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Aufschlup gibt. Denn bei der Ableitung derselben wird stillschwei-

- gend vorausgesetst, daB jedes Teilchen nur unter der Einwirkung
der unmittelbar benachbarten steht und dal simtliche Teilchen ge-
nau denselben (nur von deren Dimensionen und -Abstinden, aber

_ weder von deren Lage noch von der GriBe und Gestalt der Wolke
abhiingigen) Bewegungszustand besitzen. Im Falle frei schwebender
Wolken haben wir die Unrichtigkeit dieser Annahmen nachgewie-
sen, und fir ,eingeschlossene“ Nebel ist eben vor allem die Frage
2u entscheiden, inwiefern dieselben erfillt sind.

Nach allédem scheint mir ein gewisses Mifitrauen gegen die
Anwendung der Stokes’schen Formel auf derartige dichte Ne-
bel, anch wenn sie in Gefiflen eingeschlossen sind, sehr geboten
und dtirften  die an einzelnen, getrennten Kiigelchen vorgenomme-
nen Fallversuche !) und die hieraus' abgeleiteten Werte der Ionen-
ladung gewifl weitaus vorzuziehen sein.

9 Zeleny, Phys. Zeitschr. 11, 8. 78 (1910); Millikan, Phys. Zeitschr.
11, 8. 1097 (1910). . B

iom®

XIX. ON THE PRACTICAL APPLICABILITY OF STOKES
LAW OF RESISTANCE AND ITS MODIFICATIONS
REQUIRED IN CERTAIN CASES.

International Congress of Mathematicians, Cambridge: August 1912,

§ 1. Stokes’ law for the resistance of a sphere in a viseous
liquid rests, as is well known, on the assumptions:

L Slowness of motion, so that the inertia terms in the hydro-
dynamieal equations may be neglected in comparison with the effects
of viscosity.

1. Complete adhesion without slip of the liquid to the sphere,
this being considered as a.rigid hody.

II1. Unboundeduess of the liquid and immobility at infinity.

In what follows I should like to contribute some remarks on
this law with regard to certain cases of practical importance, where
the underlying conditions are to some extent changed; such remarks
may be of interest to those who are engaged in research work on
subjects connected with Stokes’ law.

First let us touch briefly the question of slipping, connected
with the second of the above assumptions. Stokes calculation can
be generalised by allowing the liquid to slip along the surface of
the sphere, with a velocity proportional to the frictional force in
a tangential direction [which in the case of a parallel laminar flow

L . d .
implies the surface condition fu= ya—“]. In this case, as Bagset
Y

" has shown, the simple law of Stokes has to be replaced by

ﬂR+2[t 7 4
ya«
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196 XIX. APPLICABILITY OF STOEKS’ LAW

Thus the minimum value of the resistance, for the case of infinite slip
(8= 0), is two-thirds of the maximum value for no slip (f= oco).
Now it is generally assumed, on account of the experimental
researches of Poiseuille, Whetham, Couette, Ladenburg
and others, that the slip of liquids along solid walls is negligibly
small. Mr Arnold’s?) recent measurements prove, by their exact
agreement with Stokes’ law, that the coefficient of sliding friction
B is certainly greater than 5000 and probably greater than 50000.
~§ 2. On the other hand, his experiments on bubbles of gas mov-
ing through liquid gave the unexpected result that the slip at clean 2)
surfaces between gas and liquid is infinite as the velocity turned
out too great by 50 per cent.

Now I think a different explanation of those experiments to be
preferable, as in the case of gas bubbles or liquid -drops also the
interior liquid is subject to circulation. Some time ago I advised
Mr Bybezynski to consider the motion of a viscous sphere
through viscous liquid. The calculation is easy and the result %),
published January last year, and deduced also half a year later,
quite independently of course, by M. Hadamard, is equally
simple. It shows that for slow motion the inner liquid retains its
spherical shape and that the resistance is
@ F=6apRe 2% T2

3w -3u’

where u' designates the viscosity of the liquid in the interior of.

the sphere.

