18 W. Slebodziziski.

.‘J(fi:E[()C],.,.,XI;, t), f’—'—-‘t,

W pracy niniejszej wykazujg, ze teorje geometrji reonomicznej mozna
skonstruowaéd, wychodzac z nastepujacego zagadnienia réwnowaznosei:
dane sg dwa ruchy ciaglego osrodka w 7-wymiarowej przestrzeni eukli-
desowej; zbadaé, czy ruchy te moina przeprowadzi¢ jeden w drugi za
pomocy przeksztalcenia euklidesowego o spélczynnikach bedacych funk-
cjami czasu f. Zagadnienie to postawil i rozwiazal prof. K. Zorawski
w rozprawie ogloszonej w r. 1911 w Biuletynie Akademji Umiejetnogei
w Krakowie. W ust. 1 i 2 tego artykutu rozwijam inne rozwiazanie tego
zagadnienia, oparte na zastosowaniu ukladéw form Plaffa. W nastepnych
dwéch ustepach wyprowadzam z réwnan zagadnienia réwnowaznosci
teorje koneksji reonomicznej oraz uzasadniam réwnania jej struktury,
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On the representations of a number

as a sum of squares.
By

T. Estermann (London).

Introduction.

If r¢(n) denotes the number of solutions of the equation
xRt xd=n

in integers X;, X,,..., X, and})

[se)
() Y= Y e (3%>>0),
M==—0)
then
/-L_D‘
) (3,0} =Y ri(n)eins (35>>0).
n=

The object of this paper is to use (2) for the evaluation of 7,(n)
in the cases $=15, 6, 7, 8 in a more elementary way than has been
done before®). Thus I hope to make the subject accessible even to those

1) Readers familiar with elliptic functions will perbaps prefer the notalion ¥, (0}z),
but the simpler notation 4 (1) is sufficient for the present purpose,

%) Hardy, Trans. American Math, Soc, 21 (1920), 255 — 284, and Proc. Nat, Acad.
of Sciences 4 (1918), 189 —193.

Mordell, Quart, J. of, Math. 48 (1917), 93 — 104 and Trans, Camb, Phil, Soc, 22
(1919), 361 — 372,

Dickson, Studies in the Theory of Numbers (1930), ch, XIIL
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who know nothing of the theories of modular functions, theta functions,

and Gaussian sums.

The main result of Part 1 is this:

THEOREM 1. Let

[3] Em j— e‘lm‘,fm'

@) y=1 Zk}ﬂ’z’," )

h

where h runs through all positive integers 7 2k and prime to k, and

]

N1
5) Sn)= ,>-g A
Then, for any posilive integer 1,

1
- &1
(6) re(=cn® S ($==5,6,7, 8),
where ¢ depends only on s,

In Part 2 I obtain expressions for S(#) in the cases?) ==
and §=5 which, when substituted in (6), lead to the following two
theorems:

THEOREM 2. Let 6, (x) denote the sum®) of the cubes of the posi-
tive divisors of x. Then, for any positive infeger 1,

ry ()= 16 3, (1) — 325, ( : n) 256 ( A u) :
THEOREM 3. Let

m

3 oo
M R(l)=Ci=/? X ( /) m?
m=1
! .
where (;—) is Jacobi's residue symbol®) if (m,21)==1, ( 17):.‘:":0 otherwise,
' m

Cr==80 if [==0 (mod 4) or=x1 {mod 8), C;==160 if [~
and C;=112 if I==5 (mod 8),

2 or 3 (mod 4),
Then, for any positive integer 1,

) Following- Hardy, I have chosen these as typical, but my method can also
be applied when s is 6 or 7.

- % If x is not an integer, it has no divisors.

The sum is then ‘empty’ and inter
preted as 0,

R !
¥) Usually denoted by (";1) . The dotted line is used here to prevent confusion

with the quotient of ! and m.
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(®) =Y R (—”—) .
q T

where § runs through those positive integers whose squares are divisors
of 1.

It follows easily from (8) that R() is the number of primitive
representations of [ as a sum of 5 squares, i. e. the number of solu-
tions of the equation

X2

2
Xy~ -

X0 -t

in integers X, X,, X,, X;, X, with greatest common divisor 1.

None of these results are new, and for the general ideas underlying
my proof of Theorem 1 I am greatly indebted to the papers quoted,
especially the first, but I hope the publication of Part 1 is justified by
the simplifications obtained in it. The method used in Part 2 is my own.

Part 1.

1-1. Notation,
1-11. x and y are real numbers, and © is a number whose ima-
ginary part is positive.

