of n elements R(w,...,,) iy a relation of the

class X if and only if there exists such a function f of tho class
X that the following equivalence is true:

Preliminary notions 7

Ry, a)=Ff{y,...,0,)=0 for all wm,...,1,.

Let w—y denote the subtraction defined over non-negative
integors, x—y=0—y if o>y and x=y=0 if z<y.

Theorem 1.1. If X is a class of functions closed under the ope-
rations of substitution and X includes the functions ©+1, x+y, z-,
then the set of the relations of the class X is closed under the opera-
tions of the propositional caleulus.

Proof. If R(xy,...,2,) and S(yy,...,¥,) are relations of the

class &, then there exist functions f and g which sabisfy the
equivalences

R{xy,..o,m)=f(y,... 0,)=0, S(Wiyee s sYm) =G Y1y e s¥m) =0.
In conformity with the following vobvious laws of the arith-
metbie of non-negative integers:
a=0.0=0.=.a+4+b=0, ~(a=0)=1-a=0,
we can deduce the equivalences
~R (X, )= 1 (@, .0, 8) =0,
1&’.(:1;1, o y20) B Y1y ooy Ym) = (f @1,y @) 91y yUm)) = 0.

These equivalences show that if the relations R and § belong
to the class 2, then the relation which is the complement of the
relation R, and the relation which is the logical product of the re-
lations R and §, belong to the class . Since all other finite logical
operations (the operations of the propositional caledlus) can be
defined by means of conjunction (logical product) and negation
(complement), therefore finite logical operations do nob lead out-
side the class .

Corollary 1.2. Instead of the funetions ®-41, x4y, ==y, the
function a¥ can also be used for the purpose of defining the logical
operations of - propositional calewlus on relations.

Proof. We have
~a=0)=00=0, a=0.b=0.=.a"=0.
Ilence

Ry ey ) == OB =
YWis e ooV
R(@ygy .o ytn) e S Y1y e yY) = @100 00) =0.
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Let ? be the class of polynomials defined as follows: 7 is tho
smallest clags which includes the initial functions z--1, x--y, ©--y,
xz+-y and is closed under the operations of substilution.

For instance, the relalions <, <, =, 7, are of the class P
since we have the equivalences:

r<y.=.((z+1)=y)=0,
ey . =.0-—-y=0,
p=y.= <Y y<e = (@) + (y )= 0,
p#y.=.~(@=y).=.1(@=y)+(y-2)=0.

§ 2. Elementary functions

Definition. The notion of elementary functions has beon
introduced by Kalmaxr?), This class is much wider than the classos
discussed in the preceding section. In most cases, the elementary
functions are sufficient for practical applications. According to the
definition of Kalmar, slightly simplified, the class of elementary
functions ¢ is the smallest class

1° including as initial functions »-1, -4y, =y,

20 closed under the following operations:

the operations of substitution,

the operations of limited summation and limited multipli-
cation, which state that if F(ay,...,m,,t) belongs to the class &,
then this class includes the functions f and g, which are definoed
as follows:

'
f(wla--":wn’?/):ZF(wly--'ywmi)’
<y
' g(mly"'5mn7f'/)=”F(w1’~~';m11,17;)"
i<y
Here the operations >’ and [] symbolise finite sums and pro-
=<y i< :
ducts ?): ' =
_gF(u,i)nﬁ’(u,O)—i-F(u,l)+...+F(u,y),
i<y :
[1F(u,6)=F(u,0)-F(u,1) ... - F(u,y).
i<y

1) Cf. Peter [4], p. 60,

*} To simplify ‘the notation we use German letters to denote the com-
plexes of variables, e. g. ut is an abbreviation of Upyo ooty

Elementary functions 9

B g, ey, a¥, ! are clementary functions:

wey=( > (w ‘l»*i).'..z');_a:z((x;—|~()):~0+(;1:+] Y=L () =) =

day
Set
fla,y) =t =[] (@41) =1,
<Y
al == (1= (1)) f 2,y =1)+(1=y).
Setb

g (e)=[](i+1), wel=g(x=1).

i<

Other clementary funetions will be defined by means of cer-

fuin operations which can in turn be defined by means of the

operations specified in the definition of the class ¢.

The operation of limited minimum. This operation leads
from a function F(u,z) of n-+1 arguments to a function f(u,y)=
=l Sy [ (0, 2) =0] of n+1 arguments, defined as follows:

l the smallest w<y such that F(u,z)=0, when

, . such om x exrists
pr Ky L (U ) == 0] == !

l 0 when there is no <y for which F(u,z)=0.

Theorem 2.1. The class ¢ is closed under the operation of lm-
ited minimum. )

Proof. If F(u,y) belongs to the class ¢, and if the function g
satisfies the condition ‘

gu,a)=py<a[F,y)=0]

then the function g also belongs to the class ¢. Namely the 'funct;i.on
¢ can be defined by means of the operation of limited summation
in the following way: we first define the auxiliary function f,

(i) fu,y)= 3 (1=F(u,i)
. i<y
and then we seb .
W gt Sr) (1= Zh=ram)=a).
Y pEs

Let us notice in the first place that f(u,y).z() if and only if
for overy i<y we have F(u,i)#0. The conditions f(u,y)=0 and
1--f(u,y)==1 are equivalent. Hence
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S (1=f(w,p)
y<uw
is the sum of 48 many units as there are numbers y=0,1,2,...,x
for which it is true that if 1<y we have F(u,4)#0. If among the
numbers y=0,1,2,...,0 there exists such smallest number a<{ux
that 7(u,a)=0, then, of course, it is true only regarding the num-
bers y<<a that for every i<y we have I'(u,7)s40. Consequently,
it is true only for y<a that 1-f(u,y)=1, hence
2 (1—f(1‘7y))*”‘“’
<e
because this sum is the sum of as many units as there are nwmbers
smaller than a. Since a<{z, this sum is smaller than z--1. Hence
the second factor of the definition of the function ¢ is in such a case
equal to one, and g(u,x)=a. If such a number a<{x that I'(u,a)==90
does not exist, then regarding every y<a it is true that for every
i<y, F(u,1)5%0, 4. e. for every y<<a, 1=-f(1,y)=1, and so0
2 (1=f,y)=2+1,
y<z
being the sum of x-41 units. The second factor of the definition
of the function ¢ is in such a case equal to zero, and g(u,x)=0,
which is also in agreement with the meaning of the operation of
limited minimum, as described above.
Notice that in (i) and (ii) the operation of minimum was dofi-
ned by means of the operation which leads from a function F(u,z)
to a function f(u,y) defined as follows:
flu,y)=31=F (u,4).
. i<y
Let us call this operation the narrowed operation of limited suimn-
mation. This observation can be expressed in the following form
of a general conclusion, which will be used subsequently:
Corollary 2.1a. If the class XX is closed under the operations
of substitution and of narrowed limited swmmation, amd contains

the function: w=y, and o(z,y)=x-(1=y), then X s closed under

the operation of limited MANTMUM.

Elementary relations. The relations of the .class ¢ will
be called clementary relations. We say that the relation T(wyy) s
defined by means of the relation R, by the operation of the limited
existential quantifier provided that the following equwalonw iy true;

EBlementary functions 11

(W,Y) = Yy R(W, @)= 3 {a<y . R (1, 2)).
The rolation S(u,y) is defined by means of the operation of the
limited general quantifier if the equivalence
S (un J =.[locy B(W,2). =[] fo<y.— . R(u,2)
is frue.

Theorem 2.2 a. The class of elementary relations is closed un-
der the logical operations of limited quantifiers. '

Proof. If R is an elementary relation, . e. if there exists such
an clementary function f that
R(u,»)=f(u,z)=0

and if the rvelationy T' and § ave defined ax above, then there exist
such elementary functions g and h that

(o) T(ﬂ,y)ah(g,y):(}j
® 8(,y)=g (1, y)=0.

Such functions can bo defined directly by means of the operations
of summation and multiplication:
hw,y)=[]f(n,2),  glu,y)=f(u,x).
<Y <Y

As can easily be proved, these two functions satisfy the
oquivalences («) and (B).

We can generally prove

Theorem 2.2b. If the class X is closed under the operations
of Vimited minimum and substitutions, then the class of relations of the
class C 4s closed under the operation of limited ewistential quantifier.

