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§1. Introduction

The purpose of this work is the generalization of some equation of
hydrodynamics for non-Euclidean spaces. The meaning of the symbols is
given in § 2. The hypothesis defining the stress tensor in viscous fluids
is given in § 3. The Newton classical equations of motion have been
assumed in these considerations, the classical approach to dynamics being
presérved. ‘

The generdﬁed equations of Navier and Stokes in tensor form
for non-Euclidean spaces is given in § 4.

Going over from the generalized form of these equations to their
form in Euclidean space, the sufficient conditions of invariability of the
constant in the equation of Bernouilli for stationary flows of incom-
pressible viscous fluids in a potential field of force are given in § 5.

The generalized Helmholtz equation is shown in § 6.

§ 7 contains a generalized form of W. Thoms on’s theorem con-
cerning the rate of change of the circulation. Passing to the particular
case of Euclidean space, Cartesian coordinates and two-dimensional flows
of incompressible viscous. fluids, we have stated the conditions for the
flow function of flows ih which the value of the circulation is constant.
The flows of that kind are represented in particular by Poiseuille’s
two — diménsional flows. ' A
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The transformation of the generalized form of W. Thomson's
equation and its application to flow of liquids for which the coefficient of
viscosity vanishes (.==0), leads to the form of the Bierkness equation in § 8.

The Bierkness equation and the assumed hypothesis of Van der
Waals concerning the value of surface tensions afford means to determine
the rate of change of the strength of vortex in the region to which a cer-
tain surface tension is attributed.

The magnitude of dissipation has been expressed using the tensor
symbols in § 10. The necessary condition for the flow-functions realizing
an extreme value of dissipation has been defined in the same paragraph.
As is shown further the particular case of such functions are functions
determining the two-dimensional flows of Poiseuille.

Auxiliary theorems marked with latin numbers and referred to in
the text are included in the appendix. The paragraphs of the appendix
have been marked accordingly with latin numbers.

§ 2. Notations

The following symbols have been introduced in the text:

xt,x;j... generalized curvilinear coordinates.

t.. time.
ai, a'™ covariant and contravariant components of the ‘metric tensor.

a=air| the determinant composed of the covariant elements of the
melric tensor.

1 0 aim
I‘{Cm:?& ( a;

dag  Oam
+ —
0xl

0x™ 0x

) the Christoffel’s symbols of
the second kind.

V.,V ... operators of the contravariant and covariant derivative.

jok ... are the components of the mixed curvature tensor of Riemannmn.

A= 5;_—_{1 I=1 signifies the so-called unit tensor or the so-called
01+#1i Kroneckers‘ symbol.

¢ ey are the contravariant and covariant components of the so-
-called e-tensors (Lipka tensors). These components assume the values
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e =gur=0 if at least two indices are equal

-: for I=i+41, k=i+2
itk == Va
L for 1—it2, k i1
ya It ke
- |/E for I=i+1, k=i+2
—Va for 1=i+9, k=it1.

If the indices i+1 or i+42 exceed the number 3 we replace them
by (i+1)—3 or (i+2)—3 respectively.

Fi* ... components of the stress tensor.

v, vj... contravariant or covariant components of the velocity vector.
ri,rj.. components of the rotation of velocity.

b',b;... components of the acceleration vector.

K',K;... components of the vector of body forces.

p... density of the fluid.

D scalar function of pressure.

... coefficient of viscositjr.

In our further considerations the fluid will be assumed to be homo—
geneous and isotropic as to viscosity, i. e. p.= const.

All the functions determining the magnitudes mentioned above are
assumed to be continous and regular; the class of regularity being chosen

- according to necessity in the particular cases considered.

After general considerations the following particular cases Wﬂl follow:
Euclidean space.

Two dimensional flows.

Potential field of mass forces.

Stationary motion.

Irrotational motion.

Frictionless fluid (p==0).

A U 5 L

Incompressible fluid (p==const. y;v/="0).
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§ 3. The stress temsor

As to the components of tensor determining the stress in viscous
fluids, we assume the hypothesis (H,) of linear dependance between this
‘tensor and the components of the unit tensor A¥ and the deformation
tensor v* v+ yivF (being a generalization of the deformation tensor in the
Cartesian system of coordinates). The mixed components of the stress
tensor are as follows, as results from the assumed hypothesis:

Ff = o Af +p. (7" v; + v;04). (Hy)

The value of o is assumed in linear dependance of the pressure p
and the divergence of the velocity vector y/v;. We have. then

a==a¥*p +Byv;. (H,*)

We obtain from (H,)
F} = (% p -+ By' o) Af + (7% )+ v, 0%).
Contracting the tensor Ff we get
Fi=3a*p+(2p+ 38 y'vr.