1-12. r is a rational number.
113, In L, r runs through all rational numbers. Similarly,
r
in 1..., ..., etc., ¥ runs through all rational numbers satislying
R0 0 .

the condition stated.
These sums are said to exist only if they are absolutely conver-

gent, It follows that, if Ef[l‘) exists, then
=0

) Srn=> (—~ ~~~~~ )
0 =i
and if Zf(r] exists, then

r

(10) }_J](—“’ w}_J(’ }__‘ Z flr--2m),
ity By EEE ]
1 14, log Z is the principal value of the logarithm of 2z, so that
—n< Jlogz=m (2 5= 0).

z“ means exp (a log 2).
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On this definition, the equation (2;2:)* =2“2,* is not always true,
but it is true if Nz, >0, N2, =0, and 24l 0.
1-15, lim f(t)=!" means ,lim f(x-iy)==1 for every x".
RS Y-rco
1-151, It easily follows that, if\lim flr)y=1, a>>0, and b is any
R
number, then lim f(at8)=I.
REESE]
1-16. f*(x) is an abbreviation for {f[f] ¥
1:17. z=Nz—i32 (i, e. 2 is the conjugate complex number to z).
1+2. Proof of Theorem 1.

1-201, Let)

[2e]
(11) ¥y () = Z (—1) gwim*
Mz==em 20D
and )
(12) iy () == Z er i(m-{—%]‘k‘r )
M=~ CO

Then, by (1), (11), and (12},

it
(13) S+ 10=%0K), dE+1)=20(), dHE1)=e" ).
1-202. We have

(14) %m=&m2mkiy

Many proofs of this formula are known. Here is the outline of one:
It is sufficient to prove (14) in the case t==1i7, 10, when it
reduces to
0 _ 1“ ()
(15] oY ) 2 E—“T:"l’/'!]‘

M=—0q Mz=— 50

Now the residue of the function f(2) == e~ cotnz at z==m is =~ e,
It easily follows that

co ey Joeant 4y
. ) 1 » | -
Z o R o I f(z) dz _[ ] f f(z) dz
MEE—CO 2 o 20
) SRS ]
[ e ]
, * o . (;——ulzhl - iz
= jf(z}dz= fa**“*»f . dz
. etz ea;/z

{0 =]

%) Cf footnote to formula (1),
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i+co
I co ‘a <o
2 ; Q.
— fe’_uzzq 1 _|_2 Z e2ximz{ f » ZKZO—{—Z 5 U,
Ll
i—co l m==1 ’ m=1
where
o
Uy = J e—w2n—2imz) (f »
i~co
F—intfed 00 [}
P g Wyt o wW == AWty of w,
f— i 0 D

as is shown by the substitution 2=w--imfy and a subsequent appli-
cation of Cauchy's theorem. Hence

(=]

1
Ay = e~ f e dw==cyn 2 e,
—l0
fae]
where €y == { e*dx, and we obtain
S
(o] (s 1 (o)
(16) 2 gty a, ,{_ 2 Z An=c,1 2 Z oty
== m==1 M=—C(5

Since this holds, in particular, for 1=1, we have ¢,=1, which, toge-
ther with (16), proves (15). Incidentally, we have proved the well-known
formula ’

(&)

e d x =1,

-lf,"f':)
1-203. We have
X
(1) b= (o) o[~ 1)
Proof. By (12) and (1),
) LR i)e 1 =intt
9y (1) = Z o i{2m--1) —_ Z o ?
M= nodd

7. Prace Matematyczno-Fizyczne, T, 45, 97
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00 1. ;
I L i 1 e il
= et —_— et = ‘\l)'.‘ ] 4
'y )

n=—00 neven me=—C0

=1, (211— t) — 3 (7).

Hence, by (14), (1), and (11),

1 1
¥y (7) = (- —‘1;— z‘c)“ £ (___ ‘: ) — (g} 2 (_- 1)

—-i v S o, ( t ) |
l Nem OO0 T J
! o
=(— i‘c]— z [2 g—mimiy . e"""”'ﬂ/““
1 m even P e SO
1
= (_- ['C)— 2 l Z orimifs E""’.’”n/‘l
]’n- even m "dd
12 o .
=(—i9 * (— 1) e=mime == (= ) 2 A, ('”" >
Mz 00 \ T

1-204. Let us call a function ¢ (c) the comparison function of di-
mension — o or, more briefly, the c.f.—a, of f(1), if the following con-
ditions hold:

(i) = >0.

