XXIX. ZARYS KINETYCZNEJ TEORII RUCHÓW BROWNIA I ROZTWORÓW MĘTNYCH.

§ 1. Rach, polegający na dygotaniu i trapieniu się, który odbijają drobną, w silnym powiększeniu jeszcze widzialną cząsteczki, znajdującej się w stanie zawieszenia w cieczach, były często badane od r. 1827, w którym zwrócono na nie uwagę botanik Robert Brown, aż do dnia dzisiejszego, a jednak zjawisko to nie było jeszcze dostatecznie objaśnione. Zdania pomiędzy różnymi proponentami teorii nie przyjęła się powszechnie. Niepewność ta podobiła częściowo z niezdolności danych doświadczalnych, gdyż dotychczas ograniczono się przeważnie do obserwacji jakościowych; w znacznej mierze wynika też z różnych nieporozumień teoretycznych i z braku świadectwa teorii matematycznej.

Aby temu coś skutecznie zaradzić, wypracowałem już przed kilku laty teorię kinetyczną tego zjawiska, która wydawała mi się najprawdopodobniejjszą; wyników dotychczas nie ogłosiłem, chcę je napędzając sprawdzić świadectwami pomiarami doświadczalnymi Tymczasem jednak dyskusja nad tym przedmiotem została znowu otwarta przez druie prace teoretyczne Einsteinia 1), w których autor oblicza prawdopodobieństwa drobnych cząstek, jakie powstają z węzłów ruchu molekularnego i wnioskuję ze zgodności z obserwacjami ruchów Browna o kinetycznych ich naturze. Odsuwamewe wzorych Ein-
steina częściej moich wyników i ostatecznie jego rezultat, choć otrzymamy zupełnie odmianą metodą, zgodną się najpoważniej z moim. Dlatego podaję moje rozumowania, świadczę, że moja metoda wy-
daje mi się przejrzyszszsza i dla tego bardziej przekonywająca niż metoda Einsteinia, która nie jest wola od zarzutów. Zajęła z tem dyskusji innej teorii oraz materiału faktycznego, przez dawniej-
szych badaczy nagromadzonego, która, jak sądzę, przemawia wy-
raźnie za kinetyczną interpretacją tych zjawisk. W końcu pracy podaję kilka uwag co do związanej z tym przedmiotem teorii i zw. zawiesin kołoidalnych.

I.

§ 2. Wykony dotychczasowych doświadczeń dają przedewszyst-
kiem wskazówki negatywne, wykluczające różne sposoby tłumaczenia, które a priori wydają się możliwe.

Sądzę, że następujące fakty można uważać za pewne 2):

1) Powszechna wiadomość Browna. Ogromna ilość najróżnoczęśnijszych substancji spragnionych została zbadana (świadczona przez Browna, Wienera, Cantoniiego, Gouyego); wszystkie okazywały owe ruchy, jeżeli cząstki proszków były dostatecznie małe; tak samo zachowują się mikroskopijnie małe kropelki cienkiej, a nawet bańki gazu (np. w wydychaniu w mineralach, napojech i cieczach).

Gouy powiada: „Le point le plus important est la généralité du phénomène. Des milliers de particules ont été examinées et dans aucun cas on n’a vu une particule en suspension qui soit le mouvement habituel."

Szybkość ruchów jest tem większą, im cząsteczka są mniejsza;

8) Prace w tekście wzmiankowane są obecnie następującymi wanstawieniami literatu-
przy średnicy większej niż 0.004 mm są one niedrożne, całe, lecz jeżeszcze w mikroskopie widać, poruszają się naddziwnie szybko. Wiener podaje liczby przybliżone v = 0.0001 m/sec dla średnicy 0.0016 mm, v = 0.0028 m/sec dla średnicy 0.0010 (przeziętne).

F. Exner na podstawie nieco ulepszonych metod miernictwa podaje v = 0.0027, 0.0033, 0.0038 m/sec dla średnicy 0.0018, 0.0009, 0.0004 mm (w temperaturze 20°C). Sprzeczne są wyniki różnych badań co do wpływu substancji cząstek. Gouy (podobnie też Jevena) twierdzi, że cząstki jednakowej wielkości poruszają się z mało różnymi prędkościami, bez względu na rodzaj substancji i bez względu na to, czy całość jest stała, czyli zmieniają się warunki fazy (zgust, niezmienność).

Aby uniknąć znacznego rozszerzenia, około jakiego 2 mm, Gouy twierdzi, że cząstki podporządkowanej odwodniczki są poruszane wody w cieczach o nieskończonej prędkości, ulegając w cieczach bardziej lepkich (Gouy), a bardzo słabe w tak lekkich jak oliwa, glikozan, woda zbytnio woda. W wyższej temperaturze (30°C), gdy lepkość glikozan zmniejsza się, to także zależy się na prędkości (F. Exner). Cz. Cantoni twierdzi, że alkohol, benzyna i etanol są szybciej odwodniczki, podczas gdy M. Acke zawsze w alkoholu większą znajduje rozmieszczenie cząstek.

§ 5. W związku z powyższym zjawiskiem jest jego zamedziu-

nty w czasie. Warto w tym względzie podać na to zwracają uwagę, że ruch woda bez zmniejszenia, dopóki cząstki umoczą się w cieczach; tylko cząstki, które osiągną na dniu na ścianach, zwykle przestają się poruszać. Z tej ostatniej przyczyny łatwo śledzić przez długi czas ruch cząstek o gęstości prawie równą gęstości cieczy (masyka, glikozan) niż materiałów ciekłych, szybko się osadzających,

Pomocne ustawianie rowek wakanci dodatków soli (Jevona) tłumaczy się skupianiem i osadzaniem się cząstek spowodowanym, jak wiadomo, przez takie dodatki (Mallézos, Gouy, Spring).

Cantoni, obserwując parę ranowej między podobnymi podparągą, nie zauważył żadnej zmiany w ciągu całego roku.

§ 6. Nadzwyczaj charakterystycznym wizjum jest niezależność ruchów od warunków zewnętrznych. Próbowało napiętnowanie zjawisk bez żadnego skutku. Tak np. nie wpływa na siczone cięcze, spojające na powierzchni (Wiener), Cantoni, Gouy i inni, nie wpływa umieszczenie o miejscu spokojnym, bez wprowadzenia (Exner, Gouy, w kapiteli w jedno-

stawnej temperaturze (Gouy), trzymanie go pod wodą).