Comparison with the above formula shows that the resistance.
experienced by a gas bubble or liqnid drop without slip - is “the
same as the resistance of a solid sphere with a coefficient of surface
frietion 8==3u'/R; in fact the velocity and the stream lines of
the outer liquid are identical .in both eases. It would be interesting
to verify the above formula by experiments on liquids with similar
v?.lues of u and u'; in the case of Mr Arnold’s experiments the
viscosity in the interior was mnegligible in comparison with the

9 H.D. Arnold, Phil. Mag. 22, p. 765 (1911).
:) La provided the surface be not contaminated with solid films.
) W. Rybezydski, Bull. Int. Acad. d. Sciences de Cracovie, ClL d. Se.

M. N, Série A, 1911 p. 40; J. Hadamard, Compt b
;b 40; 7. Had Rendus, 162, p.
(1911); 154, p. 109 (1912). P e e Ssng P 170

icm

XIX. APPLICABILITY OF STOKES LAW 197

viscosity of the outer medium, which had the same effect as if the
surface slip were infinite. So far his results are explained without
the assumption of surface slip. .

§ 8. However, there is a case when the existence of surface slip
has been proved beyond doubt, namely in rarified gases. As is well
known, the magnitude of the coefficient of slipping y=p/f is,
according to the kinetic theory and also to the experiments of
Kundt and Warburg, roughly equal to the mean length of the
free path of the gas molecules; the phenomenon therefore plays an
important part even at ordinary pressures in the motion of very
minute droplets, as e. g. in Millikan's experiments. Now unfor-
tunately one eannot use formula (1) for this ease. with substitution
of the empirical value for 3, except for the case of comparatively
small slip. For if the mean length 4 is comparable with the di-
mensions of the moving sphere, the ordinary hydrodynamical equa-
tions cease altogether to be valid, since the implicit assumption
underlying them, that the state of the gas is varying little for
distances comparable with 4, is impaired.

Therefore also the interesting deduction of a corrected formula
by Prof. E. Cunningham?) cannot be considered a demonstra-
tion and Messrs Knudsen and S. Weber may he right in trying
to get closer approximation by other, purely empirical formulas?).
At any rate the formula proposed by Cunningham

=1
F=ﬁn,uRc[1 —I—A%]

serves remarkably well for interpolation, considering the experiments
of the authors named and those of Mr McKeehan 3). It is pre-
ferable to write it in the form

. g1
F= Bn,u,Rc[l -+ E] s

where g is the density of the gas; mistakes are easily involved
by using the mean length of free path 4 which is an indefinite
term and has really no precise meaning.

1 E. Cunningham, Proe. Roy. Soe. 88, p. 357 (1810).
©) M. Knudsen and 8. Weber, Ann. d. Phys. 36, p. 981 (191'1).
%) McKeehan, Physik. Zeitschr. 12, p. 707 (1911).


GUEST


198 X1X. APPLICABILITY OF STOKES LAW

For great rarefaction the resistance is proportional to the cross
section of the sphere; for this case the calculation can be carried
out exactly if it be known how the interaction between the surface
of the sphers and the gas molecules takes place. If they rebound
like elastic bodies we get, in accordance with professor Cun-
ningham:

. 4]/%
F o= gl/ﬁRﬂnch,

where 7 is the square root of the mean square of molecular velocity.
The numerical coefficient, as caleulated from the experiments men-
tioned above, is considerably larger, it amounts to 166 (Knudsen'
and Weber) or 1-84.(McKeehan). McKeehan concludes that
molecules are reflected from the surface of the sphere only in
a normal direction; I think, however, that his theoretical formula is
not quite exact; at any rate his conclusion seems to me at variance
with fundamental prineiples of the kinetic theory of gases. I think
that the experimental results are explained hest by the view, sup-
ported also by other researches, especially those by Knudsen
that a solid surface acts in seattering the impinging molecules ir-’
regularly in all directions whether with or without change of mean
kinetic energy. We shall not go, however, into these questions; they
belong to the kinetic theory of gases, not to hydrodynamies.

§ 4 Now let us consider what are the modifications required
in Stokes® law if the-third of the above fundamental assumptions
is impaired, the liquid being limited by solid walls, or a greater
number of similar spherical bodies being contained in it.