(it) f(7) is regular for I7 >0,

(iii) There is a number L and a function I(#), defined for every 7
(cf. 1-12), such that

@ =Ll

existence of the last sum as defined in 1-13),

(b) lim f(t)=L, and

Ne-+00

({r—it)=* for every © (which implies the

(c) hm[ (i) “f(r——m)lwl(r ) for every r,
e J
1-205, It is obvious that any function J(x) cannot have more
than one c¢.f.—a (for a ‘given a).
1-206. Let 9(r) be the e.f.—a of f(z), and let @ be a constant.
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Then
() a¢(s) is the c. f. —a of af(r),
(i) o(x41) is the c. f.—a of f(r41),
and
(i) (— i7" (w

It may be left to the reader to prove (i) and (i),

Proof of (iiil. We are given that there is a number L and a func-
tion [(#) such that

1) is the c. f.—a of (—ir)“af<_.._1,).
T T

(18) L= hm ),
(19) 1) =3:1«i)’x£3{(—- i f (r — 1)}
and
(20) Lp(r)zL—l—Zl(r)[ir—ir)—
=L -1(0) (-—n]—a+2z(r; (ir—ic)—=,
70
Putting
21) fe=(igr (=1,

we have to prove that there is a number L, and a function 1, (r) such
that

(22) L, =O}im fi (@),

(23) b= Jim [i—igs,(r— 1)1,

and N

(24) (—in) aﬁo<—_—)-—— L - Zl (") (ir—in)—
Now, by (9),

oG T

= ==}
and hence, by (20),

SR,

By 111 and 1-14,

0
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(—i7)= (’)_
and

(27) (—ig= (_ % + L,)‘ - (_

I

(26)

Hence, putting

(28) Ly =1(0),

(29) L{0)=L,

and o

(30) L ()= (—w-l»») (— ’i) (r £0)
r r

we have, by (25),

V(i r— i),

=1, +Zl

which implies (24).
As to (22), it follows immediately from (28), (19), and (21).
It thus remains to prove (23). Now, by (21) and (26),

(ime (=) =t [ L) =1,
and hence, by (29) and (18),

(31) 4, (0) = lim I(—— ity f, (_ i)} .

Rigga] l

Fipally, if r %0, by (21) and 1 - 14,

32 (—iv—f, (r— :—)=(~i¢)‘“ (-i“l~-~i )f(,:t 1‘)

— (e t)nf <,Vr = ‘1>

- (_A :>_( —ireeir) f(-lr — b )
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where
(33) gl =(—ig—<f (-— St 1)

By (19) and (33),

and hence, by 1-151,
G4 =1 =
’ ‘

lim g(rit—r).
N ‘\r OO0
By (30), (34), and (32),

L ()= \1,&{(--»”})””&7(; it }~\111)x:1’{(—z'c“afl(r—-i«)} (r £ 0),
which, together with (31), proves (23).
1:207. Let f(x) be such that
(35) fl=9=f)
for every <, and let v (5) be the c. f. — o of f(). Then
(36) o= =0).
Proof. By 1-204,
(37 Pl =Lk DL i — i,
where
(38) L=_lim f(?
and .
(39) {0 = lim {[—m) - f(r—i»)},.
Now, by (37) and (10),
(40) o (-=7) = 1+V‘z(~~r {(—ir- [—1':
Also, by (38), (39), and 1 - 15,
(41) = lim f(iy)
and ,v~>1‘. <]
(42) L(r)= lim |y= ]’(r u ’)l
v >r‘-:l y J
so that
(43) L= r) = lim [y f(——r+ »i)‘,.
paesy| vl
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Using (35) with ©==r-~i/y (¥ >>0), we find that f(r-|-i/y) and f(-—r-}-ify)
are conjugate complex numbers. Hence, by (42) and {43),

(44) l(—n=1(r).

Similarly, using (35) with t=1iy, we deduce from (41) that

(45) L=1

(which, of course, means that L is real), Also ir—it and —ir-}-7 ¢
are conjugate complex numbers and, by 111, certainly not <0, Hence,
by1-14, (ir—it)~* and (—{r-+it)~* are conjugate complex numbers.
From this and (40), (37), (45), and (44) we obtain (36).

1-208. For any integers %,k such that £>>0 and (%, k)==1, let

2k

h 1 haot
46 M| =N e
( ] (k) 2k ‘f;f S2k 4
where 5 is defined by (3). Then X (r) is defined for every r.
1-209. We have
3 L
(47) !l (‘k‘) ‘—< kZ (k> 0, (A, k) =1).

h 2k '
2k, (k) =Ygl

=1

for any integer m, and

— ,h _— 2k
200 (ﬁ-)= e,
k m=1

Hence

. 2 2% 2 2%

2 — £ ==hm? LY (2N 7) - slg?