Proof. If feX and f(u,2)=0=R(u,z), then the function
h(w,y) =f{u, <y [f(u,2)=0])

belongs to the class .
It is casy to show that

hu,y)=0.=. e, f(1,2)=0."

The class O is also closed under the operation of limited existen-
tial quantifier.
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Nimilarly the class X is closed under the logical operations
of the propositional calculus, then the class O 8 closed under the
operations of limited universal quantifiers. This follows from ftho
well-known. logical laws of de Morgan:

nvr(v (u, ). (2w’£1/’\‘]3(11’a’))‘

It follows from Theorem 1.1 that the class of elementary ro-
lations is closed under the operations of the propositional calenlus,
Thus the relations: “smaller than”, “equal to”, “divisible by,
and the class of prime numbers, are clementary ones, since they
can be defined as follows:

CLYy=a-=y=0, == Y. Y S
r<y=u<y.~@=y), oy = Secy v 2=1,
prime (@)=([], <, ylo:—>:y=1.v.y=u|.c>2.

Hence for instance, the following functions are clementary
ones:
y =pe<e[v+1<y (1))

(the integer part of the fraction x/y);

i =o={y[}])
Y

{the remainder of the division of x by ¥);
ot =a"; ot =gt
(auxﬂia;ry functions);
[y]l/-a;ﬂ]:uz<w[z’”<:u.[["f,¢ <.~ 1<
(the integer part of a 1.“0013).

The operations of maximum. In the soquel wo shall use the
following two opera.tlons of maximum:

(maxz<2)|[ R (u, )| =us<a R, 2). ([T, B, E).~. 1< ]

(the largest z<z for whu,h the relation R (u,®) holds), and
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Max F(u,z) for a<e= Fu, ur<s[] e, F(11,1)< F(u,2)|)

(the maximum value of the funetion F(u,s) for »<z).

As follows from the definitions, these operations do not lead
outside the clasy ¢.

Prime nambers. Prime pumbers will play an important
role in our further considerations. The sequence of prime numbers
will be defined in an elementary way. The following functions and
relations are elementary ones:

exp (y, k)= (maxz<y)[k"|y]
(the largest exponent z for which y is still divisible by **);
oNy.==: prime (). prime (y).2>v.[[,<, [;z/<z.primo.(z) .~>z=m]

(# is the next prime after y);

'

BPrE.=. Y coray [0XD (v,2)=2. prime(z). exp (v, )
(i) =k42. [Trcpras [ [ [Drime(2). prime (t).z[v.iv.
> Dwes |0 10Nz exp (v, w)=exp (v,2) 41|}
(¢ is the k-th prime number);
(i) Pp=pr<(k+2) [2Prk]

(the Z-th prime number).
By the lagt definition: 2=p,, 3=p,, etc. The number », which
appears in the definition (i) is a number whiech has the form.

Ik
p=2233-B4- . pptR

In conformity with the definition, this number satisfies the condi-
tion that in its decomposition into prime factors every successive
prime number has the exponent which is the successor of the
exponent of the preceding prime number. Since in conformity
with the theory of numbers the inequality

< (h+2)"? = (k--2)*

is true, thon (i) is an adequabte definition of the sequences py.
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Representation of finite sequences by mumbers. The functions
defined above make it possible to represent, in many reason-
ings, a finite sequence of numbers by one number. Thiy
method is often applied in the theory of computable functions,
The finite sequence of numbers: my,...,m; is represented by the
number m=2"-3™-, ., -pi%. The numbers m,,...,m; are the ex-
ponents of powers in which the corresponding prime numbers appear

in the decomposition of the number m: wm,=exp(m,p;). Hence,

instead of the expression:
there exists a finite sequence of such numbers wm,,...,m, that

R(mg,...,my),

we can §ay:
there exists such a non-negative number m that

R(exp(m,f’o)}“-:exl) ('m':ipk))-

This representation of finite sequences is used above all for
the elementary formulation of the recursive definitions3).

The operation of limited recursion. The class X is closed
under the operation of limited recursion if it satisfies the following
condition:

if g,h,j are functions of the class X, and if the funetion f sa-
tisfies the conditions

(@) f(u,0)=g(u),
I () fu,e41)=h(u,»,f(u,n)),
() f(u,2)<j(u,m),

then the function f also belongs to the class .

Conditions (a) and (b) are ordinary conditions satisfied by
those recursive definitions of function which are used in arithmetie.
Condition (a) determines the initial value of f, and condition (D)
makes the value for the next number dependent on its value for
the preceding number by means of the function h. In this way the

*) Another method of representing finite sequences has been given by
Gﬁgiel. For every finite sequence of numbers gy vy @, there exist such
two numbers u, v that: :

(1,1 +v(z+1)) =a,.
~Cf. Robinson [19], p. 707, and G&del [1].
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value of the funetion f is well defined for each value of the varia-
ble x. Thus the function f(u,2) is unambiguously defined by con-
difions (a) and (b). Condition (c¢) limits this possibility of defining
to those functions which do not exceed other functions contained
in the class SX.

Examples. If a class X is closed under the operation of limited
recursion, and includes the functions S(xz)=2+1, and a¥, then it
algo includes the functions x4y and x-y, since these functions can
be defined by means of limited recursion. Setting:

Us(z,y)=y"=y,
W=Ts(y,y) . haly,@,2)=Tsly, Us(x,8(2)),
i (g, %) =8 (9)%@,
we ocan eagily prove that the funetion f(y,2)=y-+ o satisfies
Scheme I: .
(8) F(y,0)=0.(),
(A) (b) f(?/’m'{”l):7"1(?/,.’15,]‘('%?/))5
(¢) fly,2)<js(y,2)
Having the function ¥+, we set in a similar way

P2(1)=Us(y,0),  ho(y,2,2)=TU,(2,y+2)
and see that multiplication satisfies the conditions:

(a) y-0=g.(y),

(B) (h) y-(@41)=hs(y,®,y ),

(¢) y-o<gily,®).

Applying hereafter the operation of recursion we shall neither
write out the identity functions U,,U,, (U,(z,y)=a="U(y,x)),
which were needed for formal reasons only, nor define the auxi-
liary functions g,h, but shall write the recursion formulae directly,
e.g. replacing the formulae (A) and (B) by the following simpler
formulae, equivalent to them:

y+0=y, . y-0=0,
y+(@+)=8(@y+z),  y-le+)=y+(y-w),
Y+ 82, Y o< S,

These formulae have, of course, the same meaning as the formulae



16 Some classes of recursive functions

(A) and (B). Further, if we define a funetion of one argument, f(z),
then Scheme I can oagily be reduced to a simpler Scheme IT:

() 1(0)=9(0),
(ID)  (b) f(a-+1)="h(,f(2)),
(e) fla)<j(w)-

The definition of the function z! can serve as an example of
applying Scheme II:

01=8(0),
(24+1)1=m!-8 (m),
p!l<a”.

Theorem 2.3. The class € is closed under the operation of

limated recursion.

Proof. If the functions f,0,h,7 satisfy the conditions (a), (h)
and (c) of Scheme I, then it is true that

(1) y=7u,x) if and only if there exists o finite sequence of numbers
My ye.nyMy Such that

mg =g 1), my=h(U,0,mg), My=hU,L,mq),...,My=h(1t,z—1,m, ,),
and y=my,,.

The numbers m,,...,m, thus satisfy the conditions m,=g(1t),
My 1=h(u,k,m;), which exactly determines each of them. In con-
formity with the above-mentioned method of the representation of
finite sequences we may represent the numbers my,...,m, by the
number m==2"e-3™-,,, -p7*, Thus we have m;=exp(m,p,); conse-
quently the induective condition my.,=h(u,k,m;) is equivalent to
the following ones:
pr(m,Pk+1)=h(uak,exp(m,pzc))-
Thus the following equivalence results from equivalence (1).
Putting ‘
F(m’u) — p:(i}t+2)-MaxJ(u, ¢) for z<x7

Y= f(u ) m)E stﬂ‘(m, u) [GXD ('m’: 2) == (u)'
(2) *Yy=exp ('m: Pz)- nlc< « [eXD ('m' 7‘277c+1)
‘ =h{u,k,exp (m,ps))]).
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As p, is the largest prime of the number m, and m,<j(u,4),
therefore exp(m,p;)<Maxj(u,i) for i<a. Thus the estimation
of the number m is sufficient. Let us set R(y,u,z) for the rela-
tion on the right side of the equivalence (2). The relation R is
an elementary one-if the functions ¢,h,j are elementary. From
the equivalence (2) it follows that the function f may be defined
by the operation of limited minimum by means of the relation
R in the following way:

fu,2)=py<ju,2)[R(y u,2)].
Thus the function f is an elementary one.