Jeżeszcze w takich cieczach bardzo lepkich (F. Exner).

F. Exner zauważył w owym przypadku (w wodzie) powiększenie prędkości z 0.00032 cm/sec w 20°C do 0.0005 cm/sec w 71°C.

§ 5. Do wyłuszenia tego zjawiska wynika przede wszystkim z § 4, że trzeba zwrócić uwagę na wpływu czynnika, wpływającego na warunki zewnętrzne energii, zwłaszcza przyczyniające się do zmiany ruchów, przede wszystkim z przyczyneniem powierzchni cząstek, powodowanych przez nieskończenie wyższe temperatury. Ponadto zwracają nas na uwagę dalsze wspomniania, takie jak różne działania, jak mechanizmy przynależne systemom cząstek wodnych, wodnych cieczach, alkoholowych.

§ 6. W związku z powyższym zjawiskiem jest jego zamedziu-

nty w czasie. Warto w tym względzie podać na to zwracają uwagę, że ruch woda bez zmniejszenia, dopóki cząstki umoczą się w cieczach; tylko cząstki, które osiągną na dniu na ścianach, zwykle przestają się poruszać. Z tej ostatniej przyczyny łatwo śledzić przez długi czas ruch cząstek o gęstości prawie równą gęstości cieczy (masyka, glikozan) niż materiałów ciekłych, szybko się osadzających, Pomeccie ustawianie rowek wakanci dodatków soli (Jevona) tłumaczy się skupianiem i osadzaniem się cząstek spowodowanym, jak wiadomo, przez takie dodatki (Mallézos, Gouy, Spring).
oczywiście powstane takie pracy, a ruchy regularne, przez nie wywołane, wcale większe licznie cząstek, odróżniają się dają natychmiast pod mikroskopem od owych nierzegularnych peruszeń indywidualnie różnych każdej cząstki, które właśnie właśnie ruch Browna.

Zauważę wreszcie, że największe różnice temperatury w obszarze zupełnie cząstki kulistej, wystawionej na bezpośrednim promieniowaniu słońca, są ułamkiem spokojniejszy ciepło, który w założeniu a = 10⁻⁷ cm, i (woda) = 10⁻⁷, wynosi 1 300 stopni.

To wystarczy, w związku z tym, co przedtem powiedziano, do odróżnienia teorii Regnauld a powstawania prądów w obozczeniu każdego ciała wodny quánum promieni na jego powierzchni.

Niezależność ruchów Browna od oświetlenia dowodzi tak samo niezależności hypotezy K ałka i Q uincke go. Pierwsza z nich znajduje wyłuszczenie ruchów w analogii z ruchami radiometru, a druga w analogii z ruchami bardzo ciekawymi przyjaznymi ruchami warkoczkami, badanymi przez Quincke. Trudno jednak w ogóle doszła jest bliższa podobieństwa owych ruchów wspaniałej (periodicznego Ausbreitungserregerscheinungen), występujących tylko w pewnych ruchach (cięcia w różnorodne droby, alkohol w wodzie solnym się p. jak zjawisko wyjątkowe, z ruchami Browna, które są jawną przyczyną urodzenia i od substancji ciała niezależne; trudno także zrozumieć sposób, jak i dlatego czy w sposób owo percepcje rozprzestrzeni są ciekawych warstw cięcia posiadające na powierzchni ciała, które według hypotezy powinny powodować ich ruch. Nie można zatem zaprosić, że dostępne silne oświetlenie mogłoby wyprowadzić jakieś ruchy termiczne (a może nawet radiometryczne), tylko będzie to coś innego anżelich ruch Browna.

§ 6. Pozostaj zatem tylko teoretyczne przyjmujące wewnętrzne źródło energii. Między niemi trzeba odróżnić hypotezę istnienia sił oddziałujących między cząstek (M e a de B a c h e) np. sił elektrycznych (J e w o n s), ponieważ one mogły być, jak wynika pewne z agrupowania cząstek, ale nie bezpośrednie między cząstek, ponieważ istnienie takich sił stanowiłoby nową zagadkę.

Zapamietajmy, że mamy tu do czynienia z objawami sił wskazał w 195 rozmowy, że M a t e z o s przyjmują, że przyczyną ruchu są drobną zanieczyszczenia zakłuczające równowagę tych sił a podobnie też rozumie M e a d i e r o g h e, powodując się na ruch kamiony po wodzie. Ale jak wykazuje, że tych zanieczyszczeń cieczy żadnego na ruch nie wywiera wpływ i że także ciała zasługuje nie ruchomocznemu (diamant, grafit, metal na i), rozważają się, że ruch nie istnieje z czasem, gdy różnica zanieczyszczenia wyrównały się. Mikroskopowe bąski gazu w cieczach, zamkniętych w mineralach, dawno musiały osiągnąć stan równowagi napięć wzbudzenia, a jednak rzucają się.

II.

§ 7. Przechodzimy do teorii kinetycznych, które przyjmują energię ciępełną jako właściwy czynnik zjawiska. Siedzą zjawisko to pod mikroskopem, odnotowujemy bezpośrednio wrażenie, że podobnie przedstawiać się musi ruch dźwięku cieczy. Nie jest to drżenie, ani też ruch postępowy, lecz nieco bardziej trwające się albo, jak G o o u powiada, mówiąc się fourmamentem. Cząstki zalegają w różnych rzeczy, wygładzając się w wszystkich kierunkach, jak gdyby pęchające przez przypadkowe uderzenia niewidzialnych cząstek: mimo tego przypadkowego ruchu tylko powoli oddzielają się od powierzchni początkowej, istotnie linię antworów (W ie n e r, O n t o n). R e n a r d, B e n n e s e n, G o o y tłumaczyli zjawisko jako na- czyniu dowód naszych teorii o ruchu cząsteczek. Można je wtedy jeszcze w dwojsk sposób interpretować. Wiener i G o o y przypuszczali, że w przestrzeniach rządu [000] min² ruchy cząsteczk przyjmuje wewnętrzne źródło energii. Między niemi trzeba odróżnić hypotezę istnienia sił oddziałujących między cząstek (M e a de B a c h e) np. sił elektrycznych (J e w o n s), ponieważ one mogły być, jak wynika pewne z agrupowania cząstek, ale nie bezpośrednie między cząstkami, ponieważ istnienie takich sił stanowiłoby nową zagadkę.

