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The phenomena of vigeosity and of thermal transpiration in ra-
rified gases, which had aroused general interest thirty years ago
and which partly had inspired Maxwell?) for his famous paper
200 Stresses in Rarified Gases“, have been entirely neglected since
that time, although there remained enough to be done; only re-
cently some important researches on this subject have heen publish-
ed by Mr. Knudsen?), advancing our knowledge to the range
of lowest pressures, hitherto not investigated so exactly. Without
entering in a discussion of the experimental part of these resear-
ches, I should like to offer here some theoretical remarks, as the
theoretical treatment of the problem in Mr. Knudsen's papers,
although rather elaborate, seems to me to lack clearness and rigour.
The method employed by him is the method used by Maxwell
in his first.researches, by Clausius, O. E. Meyer and many
others; it is based on the assumption of molecules acting like elastic
spheres, on the notion of the mean length of free path and on the
assumption that Maxwell’s law -of distribution of velocities can
be applied in its ordinary form.

It is well known, however $), that all such calculations, as far

1) Maxwell, Scientific Papers II, p. 681; Phil. Trans. 170, 281, 1879,
) Knudsen, Ann. d. Phys. 28, 75, 1909; 81, 205, 633, 1910.
%) Boltzmann, Wien. Sitzgsber., 81, 117, 1880; 84, 40, 1230, 1881.
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as viscosity, thermal conductivity and diffusion are concerned, are
defective. Maxwell and Boltzmann have shown that the law
of distribution of velocities is modified when these phenomena
oceur and that the neglection of this factor, as involved in such
calculations, implies errors of the same order of magnitude as the
final results. No one has succeeded hitherto in carrying out such
caleulations, on the elastic sphere hypothesis, in a tolerably correct
manner 1); in the present state of knowledge, the best we can do
is to follow Maxwell’s method explainéd in his later papers
(especially the one referred to ahbove) where, availing himself of
the celebrated inverse fifth-power hypothesis, he is able (in a com-
paratively easy manner) to take account of the. altered form of the
law of distribution. Experimental evidence shows that the mole-
cules of a gas are something intermediate between what is assumed
in both theories, but Maxwell's assumption has the advantage
that a theory can be.built on its foundation which is free from
inherent contradiction.

I do not desire to go so far as to deny any value to caleula-
tions based on the old defective method, provided they arve consi-
dered only as heuristic means for deriving empirical formulae;
and provided one does not expect to find quantitative agreement
between calenlation and experimental results. The objections to
some of Mr. Knudsen's caleulations, in his second paper, relative
to thermal tramspiration, are of a more serious character, since the
reasoning is based there on a foundation which is the very point
of failure of the old method.

The author imagines a gas contained in a tube whose tempe-
rature varies in the direction from one end to the other in linear
progression. He evaluates the quantity of tangential momentum
communicated to the wall by the molecular impacts, assuming as
usually equal probability of molecular motion in every direction;
he finds it to be different from zero, as the molecules coming from
the hotter parts carry with them greater momentum; whence the
conclusion is drawn that the gas must exercise a tangential pres-
sure on the wall. or it must have an inverse tangential motion to

*) Escept for diffusion, where exact general formulae have been given by
Langevin: C. R. 140, 85, 1905; Ann. chim. phys. 5, 245, 1905. An inter-
esting, although insufficient, attempt at settling -the difficulty has- been made
by Jeans: Phil. Mag. 8, 670, 1904,
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begin with. Now, an analogous ealeulation would show the mo-
mentum carried through any cross section of the gas to he differ-
ent from zero (to be proportional to i

a9
Nmi .Q—EZ—,
in Mr. Knudsen's notation), which in the same way would prove
the existence of a gradient of pressure along the axis of the tube,
quite independent of its radius and of the density of the gas. Here
we perceive the fallacy of the method. This is the point which is
emphasized in Kirchhoffs Lectures on Heat p. 210 and in Boltz-
mann’s Gastheorie I, pp. 93—97: if for a gas with linear slope of
temperature the change in the law of distribution of velocities is
neglected, either the pressure comes out unequal or the gas cannot
be at rest. By following Maxwells (loc. cit.) and Boltzmann’s
method (Gustheorie I, p. 185) one can indeed show easily that the
ordinary form of the law of .distribution of veloeities is changed
in this case and becomes