We assume further that Ff does not depend on the divergence of the
velocity vector and we obtain: '

p=—2p (H,*¥)
3 1
P is called the coefficient of viscosity.
For incompressible fluids, i. e. when y'p;=0, we get from the equa-
tion (3.1)

k : ,
Fi=a*p Af +p(v* v; +yioF). (3.2)
The pressure p is assumed.‘to be equal to the arithmetic mean of
the sum of normal components of stress tensor taken negatively, i. e. the
componentls for which i=k. Because of the assumed incompressibility
of the fluid we get from equation (3.2) ‘

Fi=3a*p.

icm
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And thence according to the definition of pressure given above we obtain

(Hs)

The assumption (H,) is generalized also for compressible fluids.
Introducing the constants B and o from (H,**) and (H,) we get
together with (Hy)

k 2 3
Fj =W~(p+-3—P-Vtv’)A§+ (v v; + v;05). 33)
Hence the contravariant components of the stress tensor become
2 ; ; ;
R — (p + ?PVIDI) a* + w(yF ol + yiok) (3.4)

§ 4. The generalized equation of Navier-Stokes : ,

In order to establish the generalized equations of Navier-Stokes
we write the equation of motion due to Newton equalizing the contra-
variant components of the inertial forces to the sum of contravariant
components, of body forces and stress forces (surface forces).

We get components of stress. (surface) forces by forming the diver-
gence of the stress tensor ye F'%. It is a generalization of divergence of
%xl: which
stands for the i-component of the vector of stress {superficial) forces
coresponding to the unit volume of fluid.

Assuming the symbols of § 2 we get the equation of motion in the

form: [1]

stress tensor in the Cartesian system of coordinates, i. e.

b —Kit -El;kafk. @

Decomposing the acceleration vector into local and convectional com-
ponents, we obtain: )

dvt

bt
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7 —

Let us substitute b' from eq. (4.2) and F* from eq. (3.4) into the equation
(4.1). Applying to the components of the metric tensor the Ricci theorem
concerning the vanishing of contra and covariant derivatives of that tensor,
we obtain:

v 2

For non-Euclidean spaces the operation VeV U* is not equivalent to the
operation v yi vk, as the following relation takes place:

Vi VO =yl oF —allpm REy, (4.4)
where

R}l::lm = le (44)
are the components of the Riemann-Ricci tensor obtained from contraction
of the Riemann curvature tensor. By substituting v y'oF from equation
(4.4) into equation (4.3) with regard to equation (4.5), we get the eq.

dvi . kpim ki L1 s 1w o &
5f tuvioi=K p VP T g Vot

(4.6)
+ %Vk Vk l)i“—% ail p™ le-

‘The above equation is a generalized form for the non-Euclidean spaces

of the Navier-Stokes equation.

In the particular case of Euclidean
spaces, where Rj,=

0, and in Cartesian systems of coordi-
nates, where Vk=5%, the equation (4.8) becomes the well-known

form of the Navier-Stokes equation in that system of coordinates.

ov

0
’5‘?+Uka_5c‘g=K—% grad p—f—%— grad div 'v-}——%—Av (4.7)

where v denotes the vector of velocity, K the vector of mass forces. .

B

6
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§ 5. The gradient of the Bernouilli constant

The Bernouilli constant will be defined as a sum of scalar magnitudes:

P15 5.1
Q+p+2l)l)k (5.1)

where @ signifies the potential of body forces. The change of that constant
' 1 =
throughout the space is determined by the gradient V (9 + —I;— + ) ¥ Dk) -

In order to evaluate that gradient, let us consider the general equations (4.6).

Substituting in eq. (4.6) the second term of the left side by the
expression from equation (I.4) (Appendix) and the fourth term on the
right from equation (II.4), we obtain at once

ov' : 7 1 1 i
%% —eMmujepsyv*=Ki— e vVp—5V v o, +
+ %‘%V‘ Ve vk — —l;‘eﬂm Vi {emrs Vrvs} - 2% a'vm Rh" N (52)

If in a particular case there exists the potential of body
forces, the term K’ becomes

Ki=—ViQ (5.3)
where @ signifies the potential of body forces. .
Introducing by means of the e-tensor the components of the rotation
vector of velocity:
e = €mn Y V" (5.4)
and remembering that in the whole region considered the value of(;hze
coefficient of viscosity p is assumed to be constant, we get from eq. (5.2)

Ny ’ 1 /4. . _
_%li)f___’eilmmrm_—:.——vi(g—[—%Dkl)k)+?V'(’3'P'Vkl)k—p>

P gim Vitm—2 2 atpm Ry (5.5)
p p
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Further, confining the considerations to the case of stationary
flows for which the condition %i =0 is fulfilled, as well at to flows
of incompressible fluids for which the density p=-const. and

accordingly vrv¥=0, we get from eq. (5.5):

v (Q + —;— v¥ o + {—:—) = gilm (m Fm— % V,rm) —32 % a'v™ Ry, . | (5.6)

The left side of the eq. (5.6) determinés the gradient of the constant

of Bernouilli. It results from this equation that in the particular case of
irrotational flows, when the components of rotation r;==0, this
gradient becomes

v (9 + -—;—vk v + %) = —‘2 -%— allo™ Ry . (5.7

For Euclidean spaces where Rin==0 the right side of the equation (5.7) .

vanishes.