Zapamietajmy, że mamy tu do czynienia z objawami sił wskazali w 195 rozmowy, że M a t e z o s przyjmują, że
wynosi tylko 2.10^{14} m/s, co zbyt mało, aby osiągnąć przyciętną prędkość około 1 na sekundę w cieczach nawet 10^{16} uderzeń, które przeważnie są znacznymi, ale zawsze jeszcze pozostawają węgląt (2) dodatni lub ujemny. Dodajmy tylko blisko 10^4 lub 10^5 uderzeń, dochodzące do węglątu, że liczba uderzeń prawdopodobnie przekracza rzędu 10^4 (w wodzie) lub 10^6 sek (w żelu) w kierunku X lub w przeciwnym.

§ 8. Rachunek ten dowodzi wyższej stawiania Nageniego, ale ostateczny wynik liczbowy jest również daleki od prawdy, ponieważ nie uwzględniamy dwóch czynników: a) że bezwzględna wartość przyspieszenia lub utrzymanie prędkości przy uderzeniu jest zależna od momentu t, w którym uderzył, a powód b) że liczba uderzeń wyznaczających, ze wzrostem prędkości v prędkość v musi przeważać ponad liczbą uderzeń przyspieszających prędkość v. Oba czynniki przeciwdziałają otrzymanemu wzrastaniu prędkości v, a ostatni rezultat, który bezpośrednio przewiduje można na podstawie znanych zasad teorii gazów, jest, że przeciętna energia kinetyczna kuli M jej środka masy v w równowagie jest przybliżona v. Wyrównanie tej wielkości, według twierdzenia Maxwella i Boltzmannia, jest bowiem warunkiem charakteryzującym dla równowagi cieplnej, co jest bezpośrednio zrozumiałe, gdyż cząsteczki M przedstawiają jakby molekule jakiejś wielomianowej substancji rozproszonej w ośrodku, będą się zatem zachowywały jak cząsteczki gazu w odpowiedniej temperaturze.

Przeciętna prędkość C ciała M możemy zatem obliczyć według wzoru dla prędkości cząsteczek rozmaitych gazów:

$$C = \sqrt{\frac{m}{M}}$$

z czego otrzymuje prędkość 0.4 cm/sek w założeniu, że średnica kuli M wynosi $2L = 0.001$ m, a jej gęstość 1. Jak pogodzić ten wy- nak z pomiarami doświadczalnymi, które daly rezultat $C = 0.10^{-4}$ cm/s?

Sprawdzajmy tę podnoś F. Eynner, uważając za prawdziwą przeszkodę teorii, a zapewne też inni badacze dali się nią odrzuścić od krytycznych hipotez. A jednak wytłumaczenie jest jeszcze proste. Wszak ruchu tak drobnych cząstek, odbywającego się z prędkością 0.4 cm/s nie potrafiłbyśmy śledzić wzrokiem w mikroskopie 500 razy

M. Smoluchowski I.
powiększającym. To, co widzimy, jest średnią pożywiającej, poprzedniej z powyższą prędkością, 10⁻⁶ razy na sekundę, w czasie to innym kierunku. Środek masy jej będzie określał drogę doświadczalnie zaznacza, składającą się z kawałków prostych, bezpośrednimi krótkszych aniżeli rozmiary czastki; tylko wówczas, gdy geometryczna suma tych kawałków z czasem osiąga pewną wartość, obserwujemy oddalenie od pozyji początkowej. Droga poprawna, mniejszej wagi, wynika stąd, że nie mierzymy ruchu odbywającego się w przeciwieństwie, tylko ruch jego na płaszczyźnie. Zastaw obliczyć, że rzeczywiste prędkości będą μ razy większe niż zmierzone.

III.

§ 10. Chociaż poznane dalej analizą, musimy ujęć mechanizm uderzeń w formalę, nadającą się do badania matematycznego. Kierunek ruchu cząstki M weźmię się zmienienia i pod tym względem niema żadnego ograniczenia, podczas gdy bezwzględna wartość prędkości C musi ważyć się coś średnią wartości z (3) wynikającą i stosunkowo rzadko oddala się od niej znacznie. Prędkość C można zatem w przybliżeniu przyjąć za stałą, ale kierunek jej będzie zmieniony.

Z praw uderzenia kuli sprężystych obliczymy, że prędkość normalna do ruchu C, udzielona kuli M przez każde uderzenie, wynosi przeciętnie 3 mc, to znaczy, że uderzenie powoduje przeciętnie zmianę kierunku ruchu o mały kąt

\[\varphi = \frac{3}{4} MC = \frac{3}{4} \frac{C}{c} \]

Uderzenia kuli M, o masie bardzo dużej w porównaniu z masą cząsteczek ośrodka m, mają zatem charakter odmienny aniżeli uderzenia cząsteczek gazu. Podczas gdy w teorii gazów zwykle przyjmuje się (choć to nieznane), że cząsteczki po każdym uderzeniu obierają z równym prawdopodobieństwem jakaś drogę kierunek drogi, to nieznane, że cząsteczka po każdym uderzeniu obiera z równym prawdopodobieństwem jakąś drogę, a następnie powraca do starego kierunku ruchu pierwotnego (pośrednie), ponieważ każdy z różnorodnych zmienionych w kierunku prędkości jest stosunkowo bardzo mała.

*) Por. S. Tomaszewski, Rozpr. 66 str. 138 (1906).
z kątem wierzchołkowym α, wykreślonym koło poprzedniego kierunku jako osi, uważamy za równie prawdopodobne.

Stawiamy sobie pytanie, jaka jest przeciętna wartość kądu odległości Δ punktu P_i od początku współrzędnych, którą otrzymamy, jeśli kolejno punktami P_1, P_2, \ldots, P_i nadamy wszystkie możliwe położenia.