Equivalent definitions of the class of elementary functions. Let €’
be the smallest class of functions

1° including the initial functions -1, »~y, o7,
and

20 cloged under the following operations:

the operations of substitution,.

the operation of limited minimum.

Theorem 2.4. The class &' is identical with the class C.

Proof. The first inclusion ¢E'C¢E has been proved by
showing that z¥ belongs to the class ¢, and that this class is
closed under the operation of limited minimum (Theorem 2.1.).

To show that ¢ C¢E' it is necessary to prove that x4y be-
longs to ¢’, and that ¢’ is closed under the operations of limited
summation and limited multiplication. Let us notice first that,
by Corollary 1.2 and Theorem 2.2D, the class €’ is closed under
the operations of the propositional calculus and under the opera-
tions of limited quantifiers.

Further, the relations “smaller than”, “larger than”, and
“gqual to” are also the relations of the class €’:

<y .=.0+-y=0, r=y.=.0Y. YL,

Hence it can easily be seen that the clasy ¢’ is closed under the
two operations of maximum, since these' have been defined by
means of the operations of limited minimum and of limited quan-
tifiers. Thus the following functions and relations belong to the
clasy ¢':
@y =pe< (125 =271
o-ty=pe< (@+1): (y+1)[2° 2 =27

Rozprawy matematyczne 2
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Further: a*, ™, xly, prime(x), exp(x,y), «Ny, p,, are funec-
tions and relations of the class &', since they are defined by means
of functions and operations which have been proved to belong to ¢’;
this can eagily be seen from the gtructure of their definitions. Hence
it follows that the class &’ is closed under the operation of limited
recursion, since in the proof of Theorem 2.3 the recursion scheme
was reduced to the operations of limited minimum, limited quan-
tifiers, and the functions mentioned above. It can now eagily be
proved by means of the recursion scheme that the operations of
limited summation and limited multiplication do not lead outside
the class ¢'. Namely, let us suppose that the functions f and ¢ are
defined by limited summation and limited multiplication respec-
tively, by means of the function F belonging to the clags ¢’:

f(u,fv)—“—ZF("ﬂ), g(u,m)=[] F(u,q).
<z <

It can easily be proved that the functions f and ¢ satisfy the
conditions (a), (b) and (c) of the operation of limited recursion:

f(4,0)=F(u,0),
f,24-1)=f(u,2)+F(u,041),
o, o)< (2+1) Max F(u,2) for <,
g(u;0)=F(u70)7
g(u;w+1)=g(u7m)'F(u’w"i"l)a
g(u,0)=(Max F(u,2) for 2<<a)*

So the functions f and g also belong to the class &’. There-
fore the class €’ is closed under all the operations of the clags &
and includes the initial functions of the class ¢, hence ¢C ¢
We have thus proved that the classes € and ¢’ are identical.

Let € be the smallest class of functions

1° including z--1 and «¥ as the initial functions,
and ’
2° closed under the following operations:
the operations of substitution,
the operation of limited recursion.

Theorem 2.5. The class & is identical with the class C.

. Pro.of. The inclusion ¢”/C¢E results from Theorem 2.3. The
inverse 1'nclusion CCCE” remains to be proved. We shall Prove
it in an indirect way, by showing first that ¢'C¢”, and by using

"
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Theorem, 2.4. Firgt of all, it can easily be shown that both the re-
maining initial funection of the class ¢’, namely xz-y, and the
following functions: P(®)=w-1, x4y, x-y, belong to the eclass
¢"”. These functions satisfy the conditions of the recursion
gcheme:

P(0)=0, y=0=y,
P(z+1)=u, Y= (v+1)=P(y=a),
P(r)<z, Y—TLY,
Y+0=y, y-0=0,
Y+ (2+1)=(y+»)+1, Yy (e+1l)=y-z+y,
y+o<(y+1)" Yy ae<y®

Now we prove that the class ¢’ is closed under the following
narrowed operation of limited summation: if Fec’ and

flu, @)= >'1=T(u,i)
i<z

then fe&', since it can be defined by limited recursion:
f(u,0)=1-F(u,0),

F, 1) =F (u,2)+(1=F(u,z+1)),
’ f,2)<w-+1.

Thus from OCorollary 2.1a it follows that the class ¢ is closed
under the operation of limited minimum. Hence ¢'C¢EY, and by
Theorem, 2.4 €C¢E'. The classes € and €' are also identical.
Let &' denote the smallest class
1° including 2--1, =¥, #-y, 2V as the initial functions;
20 closed under the following operations:
the operations of substitution,
the operation of limited summation.

Theorem 2.6. The class ¢’’’ is identical with the class €.

Proof. & ig included in € ex definitione. Conversely £CE™,
because ¢’ is closed under the operation of limited minimum,
according to Corollary 2.1a. Hence, from Theorem 2.4, it follows
that &=¢"".

The above theorems show that on the basis of the operations
of substitution and on the basis of the initial functions z+1, 24y,
@y, x+y, 4V, the limited operations of summation, minimum and

Qx*
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recursion are equivalent. It can also be proved that on this basis
each of the above-mentioned operations is equivalent to each of
the following: the operation of limited multiplication, the two
operations of maximum, and the operation of minimal value:

Min F(u,2) for a<e=uy<Fu,0)[ Ype, y=F(1t,7)].

The proofs of these easy theorems are left to the readers.

Thus the class of elementary functions may be defined ag
including the above-mentioned initial functions and cloged under
the operations of substitution and under one of the soven operations
enumerated above. These operations will henceforth he called ele-
mentary operations. ’

-
§ 3. Classes based on limited recursion

Besides the clags ¢ we shall examine other classes of functions
closed under the operation of limited recursion. For this purpose
we shall prove some theorems of a more general character,

We say that a class X of functions is inductively definable by
means of the initial functions: f,,...,f,, and operations O, yor o0y
provided that X is the smallest class containing the functions
fiyeeoyfn and closed under the operations O,,.>.,0,. The olass X
is said to be inductively defined if it i inductively defined by means
of certain operations mentioned in this paper.

Theorem 3.1. If X is inductively definable by means of the
operations of substitution as well as the operations Opyyerey O, and
Oryy--30, do mot lead outside the functions of ome argument, and
if X includes the pairing functions I,K,L, then the class X, s
inductively definable.

To simplify the proof we shall assume that ¥ includes the
initial functions f,(z,y),...,fz(2,y), of two arguments, and f,, (),
-y Tr42(2), of one argument; we shall prove that class X, is identi-
cal with the class (¥, being the smallest class including the initial
functions )  f,(Kx, La), ..., f(Kx, Lz), fup1(®), ..., fop (@), Ko, Lo,
I(z,2), 1(2,0),1(0,x) and closod under the operations OpyyeveyOp,
and 0,,0,.

) Y) In addition we assume that I (0,0)==0. On the other hand the con-
dition I(Kz Lz)=z is not necessary for this proof, )
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Oy: If f(2) and g(x) belong to X*, then f(g(z)) also belongs
to OC*.

O,: If f(x) belongs to X*, then I(K,f(Lz)) and I(f(K=z),Lw)
also belongs to X*. . :

The inclusion X*CY, is self-evident. The initial functions
of the class X™ belong to the class 2, and the operations assumed
in the definition of the class X do not lead outside 9.