1) S, bdddnds=
= AEPHOL 4 af 4 bEE + 2+ 09| dEdndl

where the coefficient @ can be chosen so as to make the motion
in the direction of X disappear, while the coefficient b is connected
with the gradient of temperature and accordingly with the’ con-
duetion of heat. Hence the normal pressure or momentum earried
through any plane:

p=m f Bfdgdndt =m / nfdganal =m [Diraganas

is found to be equal everywhere and identical with the constant
gas pressure.

According to Maxwell, stresses in the interior of a gas exist
only in the case when the gradient of temperature is not constant;
in' the case above considered there must also exist a tangential
current along the surfacé of the wall of the tube, but it is caused
only by the fact that such a wall acts like an incompletely re-
flecting mirror. As Maxwell puts it, the fraction (1 — f) of the
incident molecules is reflected with unchanged velocity (reversed
normal component only), while the fraction f is absorbed by the
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wall and emitted again in accordance with the normal law of dis-
tribution. Thus the partial restoration of the ordinary law of distri-
bution, instead of (1), at the surface is the real cause of the tang-
ential current along the wall

Knudsen appears not to have been acquainted with Ma x-
well's and Reynolds researches when he published his first
two papers; his hypothesis, however, as to the nature of the wall
is quite analogous to that of Maxwell, except that he puts a priori

=1, which seems to be nearly true, but is perhaps an unneces-
. 5 y : p p

sary limitation of generality. For the rest, the result obtained by
him, concerning the gradient of pressure produced in a capillary
tube by thermal surface currents, happens to be of the right order
of magnitude; nevertheless, as has been said, we cannot consider
the demonstration satisfactory. Hitherto only Maxwell’s formula
(17), loc. eit., connecting the effects of slipping and of thermal tran-
spiration, can be accepted as established in a satisfactory manner;
even this formula probably is not quits exact, as it rests on sim-
plifying suppositions as to the behaviour of the gaseous surface
layer. Tt certainly does not.hold for high rarefactions, where other
laws apply which will be explained later.

I may be allowed to insert here some remarks relating to a ne-
cessary consequence of these phenomena, viz. the increase of heat
transferring power of gases, as prodnced by the molecular surface
currents. The question arises whethér any observable effects may
possibly result from that source. In order to get an approximate
idea of the order of magnitude of this effect, let us consider a gas
contained between two infinite parallel plates whose distance be [
and whose temperature varies in linear progression with y. Then
if the axis X is normal to the plates, the surface effects are de-
fined according to Maxwell’s formula (68) by the equation:

dv w o8 w226
2 -G =3 —-——8G= "
@) v Gé’x %Qﬂay EGQGQy@_x

where ¢ is the velocity of the gas in the direction of ¥, x denotes
the coefficient of viseosity and & the coefficient of slipping:

*

3 G’;:-‘gl/z——’;(f—,—l).

For the interior of the gas we have the approximate hydrodyna-
mieal equation:
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4 Ip__

) dy P

and the condition of thermal equilibrium is :

(azé 920
b4

280
®) 5+ aye) o005, =0

where . denotes the conductiiaility, s the specific heat. Equation
(4) and the surface conditions (2) for both .plates are fulfilled if
we take

(6) ’D==é‘+

where & denotes the righthand member of equation (2).
If the space occupied by the gas is closed, the quantity passing

through a eross section
3
f vdx -
Q

dp__ 12ep
M 5y =66

.

dpat—lz—IG
dy 2n

must be zero, whence:

In order to obtain an approximate solution of (b), let us sup-
pose the dimensions of the space in the direction of the axis ¥
to be large in comparison with the X dimensions, so that the tem-

perature can be taken as: )
0= ay - p(z),

where « is constant and @ will be found by means of (B). We
thus get:

o 4t — 21t | PPa?
® =ty e

if we denote by A the quantity gsea/x. Now the total quantity of
heat carried by the molecular conveetive currents is
1
0s f vldx,
o —
whereas the quantity transmitted by conduction is
26

I

dy
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The evsluation of the integral shows that the molecular currents
increase the heat transmission by a fraction amounting to

196\2 I\
Q whfsay) (rea)
We see this effect is also present at high pressures and in wide
vessels, whereas the other stress effects as a rule are vanishing
except at low pressures and in capillary tubes; its amount however
must be very small under ordinary eircumstances and to demon-
strate experimentally its existence will not be an easy task.

As mentioned before, Maxwell's caleulation cannot be applied
in the case of great rarefaction, when the mean free path is com-
parable with the diameter of the tube, since it involves the sup-
position that the state of the gas does not change appreciably in
such lengths. In this case the degree of approximation to which
we have gone in accounting for the behaviour of the surface layer
of the gas is not sufficient; our caleulations would require profound
modifications which we will not endeavour to effect. Mr. Knud-
sen’s calenlations of course are far from applying exactly to. this
case; they necessitate the introduction of rough approximations and
of empirieal assumptions. :

II. ’ .

Things are getting again plain and intelligible when the rare-
faction is so great that the bore of the tube can be considered
small compared with the mean free path; in this case the influence
of the mutual encounters of the molecules can be altogether ne-
glected in comparison with the impacts on the walls of the tube,
and 2 simple law of distribution prevails. The state of the gas in
this case is analogous to radiation in a closed vessel. This case
which for the first time has been treated thenretically by Oshorne
Reynolds, has been investigated in detail by Mr. Knudsen
and has been called by him »Molekularstromung®, as contrasted
with the ,innere Reihungsstromung®, ‘going on at higher pressures,
It ‘will be analysed more fully in what follows, by use of a simpler
and more exact analysis.which will lead to similar but somewhat
modified results. :

Let us consider the case of ordinary transpiration ~through
a.tube of any form of cross section, at uniform temperature; let us
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first admit with Knudsen that /=1, or that the walls act as
completely diffuse reflectors. Then a surface element 4.5 of the
wall of the tube will emit a quantity of incident molecules equal
to »d &', as if they were entering through an aperture ¢S’ from
an outer space filled with gas in a state of rest and thermal equi-
librinm.

Thus, as Knudsen rightly observes, the quantity

? cos (nr)dS'dw
7

will be emitted in the solid angle dw, in strict analogy with
Lambert’s Cosine-Law. The number of impacts » is connected
with the number # of molecules in unit volume of the fictitious gas
by the known relation: )

®  4ooso

10 v= [£&d dndf = "0
(10) f sas f [ranat e
where 7 is Maxwells probability function

f=n (é)!lge—ntwcv
7,
and ¢ is the square root of the mean square of velocities.

If the density of the gas is increasing (towards the right hand
side) along the axis of the tube, which henceforth will be supposed
to be the X axis, then the quantity » will be variable and we shall
obtain the number of molecules passing from the right to the left,
through an element 4.3, by forming the integral

1) I1=14s M@d&

n r
where » is the radius vector between the elements d S and as’,
#' its component along the axis, (nr) and (n'r) the angles between

the radius vector and the normals to these elements.
Now we have evidently

Mds, =do
r

where do is the molid angle under which 45’ is seen from the
point dS. This can be put equal to sin pdgpde, if @ is the angle
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designed before by (n#) and & the auglt; between two planes laid
through the normal to dS, a fixed one and a variable one, con-
taining . Thus we have, expanding »(z'):

z'% 9%y

afl 2z
s . , v _ _
az 1=% fsmq)coszp[ﬂx)—l-x%—}—?ﬁi—{—;.{ldtpde—
0 0

s 2m
=dS[v(x)+]l—if‘fsiu @ cos cpd(pd,e.;v'%g—-]—...}.
o 0

This expression may be used, first, to find the condition which
obtains for a steady state, In this case the number of molecules
impinging on an element of the wall must bhe equal to the number
of emitted molecules. Therefore, if we identify dS with an element
of surface of the wall,"we must have

I=w(z)ds

for any value of z, which evidently will be fulfilled if » is a line-
ar funetion of =z, as the integral referring to g—z, containing equal
positive and negative values of «', must vanish. Thus we see that
the density and the pressure in the stationary state must be linear
functions of .