In irrotational stationary flows in non-Euclidean space the value
of the so called Bernouilli's constant depends on the metrics of space.
In Euclidean space the Riemann-Ricci tensor Rin=0 and the -equation
(5.6) assumes the form

o (9+%+%Dkvk>=eﬂm (mrm_._;.‘_v,rm). , (5.8)

The~’vanishing of the right side of 'the equation (5.8) determines
such fields of velocity of stationary flows of incompressible viscous fluids

for which the magnitude (@ +—% -{—%vk m) is constant in the whole re-

gion considered. In the case of three-dimensional spaces (i =1, 2,3) such
a field is determined by ‘three equations which together witch- equations
(5.4) determine the 3 components of the velocity vector vi.

Let us consider at, present the case of vanishing of the right side
of eq. (5.8). In the particular case of ideal fluid (for which the coef-
ficient of viscosity =0) we obtain i

elm prpy, = 0. ' - (5.9)

]
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That last equation is evidently satisfied for an irrotational vector field
i e for rm=0, it is satisfied as well in the case of linear dependence
of both vectors. In that case

rj=c.vj
where ¢ is a constant coefficient. We have therefore
My ry =celmp p, =0

as the e-tensor is skew-symmetrical (§ 2).

In the particular case of two-dimensional flows x? = const,
v;=0 in the Cartesian system of reference for which we write:
x'=ux, x*=y, v;=u, v,=D; We obtain:

_Jdv  du

r1=f2=0 rs—a’;_—@.‘

If the right sides of eq. (5.8) vanishes we obtain the system of equations: )

ov Ou\. p 0 Bu_a_u —0
T R
(5.10)
v du\ u 0 (dv Ou —0
”(55&_5@) ?ay(ax By)—'

Assuming the existence of a flow function' ¢ (x,y), we express the ’
components of the velocity vector by equations:

0% _9 (5.11)

uzay, == —6;_

Substituting the values from eq. (5.11) to eq. (5.10) we obtain:

P-a(A‘;’)__ 9_‘lfAv
P 0x  dy ¢
b 040 _ 3%y,
vy x|
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thence with regards to (5:11) |

v=c.grad (A ) (5.12)

where v is the velocity vector, the components of which are u, o, and c‘

is an arbitrary constant.

The assumption that the gradient of Bernouilli’s constant vanishes
leads to eq. (5.12) which expresses the linear dependence between the vector
gradient of the Laplacian of the flow function and the velocity vector.

§ 6. The generalized equation of Helmholtz

The local changes in the course of time of the rotation of the velo-
city vector are determined in the Cartesian system of coordinates by the
equation of Helmholtz At present a generalized form of that equation
for non-Euclidean -spaces will be given. For our further considerations
we assume the existence of the potential of body forces, i. e. we postu-
late the validity of the equation (5.3). The magnitude pxy* o' occurring on
the left side-of equation (4.6) is replaced by its value from equation’(I.4).
Taking the eq. (5.3) into account, we get from eq: (4.6): '

' o 1 . 1
t-meefdonf g
+*2;Vkvkvi—%aikv‘Rkt. . (6.1)

" Taking the rotation of both sides of the vector equation (6.1) we obtain:
n 0V n foil i 1ok
€mni V m""'emniv {e (7] rp} = Cmni J" { V' Q + *2’“1) T)k)} -+
+e n 1 i P‘ k n 1 ki
mni ¥ ‘{;‘V g Ve —p + P enni ¥ —{J‘“VkV il —
(6.2)

— Cmni V" {—;— allpt R”}.

To the second term of the left side of equation (6.2) we apply the
theorem (III.2), that is to say:

N il —_
€mni Y™ (€™ V1Tp) = U VP T — I'm Y2 0 + 1 VP U —Up Y T . (6.3)
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To the first term on the right side of eq. (6.3) the theorem (IV.3) is
applied, i. e.

V' pp=0. (6.4)

According to theorem (V.3) the first term on the right side of eq. (6.2)
vanishes. To the second and third term on the right side of eq. (6.2) the
rule of contravariant differentiating is applied. Introducing a vector the
components of which:

w1 :
Sr— V?LT (65)
we get
Crmui Y “1;Vi —(kav"‘* = epn; SP O P L
) 3 3 p mni 0"y S_VkU p
1 ol s k
+’p—emniv hd -3"VkU ——p) (6.6)
and ’

1 ; ; .
1 emni V" {—P~ Ve vF v'} = emns S" Yk VF O + —};— €mni V" Vi VF U (6.7)

The second term on the right side of eq. (6.6) vanishes according to
theorem (V.3).