The inverse inclusion will be obtained by means of several
lemmata. If f i3 a function of one argument, then the n-th iteration
of the function will be symbolised as f*. Thus f*(z)=z, f**'(2)=

={(f"(z)).
We set C,o=KL" 'z, henco C,r=Kuz, Co=KLz. Further:

@y ) =g, 2oL 9).))
From the properties of the pairing functions I ,H,L it follows
that
CLByyereyttn, =1, for O0<i<m,
L@y, @nyyp =y, Cplle=C, 2,
BryeeoylnyYay oy Yms 8D =Lryee ey Tus Y1y o1 Ym )2
Lemma 1. If f,geXX™, then the function I(f(z),q(x)) also belongs
to X*.
Proof. By the operation O, the functions I(Kx,g(Lw)) and
I(f(K=), Lx) belong to X*. Hence the functions

I(f{(K1(@,), LI (2,0)) =I(f (@) a),

1(K1{f @), ), g(E1{f (), )| =2 (@), 9 (2)
also belong to X* by the operation O,.

Lemma 2. If jyi,...,0; belong to X*, then the function
also belongs to X*.
Proof. Since j,,j,e%X", then, by Lemma 1, the function

. <j2(M),j1(m)>==I(jg(w),jl(w))

also belongs to X*. Let us suppose that our lemma is true for k_—Tfn,
i.e. that (n(2),...,0:(2)> belongs to X*. By Lemma 1, the function
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ng1 (@), s (2)> =I(7"n+1 (@), Gn (@) g v e sy (m)>)

also belongs to X*, so that our lemma is true for k=mn--1.
Thus by induction we find that for every % the function
(@), ... j1(@)> belongs to 9C*.

Lemma 3. If fy,...,j,e X", then the functions
f@)=j1 (@), .., ju(®),07, '
G(@)=jr(#),. .13 (@),0, fyr (@)1 5 Jr(2), 0

also belong to X*.

Proof. To the class ™ belong the functions {j,(»),0) (from ‘

I(x,0) by substitution). Hence also f(x), and

b (@) =i (@) -y 5o (®), O3 = (pyr (@) 5y G (), (@), 05>
by lemma 2. Similarly I(0,4(w)) from I(0,x), and

g(@)=jy(®),...,5; (%), 1(0, h(2))>
by lemma 2.

Lemma 4. If f(@1,...,2,) 8 o function of the class X, then
f'(@)=f(Ciz,...,Cox) is a function of the class 9. .

Proof by induction with respect to the order of the function f
in the clags 9.

If fis an initial function, of two arguments, of the class 5,
f(@,y)="Fi(2,y), 1<i<k, then the function f,(Kw,Lx) is an initial
function of the class A*. This class includes also the functions K,
I(K»,KLz) (by O;) and

fi(KI(Km,KLm),LI(Km,KLw))=fi(Km,KLm)=f¢(O’1w,C’g(w))zﬁ(w)-

Let us now suppose that for all the functions g and h, of
orders lower than n, the corresponding functions g’ and b’ belong
to the class XX*, and that f is a function of the order n. We ghall
prove that f also belongs to X*. The function f is obtained from
certain functions of orders lower than » by means of the operations
of substitution or any of the operations Oyyy..+,O0p, Thus we have
to examine the following cases:

A. The function f is obtained by means of the operation of
the substitution of the function

f(wn---ymlca?/n“-vym)xg(mlr--awmh(yh“'1ym);wn-|-ls'-'1mlc)‘
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From the inductive hypothesis it follows that the functions
g’(w):g(Olw,...,Ck+1m),
W (z)=h(0y2,...,0,x)

belong to X*. X* includes the functions C,z for any t. Hence from
Lemma 3 it follows that the function {0, %,...,C,. 2,0 also
belongs to X*. Thus XA* includes

B ({Cpy1®yeeeyCpyn®,00)=h(Cpr1,...,0p i)
and
j(@)=C01®,..., 0o, h(Cpp1®y. ., Cpry®), Cppmi1®ye ey Oy, 0)
(by Lemma 3), and also the function
g'(i (@) =9(Csm, ..., Ca, h(Cry1®, ., Cpyn®) , o1y oo+ y Oy 1)
='(@).

B. f is obtained from the function g by the identification of
the k-th and j-th variables, ¢. e.

F(yyee ey Bn) =G (Bayeens®yyensy By y @iy Bpyryeeey )
By the inductive hypothesis g’eX(*; then X* also includes (by Lem-
ma 3) the function ‘
j(m)=<01w,...,ij,-..,oh.lm,ij,Gk—i_lm,...,G.nw,o>
and consequently. the function f'(z)=g'(j(x)).
C. f is obtained from g by the substitution of a constant
X f(mlr--;mk—lywk+17"-;wn)=g(m1:--~7mk—l,0 7$k+11-'-7wn)
and g'e Q™. We set
j(#)=C0s,...,0pa%,0,0k12,...,Cnz,05,
jeX(*, by Lemma 3, therefore the function f'(z)=g'(j(»)) also be-
longs to SC*.

D. If f is obtained from g and h by means of any of the opera-
tions Oy,,...,Oy, then f,g,h are functions of one argument. We
have .

g (x)=g(Kw),  h'(z)=h(Ka),
and-
g () =gl(1(m7m))7 h(w)":hl(I(m1w))1 1 (@) =f(K®).
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Hence if g',h'eX*, then g,heX™*, and f,f'eX" according to the
definition of (™.

Having proved Lemma 4, we shall prove by indnetion the
inclusion

X, C*.

If f(») is a function of the order 0 in the elass X, then f(z)=
=fr (@) A<IKE), and f belongs to the class X" as its initial
function.

Let us now suppose that all the functions of the class X,
which are of orders lower than n in the class XX, belong to Y*. We
shall prove that the function f(z), of the order n in the class X,
also belongs to S¢*.

We distinguish two cages:

A. f is obtained from functions of one argument by means of
the operations O,,04,,...,0y,, hence feX*, because the operations
0:,04,---,0z, do not lead outside the class X(*;

B. the function f is obtained from a certain function of two ar-

guments, F(z,y), by means of one of the operations of substitution.,
Also:

f(@)=F(a,a), or f(x)=F(2,0), or f(2)=F(0,q).

Y
. 'By Lemma 4, the function F'(z)=F(C,x,C,x) helongs to X*.
X* includes the functions

I{K»,I(Lx,0));
I(KI(w,m),I(LI(w,m),0))::(:1:,:&,0>,
similarly <z,0,0> and ¢0,z,0.
It can eagily be shown that .
F(ma m)=F’(<”;m70>)7
Pz, 0)=F"({z,0,0),
F(0, 2)=F"({0,2,0)).
Thus, in each of the possible cases the function f belongs to the
class X*. Hence the classes O\ 1 and X* are identical.
Theorem 3.2. The class ¢, is inductively definable.

.Proof. The operation of limited summation can be formula-
ted in such a manner that it leads from the function F(x) to the
function f(z) defined as follows:

f@)= D F(I(i, Lu)).

K
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Thus from Theorem 3.1 it follows that the class ¢, can be based
on this operation and on the operations O, and O,. Also the class
€, 18 inductively definable for each k>0.

We say that the function f(xz) increases faster than each func-
tion of the class X, provided that for every function geX( there
exists such a number =, that for every x>n, we have the
inequality f(x)> g(x).

The function f(@,...,&y,...,2;) is called non-decreasing with
respect to the n-th argument, if for every o,,...,z, and y the inequa-
lity r, <<y implies that

f(wlr"'7'1"71;---:‘Bk)gf(mla"-7?/7"""1%)-

A function which is non-decreaging with respect to each of
its arguments is called simply non-decreasing. A function is called
inereasing if it satisfies the above condition provided that weak
inequalities < are replaced by strong ones <.

Further, we may say that the function g dominates the function f
provided that f(u)<g(u) for each wu. T

Theorem 3.3. If X and Y are inductively definable by means
oofthe operations of substitution, and besides at most by means of the
operation of limited recursion, and if the class X includes mon-de-
ereasing functions which dominate the initial functions of the class Y,
then every function f of the class <Y is dominated by a certain mon-de-
creasing function f', belonging to the class X and having the same
number of arguments as the function f.

Proof by induction with respect to the order of the function f
in the class <. '

For the initial functions this property is assumed. ]

If for any funetions g¢,%,j, of orders lower than =, there
exist such non-decreasing funections g¢',h',j’, that

(i) g(@, )<y (@,y),
(ii) h{y) <P/ (y),
(iii) j(z,w)<j (2, u)

and if f is a function of the order » in the class ¥/, then, if f is
obtained by the substitution of functions f(z,y)=g(v,h(y)) then
f is dominated by the mon-decreasing function g'(z,h’(y)), since
from, (i), (ii), and from the fact that g’ is a non-decreasing function
it results that
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fa,y) =gl h(y)<g' (@, h(®)<g'@,1 ().