By means of formula (12) lat us caleulate now the numher of
wolecules which are passing through an element of the cross-section,
from right to left. Then ¢ is the angle between » and X and we
have #' = Retg @ if R is the projection of » on the plane of the
cross section; thus (12) reduces to

12 /2 27
(13) I= dS[v(x}—}—;ﬁfchoshpd(pds]
¢ 0
where the integration of cos? pdg can be effected. A corresponding

. . L. v,
quantity with negative sign for a—: is to be taken for the molecules

crossing from left to right and the resultant flux of molecules pas-
sing from right to left will be: :

o [

v

g-%dsﬂ Rde.
@
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The mass of gas passing through "the wholp cross section iz by

use of (10)
defRds—-

¢ agA 1 /Qopg_,JA

BE R el A

where 4 is an abbreviation for the triple mtegral and p;, p, denote
the pressures at the ends of the tube.

In order to evaluate 4, let us first suppose a tube with circular
bore, of radius a. Then 4 (which is the mean distance between the

(14) ﬂ%

Fig. 1.-

point ¢ and the periphery, multlphed by 27) is easily trans-
formed [see fig. (1)] into

—’“ffdsf a—{-ﬂbcos&_ﬁde

Var 3+ 5" 2abcos 6

‘We see that, contrarily to Knudsen’s opinion, the molecular
current hag dlﬁ'erent intensities in different points of the cross section.
The ‘greatest value

v

Q——-angx

corresponds to the middle (for b :0), the smallest value
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v
=247
g dx

to the surface of the wall (for b =a). The integral could bhe re-
duced to elliptic integrals, but if we only wish to know the whole
flux @, we better transform it by considering that Bde (in the ge-
neral case of any form of cross section) can be put

Rde=ds cos (nR)

where ds is an element of the periphery. Now we may divide the
cross section into triangular sectors, corresponding to infinitesimal
inerements of the angle (nR) which may be called & for brevity, Their
area will be d.S=}Rde,"if R now denates the whole length of
the chord belonging to the angle a. Thus we get

L AmR
(15) A:gjds R2eos ada.

By applying this expression to the circle we get

+f2 164
(16) A——anf402 coss ada——-ﬁ;—f
—a/2

and the whole mass streaming through a circular tube is:
i) 0:4?‘ l/"””‘

In the general case, when the surface element of the wall dS’
is partially reflecting, partially absorbing and radiating, it will emit -
only f7dS’ molecules in the manner above described; the rest,
(I —f)»dS’, are molecules that have been reflected at the point
48’ and in reality are coming from a greater distance. The fraction
f of them have been radiated from the point of intersection of the
wall with the reflected direction of the ray r, the rest originates
at still greater distance. By combining them with the corresponding
molecules which approach the element d.§ from the other side, we
easily see that molecules having -undergone one reflection contribute
to the flux ¢ three times as much as those molecules that have
undergone no reflection; indeed the distance (in x) of the corre-
sponding points of emission is three times as great. Molecules which
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were twice reflected act five times as intensiveiy. Adding them all
we get, if we denote by @, the amount calculated hefore (17

O=SI14+301 /)50 —S/2+...]1¢.
The value of this expression is found by putting 1 -—/’= d:
_ 146, 2—7Ff
Q= - Qo= 7 @
and ‘we have finally:
9:2'—‘}04@3—?&3 Qafs— P
J 5. p L
It is satisfactory to learn that Kfudsen’s formula, found by
him to be in good agreement with experiments, is identical with