The magnitude y" yi y* v’ occurring in the second term on the right
side of eq. (6.7) may because of eq. (IL.5) be replaced by the expression
V' v¥yrv. The expression y"y*yiv' is evaluated by means of eq. (VI.1).
On account of that equation the operation y"viy* in non-Euclidean space
is not equivalent with operation yry*y". The substitution of the magni-
tude v*yivFo' by vivFy"v together with the terms where the compo-
nents of the Riemann tensor of curvature are involved, allows to obtain
directly from the generalized Helmholtz equation the well-known form
of that equation in the Cartesian system of coordinates.

When eq. (VIL.1) is taken into account, the eq. (6.7) becomes:
1 Koyl — . Sn -k 351 .&_ . y O N
¥ emni P* —p‘VkV DI =t emai Sy VF O+ o emni VEVEY"D +
(6.8)

3 in o1k (DI i | nl ok s I
+ I—P-emm gi"al* (R}, viv'— R vs0) Y emm @™ yFv° R, .

Let us transform now the first term on the left side of eq. (6.2).
‘The components of rotation are given by equation (5.4), therefore:

1
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i ov e W=

art emlp_aa_t(vv)——emlpat{al(a ]—|-l) l%)}_
dvr 0t

—-emlp& {aaj (0@1):) ()al)t F]pl}'_emlp aJV] Ot —'emlpV O)t (69)

The expressions from equations (6.3), (6.6), (6.8) and (6.9) are now substi-
tuded into equations (6.2). The equatlon (6.4) is to be respected regarding
the equation (6.3) and eq. (V.3) regarding the eq. (6.6).

Thus the equation (6.2) becomes:

()ar? +Tm VP Op—Tp VP’ O + Up VP P = i S™ ¥ ('{‘;‘Vk v"*P) +

+ W emni S Y VE U - J;— emni Vi VEVE DI
- |(6.10)

+ “S‘ emn &/ &% (Rljs vi 0*— Rij ye0!) —

‘ 1 .
"_% €mni & Vk v Rijs — Y Cmni " {'b' alyt RH} .

The above equation represents the generalized form of the equation of

Helmholtz In ‘the particular case .of nonviscous fluid (|L—0)
the equation (6.10) assumes the form

0

rt + T V- 0p = Tp VP Um + 0p VP T+ € S P p=0. (6.11)-

The Riemann tensor of curvature does not appear in that equation.
For Euclidean spaces for which Rir=0, Ry=0 and for

incompressible fluids (p=rconst) i. e. v"—l—mS"mO, VvV oj=0
the general equation (6.10) assumes the form: .
ar )
3 ——rpv Dm-—v,,vf’rm~—invkrm (6.12)

12
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In the Cartesian system of coordinates that equation assumes the
well-known form of the vector equation:

or ov 90 ‘
'5?“*7"0——1)16; —f— (6.13)
where r and v denote the vectors of rotation and velocity

§ 7. The generalization of the Thomson’s theorem

A generalization of the W. Thomson’s theorem concerning the
rate of change of the circulation of the velocity vector of viscous fluids
for non-Euclidean spaces will be given in the following paragraph.

For that purpose let us consider the scalar magnitude of the curvi-

linear integral f v'dx; in a given vector field of velocity: v* along a closed

¢
path ¢. The generalized coordinates of the curve considered will be writ-
ten x;. Let us consider the derivatives with respect to time of that cur-
vilinear integral. As in general the vector field »' is variable in time,
the coordinates x; of the closed path of integration also vary with time,
as its points are carried with the velocity »’. Therefore we have:

ad‘z)(vidxf=

"As the function under the second sign of integration is a -gradient,
the curvilinear integral along a closed path of that function is equal to
zero.. Thus the second term on the right side of equation (7.1) vanishes.
The function under the first integral sign on the right side of eq. (7.1)

LZ; dw; +— fv vk o) daxt. (7.1)

4

The term —;—V" (OF vi) is
brought on the left side of that equation and the left side becomes:

e + —V Tpk o — e vy @ T U5
Applying to the two last term of the above expression the equation (I.4)

and respecting -the equation (4.2), we may write:

dvi 0V

st 7.2
dt = ot @2

+ V ipk D — €™ vy eprs v v,

13
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The right side of this equation is being replaced by the equivalent
. dv' :
expression from equation (5.2). The magnitude —d-;- expressed in that way
is substituted into the first term on the right side of equation (7.1). The
equation (7.1) becomes:

%j{vidxi=fKi dx,-——f—:;—v"pdxi +:;—[Lf%vi\7kvkdx"——
‘ (7.3
— f%e”mw{emnv' v} dxf——ZPLf—;-a”v’" Rim dx:.

This is the generalized W. Thomson theorem for flows of viscous
compressible fluids is non-Euclidean spaces.

In the particular case of Euclidean space, assuming the exi-
sténce of potential of body forces i e the equation (5.3) and
respecting the equation (5.4) we get:

d( . 1 . 4 1 . ; 1 .
-&ifbrdxi:.__;f_{)_vtpdxi—{—?pf?lekvkdx‘-——t;‘f—p_elmnvmr"dxi. (7.4)

Assuming that the liquid considered is incompressible i.e. p=const.
and accordingly vro*==0, the first and second integral on the right side
of the eq. (7.4) vanish and we obtain:

d ; 1 . .

d_tfvl dxi=~—p f?e”"”vm T dx,- . (75)
¢ ¢

Assuming in addition that the fluid is nonviscous i e. p==0, we

get the classical form of the theorem of W. Thomson expressing the

invariability of circulation in an ideal fluid in a potential field of forces.