If, however, f is obtained from a function g by the identification
of the variables « and y for example, or by the substitution of g
constant for the variable y for example, then f iy dominated by
the non-decreasing function f', obtained from ¢’ by the application
of the same operation. It results from the inequality (i) that

9y, <9 W,y),  9(®,0)<g’'(»,0).

Finally, it f is obtained from the functions ¢,k,§ by limited
recursion, and if the condition (¢) of the oporation of limited re-
cursion has the form

f(@,u)<j (1),

then it results from the inequaliby (iii) that the funection §' domi-
nates the function f.

Theorem 3.4. If X and Y are inductively definable by means
of the operations of substitution, and besides at most by means of the
operaiton of limited recursion, and if the class X includes non-decrea-
sing fumctions which dominate the initial fumctions of the class Y
and if f increases faster than any fumction of the class Xy, then f mz
creases. faster than any function of the class Y.

Pr_oof. By Theorem 3.3 every function ge</, is dominated by
a certain function ¢’'¢XX;, which means that

g(@)<g' ()

for every x. If f increases faster than g', then there exists such an n
that for z>>n we have

g’ (@)<f(m).

Eence for #>n we also have g(»)<f(s), which means that f
increases faster than g.

Theorem 3.5. If X and Y include the successor-function and
are inductively definable by means of among others, the operations
. of substitution, and if for every function of the class’ X ﬂwm ewisls

o function of the class Y, which dominates it, them the Zlass X dc;es
not include the universal function of the class Y, 2

Proof. If F(n,s) is a universal funection for the
o class then
if 2 included F (n,), then X, would include the function F(syaéj :v) +(?J
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The latter is dominated by a certain function gety/,: g(z)=F(z,»)--1.
Since F is the universal function for ¢/, then there exists such
an n that g(z)=IF(n,») for each x. From this, however, setting
z=mn, we obtain the false inequality

F(n,n)=g(n)=F(n,n)+1

For instance the universal function for the class X, is not a member
of the class % ). Yet a universal function for a class which is closed
only under the operations of substitution can always be defined
by limited recursion:

Theorem 3.6. If X includes the pairing functions I,K,L and
is inductively defined by means of the operations of substitution, cy
is inductively defined by means of the operations of substitubion and
limited recursion, and Qf includes such a function hin,z) that f(z)<
<h(n,») if f is of the order n in the class Xy, then the class QY includes
a universal fumction for the class 9Cy. -

Proof. By Theorem 3.1 the class &X; is inductively definable

by means of the operations O,,0,. The function F(n,z), universal
for the class 9(;, can be defined as follows:

(a) F(0,2)=
Coe the initial functions for the class X;
F(k, )=

(b) for n=k

. P(Tyn,F(Tym,x)), when Tyn=0,

F(n+1,0)={ I(Ke,F(Tin,Le)), when Tyn=L,

I(F(Tyn,Ex),La), when Tyn>1;

() F(n,x)<h(n,).

The case Tsn=0 corresponds to the use of the operation 0,.
The cases Tyn=1 and T;n>1 correspond to the use of the opera-
tion O,.

Tt can easily be seen that conversely, if ¢/ includes the function
F(n,u), universal for &(;, then the class Qf also includes the function
h(nm,») which has the property formulated in the theorem, namely:

h(n,z)=) F(n,i)+1.

i<

5) Cf. p. 6.
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§ 4. Classes ¢"

Let us consider the following sequence of computable functions:

folz,y)=y+1,
fi(@,y)=z-+y,
fal@yy) =(2+1)-(y+1);
for n>2
fn+1 0,y)=fn (y+21,y-+1),
fn+1 (z+1,y) “":fn+l(m;fn+1 (03',?/)}.

We shall now prove certain properties of this sequence which
will be needed in our further considerations.

Theorem 4.1. f,(x,y)>y for a>1.

Proof by induction.

If n=2, then f,(z,y)=(v-+1)-(y+1)>y.

Let us now suppose that this theorem is satistied for a given
n>1 by any % and y. It holds also for n--1. It follows from the
induetive hypothesis that

:fn—}—l(o’y)=f?z(y+17y+1)>y'l'1>;'/-

Let us suppose that the inequality
fagr(2,9)>y
holds for a given z and for any y. Hence it holds also for L1
Farr@+1,9)=fo (@, frga (#,9)) > Fria (2,9)> 1.

Thus the theorem holds for any z and n.

Theorem 4.2. Fr1 (@4+1,9)>F 01 (2,y) for n>0.

Proof. For n>2 we prove in virtue of Theorem 4.1:

f'n-g-l(m+1:f‘/)xfn-;-l(myfewl(m:f’/))>fn+1(my?/)~

For n=0,1 we verify directly: #-41-4y>z+ty; (242) (y+1)>
>(w+41)-(y+1).

Theorem 4.3. ful®,y +1)>Fo(2,y) for n>0.
Proof. For n=1,2 we verify the theorem directly. For 32

we prove it by induction. Let us assume that this theorem is true

for a given n and for any » and y. From this, and from Theorem.
4.2, we obtain
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I3

fn+1(0 yY+1)=fa(y+2,y+2)>f, (y+1 Y -+2)
>fuly+1 7'y+1)=7¢n+1 0,y).

Let us suppose that Theorem 4.3 is true for a given # and n+1,
and for any y. We find that it is true also for z41:

fn-{,-l (:‘L‘+1 a?/”}—l):fwd(wafn-a-l (m5?/+1))>fn+1(m7fn+1 ( m?f’/))
=fns1(@+1,7).

Theorem 4.2 and Theorem 4.3 mean that each of the functions
fn(@,y) for n>0 ig strictly increasing with respect to both its ar-
guments. As we shall see, the functions f, for »>>3 are not elementary,
but they are computable. By means of the sequence f, we can define
the following sequence of classes of computable functions.

Let ¢™ be the smallest class

1° including -1, U,(z,y)=2, U(z,¥)=1v, f.(®,y) as the

initial functions,
and

20 closed under the following operations:
the operations of substitution,
the operation of limited recursion.

The gequence of the classes €™ has the following properties:
Theorem 4.4. €2 is a class of elementary functions.

Proof. The function f; is an elementary one:

10,)=(y+2)%,  fi(1,9)=((y+2)*+2)* ete.
Generally, f, can eagily be defined by means of limited recur-
sion: '
9(0,y)=y,
g(@+1,9)=(g(z,9)+2)?,
g(z,9)<(y+2)27,
fs(2,)=9(2°,9).
In the class ¢® the function #¥ can also be defined:
24+0=m," 2-0=0="U,(z,0),
e+(y+1)=(e+y)+1, @ y+l)=2y+a,
-+ y<fs(@,y), 2 y<falz,y),
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20=1,
V=gl g,
< fy (7).
Thus the initial functions of the class ¢® belong to ¢, and

vice versa. By Theorem 2.5, the classes <3 and ¢ are clogod under
the same operations. Consequently they are identical.

Theorem 4.5. The class ¢° includes the pairing  functions

Qw-_Em——m~[l/m]2 E and Q s, and is closed wnder the operation
of limited minimum.