(17), but both his methods of demonstrating it (loc. cit,, pp- 105—114)
seem to me rather misleading 1)

The difference in the general result (14) and (16) and Knud-
sen’s formula p. 108 appears' when we calculate Q for tubes of other
forms of cross section. For a rectangle with sides a, B we get:

d=2 [o;zﬂ 1og(§ +|/1 + (g))_*) +
+ apeog 2+ l/;;‘(g‘)“) _@ e, gj%t@]

which for a quadratic cross section takes the simpler form:

(18)

(19)

l:gi/?_] = 297308

whereas according to Knudsen we should have

@:ajl/El/éu
; 3Y nyp, L

which corresponds to a value A =4§as

(20) ‘A=4a3[log(l +V2)

1) Thus for instance the momentum parallel to X carried’ through unit sur-
face of the plane XZ by a gas which is stfeaming with velocity » in the dir-
ection X, is not the guantity B caleulated p. 106, but: {nm» Q. On the other
hand, the stream’ velocity v is not the same in all points of the cross section
ang Maxwell's law is true for the emitted molecules; but not for the incident, ones.
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Knudsen’s resuli, implying inverse proportionality of ¢ to
the circumference for a given area of cross section, appears a priori
improbable since in this case @ could be indefinitely diminished
by cutting narrow radial gaps in infinite number in the walls of
the tube. B
It is worth noticing that the velocities of the molecules in
a given element of volume are not distribnted according to M a x-
wells law. The probability of velocities &, #, { at the point
x,y, = is defined by the value of the density function »(z’), where
z' is the distance (along the axis X) of the point of intersection
between the direetion — & —#, — { and the wall of the tube.
We have:
! Z—z x
7 3

and in the case of a circular tube: y'®8 4 22 = a% wherefrom we
find «'; thus the probability of £, %, £ is proportional to:

A
|
A

MR [v(x) - (2—:} -&"7'7_-’;‘1;% +

+ I/(a2 — gt — zg),]. i I + [52}5 :{i: gfzﬂ

where (gla:) is constant. We satisfy ourselves easily that this ful-
fills the well-known Maxwell-Boltzmann condition for a sta-

tionary state:

§%+WS£+§£=ff(J‘f’ —hf)gbdbde

21)

©2)

when we npeglect the integral accounting for the influence of the
mutual encounters, as we are entitled to do in our case.

The law expressed by (14) can easily be generalized for a ves-
sel of any form, provided its dimensions are small in compar-
ison with the mean free path. In this case, the only distinetive quality
of different kinds of molecules being their mass, the method of dynami-
cal similarity can be applied which easily shows that the volume passing
through the vessel, for given values of the pressure at both ends,
must be inversely proportional to the square root of -the mole-
cular weight of the gas and directly proportional to the square
M. Smoluchowski. II, 10
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root of the temperature. The proeess is thus quite analogous to that

of effusion through a small hole, as has been demonstrated long

ago by Graham’s and Osborne Reynolds experiments on
diffusion of gases through porous materials which proved the va-
lidity of that density relation for porous bodies of sufficiently fine

texture. .

Besides, as mutual encounters are neglected, every constituent
in a mixture of gases must move quite independently of the others;
this gives rise to the phenomenon of yatmolysis® (Graham, Chri-
stiansen) Thus we see that the phenomena of interdiffusion of
gases are completely changed when the conditions of the present
case are fulfilled. At higher pressures the process of mutual diffu-
sion of gases must also be modified in the neighbourhood of the
walls of the vessel, namely by the friction against the wall, and
there must exist a surface effect, analogous to the discontinuity of
temperature in eonduction of heat, but its theory is much more
complicated and its experimental demonstration, like all experiments
on diffusion, will offer greater difficulties.