In this case the linear form of the hydrodynamical equations
makes 'it possible to attain their solution by a method of successive
approximations, analogous to the method of images used in the
thel:)l:y of electrostatic potential.: Tt consists in the suceessive super-
position of solutions formed as if the fluid would extend to inﬁriity
b\}t 80 chosen as to annul the residual motion ‘at the boundaries)
with inereasing approximation. ’

’I’hi.s metho_d was used first by H. A. Lorentz in order to
;1;32::;111;; (t’lix'ea lsl;iiiléqea I;);' ::3 siiaﬁﬁite plane vvfall on the progressive

, refer to his formulae later on 1

) H. A. Lorentz, Abhandlungen . th. Physik, I. p. 23 (1906). In Mil-

likan’s determinations. of the ionie charge the inerease of resistance due to
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He found that the resistance of the sphere is increased by a frac-
tion amounting to 9R/8a for normal motion, 9R/16a for parallel
motion, if a denotes the distance from the wall. Mr J. Stock has
extended the calculation for the second case to the fourth order of
approximation, including?) terms with (R/a*).

In a somewhat similar way Ladenburg?) calculated the re-
sistance experienced by a sphere when moving along the axis of
an unlimited eylindrical tube and his result, indicating an increase
in comparison with the usual formula of Stokes in the proportion
of 1:1-+24 R/g (where ¢ = radius of the tube), has been verified
with very satisfactory approximation by his own experiments and
by those of Mr Arnold.

§ D. Let us apply this method to the case when a greater number
of similar spheres are in motion and extend a little further now an
investigation which I had begun in a paper published last year 3).
Imagine a sphere of radius R, moving with veloeity ¢ along the
X-axis, its centre being situated at the distance x from the origin.
It would prodace at the point P (with coordinates &, %, ) certain
current velocities u,, vy, wy, of order Re/r, defined by Stokes equa-
tions, if the fluid were unlimited.But if we assume this peint P to be
the centre of a solid sphere of radius R, we have to superimpose
a fluid motion ,,v;,w,, chosen so as to annul the velocities of the
primary motion at the points of this sphere and satisfying the con-
ditions of rest at infinity.

This motion may be called the ,reflected motion; it ean be
found to any degree of approximation by making use of the solu-
tion of the hydrodynamical equations given by Lamb, in form
of a development in spherical harmonies. But as it is of order

~Refr at the surface of the second sphere which is its origin, it

seems probable, a priori, that its magnitude at the first sphere will
be of order ¢(R/r)?, and I have verified this as well as the fol-
lowing results by explicit caleulation. Thus if we confine ourselves

the presence of the condenser plates may produce an increase of the order of
one-thousandth. .

1) J. 8tock, Bull. Int. Acad. d. Sciences de Cracovie, CL d. Se. M. N. (A),
1911, p. 18

%) R. Ladenburg, Ann. d. Phys. 23, p. 447 (1907).

%) M. Smoluchowski, Bull. Int. Acad. d. Sciences de Cracovie, Cl d.
Se. M. N. 4A), 1911, p. 28. [p. 182 du présent Volume. Ed.].
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to terms of order ¢(R/r)?, we can apply a simplified method of
evaluating the mutual influence of such spheres by neglecting the
difference between the velocity at the centre of the second sphere
and at its surface. — That is to say, the sphere P, heing at rest,
is subjected to frictional forces

X=6nuRu,
Y =6nuRv,,
Z =06npRw,

on account of the motion of the first sphere; on the other hand, the
moving sphere experiences a reaction by virtue of the presence

of the sphere P, such as if this would execute simultaneously the ,

three motions — t4,, —v,, — 1y ; the three current systems resulting
therefrom, according to the usual formulae of Stokes, produce at
the centre of the first sphere nine eurrent components, giving rise
to nine components of frictional force, to be caleulated each accord-
ing to Stokes law of resistance.

*If both spheres are in simultaneous motion, the mechanical effects
are found by superposition of the forces corresponding to the two
cases when one of them is moving and the other one at rest.