Proof. By means of the operations of the class ° we can
define the following functions:

1 O0(@)=U,(w,0);

2. Uy(z,y,2)= (w Uy(y,2 ))

8. Us(a,y,2)=U,(U,(2,y),z),

4. Uy(m,y,2)= Uz(m Ug(y,Z),

5. P@=o1:  P@)=0(0),
P(0+1)=T{s, P (a)),
P(2)<U,(2,a);

6. z-y: | m—'—O:Ul(m,m),

m;(y"f'l)’:Ua(a”?/yP(w“""y)):
v=y<Ui(w,y);

7. o@,y)=x 0V=2-(1-y): a(w,O)zUl(mzm),

a(m,y+1)=O(U3(m,y,a(w,y))),
; U(w7y)<U1(m7y);

8. 1(m,y)=2]0¥: - T(2,0)=241,
T(wyy+1)=U1(m’y,T(.w,y))9
7(2,9)<Us(,y)+1;

9. 7(x,y)= the remainder of the divmon of » by y:
r(0,4)=0(y),

’I'(w‘l‘l)y): Uz(m, o’(’)‘(.’ﬂ,?/) +1,1-—'—(y—(’r(w,y)—l— l))))’

9‘(m,y)<Uz(w,y);
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10. |~ |=0(),

- |<Us(@,9);

1. [Vo]=0,

[Vao+i] = t([l/w] (Vo) +1) = [[f] _ll_l])

[I/E]<U1(m7m);

12.  E(0)=0,
B(o+1)=o(B(2)+1,1r(o+1,[V o +1))),
E(2)<Uy(2,2);

13. Qu=Eux;

14. Q%(x)=
Q"+ (2)=Q(@" (@),
Q" (@)<Us(®,m);

15. W(0,y)=0(y),
W(@+1,9) =W (2,9),2= (1= (y=Qn),Qo--3)),
W(z,y)<Uy(2,9).

The function W satisfies the equality:

W (@+1,9)=W (,y)+0@2,

The value of the funetion W(x,y) equals the number of those
numbers s< for which Qs=y,

Ro=W (z,Qzx).

The functions @Qz,Rz are pairing functions (other than those
defined in §1). The function Qx value every number infinitely
many times. The function Rz indicates for how many numbfars
s<w the equality @Qx=¢@s is true. The function P(w,y), which
corresponds . to them, does not, of course, belong to the class C°.

Let us now suppose that F belongs to &° Consequently, &0
algo includes the function which is defined in the following manner:
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f(u,O)::l—'—F(’M/,O),
flu,z4+1)="{f (u, ), F (u,2-}-1)),
flu,2)<Uy (u,24-1).
It can easily be seen that
flu,m)= D 1-F(u,i).
i<z
Hence this narrowed operation of summation does not lead out-

side ¢¢. Hence it results from Corollary 2.1a that ¢ iy closed under
the operation of limited minimum.

Theorem 4.6. For every m, C" ds closed wunder the operation
of limited minimum. The relations of the class ¢ are closed under
the operations of limited quantifiers and under the operations of the
propositional calculus.

Proof. The definitions given above can be repeatoed in each
class €7, since COCE™ Hence from Theorem 2.2b we find that each
class " iy closed under the operations of limited quantifiers. Fur-
ther, by the equivalences

1-2=0.=.~(r=0),
o(x,1-y)=0.=:12=0.v.y==0

the relations of the class &" are closed under the operations of the
propositional calculus.

Theorem 4.7. &"CE™L

Proof. We shall first show that for #>0 the following
inequality holds:

(0(.) fn+1(way)>fn(93,,?/)-
For n=1 we have
fz(l,?/)::(m—H)(’y+1)>~‘0+y:f1(%°/)

For n>2 we reason as follows: if =0, then we have the
inequality («),

Fuen(0,9) =Y +1,5+1)>4,(0,9)

since f, is a strictly inereasing function (Theorems 4.2 and 4.3).
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Let us now suppose that for every y

fn+1(k:f'/)>fn(7‘7;?/)~

Hence, since f,,; is a strictly increasing funection, we obtain

fn-f-l (70"*‘1 7y)=fn+1(7‘7:fn+1(kay)) @
> g (B Fo(By ) > P By ful T, ) = Fu (1, )

and we also obtain the inequality («) by induection.

This inequality helps us to prove that in the class E™' the
functions f; (for i<{n) can be defined by means of limited recursion.
Indeed, it follows from. the inequality («) that for 0<i<n

(B) fi(wi?/)<fn+1(m;?/)'

For ingtance, if n>1 (or »>>2), then we can easily define z-}-y
(or -y and x¥) as we have done in the class €3. Hence the inclu-
giony E°CETC E2CEICT E™H for m>3.

Now let us suppose that for n>>2 and for ¢<n the function f;
has been defined in the class ¢"*, we shall show that in such a casge
fir1 also belongs to the class ¢"*'. The function f;,, satisfies the
conditions: .

fra1(0,9)=F;(y+1,y+1),
(v) . ft+1(w+1:y):fi+1(mafi+1(m’?/))a
fiv1 (@, ) <Fpp1(2,9).

These conditions define the function f;,,in a computable man-
ner. But this is not the case with the simple scheme. of limited re-
cursion®). The function f;.,, hovewer, can be defined in the class ™+
by means of the operation of minimum, in a way similar to that
in which the functions satisfying the conditions of the ordinary
scheme of limited recursion (Theorem 2.3) are defined by means
of the operation of minimum, namely by using the sequence p, of
prime numpbers. The only difference is that here we use a double
gequence of prime numbers, defined as P(2,Y)=Ppg,y, Where P(z,y)
is a pairing funetion.

¢) The funetion f,,, is defined by means of the operation of limited
recursion with entanglement. Cf. Peter [3], p. 622,

Rozprawy matematyczne 3
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Putting : F(z,y)= p(w yFu1 (@, y)@+- fn-|-1(m+1l))’

fq:-i-l (@,y)= Mz<fn+1(m 'Y) [Emgﬂ'(m,y){z‘|“l= exp(mrp(w ’ ?/))

Tucmfex(m,(0,0)) 0.~ exp(m,p(0,0)
= fs(0+1, 0+ 1) +1 L [Ty {120
t=exp (m,p (w-+1,v)). .

t=exp (m,p (w,exp(m,p (w,v)) wl))}}] .

‘ The number m, used in the above definition, has the following
property: the prime number p(w,v) appears in the decomposition
of m into primes with positive exponent if and only if f;.,(w,v)
i8 necessary for the computation of the value of the function frpr(®,)
according o the definition (y). It can also easily be proved that
it exp(m,p(w,u))#0, then

oxp(m,p (w,u))=fy,1 (w,u)+1.

Hence, if feC"*’, then f; ;e ™! for i<<n. All the f, for i<n can be
consecutively defined in the class ¢"+'. Thus the class ™ includes
all the initial functions of the earlier classes, and consequently
includes all those classes too.

It can easily be proved that for n>>2 the classes &" aro closed
under the operation of limited summation. Likewise, for n>3,
the classes €" are closed under the operation of limited multiplic-
ation etc. Bach successive class is cloged under a more limited
operation. The clags ¢t iy closed under the operation

F(0,u)
QF (4,u)=F (z,u)FE~Lwr
i< ’

The proofs of these easy theorems are left to the readers.

Let 99" be the smallest clags which includes the functions
I,K,L,a+y,2, f,, and is closed under the operations of subgti-
tution. By Theorem 3.1, the clags WYy is induectively definable, na-
mely it is the smallest class which includes the functions #?, Ka, L,
fn(E2,Lxz), and is closed under the opera.tions: 1) O; (of superposi-
tion), and 2) of summation of functions (t.e. it f,geW? then W}
includes also the function )+ g ().
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Theorem, 4.8. If f is a function of the order ¥ in the class W
(where n>2), then :

(3) H@)<fnyr (k).

Proof based on Theorems 4.1, 4.2, and 4.3. The initial
functions satisfy the above inequality, since

< (@+2)=£(0,0)<fur1(0,2), Ko, Lo<o<fu.(0,2),

fn(Km,Lm)gfn(w;m)<fn(m+l;w+1)=fn+1(‘07"”)'

Let us suppose that ¢ and h are functions of the orders I and %

in the class W7, and satisfy the inequality (3). Let k>1, then
9(2)<fny1(F,2), h(m)<fn+1(k)w)'

Hence, since f,,; is a strictly increasing function, we obtain

I (@) < FriaFos (@) < Fria (I Fy 1. (6 2)) = frn (41,).

Further, using the inequality («) of Theorem 4.7, we obtain

9(@)+h(2)<2fp11 (K, )
<(fn+1(k’w)+2)2=fs(oyfn+1(kaw))g]‘n+l<k+17‘”)-
Therefore, if f is a function of the order k-1 and is obtained from
the functions g and & through one of the operations 1 or 2, then
F(#)<fry1 (k+1,2).
Hence we prove our theorem by induetion.