. Let us apply the generalized theorem of Stokes [2] to the right
side of equation (7.5); we get:

faidxi=ffe"”vraxdsi
¢ N

where dSi=mn; dS and n: — signify the components of a unit vector
normal to the surface S, where dS is the afea of the surface element.

(1.6)

14
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Applying the generalized theoremr of Stokes as givén above to the
integral on the right side of equation (7.5), we get:

-{% eimn Vi Tn dxi — ffeirxvr{% esmnvm rn} dSi .
¢ 8§ .

Performing the covariant differentiation under the integral sign on the
right side and respecting the assumption that the fluid is incompressible

(1.7

i. e. p=const., Vr%:() and substituting the expression from the equa-

tion (7.7) into the equation (7.5) we obtain:

%fvidxiz—}’wff%— ey, {eamn vy 1™} dSi. (1.8)
c s
The system of differential equations:
e Yy Camn YT =0 i=(1,2,3) (7.9)

where "= e™!y,v:, determines the fields of flow of.viscous fluids in
which the magnitude of the circulation does not depend on time.

For a physical interpretation of the system of equations (7.9) let us
consider a two-dimensional flow in a Euclidean space and in
Cartesian codrdinates. Let the components of velocity »;=u;
v, =7, in that flow depend on the Cartesian coordinates x,=x, X3 =Y.
In that case the components of the rotation of the velocity vector become:

ov Odu
ri=0, r,=0, rs"—“a;”—@-

To express the function ‘under the integral sign on the right side of eq.
(7.8) it is necessary to form the expression rotrotrotv where v is the
velocity vector the components of which are u, v. For that purpose we
form the expression rotrotv the components of which may be written:

x_ 0 [0v_ 0w
" ay(dx 0y)

_ .0 (0v_ Ou
Te = 9x\0x " Oy
ry¥=

15
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and thence the components of rotrotrot v are

" es_ 0 9
rFF=0, r,**=0, r* :@(Au)—a:‘ (Av).
From the equation (7.9) results:
0 Q- '
a—g(Au)Ma;(Av)=0. (7.10)

Writing ¢ (x,y) for the flow functions and determining by help of
eq. (5.11) the components of velocity w and o, we get from eq. (7.10)
0*d

04(;) 64(:) \
7w T 2oy T oy =0 B

If the flow function determining by means of eq. (5.11) the field of ‘

velocity of a two dimensional flow of a incompressible viscous fluid,
satisfies the biharmonical equation (7.11), then the magnitude of the cir-
culation is independent of time. '

In particular the equation (7.11) is satisfied by flow functions deter-
mined by the polynome of third degree of the variables x,y

Y =ax’+ bx’y +cxy® +dy* + ex® + fxy + gyt +hx+ky+m  (7.12)

where a,b,c,..m are constants. The flow function (7.12) determines in
particular the two-dimensional flows of Poiseuille.

§ 8. The generalized equation of Bierkness

‘ In order to deduce the equation of V. Bierkness we part from
the generalized equation. of W. Thomson (7.3). Let us assume in parti-
cular the existence of potential of body forces i. e that the
equation (5.3) is fulfilled and that the fluid is nonviscous i e.
p=10. In that case we obtain from equation (7.3)

d [, 1,
azfv dxi=—f?v’pdxi (8.1)
¢ (=
transforming the right side of that equation according to the generalized

theorem of Stokes eq. (7.6); we get:

16
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d [ . . 1
ng vidax; =— ffe"“ Vr {—P— Vs p} ds;. (8.2)
¢ N

Finding the covariant derivative of the product in brackets and
remembering that: e y,ysp==0, eq. (V.3), we replace the left side of the
equation (8.2) by the expression from the generalized theorem of Stokes

[2] and remembering that V,%=-—% vrp we get finally:

i 1.
ad‘iffeanr DSdSisz-p_iet”(v’p) (Vsp)dSi. (8.3)
s §

This is the. generalized equation of V. Bierkness. The integral
on the left side determines the so-called strength of vortex or vorticity.
Under the right integral sign, there is a vector product of the gradient
of density and the gradient of pressure €”*(y.p)(v:p)-

To find a physical interpretation of the eq. (8.3), let us consider again
the particular case of two-dimensional flows in the Euclidean
space and in Cartesian coordinates (v,==0, x;=const). The
components of velocity v,=u, v,=0v depend on the coordinates x,=ux,
X, =1 Puttihg '

_Ov du
r= E—Ty
we get from eq. (8.3)

d _((L(2.op_0s p
N N ’

As the last relation shows the rate of change of the strength of vortex
depends on the Jacobian of the function p, p ascribed to that vortex.