In this way an interesting conelusion is obtained for the case
when both spheres are moving in parallel directions with equal
velocity: both are then subjected to equal additional forces in the
same direction, one component in the direction of motion tending
to diminish the resistance by the amount

OR2muc 1 3R
T v |

the other component along the line joining the eentres, towards
the sphere which is going .ahead; of amount

91%5*7zy,ceose1 9R
2r T 4r

where 6 is the angle between the line of centres and the direction
of motion,

Thus two heavy spheres of this kind would sink faster - than
Stokes law indicates; besides, their path must be deflected from

¥
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the vertical towards the line of centres by an angle £ defined by

sin g = 38 [I — 3—@] sin f cos 6.
4r 27

§ 6. Analogous methods are applicable to a greater assemblage
of spheres. The motion results from superposition of simpler solu-
tions, where one. sphere is supposed moving and all the other ones
are at rest. Each of the component solutions comprises the direct
action and to a higher approximation also its ,reflections®.

Now if the parallel motion of a clond of » similar spheres is
considered, the resistance of each is diminished Dby an expression
proceeding after powers of R, the first term of which is of the
order of magnitude

ycIfﬂE'—:;.

We see that these developments would he divergeat for anm infinite
number of spheres. It is evident .that for instance an infinite row
of spherical particles, arranged at equal distances, would acquire
infinite velocity, by virtue of their gravity; an infinite cylinder
would also behave in the same way. This applies a fortiori to two-
dimensional infinite assemblages. Stokes’ law of resistance will
not even approximately be true; the development will cease to be
convergent in general unless nR/S is small, where S denotes
a kind of mean distance, comparable with the linear dimensions
of the cloud.

§ 7. The same result follows from the following simple reasoning.
Imagine a spherical eloud of radius S, containing # spherical par-
ticles, each of radins R and density o, suspended in a medium of
viseosity u, of negligible density, for example a cloud of minute
drops of water in air. Currents will arise in the spherical ecloud;
it will attain a certain velocity as a whole, which may be calcu-
lated after formula (2), just as if the cloud would form a homoge-
neous medium of density 7(R/S)s and of the same viscosity as the
outer medium. The mass velocity resulting therefrom, of amount

dnR3g0o
158u °

is superimposed upon the displacements of the particles, relative to
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the moving cloud, taking place with velocity

2Rzg£
9p

Thus evidently the downward velocity will be much increased,
and Stokes’ law cannot be true even approximately, unless nR/S
is small in comparison to unity. This condition shows that Stokes’
law can be applied only to particles constituting clouds of exceed-
ingly scarce erowding; it is easily seen that it would be quite
erroneous to apply it to aetnal fogs or actual clouds in the atmo-
sphere, with diminished transparency; in this case the aggregate
cross section of the particles nR?z: is comparable with the -cross
section of the cloud S%m. As an illustration how cautious we must
be in this respect, I may.mention that the ratio »R/S amounts to
10 and even to 100 for a cubic centimetre cloud as used by
Sir J. J. Thomson and H. A, Wilson in their experiments on
the determination of the jonic charge.

§ 8..-What has been'said applies only of course to clouds moving
in an otherwise unlimited medium. The conditions of motion are
quite different for a cloud contained ‘in a closed vessel, as in the
experiments just referred to. Prof. E. Cunningham has attempt-
ed to evaluate the order of magnitude of the correction to be ap-
plied to Stokes’ law in this case. His estimate is founded on the
supposition that each particle moves approximately as if it were
contained in a rigid spherical envelope, of radius comparable with
half the distance from its next neighbours. This supposition does not
seem quite evident, although we shall see that it leads to a result
of the right order. v

We can calculate the resultant motion exactly if we consider
a homogeneous assemblage of equal spherical particles, moving all
of them with the same velocity ¢ in the direction of negative X,
towards an infinite rigid wall which we assume to be the plane ¥ Z.
In this case, by making use of H. A. Lorentz calculation before
alluded to, we see that a moving sphere , y, 2 produces at a point &,
sitnated on the axis of X, a velocity component

@) u=—‘%—°[l+(57””)’]+?’4—12°[1+””’;';5’+6”5(zf9’].
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The first part of this expression, containing
r=Ve =& FyF,
is the eomponent of direct motion, according to Stokes; the se-
cond part is the component caused by ,reflection* at the plane