Theorem 4.9. The function f,,,(x,x) increases faster than amy
function of the class E™.

v Proof. For n>2 it follows from Theorem 4.8 that if f is of
the order % in the class W}, and 2>k, then

H (@) <fuy1(2,2). .

Hence f,.:(z,z) increases faster than any function of the class
Wy, and according to Theorem 3.4 increases faster than any funec-
tion of the class C}, because the initial functions. of the class &
are dominated by the increasing function f.(@--1,y-+1) of the
lags /", For m==0,1 we can verify our theorem directly. It can
easily be proved that if f is of the order %k in the class ¢&° then
f(z)<x--2"41. Similarly, if f is of the order % in the class ¢, then

" f(#)< (4-1)-2F. Hence the function 2u increases faster than any
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function fe€9, and (z--1)% increases faster than any funection fecx,
Thus we have E"C ™, ™ot @™,

Theorem 4.10. The class of the relations of E™ for n>2 is the
smallest class which includes the initial relations

Bi@)=a=0, By(a,y)=o=y+1,  Ry@,y,2)=0=1F,
R4(wa?/,z)zm=?/_"ma Rs(m,;e/,z)ammfn(y,z),
R (,y,0)=a<fuly+1,2+1),  Ri(z,y)=Rs(m,y,v),

and 18 closed under the operations of the propositional caleulus and of
limited - quantifiers. ' ‘

Proof. By the operation of limited existential quantifier wo
mean an operation which leads from the relation U to the relation V
defined as follows:

V(.m’@/au)EEz Ry (2,9)" U(.’I«?,j?/,Z,ll).

In a special case the relation ¥V can be of one variable.

Let ¢ denote the smallest class of relations including the
a,bove-menbioned initial relations and closed under the operation
specified above. It follows directly from the theorems proved be-
fore that CY is included in the class of relations of the class <™.

To prove the inverse inclusion we need the‘following lemmac:
Let us say that the expresion A, Yy, 0y Y, estimates @ by means
of Y1,.--\¥n provided that the expression A has the form,

_
.»};zl, zkI‘)e (#,21,25) . R (2,25,2,) ..... Ra(zla:?/w?/j)

and each of the variables Zy%1,-..,% appears as the first argument
in one of the expressions which symbolise the relation R,. More-
over, the variable z appears only in one of the expressions represen-
ting the relation Rs; and if the expression Rg(z;,%;,2,) appears
in the expression A then 1<j<k and i<h<k.

It is evident that if the expression A (®3Y1y.0.,Yy) estimates

by means of YiseeorYm a0d B(,y,,...,1,,1) symbolises a relation
of the class ¢}, then the expression

Zm A(m:?/.l;"'7?/m)'B(wy?/17“'7fl/m:u)

denotes also the relation of the clags ¢y,
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Lemma 4.11. For every function f(y,...,y,) of the class €™
there exists an estimating expression A(@y, Y1y Yp) Such that the
following implication holds :

B (Yrye e sYm) = A (2, Y1,y Yy) -

Proof. Rg(x,y,,y,) is the estimating expression for the initial
functions of the class ¢™. If the functions ¢ and h possess extimating
expressions 4 and B, the following implications are satisfied:

'I"gg(?/lr .. ;?/k)';">-A(m:L’/17'- . 9.?/1")’
e<<h(y u).— . B(x,y u);
and then the expression Y,B(r,2,u). 4(2,1,...,¥;) is equivalent to
the estimating expression for the function
Ty sy = R(g (Y1, - Y2) 1),
since the implication
BKR{GWaye - 90, 8) = 3, B(32,1). A (5, Uy )

results from the implications given above. The remaining opera-
tions: identification of variables, substitution of a constant, and
limited recursion, involve no difficulties whatever. )

Having proved Lemma 4.11, we shall in turn prove by induction
that for every function fec™, when n>2, the relation x=f(y,,... +Yom)
belongs to the class ¢y. For the initis] functions the corresponding
relations are initial relations in the class ¢h Tet us suppose that
the functions g and A have their corresponding relations G and H
which belong to the class E€x:

z=g(y,1).=.G(z,y,u),
=R Y1y y¥m) = H (L, Y1, Um)s
then we have the equivalence
m=g(h(,y1,;..,;z/m),‘u)
= AR YY) H (2, YY) - G (2, 2,1))

in which 4 is the estimating expression for the funection k. Thus
the above relation corresponds to a funection obtained by substi-
tution. Further



38 ‘ Some classes of recursive functions

2=g (0 M).=. 3 (R (2,2,2). Ry (2).G(2,2,u),

e=g(y,9).=.3.[Rs(2,9,9).6=y.G(z,2,)),

w=p<ylg(v,u)="0].=. 3 [Rs(2,2,0). By (2):0<y . G (2, )
.[],,{Ré(w,w,w).'v<m.->.N(G(z,w,u))}.v.Rl(w)

T {Ba(0,9,9) 0<y .~ ~(G (2, 0.u))}.

The relations <, =, < may be defined in ¢§ by means of the
relation R,.

Since for #>2 the class €™ can be defined ag closed under the
operations of substibution and limited minimum, we have proved
that for every function fec™ the relation

mzf(f‘/lr-*aym)EF(mnflllr"'7?/vn)

belongs to €. Hence, €% includes also the relation

f(ylr"' 7?/1:1,):‘0'E-2;{R6(z7?/17?/1)'Rl(z)'lﬂ(zﬂ/l"' : 7'l.fm)]

Thus the class ¢} includes all the relations of the clags .

Theorem 4.12. For n>2, the class ™ includes the wuniversal
function for the class ¢%.

‘Proof. If n>2, then the class ¢} is the smallest class which
includes certain initial funetions and is closed under the opera-
tions: O, of superposition, of addition of functiong ()¢ (z) and
of limited minimum restricted to functions of one argument

h(w)=pe< Kalg(I (2, La))= 0.

Hence the function F(n,s), universal for €T, can be defined as
follows:

F(0, )= ]
Ce [the initial functions for ¢7;

for n>k,:

JF(Tln,F(TQn.,m)), when T'yn=0,
F(T'yn,)+F(Tyn,x), when Tym==1,
l,ungm[F(Tm,I(z,Lm))=0], when T,n>1.

F(n41,2)=

Y
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This recursive definition can be changed into a definition
formulated by means of limited minimum; we can do this by using
a double sequence of prime numbers p(z,y), a3 we have done when
proving Theorem 4.7. The numbers whose existence is supposed
in the definitions of that type, can easily be estirated by means
of the function f,.,. The completion of the proof is left to the
reader.

Let ‘% be the class of primitive recursive functions.
Theorem 4.13 The class R is the sum of the classes E™

Proof. Notice that f,,f,,/,e92, and if f,e92 then Tap16K
according to the theorem of R. Peter’), because fag1 18 defined
by means of the cperation of recursion with entanglement which
does not exceed the class 92. Hence, for each n, f,e92. The class
‘R is closed under the operation of limited recursion, being closed
under the operation of recursion. Hence YE"C R,

The inverse inclusion is proved by means of the following
lemma: 4

Lemma 4.14. If f is a function of an order not higher than n
in the class Ry, then fec™t3,

Proof. We examine the definition of the class Xy, a8 given
by R. M. Robinson®). The initial functions of the class ®,, namely
241 and Ewx, belong to ¢,

Let us now suppose that the functions g and h, of an order
not higher than , satisfy the lemma: g,he % Hence g(x)+h(z)
and g(h(z)) also belong to the class C*+3, since every clags €™ in-
cludes the function 24y and is closed under the operations of sub-
stitution. These functions belong a fortiori to E*+'+3 which also
includes the function h®(0). Namely, if hec*+3 then, by Theorem
3.3, there exists a certain non decreasing function h'e)/*+3, such
that h' dominates %, because the class W*** includes the increasing
function f, 3(#+1,4-+1) which dominates the initial functions of
the class ¢***. Let 7' be a function of the order 7 in the class Q*+3,

~ By Theorem 4.8 the inequality

(3) h(@) <P (#)<frya () |

) See Peter [3], p. 622.
8 See Robinson [5], p. 940, Theorem 3.
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holds for every x. Hence the following inequality holds:
() W (0)<fera(l4y,0).
This inequality is satisfied for y=0, since

B (0)=0<1=7,(0,0)<fr4(Z,0).