§ 9. The rate of change of the vorticity and the surface tension

The equation (8.4) allows to draw a conclusion at to the rate of
change of vortices in the regions in which we encounter the phenomenon
of surface tensions. That conclusion may have a certain importance in the
regions -extending on the boundaries of two different media. St.lrface
tensions appear in such regions as a result of difference in l?ropertles of
the media considered. Surface tensiogg:ig the boundary region between

2. Prace Matematyczne t. 48. 17
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fluid and a solid body are encountered in flows in conduits. Thej'y occ.ur
in the region near the walls. This phenomenon is in close cpnnemon with
the phenomenon of change of vorticity in that region. ‘ Thl.s change n.rlay
be important for the phenomenon of turbulence appearing in that region.
To explain the relation between the phenomenon of change of vor-
ticity and the surface tensions, let us assume according to van der Waa'ls [3],
that the density of the medium is supposed to change continuously 1n.the
boundary layer. According to that hypothesis, the density p of .the medium
varies continuously and monotonously from the value of density p, of one
medium to the value of density p, of the other (fig. 1).

S

2

&

~ o= e e
~ .

o]
hALE b

Fig. 1.
According to van der Waals, the surface' tensions attributed to the

boundary layer extending in a certain region bounded by planes perpen-
dicular to the wx-axis are determined by (3]

:
. c dp\r d*p
— f [(J;)‘d?z] dx (9.1)
13 ‘

where ¢ is a constant §; and §, are any values taken from the regions
where p; and p, are constant. Integrating by parts the second term on

18
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the right side of eq. (9.1) and respecting the condition that for x==§,,

x=Et, is %=0, we get:
& dove
ve=c | {22\ gy
Y Cf (dx) dx. (9.2)
It results from the last relation that in the case of existence of

. . .. d
regions in which a-‘;paé 0 a certain surface tenmsion 70 corresponds to

those regions. Inversely if in the given region 7540, then in that region

Let us assume a certain region bounded by two parallel planes
delimiting two different media. A rectangular system of coordinates
x,y is introduced with its x-axis perpendicular to the bounding planes
and the y-axis is parallel to the velocity of a two-dimensional flow taking

place between the planes mentioned. Let us assume that g—;;i 0. The

eq. (8.4) gives:
d . " (1dpo :
Itffrdxdy:}f;gz%a—sdxdy. ©.3)
§

As there exists a certain surface tension in the transition region between

two mediums, then gi# 0. In that case it may happen that %53—5#0,

hence it follows by help of eq. (9.3) that the magnitude of the flux of
rotation variés in time.

Thus the existence of boundary (transition) regions occurring for
instance in conduits near the mwalls characterized by a certain surface
tension causes the circulation to vary mwith time. The variable circu-
lation and the resulting variability of the vector of rotation may be of
importance in connexion with the phenomenon of turbulence in the
boundary layer.

§ 10. The dissipation and its extreme value '

In order to determine that part of the work of stress forces which
is transformed into heat, let us consider a volume of an incompres-
sible, viscous fluid bounded by a closed surface S. The work done
by the stress (surface) forces may be expressed by the integral:

19
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[F* v, dSk (10.1)

where dSy =nrdS and n; are the covariant components of a unit vector

normal to the surface § and dS denotes the area of the surface element.

Replacing the surface integral (10.1) with help of the generahz.ed
Gauss theorem [2] by a volume integral extended over the whole region

enclosed by the surface S, we get:

[F*v;dS, = [vi F* vidV. (10.2)
S 14 )

Since ) . "
v F¥ o= ik F* 4 Foyem

therefore the work of stress forces expressed by the i‘ight side of eq. (10.2)
may be written :

, [ e F*vidV = [ ooy F*aV+ [ FEyividy.
14 14 14

Assuming the existence of the potential of body forc.es
i. e. the validity of the eq. (5.3) we get from eq. (4.1) the following
relations: :
1 -d{@®'p)

v B = p 2 Q. (10.3)
vyl =p =gy T eviv (

The first term on the right side of eq. (10.3) assume now the form

d(vivi)dV‘l‘{‘fUiViQdV'

i 1
f”"""deVzi" dr
14 v 14

-As it follows from the last equation, a part of the whole work .of
stress forces given by eq. (10.3) is equivalent to a change of poter%tlal
and kinetic energy. The remaining part of the work of stress forces i. e.
f F*yrv:dV is transformed into heat.

Substituting for F** its value from eq. (3.4) we obtain:

v vi=—(p+~§~wjv")ﬂ"“vkvf+ pEo -+ Vo v o

ioecause of the assumed incompressibility of the fluid i. e. y'vi, we get
for the value of heat generated by the stress forces:

"20
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(10.5)

D= [ F5iv! dV = [ (70 +50) vy oy V.
[ 4 )

This magnitude is defined according to Rayleigh as the dissipation [4].