Dla znalezienia kierunków dróg po sobie następujących wykreślmy kule jednostkowe, a z jej środka O proste równoległe do prostych OP_i, OP, OP_i, \ldots, przecinające powierzchnię jej w punktach Q_0, Q_1, Q_2, \ldots, kąty $\alpha Q_0Q_1, \alpha Q_0Q_2, \alpha Q_0Q_3, \ldots$, oznaczmy literami $\alpha, \alpha_1, \alpha_2, \ldots$, kąty zaś między płaszczyznami XQ_0Q_i i XQ_0Q_j, XQ_0Q_k, XQ_0Q_l, \ldots, przez $\psi, \psi_1, \psi_2, \ldots$.

Wynika stąd szereg równań kształtu:

$$\cos x = \cos x_{\alpha}, \cos z = \sin x_{\alpha}, \sin z = \cos x_{\alpha}.$$

Postępując analogicznie względem osi Y, Z, otrzymamy podobnie:

$$\cos y = \cos y_{\alpha}, \cos z = \sin y_{\alpha}, \sin z = \cos y_{\alpha}.$$

Jeżeli przesenijmy prostą Q_0P_j po ohodwie stożka wykreślonego koło $OQ_{l=1}, jako osi, zauważamy, że kąty $\psi, \psi_1, \psi_2, \ldots$, są takie samie, a więc o stałe wartości, że zatem mieć będziemy: $d_{\psi} = d_{\psi_1} = d_{\psi_2} = d_{\psi_3}$. Ustalając tym sposobem kąty $\psi, \psi_1, \psi_2, \ldots$, otrzymujemy wszystkie równie prawdopodobne wartości dla x, średni ich wartość będzie:

$$\frac{1}{2\pi} \int_{0}^{2\pi} \cos x_{\alpha} \, d\psi = \cos x_{\alpha}, \cos z_{\alpha}.$$

Powróćmy obecnie do naszego zadania. Z definicji wielkości Δ wynika:

$$\Delta = \frac{1}{(2\pi)} \int \left[\cos \alpha_0 + \cos \alpha_1 + \ldots + \cos \alpha_i \right]^2 +$$

$$+ [\cos \beta_0 + \ldots + \cos \beta_i] d\psi_1, d\psi_2, \ldots d\psi_i.$$

Całą określającą n-krotne całkowanie kolejne względem $d\psi_1, d\psi_2, \ldots d\psi_i$, w granicach 0 i 2π, poziomiony przez J. Odczynając $\cos \alpha_0, \cos \beta_0$, od masty wyrażeń w nawiasach i nastosowując (9), otrzymujemy:

$$J = J_{\alpha} + 1 + \frac{2 \cos z}{(2\pi)} \int \left[\cos \alpha_0 + \ldots + \cos \alpha_{i-1} + \cos \alpha_i \right]$$

$$+ \left[\cos \beta_0 + \ldots + \cos \beta_{i-1} + \ldots \right] d\psi_1, d\psi_2, \ldots d\psi_i;$$

całkę z prawej strony podzieloną przez $(2\pi)^2$, którą nazywamy $C_{\alpha, \beta}$, otrzymujemy równanie stopniowego rysunku:

$$C_{\alpha, \beta} = 1 + \cos \alpha, C_{\alpha, \beta};$$

co daje wreszcie wynik:

$$J = J_{\alpha} + 1 + 2 \cos z \left(\frac{1 - \cos \alpha}{1 - \cos \alpha} \right).$$

Postępując takim samym sposobem dalej z całkami $J_{\alpha, \beta}, J_{\alpha, \gamma}, J_{\alpha, \delta}$ otrzymujemy rezultat ostateczny:

$$J = \frac{1 + \cos z}{1 - \cos \alpha} \left(1 - 2 \cos \alpha - \cos^2 \alpha + 2 \cos^3 \alpha \right).$$

Ponieważ α jest kątem bardzo małym, więc kątem $\cos \alpha = 1 - \frac{1}{2}\alpha^2$, zatem:

$$J = \frac{2n}{2} - 1 + \frac{1}{2} \left(1 - \left(1 - \frac{1}{2} \alpha^2 \right)^2 \right).$$

§ 12. Należy teraz rozwiązać następujące przypadki:

1) Jeżeli α jest liczbą wprawnie dużą, ale nie tak dużą, żeby iloczyn α^2 mógł być wielkością rzędu jedności, wtedy otrzymujemy przez rozwinięcie wyraźa (9) przybliżenie $J = n^2$, to znaczy:

$$\Delta = m\pi$$

a więc średnia odległość jest równa długości drogi zygazakowanej OP_1, \ldots, P_i, Zatem skrajnie tej drogi nie wchodzi w rachę, można ją uważać za prostą.

2) Gdy liczba odchodów jest zmienna, wchodzi w rachę poprawk z powodu wyrażenia n^2.

$$J = n^2 \left(1 - \frac{n^2}{3} \right);$$

to znaczy: $\Delta = n\pi \left(1 - \frac{n^2}{6} \right).$

3) Gdy n zbliża się do jedności, przybliżenie to nie wystarcza, trzeba użyć skomplikowanego wzoru (3).

4) Jeżeli wzrośnie liczba n jest tak duża, że n jest znacznie większa od jedności, co będzie spełnione w wszystkich przypadkach, to otrzymujemy przybliżenie $\Delta = \pi(n - 1)$.
Przejdźmy obecnie do rozwiązania drugiej ewentualności, którą poruszyliśmy przy końcu § 10. Jeżeli rozmiary ciała M nie są małe w porównaniu z średnią drogą λ cząsteczek ośrodka, wtedy

\[\Delta = \frac{8}{3} \frac{c}{\sqrt{M}}. \]

Zauważając, że długość składowych odcinków l równa się sume ilorazów prędkości v przez liczby uderzeń n, których kula M w czasie sekundy doznaje, że zatem $l = \frac{v}{n}$, otrzymujemy

\[\Delta = \frac{8}{3} \frac{c}{\sqrt{M}}. \]

§ 14. Przejdźmy obecnie do rozwiązania drugiej ewentualności, którą poruszyliśmy przy końcu § 10. Jeżeli rozmiary ciała M nie są małe w porównaniu z średnią drogą λ cząsteczek ośrodka, wtedy
uderzeni cząstek o kulkę \(M \) nie można już uważać za zupełne przypadkowe, gdyż warstwy ośrodka otaczające ciała \(M \) utrzymują się w pewnym stopniu w jego ruchu. Ruch ten będzie przeciwdziałał nagłym zmianom kierunku ruchu ciała \(M \), a zatem będzie powiązał drogę \(\Delta \). Niestety ścieżka obliczenia metodą § 11 nie da się dostosować do tego przypadku, ale możemy określić rząd wielkości \(\Delta \) innym sposobem, mniej ściślim, ale bardzo prostym.