Suppose that the inequality (¢) holds for y. It follows from
this, and from (3) that it also holds for y--1:

hy+1 (O) =h(hy(0)) <fla+4(l7 hﬂ(o))<fk+4(lﬂflm-»b (Z‘i“:’/ ’ ﬂ))
St all+9s Frga 04, 0) =fepal 4 (y-+1), 0.

We have thus proved by induction that the inequality (e)
holds for every y. Hence, if f(x)=h"(0), then tho function f can
be defined within the class ¢*** by means of limited recursion:

f(O) =10,
f(@-+1)=h{f (),
f(m><flc+4 (l—|—.’1’), 0)'

Thus, if fis of the order k-1 in the clags 9, then fec*+*+3 Hence
by recursion with respect to k& we have proved Lemma 4.14,

From Lemma 4.14 it follows directly that every function f of
the class R belongs to a class of the sequences ¢™ Let f be a function
of k arguments, f(@y,...,a;), belonging to the class ¥, then we can
define the function f' as

f’(g:)::f(Olw,Ozm,. ooy ).

The function f' belongs to R,. Let 7 be a function of the order
In the class %,. Then it follows from Lemma 4.14 that f'e&™*2,
™3 also includes the function F(@yye oy @)=F ({&yy. .., 2,0).

‘We shall say that the operations Opyy--+,0y, are insufficient to
obtain the class S if for every finite number of the functions
91y--+,0r, belonging to the class %, there exists such a function
f of the class XX that cannot be obtained by means of the opera-

tions Ogy,..., Oy,, if the functions g1y -5 9r are taken as the starting

point.

Theorem 4.15. The operations of substitution and of linited
recursion are insufficient to obtain all the primitively reevrsive fune-
tions. ‘
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Proof. If g,,...,¢, belong to R, then it follows from Theorem
4.13 that there exists such an n that all the functions g1y 9% be-
long to C", because the classes " form an increasing sequence
(Theorem, 4.7). Since the operations of limited recursion and of sub-
stitution do not lead outside the class ¢", then these operations
are insufficient to obtain the function f, +1 Which belongs to the
class "L

Numerous problems arise in connection with the classes &,
e.qg.:

1. Are the operations of limited recursion and limited minimum
equivalent on the basis of the operations of substitution, and of
the finite number of the initial functions belonging to the classes €°
{or to €1 (€2))?

2. Analogous problems concerning the operations of limited
summation and limited recursion.

In connection with the above problems:

3. Can. the universal function for the class ¢} belong to the
clagses ¢! or ¢2%

4. Can the class of the relations of ¢", for n<3, be characte-
rigsed in a similar way to the class of the relations of ¢" for n>3
(Theorem 4.10.)% Can the relations of one argument, of the class €™,
be characterised in an analogous way?

5. Is the operation mentioned on p. 34 under which the clas-
ses C" are closed for n>>3, equivalent to the operation of limited
recursion?

6. Does the operation of double limited recursion lead out-
side the given class ™%

7. Let us define the following sequence of functions:

h@n=y+1L,  fl@,y)=r4+y;
for n>1:
frg1(0,9)=1
f;b+l(m+1)y)=f;’b(fﬂll+l (‘7"7?/)7?/)'

Lot 7" denote the smallest class including the initial functions
x-4+1,U,(2,9), Uy(®,9),fa(2,y), and closed under the operations of
substitution and limited recursion. Can the same theorems be pro-
ved for the classes 7™ as for the clagses €%

8. Are the operations of substitution sufficient to obtain the
clags <™
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9. Let %2 be the class of functions obtained by double recursion,
Is the operation of single recursion sufficient to obtain the clagg 29
Analogue problems for other classes of multiple-recursive fune-
tions. ‘ ‘

§ 5. Applications of the class ¢

The functions of the class ¢° can be used in the canonical form
of the computable functions.
Let w[R(...w...)] denotes the unique x such that B(...»...).

Theorem 5.1 Hvery computable function can be presented in
the form f(u)=A (w[B(u,2)=0]), where A and B are functions of
the class ¢ ‘ :

Proof. From the theorem of J. Robinson’) it follows that
the class C of computable functions is the smallest class containing
#+1,2+y, By as the initial functions and closed under tho opera-
tions of substitution and of the operation of offective inversion
7 (y)=ualf(x)=y] when f assumes all values.

The functions: z+4-1, z+y, Bx can easily be presented in the
desired form:

t+l=wyly=o+1], EBr=wyly=Dx],
Tty=w[z>2y.220.2-v=y].
By Tl}oeorem 4.5 the relations under the operation belong to
the class €. Now let us suppose that f and ¢ have the form:
fW)=A4(a[BW,2)=01),  g(v,9)=0C(w[D(v,y,2)=0]),

where 4,B;C,Dec’. We shall show that a funchion obtained from

the above functions by means of the operations permitted in the
class C, also has such a form.

a) The operation of substitution:

\

g(f(u),t))=O(W[D(A(tw[B(u,w)==0]},t),z)=0])
=0R (w [D(A(Qv),v,Rv)——-O.B(lt,Qv):O])
since the two numbers: = w[Bu,s)=0], and 2=z [D(Az,p,2)=0]

can be replaced by one, v=P(x,2), su G
y&), such that z=0Qv and z==Rv
where P,Q,R are Dairing funetions. ¢ ,

) See Robinson (6], p. 712, Theorem 4.
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By Theorem 4.5, the relation under the :-operation belongs

<0

to the class €
b) The operation of effective inversion.
Let us set: )
’ S(z,v).E.B(O,Q”z)=O.Hj<,,,[j>0.—>.B(j,RQ”‘fz)==0}
and .
x,=w[B(t,x)=0].
It can easily be seen that:
(i) w[S(z,v)]:P(P(...P(wo,ml),mz),...,m”)

hence
z,=R(2[8(2,v)]),
and thus
f(t)=A(e) =AR(w[8(2,1)]).

Further, it follows from the equality (i) that the function
h(v)=w[8(2,v)]

i§ an increasing one. Hence it follows that

I () =pt[f () =y1=pt [AR (e [ 8 (2,1)])=Y)]
=Qus[8(Rs,Qs). ARRs=y]

because the smallest s=P(z,t) corresponds to the smallest i if the
number z=w[S8(z,t)=0]=h(t) increases along with .

Since, by Theorems 4.5 and 4.6, the relation § belongs to the
class € therefore the class €° contains such a relation T that

() =Qus[T(s,9)1;

this means that

| 17 @)= Qs [7(8,9) -TTucs ~(T (w,9)].
The relation under the :-operation in this case also belongs to the
clags ¢, since the operations of limited quantifiers do not lead

outside the class &°.
The operations of the identification of variables involve no

difficulties whatever.
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Theorem 5.2 Each computable function can be cxpressed in
the form

f(w)=Q (w[A(z,u)=0])

called the camondcal form™), where @ and A belong to the class &°,
and Q is o constant function defining the first element of the pair.

Proof. We know from the preceding theorem that f can be
expressed as

f(u)=A (w [B(x,u)=0]),
and hence
f(u) :Q(m[@w:AIﬁw .B(Rz )= 0]).

Theorem 5.3 Huvery recursively enumerable set i enumerated
by a certain function of the class C°.

Proof. There exists an element a such that aeX. X is
enumerated by a certain function jf whiech can be given the
following canonical form:

f(v)=Q(ux[F (w,v)=0]),

@ and F belong to &° in conformity with Theorem 5.2.
The following equivalences are true:

weX .=} u=f(v).=.3, u=0z.w=py[F(y,v)=0)
: =), U= Qm F(z,0)=0.]],F(y,v)50
= Yo (0,0,2)=0.=. 3 H (u,Qy, Ry)=0

where H is a certain function which belongs to ¢° in virtue of The-

orem, 4.5. It follows from the above eqmvalen(,es that X is
enumerated. by the function

iy, 2)=pu<z+alH (u,Qy,Ry)=0]

and consequently by the function ¢(v)=j(Qv,Rv) as well. Those
functions belong to the class ¢° because this élass is closed under
the operation of limited minimum, and because z»{«awz»lu, 18 4
+...--1@ where a is constant.

) Cf. Robinson [6], p. 716 and Kleene [2], p. 727,
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