To find a simple physical interpretation of the above magnitude let
us consider a two-dimensional flow in the Cartesian system
of coordinates. In that case we write X=x, *=y, v=0,=u,
v*=7v, =1; the value of the dissipation D evaluated from the eq. (10.5) is:

oul® [dv\®, 1{0u  dv\?
oo [ 3 20532
w 0x+6y+2 0y%6x dxdy.
Bgcause of the postulated incompressibility of the fluid it is possible
to assume the existence of the flow function ¢(x,z). The components of
the velocity u, v are determined from the flow function by means of eq.

(5.11). Substituting from eq. (5.11) ‘the values of velocities into the eq.
(10.6), we express the dissipation in the form:

024 \2 1 {029
o [l + 3 (5
2p 2 0x 0y + 2 6x“‘+
We find now the necessary conditions for the flow function to satisfy
50 as to make the dissipation assume an extreme value in the given region.
Applying to the D expressed by eq. (10.7) the necessary condition for the
existence of an extreme value [5], we get

(10.6)

2 g \2
g q’) }dxdy.

pI% (10.7)

0*¢ 0% 04
W+6W+a_1/4=0. (10.8)

The above equation together with the boundary conditions determines
the flow function ¢ (x,y).

The field of velocity of two-dimensional flows of incompressible
viscous fluids given by a flow function eq. (10.8) possesses the property
that in the region considered the work of the forces of internal friction
transformed into heat assumes an extreme value.

The functions ¢ (x,y) satisfying the eq. (10.8) are in particular poly-
nomes of the third degree of the variables x,y. The fields of velocity
determined with the help of eq. (5.11) by the function ¢(x,y) include as
a particular case the two-dimensional flows of Poiseuille.

21
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APPENDIX

§ I.. With the help of the e-tensors introduced in § 2 the compo-
nents of which are e¥, ey the components of the rotation are written as
follows:

re= e V0. €1)

Similarly, with the help of e-tensors the vector product of two vec-
tors v, Si may be defined by:
ul=-e"*v; 5. (1.2)
In the case of Cartesian. systems of coordinates in Euclidean spaces
the well known expressions for the components of rotation and the vector
product are easily obtained from the definitions (L1) and (1.2).
The magnitiudes defined by the equations (I.1) and (I.2) may serve
us to write the following relations: )
k 4yt 1 ik i
vryFvi= oy oF o —ul (1.3)

where 1 is the vector product defined by eq. (I.2) in which instead of
Sy the magnitude ri has been substituted from eq. (I.1).

We get therefore from equation (I.3)

vry* vf:%vi v* o — e vy e 7P O (1.4)

The accuracy of this equation may be proved by considerdtion of the
properties of the e-tensors (§ 2); therefore:

e v1erst VU == Vi1 0T — D142 ¥ 0 — Digy P D! | DO not sum
with respect
to i!

o (1.5)
_I_ DH_2V1DL+2

for i=1,2,3.

Applying the theorem of the contravariant derivative of a product
and the theorem of Ricci concerning the vamshmg of contravariant deri-
vative of the metric tensor, we obtain:

v oFor=2vryivk. (1.6)
22
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Substituting (1.5) and (I.6) into the equation (1.4), it is proved to be
1dentical.

§ II. Because of the properties of the e-tensors given in § 2, and
as the contra — and covariant components of these tensors vanish, i. e.

Vi€rst =V et=0 (H'l)
the following relation takes place:
€M™ Ty enpgVP VI=Vi41 V' ' —yip §12 D — iy i1 0f 4] Do notsum
. with respect (II.Z)
+ Yize Y02 to it

i=1,2,3.

Introducing the mixed tensor of Riemann (the curvature tensor) the
components of which are Rj, and respecting the relations

(Vive—vev) v-=0r B, =" Ry (I.3)
where Ri, are the components of the so called Riemann-Ricci tensor, we

can prove, with the help of equations (I1.2) and (II.3) the identical equation:

(I.4)

ViV U = 7y DF — e g {enrp YT OP}— & 0P Rip . |

The left side of this equation may be replaced by the expression

KV VU)" as:

L vk v o = apa™t plym v =37 vlym o' =y v 0" (I1.5)

. 0
In Euclidean spaces and Cartesian systems of coordinates: Rip=0, vi= ks
The equation (II.4) assumes in that case the form, well known in the
Cartesian system of coordinates, of an identical vector equation:

Avp= grad div v—rotrot v.

§ I As the rule of differentation for a contra — or covariant pro-
duct of two magnitudes is the same as for the common differentiation -of
a product of functions, the following relation may be proved to be identical:

23
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ptlg by i—vwPHla, 1b, — yP*2a,.0b, + yP128p bpyg= | Do notsum
v p Oy p+1%p =V p20e TV with respect  (III.1)
=a,,v"b,~—b,,via,~—|—biv’ap——aivlb,,. to p!