Ciało \(M \) związane z prędkością początkową \(C \) w ośrodek będzie traciło swą prędkość w owym kierunku początkowym według wzoru:

\[
V = Ct \frac{1}{\tau},
\]

gdzie \(\tau \) przedstawia stosunek masy ciała do spokojnego oporu doznawanego: \(\tau = \frac{M}{S} \). Według tego, co powiedziano w § 9, nie traci ono jednak swej energii kinetycznej, jeżeli \(C \) odpowiada wzorowi (3), lecz nabiera równowagi względem odpowiednich prędkości przypadkowych, normalnych do kierunku ruchu pierwotnego, tak że prędkość wypadkowa pozostaje przeciętnie niezmieniona. Miara czasu, podczas którego odbywa się ruch w kierunku pierwotnym, będzie czas rekompensacji \(\tau \) a miara drogi w tym kierunku przebytej będzie długość \(t = \frac{MC}{S} \). Możemy zatem ruch ciała \(M \) porównać do ruchu cząsteczki gazu posiadającej drogę swobodną \(\lambda = Ct \) i oddalającej się ze swej pozycji pierwotnej po drodze zygmatograficznej, skierowanej w odciętku tej właśnie długości, o kierunkach przypadkowych. Dla odległości przeciętnej, osiągniętej przez taką cząsteczkę w czasie jednej sekundy, obliczony zatem, powodując się znów na wzór

\[
\Delta = \sqrt{2\pi t} = \sqrt{2\frac{M}{S}},
\]

Nie bądź to wynik ściśły, albowiem sformułować \(Ct \) zamiast \(Ct (1 - e^{-x}) \), a za to pomniejszyć bocze wychylenie osiągnięte przy końcu czasu \(\tau \) i pozostawiając jeszcze „pierwotność” (patrz § 10), ale co do rządu wielkości powinien być być bez zarzutu.

§ 15. Zróbmy próby na przykładzie §§ 10—13 przedtem rozważonym. Nie można użyć dla \(S \) zwykłego wzoru Stokesa (28),

z powodu małych wymiarów ciała \(M \), lecz trzeba opór obliczyć bezpośrednio. Jego wielkość wynika z rozwiązania liczb uderzeń \(n \):

\[
n = \frac{B}{\pi \tau} \frac{C^2}{C^2}
\]

i z przeciętnego znaczenia prędkości \(C \) sprowadzonej przez każde z tych uderzeń, które obliczone według znanych metod wynosi

\[
2 \frac{m}{3 \sqrt{M}}
\]

Stąd:

\[
S = \frac{2}{3} \pi \tau \frac{C^2}{C^2} = \frac{2}{9} \frac{m}{n},
\]

a zatem:

\[
\Delta = \sqrt{\frac{2}{9} \frac{m}{n}}.
\]

Rezultat obowiązuje osiągnięty istotnie odpowiedni zupełne wzory (10), tylko spokojny liczbowy jest mniejszy, co według tego, co wyżej powiedziano, jest zrozumiałe. Można jednak otrzymać zgodność ściśłą z owym obliczeniem, jeżeli uważać będziemy za czas trwania ruchu prostoliniowego wielkość \(\tau = \frac{64 \lambda}{27 S} \) za długość drog prostoliniujących

\[
\lambda = \frac{64 MC}{27 S},
\]

§ 16. Na podstawie wzoru (17), znaczącego odpowiednią liczbową poprawką:

\[
\Delta = \frac{8}{3} \frac{2}{3} \frac{m}{n} \sqrt{\frac{m}{S}},
\]

zwróćmy się obowiązki znów do zadania w § 14-ym poruszonym. Jeżeli rozmiary kuli \(M \) są duże w porównaniu do drogi swobodnej otaczających cząsteczek, możemy użyć do obliczenia oporu zwykłego wzoru Stokesa (4):

\[
S = 6\pi \eta R.
\]

10) Podeł. np. Lamb, Hydrodynamik p. 608 (1940); Kirchhoff, Mechanik.
skład wynika w tym razie droga zakrośiona przez ciało M w czasie jednej sekundy:

$$V = \frac{8}{9} \frac{e^P M}{\sqrt{\lambda R}}$$

 Ważne jest prawie identyczne z rezultatem wyprowadzonym zupełnie odmienne metodami w pracach Einstein1), różnicę polega jedynie na spółczynniku liczbowym, który w Einsteina jest mniejszy w stosunku $\sqrt{\frac{27}{64}}$.

Einstein nie uwzględnia wcale możliwości przedmiotu omawianego, t. j. cząstek tak małych, że nie podlegają wzorowi Stokesa, ale jego ogólny wzór (II w drugiej pracy p. 378) $\Delta = e^{\frac{2}{3} \lambda R}$ który odpowiada naszemu równaniu (17), można także dostosować do tego przypadku, wyprowadzając dla S nasze wyrażenia (19) obliczone w § 15; otrzymuje się wtedy oczywiście wzór analogiczny do (15).

Nie będę wchodził na ten miejscu w rozstrzyganie bardzo podobnych rozumowań, zespół, których Einstein doszedł do swych wzorów, zauważając jednak, że obie metody przez niego użyte polegają na ustaleniu pośrednim 2), które nie wydaje się zbyt prostym przekonywującym. W każdym razie zgodność z bezpośrednią metodą trzeciej użyty, która lepiej wyjaśnia mechanizm całego zjawiska, należy uważać za połączone potwierdzenie obu sposobów rachunku.

Drobia różnica w spółczynniku liczbowym nie ma znaczenia; tłumaczy się ona uproszczeniami założenia (np. jednostkowej prędkości C, a w zastosowaniu może chodzić nam tylko o rzad wielkości.

1) 192, An. 17, p. 588; 19, p. 373. Wielkość Δ, w której istnieje $\Delta = \frac{e^{\frac{2}{3} \lambda R}}{\sqrt{\lambda R}}$ jego spółczynnik $\frac{e^{\frac{2}{3} \lambda R}}{\sqrt{\lambda R}}$, jest znaki λ, R odpowiadają naszemu λ, R.