Let us consider now the case when the temperature of the walls
of the tube is varying with.z. By the same reasoning as. before,
we again get the formula:

m v
=gt
If the tabe is elosed at both ends, or if in any way the passage
of the gas is prevented, we have Q=10 and » = const, which
implies according to (10) that the pressure increases towards the
hotter end, in proportion of the square root of the temperature.
This relation is characteristic of thermal transpiration at low pres-
sures in narrow channels, while in the other extreme -case, when
the diameter of the channel is large compared with the free path,
Maxwell’s formula (77) or a relation of similar form must be
applied. The same result has been ‘deduced in a different way by
Knudsen on pp. 222228, and has heen verified to some degree
of approximation by his experiments; on a larger scale it has been
confirmed by O. Reynolds researches on thermal transpiration
throngh Meerschaum-plates ete., in 1879, In such porous materials,
of course, the channels cannot be considered to be cylindrical tabes;
but if the analogy of the behaviour of a rarified gas with the phe-
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nomenon of radiation is considered, the above result can easily be
generalized so as to apply to a vessel of any form. In a cl,ose‘d

vessel of any shape, radiation is known to be in thermal equi-

librium when the density of incident (or emitted) radiation is eve-

rywhere the same. In our case the quantity of incident radiation

corresponds to the number of incident molecules per unit time and.
unit surface, emitted radiation to the emitted molecules which, if

the walls allow no passage, are both identical.with ». The condi-

tion of stationary state requires therefore everywhere » = const. which,

with the aid of (10), proves the above proposition. This will hold

not only on the assumption that /= 1, but also for any reflective

or absorptive power of the surface.

1IL

The apparent decrease of thermal conductivity of gases when
rarified is due, as I have shown in a series of papers?), to a sur-
face phenomenon, analogous to the slipping of gases discovered by
Kundt and Warburg The kinetic theory of gases shows be-
sides?) that, at very low pressures, when the mean free path is
much greater than the dimensions of the vessel in which conduction
is going on, another law must come into action, the transmitted
heat being proportional then to the gas pressure and independent
of the thickness of the layer of gas. Some experimental evidence
in support of this law has been given by Mr. Brush; recently
much ampler material is available, owing to a careful investigation
published by Messrs. Soddy and Berry 9).

The form of the law being established, the question arises as
to the value of the factor of proportionality or, as the last-named
authors put it: of the quantity of heat, @, reduced to unit of hot
surface, one degree of difference of temperature, and 0-01 mm of
mercury pressure.

*) Ann. d. Phys. 64, 101, 1898; Wien. Sitzgsber. 107, 304, 1898; 108, 5,
1899; Phil. Mag. 46, 199, 1898. [Vol. I, pp. 83, 113, 139 and 199. Ed). See
also Gehreke, Ann. d. Phys. 2, 102, 1900.

*) Wien. Sitgsber. 107, 328, 1898, [Vol. I, p. 113, Fd.].

%) Brush, Phil. Mag. 45, 31. 1898. Soddy and Berry, Proe. Roy. Soc.
88 4, 254, 1910.

: 10%
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By a roughly approximative reasoning (assuming that the mole-
cules can be divided in three classes, moving parallel to the axes)
I had found that the flux of conducted heat (for 1° and 1 em?)
ought to be of the order of magnitude: 4 osc where ¢ is the den-
sity, s the specific heat at constant volume, ¢ the mean veloeity.
This expression corresponds to the case when, every molecule, by
its impact on the solid wall, assumes the vis viva corresponding to
the temperature of the latter, but it is to- be multiplied by

1—8§
. 148

if only a partial equalisation of temperature is taking place, accord-
ing to the formula:

& — '90 =ﬂ(ﬁ,,,— 00)

where 6, 0,, ¥ denote the temperature of the wall, of the imping-
ing, and of the emitted molecules, Messrs. Soddy and Berry
use the same formula with a slight difference of notationm, putting

where n is the number of molecules per em?® at 001 mm pressure,
N the number contained in one gram, H the molecular heat at
coustant volume, G the mean velocity. Their experiments enabled
them to determine the ratio of the observed transport of heat K
to the ealculated value ¢ for eleven gases, and from these num-
bers, ranging between 109 and 025, they intend to draw con-
clusions relating to the factor . Now these results appeared to
be of a somewhat unexpected character, since only values inferior

to unity were supposed to be admissible. ‘But as soon as exact.

numbers are in question, such a rough estimate as that referred
to above is evidently insufficient and an exact caleulation becomes
necessary.