YZ; it contains the distance between the point £ and the reflected
source

=lETFEFrFa

The terms with higher powers of R/r have been neglected, as
we confine ourselves to the first approximation. The total current
produced at the point £ by the motion of all the particles is equal
to U= Zu, where the summation is to be extended over all va-
lues of «, y, = We might consider it right to replace the summa-
tion by an integration, since one particle eorresponds to .a space
4% if 4 denotes a sort of mean distance between the particles.
In this ease the result would be simple, we should have

U.—..-A}—sfffudzdyrle‘

The integrals of the separate terms constituting u can be evaluated
explicitly if we extend them to a eylinder with Y7 as basis, of
height & and of radius G. Then we can use the well-known ex-
pression for the potential of a disk in points of its axis, and ex-
pressions derivable from it by differentiation with respect to &5 by
these means we find the. unexpected result that the integral current
Uis zero, if we extend the summation to an infinite value of .
In reslity U is not defined by integration but by summation. Bvi-
dently both operations lead to the same result for distant parts of
the space, but not for parts whose distance from the point £ is
comparable with the distances 4 hetween two particles. The re-
sultant current [ in points at a great distance (in comparison with
4) from the wall will thus be given by '

3Bec

ﬁ=£—§fff£-<l +”§:)dzdydz_2§(1 +”ri:)

to be extended over a space great in comparison with 4, is a purely

where
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numerical coefficient. In order to evaluate # we must know how
the particles are arranged. If we suppose an arrangement i'n rectang-
ular order, we can get an approximate value by explicit calcula-
tion and by integrating over a cube of height H, constructed around
the point £, which gives

2 - o
fffrl(1 —}—%)dwdydz:BH’[log(l—]—l/?)) —%log2—~ﬁ].
1t is sufficient to take H equal to a small uneven multiple of § 4,
as the expression for f is rapidly converging with extension of the
limits of integration. In this way I have found the approximate
value §=309; therefore the resistance for one particle is

(5) F= GnuRc{l-T'—%gé]:GnuRc {l-—{—- 2'322—].
This formula would also apply if the particles were arranged in
a different way, but then the numerical- value of § would be- dif-
ferent. Our result agrees to the. order of magnitude with Prof Cun-
ningham’s estimate which led him for the case of an equilateral
arrangement to a similar formula, with a coefficient of R/4 included
within the limits 5-67 and 4.

8 9. The practical application of this formula, however, is rather
questionable, as it applies only to a regular arrangement of par-
ticles. If they were arranged in clusters, the correction might even
become negative. It is interesting to note that the average value
of 8, for a particle whose position relatively to the other ones.is
defined by pure accident, would be zero; that seems quite natural,
since. the average current U of liquid in the cross section must be
zero. Thus ‘it follows, what we should not have expected at first
sight, that Stokes’ law applies to the particles of an actual cloud
on an average with no correction whatever, of this order of magni-
tude.

The evaluation of the quadratic terms would be much meore
complicated of course, because all possible kinds of single reflec-
tions caused by any one sphere have then to be taken into aceount.

The general result of our calculation shows at any rate that
Stokes' law is undergoing but small corrections if applied to the
particles of 4 wniform cloud filling a closed vessel. But it is im-
portant to note that things will change entirely if the cloud is not
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of quite uniform density or. if it does not fill the whole empty

" space between the walls. Then as a rule convective currents will

arise which in certain cases may be of preponderant influence.
Their velocity may be caleulated approximately by considering the
medium. as a homogeneous liquid suhjected to certain forces the

- intensity of which per unit volume corresponds to the aggregate

force acting on the particles contained in it.

Consider for instance an electrolyte in an electric field. If it is
conducting in acecordance with Ohm’s law, the average electric
density is zero and no currents will take place. But in bad liquid
conductors, with deviations from Boyle's law, convective currents
may arise which may also materially influence the apparent value
of the conductivity. They have been chserved long ago, for instance
by Warburgy

Similar movements may be produced in ionised gases; I think
more attention ought to be paid to them than is done usually. In

.experiments where the saturation current of strong radio- active

material is observed between condenser plates wide apart ?), these
phenomena may be of importance as producing an apparently greater
mobility of the ions than under normal conditions,

§ 10. There is another application of the theoretical methods
exposed ahove which may be mentioned. Imagine a two-dimensional
infinite assemblage of equal spherical particles, distributed uniformly
over the plane x =1, whilst the plane ¥Z may be supposed again
to be a rigid wall. Let all these particles be moving along the
plane in direction Y with equal velocity ¢; what motion will be
produced in the surrounding liquid, and what will be the resistance
experienced by every particle ?