2) Np. przemnóżenie praw ciśnienia osymetrycznego na cząstce M zawieszone w cieczy i obliczenie szybkości, z którą one przez ciecz dyfuzują, lub zastosowanie twierdzenia Boltzmanna (o wpływach potencjalnych na spółczynnik wartości systemów mechanicznych do siły niepotencjalnej), jako jest upór znamionowany przez cząstki M w ruchu przez osektor, ale jest całkiem wolne od aspektów.
Znalazłem istotnie w literaturze wzmianki o takich sporządzeniach. Bodaszewski odnosi się do pracy mikroskopijnej cząstek dyżnym, zaś L. m. d. d. mikroskopijnych przez kwas a, porównując ją z ruchami Browna i tłumacząc, że jako ruchy drobinowe, podobne sporządzenia opisali później Leibnitz w. Prawdopodobnie chodzi tutaj raczej o wzmiankę o osobicie nieznanym, ale wobec braku ścieżekowych danych doświadczalnych nie można tej kwestii jeszcze stanowczo rozstrzygnąć.

Z wzorów naszych wynikają wnioski o zależności ruchów od gęstości gazu. Wzór (24), pozostając ważny w naszym przykłady najmniej więcej o to podbijające rozmieszczenia, wypowie ruchy niezależne od gęstości gazu. Przy dalszym rozpraczeniu jednak wchodzi w grę wzór (26), z którego wynika, że ruchów, proporcjonalny do pierwiastka od rozmieszczenia, tak że pod ciśnieniem 1 mm rzeczy prędkość jest jednak wynosi 0.03 cm

Równocześnie jednak wtedy w znaczeniu silniejszym stosuj, bo proporcjonalne do rozmieszczenia, zaszyma wzory skalę szybkości opadania, która przy większej gęstości jest stała. Dla dużego \(\mu \) wzór Stok sa (25) i (26) przestaje bowiem być ważny; wtedy użyć trzeba wzoru wynikającego z (19):

\[
\alpha = \frac{2 \mu' y}{\rho c}
\]

który dla ciśnienia 1 mm daje prędkość opadania 1-2 cm

Przy użyciu mniejszych cząstek, przykłady cząstek leciwie jeszcze w mikroskopie wyraźnie dostrzegalnych (\(R = 10^{-4} \)), można być śledzić bez trudności stanowisko, które opowiadają równania (19) i (26).

§ 18. W cieniach droga swobodna cząsteczek \(\lambda \) jest tak mała, że bezpośrednia obserwacja cząstek mniejszych od \(\lambda \) jest niemożliwa, zatem zamiast tylko wzór (24) można zastosować wartości. W cieniach

1) Kosmo. 7, p. 177 (1882); Dinglers J. 309, p. 335 (1881); Chem. Contr. 13, p. 335 (1881).
2) Molkażnierskich 11, p. 5.
3) Tlumaczy się tem uzytkuje opadanie płyć w gazach znaczenie rozpracowanych

więc można a priori oszacować tylko przybliżone jego sprawdzenie nieco do rzadu wielkości, gdyż nie znany jeszcze kinetyczny mechanizm nie ma taką dokładność jak gazów. Wtedy także możliwe, że pewne założenia, które wprowadziliśmy wprost drobniejszych wyroczys, t. j. przyjęcie ciała M za kulę sferoidalną i pominięcie sił własności, spowodują tą pewne zmiany. Wynik okazuje się jednak lepszym, niż można by się spodziewać ze względu na niezależności teoretyczne i nie spójność danych doświadczalnych (zwelebone por. punkt 2 powyżej).

Wstawiając dane, tyczące się wody w temperaturze 20° z kuli M o promieniu \(R = \frac{1}{3} \times 10^{-4} \), otrzymujemy \(\Delta = 18 \times 10^{-4} \) cm

ale nie można jeszcze z tą liczbą bezpośrednio porównać pomiarów doświadczalnych, gdyż ich wynik musi zależeć w znacznym stopniu od wprost, z jaką operator odnosić na drobne wielkości cząstki M. Wyobraźmy sobie up. żołniewo dwa rodzaje fotografiowych zdjęć migawkowych, raz jedno zdjęcie co sekundę, drugi raz jedno zdjęcie co \(\mu \) razy częścieć sekundy. Z tego, co powiedzieliśmy w § 12 i § 14, wynika, że suma dróg rozkazanych w drugim przypadku będzie \(\frac{1}{11} \) raz większa od długości dróg sekundowych, tworzących skórnię między skośnymi zyskankami. Może to być przydatne, oznacza F. Exner (§ 2), używając metody dokonalnej, aby W. otrzymały liczbą mniejszą \(\mu \) razy większą. Przypuszczalny, że przykład właśnie przypomnijemy charakteryzuje górną granicę dokładności metody Exnera i że liczby jego należałoby podnieść przeci \(\frac{1}{10} \) (patrz uwagę końcową § 9), aby wynikać drogi sekundowej. Wtedy istnieje otrzymywane prawie dokładnie liczbę chłonioną tutaj teoretycznie. Upada zaś główny zarzut przeciwko teorii kinetycznej podnoszący, zamieniając się w argument przemawiający stanowczo za nią.

Z faktami znanymi zgadzają się również następujące wnioski teoretyczne:

1. Niezależność ruchu od masy ciała M i ich substancji, która w naszych wzorcach wchodzi w rachubę. Jest to istotnie zadawiające, że najrazem, jeżeli substancja, bąski gazów i cząstki ciężkich metali poruszają się z prędkościami tego samego rzędu.

2. Wartość prędkości ze zmniejszaniem rozmiarów cząstek M. Według teorii prędkość powinna być odwrotnie proporcjonalna do
pierwsza z średniicy; podczas gdy liczby podane przez Wienera raczej odpowiadają pierwszej potędze, a dokładniej liczby Exnera potęgę 4. Nie można oczekiwać lepszej zgodności, gdyż rzeczywiste rozmiary cząstek tak małych nie są identyczne z rozmiarami ich obrazów w mikroskopie (na co też Exner zwraca uwagę).