Consider a gas contained between two parallel horizontal plates,
the upper one at temperature 6,, the lower one at temperature 6,
(one degree lower). It is convenient then, instead of making the
above supposition with respect to 8, to follow Maxwells assum-
" ption as to the reflected and emitted molecules. The total number
" of molecules » in unit volume will be composed of four parts:
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n, molecules moving upwards  with mean veloeity ¢

7} » ,  downwards ” » ¢
ny » ” upwards " » ” [
3 » . downwards » » g

where ¢, and ¢, are the velocities corresponding to the temperatures
6, and 6,. These four kinds make together

28) n=n, + ny +n -+ ny;
they do not undergo mutual influence, except at the impacts on

the plates; each will move with velocities distributed according to
Maxwells law.

The number of impinging molecules is given by (10); but here
we denote by n the number of molecules moving in one direction
only, and therefore we must take

2ne

Vom

(24) =

. Now considering the proeess at the lower plate, we see that the
molecules », are made up of the ,reflected” fraction (1—f) of
the incident molecules #; and of the fraction f of the whole number
of molecules which are impinging on the lower plate; whence:

(25) nyey=(1—7)m &+ f(nie, + nacy)
and similarly
(26) nyty = (1 — f)ngcy

By adding these two relations we get a solution expressing the
fact that no one-sided current takes place:
@1 » 36y 4 a0y =y 05 ~F M, .
This equation and (26) and a similar one for the molecules moving
in reverse direction take the following form:
(my— m) e, == (n3 —n5)e,
ny=(1—7f)n
= =7 )”1
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whence it follows that:

(28)

{ ngey == Ny 0y
nye == ngcy = (1 — f)nyc,.

The quantity of heat lost by the lower plate is:

__2ms , , 2ms
Q= _VG_—M— [6; (nzeq — 1y 69) - 01(”101 — 1y ¢1)] =V—6;n‘ (02 — 0)f e,

Now relations (23) and (28) give

0 o=

so that we have:

2/ mns €10y

29 = — (0, —
%) S ene—Hata M
If we put
P
e e’
and f=1—@, we finally get:
30) Bl e D

This is the exact value for conduction of heat in a highly ra-
rified gas; we see it is greater than the value caleulated before.

The numbers given by Messrs Soddy and Berry for —g ought to

be multiplied with the factor Jfm = 07286, which gives the
series ) :

A Ne N, 0, CO N0 (H €O, CH He K,
@—= 079 07 068 062 059 056 052 052 049 087 018
We therefore see that the coefficient 8 cannot be neglected ; in
other words, the interchange of energy on impact is always im-
perfect. The order of gases: A, Ne, N,, O,, €O, N,0, G;H,, CO,,

%) [Inserted here from a reimpression of a .
) part of the present paper, cf.
Phil. Mag. for January 1911, pp. 11—14. Ed) ? pepe

icm
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CH,. He, H,, scems to suggest the following rule: the interchange
of energy is worse for smaller molecular weights; it is more de-
fective for polyatomic and diatomic molecules than for monatomie
ones. The first part of this rule is easily intelligible; a simple me-
chanical reasoning shows 1) that the interchange of energy between
colliding spheres is the more imperfect the greater the difference
of their masses, and here the wall was composed of the heavy Pt
molecules. The second part is also in accordance with other phe-
nomena of conduction of heat, showing that intramolecular energy
is comparatively less disposed to equalisation by single impacts than
energy of progressive motion.

) Wien. Sitzgsber. 107, 324, 1898. [Vol. I, p. 113. Ed.].


GUEST