According to Liorentz the motion produced by a single sphere
moving parallel to a fixed wall is, when higher powers of the ratio
R/l (which we suppose to be a small quantity) are neglected :

S o S ] St

9Rcxy?(x 4 §)
+ T

%) E. Warburg, Wied. Ann. d. Phys. 54, p. 396 (1895).
%) Cf. Rutherford, Radioactivity, pp. 3b, 84.
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where the first term is the direet current according to Stokes,
. while the remaining terms rvepresent the current reflected by the
wall, just as in the former example.

We might also in this case calculate the resultant current by
forming v over all values of y and 2z and derive therefrom the

icm

resistance of a single particle. But we shall confine ourselves to -

- the following remarks.

In the extreme case when the particles are so crowded as nearly
to touch one another, a lamellar flow will take place in the
liquid between the fixed wall and the plane 2 =1 with a velocity
v=rcx/l, while on the other side of the plane z =1 the liquid will
be dragged along by the sheet of moving particles with the con-

- stant velocity ¢. The frictional force per unit of surface of the plane
z =11s evidently equal to pc/l, the resistance therefore experien-
ced by each particle is

_ mwed?

F=RE

which-is much smaller than.Stokes’ law wounld indicate, as A4 is
of the order of R but the distance ! is supposed to be of higher order,
Consider the other extreme case, when the distances 4 hetween
the particles are so great that Stokes’ law is approximately valid,
which requires 4 to be of order L Let us calculate the resultant
motion of the liqnid for points at infinite distance from the wall
{§ =1c0). For such points the summation mentioned above can be
replaced by integration; besides we can put :

1 1_218 1 1 6lg

rooe

Vo= Sy — 9Rci§

Thus we get
9EclE - yidyde
&) ) Ere o
This integral can be transformed by putting
y=ssing z=scon g, dyde=sdsdg
and we get finally
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that means that in both cases the liquid at a great distance from
the wall will be dragged along, in a parallel direction to it, with
such a velocity as if the force corresponding to unit surface Fj4?
were distributed uniformly over the liquid, in a plane at a distance
I from the fixed wall. This. result, which can be generalised for
a greater number of similar layers, seems natural enough if the
distances between the particles are small in comparison with their
distance from the wall, so that the assemblage can be considered
as if forming a homogeneous medium, but we see it remains true
for particles widely apart. Without going into further details, I may
only mention that this result has an important bearing on the theory
of electric endosmose which will be explained elsewhere in full.

§ 11. I may conclude with a brief remark about the influence
of the inertia terms in the hydrodynamical equations (assumption I),
which have been neglected as well in’ Stokes original ecaleulation
as in the above reasoning. It is well known that this neglection
is justified only if the ratio Reo/u is small in comparison to unity.
But Oseen?) has proved in an important paper, commented upon
in a very interesting way by professor H. Lamb, that the solu-
tion given by Stokes is defective even if this eriterion is fulfil-
led; for at distances r where »co/u is large, the inertia terms must
be of prevalent influence over viscosity. Oseen has given a solu-
tion which is different from Stokes equations for those distant
parts of the space and gives there better approximation. However,
the resistance of the sphere depends only on the state of move-
ment in its immediate neighbourhood, therefore the resistance law
of Stokes is not impaired by those results. The condition of its
validity may be defined more exactly by means of the recent ex-
periments of Mr Arnold which have shown that it holds with
very good aceuracy (one half per cent) for spheres moving under
influence . of gravity, provided their radius is smaller than 067
where the critical radius 7 is defined by the relation