4. Zmniejszenie się ruchów w leśnych cieczach (por. § 2) z powodu odwrotnej proporcjonalności do spółdysunku lepkości.

Cieślniejsze porównanie wynagranie oczekiwanie obserwowanych i dokładniejszych badań doświadczalnych i teoria powyższa daje w rzekach wskazówki, w jakich kierunkach one powinny być poprowadzone, ale według obecnego stanu naszych wiedzeń jesteśmy niewątpliwie upragnieni do zaaplikowania się na ruchy. Pomnażając jako na dwoist przysłódności hypotezy molekularno-kinetycznych szybki spółdysunku.

VI.

§ 19. Pozostają jeszcze do rozwiązania niektóre szczegóły tej teorii. Wspominaliśmy w § 7 o drugim, postrzegającym sposobie kinetycznej interpretacji tych szaików, według którego cząstki M są niejako wskazówkami ruchów wewnętrznych w ciecz, odbywających się równolegle w mikrokoopinie małych cząstek. Mimo pozornie równej różnicy oznaczenie to okazało się identyczne z powyższą interpretacją tych szaików (§ 8-18), jeśli je ujmijemy w poprawnej, szczelnej formie. Ostatnim należy rozumieć przez ruch wykonany przez ciec w pewnym elementarzowym obszarze. Z tych cząstek odbywają się w nim z prędkościami równymi 5.104 cm/sek we wszystkich możliwych kierunkach przesłoń, ale istnieje wspólne pojęcie ścieżki określone, t. j. ruch środowka masy wszystkich cząstek stanowiących element ciecz i według niego możemy ocenić ruch tej ilości cieczy.

Zatwierdziliśmy, że ruch środowka masy dowolnej liczby cząstek odbywa się tak, że energia kinetyczna środowka wobec ruchu równa się przeciętnej energii ruchów pojedynczych cząsteczek. Przyjmując

\[\frac{C}{2} = \frac{c_1^2 m_1^2 + c_2^2 m_2^2 + \ldots + c_n^2 m_n^2}{2 (m_1 + m_2 + \ldots + m_n)} \]

a zatem też ogólnie dla n cząsteczek:

\[\frac{C}{2} = \frac{c_1^2 m_1^2 + c_2^2 m_2^2 + \ldots + c_n^2 m_n^2}{2 (m_1 + m_2 + \ldots + m_n)} \]

zgodny z powodu równości na m wynika:

\[\frac{C}{2} = \frac{m^2}{m} \]

Środok masy elementu cieczy cy nazwa porusza się zatem z taką samą prędkością, jak gdyby owa cząsteczką była cząsteczką wodną, t. j. z prędkością C, obliczaną w § 9. Ze względu tego nie można bezpośrednio spisać, wynika to zatem, że kierunek jego co chwila się zmienia, gdyż wpływa na każde udarcie cząsteczki, należących do elementu, z obecni, pozytwnie unieważniając cząsteczkami M w stosunku rządu $\frac{Mg}{MC}$

Ważniejsze uderzenia cząsteczki wewnętrznych między sobą oczywiście nie zmieniają ruchu środka masy. Nabywa on zatem właśnie takiego ruchu, jaki obliczonyśmy w rozdziałach III i IV.

Jestli cząsteczkę, należącą do elementu cieczy, są unieważniany stacjonarnym spośród, np. jakże się wskazuje, to zawsze zawsze, że cząsteczki rozprzestrzeni się po krótkim czasie wskutek dyfuzji między cieczę, wskutek czego dżer nowego ruchu elementu cieczy zmienia się wskazuje stacjonarnie. Nie będziemy się z tym, zawsze dostosować definicję ruchu elementu ciecz w sposób togo ogólnego przykładu, wystarczy, że jedynym z tym, że nie możemy nam o środki masy cząsteczki indywidualnie niż naczynia dany, lecz takich, które znajdują się chwilowo wewnątrz pewnej powierzchni kulistej,
około środka mały zakres definicji. Do punktu tak określonego stosuje się wszystkie dawne otrzymane wyniki.

Widzimy zatem, że ta interpretacja zjawiska Browna różni się od interpretacji przetokum rozwinięcia tylko co do formy, ale nie do właściwej treści. Korzystając z niej jest to, że zawszeuju się na charakter ruchu wewnątrz ciała i zasady obowiązujące się, owo to niespodziewa się zgodnie z tą na pierwszzę, że jest prze-

Zarzuty Maltęsoa (§ 7) łamają się obecnie w bardzo prosty sposób, ponieważ równoleżność ruchów dla małych zakresów przestrzennych jest tylko pozioma, będąc wynikiem obserwacji statystycznej.

§ 20. Tłumacząc ruchy Browna w sposób kinetyczny, nie potrzymujemy oczywiście trawienia się o średnie energii, gdyż energię rozproszone przez turzenie wewnętrzne ma swe źródło właśnie w ener-

§ 21. Rezultaty §§ 14, 15 można też wypowiedzieć w ten spo-

co w naszym przykładzie wynosi dla cieczy: 4.10^-4 cm.

Z analogii tej wypukłym, że takie cząstki muszą dysfundować przeciw ośrodka, właśnie wskutek ruchów Brownowskich; na spód-

Zaczynamy dysfuzję otrzymujemy według wzoru $D = \frac{C}{3}$ (por. Smoluchowski, 1906, str. 137) wyniesienie:

$$D = \frac{32}{243} \pi R^2 \frac{m^2}{s}$$

(32)

co w powyższym przypadku daje $D = 10^{-4}$. Istotnie już S. Exner zwrócił uwagę na przekraczanie emulacji małych wody, które odbywało się nawet wtedy, gdy odgraniczone te ciecz bibułą.

Można tu wprowadzić pojęcie małego osadu pomocnym, z którego wynosi, że Browna jako z podstawy rozumowania (Drude, 1917, p. 549); stąd wynika prawo obniżania się prędkości pary. Każdy dostosowanie mniej prostej wartości przekraczał, już dłużej samym szerszym zakresie; w zawiesinach miasz obniżać się zjawić obniżanie punktu krzepnięcia i t. d. Zjawiska te nie będą miały znaczenia praktycznego, gdyż chodzi o różne nadrzeczywiększe jako, ale interesujące jest sam fakt, że według teorii niema pod tym względem, zasadniczo równej między roztworów z zawiesiną.