When the value of (p+1) or (p+2) is greater than 3, it must be replaced
by (p+1)—3 or (p+2)—3 respectively.. Because of the equation (II.1)
and respecting the properties of the e-tensors (§ 2) the left side of the eq.
(IL.1) is identical with the expression eprs v’ (€™ am bn). We get therefore:

€prs V' (€™ ap, bn) = 8, v bi—bp Vi ai + bivia, —aiviby . (TI1.2)

§ IV. Let us consider now the following scalar magnitude Vm ef’“'ik ViUg.
Because of the properties of the components of the e-tensors (§ 2) and
respecting the equation (II.1), we may write:

) 1
Vim €™ ;01 ==7§ [(V1V2—VaV1) Uy +(VaVs— VsVa) 03 (VaVi— ViVs) 0o . (IV.1)

Replacing the expressions in parenthesis on the right side of eq. (IV.1) by
(Vive — Ve Vi) vi=—v, Riu
and respecting' the following property of the curvature tensor of Riemann

Rixs + Rk + Rie =0

we see that

Vme™ ;0 =10 (Iv.2)

and thence

V™ emir V' OF = 0. (IV.3)

The relations (IV.2) and (IV.3) are the generalizations of the following

relation, well known in the Cartesian system of coordinates:
div rot v=0.

§ V. Let us consider now the components of rotation expressed by
means of the e-tensors. The vector field v™ in which we form the
rotation be itself a gradient of a function ®:

24

I

icm

Generalization of some equations of hydrodynamics 25

Tk = ey y'y™ . (v.1)

Writing the eq. (V.1) with the help of the components of the e-tensor
§ 2), we get

=]/5(VX+1VA+2¢_VL+ TEHLD) (V.2)
As the operation y'y/, when applied to scalar magnitudes in Riemann
spaces, is equivalent to the operation Wy’ we get from (V.2)

r Tr=eumylym ® =0, !
1 |

(v.3)

The eq. (V.3) is a generalization of the well-known relation in the
Cartesian system of coordinates:

rot grad ®=0.
§ VI Let us consider the operations y™(y*yx)v® and (v v*) y™ o™

These operations are not equivalent in non-Euclidean spaces. As it is
possible to show, the following relation takes place:

[v™ (v* Vk)—(VL Vv o

— gml s Pn
ayr iRy

=a™ a'* (Rf, v v*— Rig vs0")
(VL1)

%
The second term on the left side of the last equation can be written:
(V7)) v ot = (V* p) y" 0" =y* @™ yi yio" =
— Vk aml (V‘ Vk vn+ o R?ks)'
We get therefore:
(V1.2)

¥

(VL3)

[Vm (VL VI\) —_ (V’» Vl\) Vm] P == [Vm Vk —_— Vk Vm] Vi pt— gml Vk D’ R;‘k.s .

Putting ¥
Yk U =M

and respecting the relations:

(viyi— vive) Mii = Mi Rii; — MY Riae


GUEST


26 J. Litwiniszyn

e

we get . -
(™ v —yFy) e 0t = aim glk (M{ Ry — Ms Aik)

and substituting the last magnitude into the right side of the eq. (VI.2)
with regards to eq. (VL3), we get on the right side of eq. (V1.2) the
expression identical with the right side of eq. (VL1).

As results from the eq. (IL5) the operation (vev¥) v 0" on the left
side of eq. (VI.1) may be replaced by the equivalent operation (v* vr) Y™ O™
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Sur les équations intégrales et intégro-différentielles
a singularité polaire

O réwnaniach catkowych i catkowo-rézniczkowych
z osobliwoéciq biegunowg

Par

J. WOLSKA (Varsovie)

1. Introduction

Dans ce travail nous nous proposons d’étudier les équations intégrales
et intégro-différentielles avec la singularité polaire. Les équations de cette
espéce étaient étudiées pour la premiére fois par O. Kellog (Gotting.
Nachr. 1902) dans le cas particulier du noyau singulier ctg(x—y), et par
D. Hilbert (Grundzige einer allgemeinen Theorie der Integralgleichungen
1910). Ensuite H. Poincaré a donné une méthode générale pour 'étude
des équations intégrales de seconde espéce avec le noyau singulier ana-
lytique (Théorie des marées, 1910). L’équation intégrale-avec le noyau
4 singularité polaire a été étudiée aussi par H. Villat (Acta Mathema-
tica, 1916). G. Bertrand (Comptes Rendus de ’Académie des Sciences,
Paris, 1921) a généralisé la transformation de H. Poincaré pour les
intégrales le long des courbes fermées dans le plan de la variable complexe.
W. Pogorzelski dans le travail ,Sur les équations intégrales singu-
lidres de premiére espéce” (Comptes Rendus de la Societé Polytechnique
de Varsovie, 1924) et dans d’aufres travaux (Journal des Mathématiques
1939, et Mathematische Zeitschrift 1938) a étudié les équations de pre-
miére espéce linéaires et non ‘linéaires avec -les noyaux a singularité
polaire et logarithmique. G. Giraud (Annales de 1'Ecole Normale Supé-
rieure 1934) a étudié le cas général d'une intégrale de Cauchy dans
Pespace & n dimensions.
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