This means that the ratio Reo/u must be smaller than (06)f == 022,

1) Oseen, Arkiv f mat. astr. fysik, 6 (1911); H. Lamb, Phil. Mag. 21,
p. 118 (1911).
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g 12. The inertia terms are of greater importance in the. case
before alluded to, when the motion of a greater number of similar

icm

spheres is considered. For it is legitimate to caleulate the forces -

of reaction between such spheres by using Stokes’ equatif)ns fur
slow motion only if they are lying within the space v.vhere viscosity
is predominant over inertia. Mr Oseen has genera_hse‘d recently 1)
the ealeulation of the interaction of two spheres given by me by
introducing his solution of Stokes’ problem. The forces ’exerted
on the two spheres become unequal in this case and.m‘e given by
mueh more complicated expressions. They become identical with
the first approximation given by me if the distfxrlce » between the
two spheres satisfies the condition that r¢e/2p is small. Mr Oseen
thinks this to be a considerable restriction on the validity of those
formulae for experimental purposes, but he omits the factor ¢ in

the above expression. We satisfy ourselves easily that, for instance,-

in the case of water-drops in air, as in Sir J. J. Thowmson’s
and H. A, Wilson’s condensation experiments, the limit of vali-
dity for s of the order of several centimetres; in Perrin’s ex-
periments, on the applicability of Stokes' law to the particles of
emulsions, it would amount to hundreds of metres. It is also suf-
fielently great for direct experiments, when highly viscous liquids
are used, as Ladenburg did in his elaborate research, Ordinary
hydraulic experiments, with water and spheres of a size to be
handled conveniently, are excluded of course when Stokes' law
or any of those modifications are in question. '

One might try to apply Oseen’s method of approximate cor-
rection for inertia also to other cases treated above, hut that would
imply rather cumbersome calculations; for movements in closed
vessels it would be generally of lesser importance than in & liquid
extending to infibity.

Y) Oseen, Arkiv f. mat. astr. fysik, 7 (1912),

XX. O PEWNEM ZAGADNIENIU KINETYCZNEj TEOR]JI
ROZTWOROW.

Ksiega Pamiatkowa ku uczezeniu dwéchsetne] pigédziesigte] rocznicy zaloZenia
Uniwersytetu Livowskiego przez Kréla Jana Kazimierza; Lwéw, 1911.

Za podstawe teorji roztworéw przyjmujemy dzisiaj powszechnie
zasade, ze czgsteczki ciala rozpuszezonego zachowujs sie w roztwo-
rze analogicznie jak czasteczki gazu, to jest, se posindaja te sama
energje kinetyezng, jaks w tejze temperaturze musialyby posiada¢
czgsteezki gazu, a wskutek tego wywieraja, praynajmniej w roztwo-
rach rozrzedzonych, ci$nienie osmotyczne zgodne z prawem Boyle'a
i Charlesa, charakterystycznem dla gazéw. Twierdzenie o tej
analogji, o ile ona wyraza sig w tej prawidlowodei ci$nienia osmo-
tyeznego, zostalo pierwszy raz jasno sformulowsne w sltynnych
pracach van’t Hoffa (1885) ale podstawowa mysl, odnoszaca sie
do energji kinetycznej, jest juz implicite zawarta w dawno wy-
powiedzianem twierdzenin M axwellal) o ekwipartycji energji
w gystematach’ mechanieznych.

Na tej samej zasadsie oparli Einstein oraz autor ninisjszej
pracy teorje ruchéw Browna?), tlémaczae drobue ruchy, wyko-
nywane besustannie przez mikroskopijnie male czastki, w cieczach
zawieszone, jako widoezny objaw ruchéw czgsteczkowych i wypro-
wadzajae na tej podstawie puwne “wzory, ktéryeh stwierdzenie do-
Swiadezalne uwaza sig dzi§ za jeden z najbardziej przekonywajac
eych dowodéw slusznosei teorji kinetyeznej.

) Maxwell, Coll. Works I, p- 878; II, p. 718.

*) Einstein, Ann. d. Phys. 17 p. 549 (1905); 19 p. 871 (1906); Zeitschr.
£ Blektroch. 1908 p. 236. Smoluchowski, Ann, d. Phys. 21 p. 756 (1906)
25 p. 205 (1908). [por. tom I, str. 490, 515, 570 i 589; preyp. wyd.].
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