§ 22. Dopowiadajte nam to do kwestii zuw, stosować się praktyczne zjawiskiem, gdy chodzi o równie

$$a = 4 \pi R^2 \left(\frac{\rho - \rho}{\rho}\right) \theta = 1 \cdot 4 \cdot 10^{-10} \frac{R^2}{\rho} \left(\frac{\rho - \rho}{\rho}\right)$$

(33)

Zaczynamy z różnych autorów (Schulze, Cantoni, Jevons, Spring) przypuszczania, że stąd równe roztworów nie daje w związku zBrowna. Wobrże to jednak dowodzi, że stąd takie, które n aspirationa, wskutek wilkoletności spływu ziny tylko w wyjątkowych rachach mogą być osadzone dla cząstek widzialnych pod mikroskopem i dopiero w roztworach o znacz

$$a = 4 \pi R^2 \left(\frac{\rho - \rho}{\rho}\right) \theta = 1 \cdot 4 \cdot 10^{-10} \frac{R^2}{\rho} \left(\frac{\rho - \rho}{\rho}\right)$$

(33)

Zaczynamy z różnych autorów (Schulze, Cantoni, Jevons, Spring) przypuszczania, że stąd równe roztworów nie daje w związku zBrowna. Wobrże to jednak dowodzi, że stąd takie, które n aspirationa, wskutek wilkoletności spływu ziny tylko w wyjątkowych rachach mogą być osadzone dla cząstek widzialnych pod mikroskopem i dopiero w roztworach o znac

$$a = 4 \pi R^2 \left(\frac{\rho - \rho}{\rho}\right) \theta = 1 \cdot 4 \cdot 10^{-10} \frac{R^2}{\rho} \left(\frac{\rho - \rho}{\rho}\right)$$

(33)

Zaczynamy z różnych autorów (Schulze, Cantoni, Jevons, Spring) przypuszczania, że stąd równe roztworów nie daje w związku zBrowna. Wobrże to jednak dowodzi, że stąd takie, które n aspirationa, wskutek wilkoletności spływu ziny tylko w wyjątkowych rachach mogą być osadzone dla cząstek widzialnych pod mikroskopem i dopiero w roztworach o znac

$$a = 4 \pi R^2 \left(\frac{\rho - \rho}{\rho}\right) \theta = 1 \cdot 4 \cdot 10^{-10} \frac{R^2}{\rho} \left(\frac{\rho - \rho}{\rho}\right)$$

(33)

Zaczynamy z różnych autorów (Schulze, Cantoni, Jevons, Spring) przypuszczania, że stąd równe roztworów nie daje w związku zBrowna. Wobrże to jednak dowodzi, że stąd takie, które n aspirationa, wskutek wilkoletności spływu ziny tylko w wyjątkowych rachach mogą być osadzone dla cząstek widzialnych pod mikroskopem i dopiero w roztworach o znac

$$a = 4 \pi R^2 \left(\frac{\rho - \rho}{\rho}\right) \theta = 1 \cdot 4 \cdot 10^{-10} \frac{R^2}{\rho} \left(\frac{\rho - \rho}{\rho}\right)$$

(33)

Zaczynamy z różnych autorów (Schulze, Cantoni, Jevons, Spring) przypuszczania, że stąd równe roztworów nie daje w związku zBrowna. Wobrże to jednak dowodzi, że stąd takie, które n aspirationa, wskutek wilkoletności spływu ziny tylko w wyjątkowych rachach mogą być osadzone dla cząstek widzialnych pod mikroskopem i dopiero w roztworach o znac

$$a = 4 \pi R^2 \left(\frac{\rho - \rho}{\rho}\right) \theta = 1 \cdot 4 \cdot 10^{-10} \frac{R^2}{\rho} \left(\frac{\rho - \rho}{\rho}\right)$$

(33)

Zaczynamy z różnych autorów (Schulze, Cantoni, Jevons, Spring) przypuszczania, że stąd równe roztworów nie daje w związku zBrowna. Wobrże to jednak dowodzi, że stąd takie, które n aspirationa, wskutek wilkoletności spływu ziny tylko w wyjątkowych rachach mogą być osadzone dla cząstek widzialnych pod mikroskopem i dopiero w roztworach o znac

$$a = 4 \pi R^2 \left(\frac{\rho - \rho}{\rho}\right) \theta = 1 \cdot 4 \cdot 10^{-10} \frac{R^2}{\rho} \left(\frac{\rho - \rho}{\rho}\right)$$

(33)

Zaczynamy z różnych autorów (Schulze, Cantoni, Jevons, Spring) przypuszczania, że stąd równe roztworów nie daje w związku zBrowna. Wobrże to jednak dowodzi, że stąd takie, które n aspirationa, wskutek wilkoletności spływu ziny tylko w wyjątkowych rachach mogą być osadzone dla cząstek widzialnych pod mikroskopem i dopiero w roztworach o znac

$$a = 4 \pi R^2 \left(\frac{\rho - \rho}{\rho}\right) \theta = 1 \cdot 4 \cdot 10^{-10} \frac{R^2}{\rho} \left(\frac{\rho - \rho}{\rho}\right)$$

(33)

Zaczynamy z różnych autorów (Schulze, Cantoni, Jevons, Spring) przypuszczania, że stąd równe roztworów nie daje w związku zBrowna. Wobrże to jednak dowodzi, że stąd takie, które n aspirationa, wskutek wilkoletności spływu ziny tylko w wyjątkowych rachach mogą być osadzone dla cząstek widzialnych pod mikroskopem i dopiero w roztworach o znac

$$a = 4 \pi R^2 \left(\frac{\rho - \rho}{\rho}\right) \theta = 1 \cdot 4 \cdot 10^{-10} \frac{R^2}{\rho} \left(\frac{\rho - \rho}{\rho}\right)$$

(33)

Zaczynamy z różnych autorów (Schulze, Cantoni, Jevons, Spring) przypuszczania, że stąd równe roztworów nie daje w związku zBrowna. Wobrże to jednak dowodzi, że stąd takie, które n aspirationa, wskutek wilkoletności spływu ziny tylko w wyjątkowych rachach mogą być osadzone dla cząstek widzialnych pod mikroskopem i dopiero w roztworach o znac

XXX. ZUR KINETISCHEN THEORIE DER BROWNSCHEN MOLEKULARBEGEBUNG UND DER SUSPENSIONEN.

(Bearbeitet nach einer von 9. Juli 1906 der Krakauer Akademie der Wissenschaften vorgelegten Abhandlung.)