4k ——Z 37 Z g’ = Z &t
=1 7= 7

mes= =N 1 T

z(fi
k
2k
Observing thatZEﬁ'"q is equal to 2k or 0 according as ¢ is or is not

me==1
a multiple of £ we deduce from the last formula that

g
&
1

4k

R\ 2 £ hht £ )8
! (k ) * — 2R (G L) = 2k ((— 1) - 1) <4k,

wihch implies (47).
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1.210. We have

(48) A [ﬂ=}1im .{[———ic)"?‘{)'a (r—l>}
Proof. Let
(49) =L, k>0, (hh=1
Then, by (1) and (3),
1 2k

-1 1 _1 i
(50) ["‘ i '5) 2 ar; ( r— ) = [-—— l’l:] 2 EZI/T e—mimiiy
K 1]2:1 rllffl;d 2%)
2k

hat
= Z & u,,
g==1

where
1
(51) ly=(—it)" % einls
m=q (mod 2k)
0o ) g’
_ Z %(—it) "% e~k doy
m=gq (mod 2k)
m*
(o) 3
- (ﬁ(—m' 3 e—0s [y (0) do
0

and W, (v) is the number of those integers m for which m=¢g {mod2k)
and m® <v, so that

—
(52) v, (w)—kg[‘_s 1.
To evaluate the integral

o)

_.3 e

{7:(-—”] Fe~ivy/ydy,

b
we put ¥ ==--it2, and replace the new path of integration (a half-line

in the half-plane Nz >0) by the positive real axis, which does not al-
ter the value of the integral, as can be shown in a well-known way by
means of Cauchy's theorem. Thus we obtain

e 3 o2
(53) j n(—it) "7 el Yy dy= [ ne—?yz dz = 2!- .
0 0
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(Readers not familiar with the U-function may deduce the last equa-
tion from the formula at the end of 1-202) By (51), (53), and (52),

T =2 sl oy 7]
g — 2—.%‘ = ‘ f?: (—it) ek \ W, (v) — T dv

2 3 !
= | rltl " Texp(—nvlel 2 3t)do=]c|2(J1)"",
0
Hence, by 1-15,

, 1
lim g ==~
e -r OO 2k

From this and (50), (46), and (49) we obtain (48).
1-211. Henceforth let s=5. Then it easily follows from (47)
that

Semr—i977

exists for any ©. Also, by (1),

>4 lim 9, (5) =1,
N
Put
(55) B@ =1 Y %) ir—i9) "7
Then, by 1-204, (54), and (48), @, (1) is the c. f. *_;S of 038 (3).
Put
(56) ) =9 c+1), %(T);(“‘”)”;‘“q}l)( ..... L),

Then, by 1-206, (13} and (17) 9, (z) and @, (%) are the c.f. --; s of

V5 (v) and ¥+ (v) respectively.
1-212. Putting

(57) g(] [’C) = "PG’ (’C) "L"G”S (’C] ((/ == 0! 21 3]v
we have, by (13), (17), and (56),

(58) &) =gz l=+1)
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and
59) = !
( &)=g|——).
T

Also. by 1206, 1-211, and (13), g, (s 1) is the c. 1, ——%s of 9y (c).
Hence, by 1205,
(60) @ (1) =9, (1),

1
Similarly, by 1-206, 1211, and (14), (—i1)~ 2°* (pu(-~

a e

) is the c, .

1
— 28 of %% (r), and hence, by 1 - 205,

1) (*‘“5’5)_;“‘ ’P:—X<_V7Tlv>=% (z).
By (57), (60), and (13),

(62) & l+1)=g),

By (57), (61), and (14),

(63) £ (“‘“‘11:') =g, (7).

Also, by 1-206 and 1-211, 5,(c--1) is the c. f. — ;s of %7 (z 4 1),

Lis . L ois
and €47 o, (1) is the c.f, -—-V%S of 4™ 9,7 (c). Hence, by (13) and 1.205,

64 er+1)=e 7 @, (7).
By (57), (64), and (13),
(65) g l41)=g().
Finally, on substituting — e for © in (59), we obtain
T
1
(69) g:("‘c )z"go (7).
Put

[ F(e) =g (x) g (x) -} gy (),
(67) Fy(r)==go () & (v) - 8o (%) & (v) &5 (1) g, (7) ,
Fy(r) = g, (%) &2 (7) &5 (5).
Then, by (62), (65), and (58),
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(68) Fyle4-1)=Fy (%) (9==1,2,3),
and, by (59), (66), and (63),

(69) . Fq(“‘*:)qu('ﬁ) ‘[4'—“—11213)-

1-213. The functions F, (z), F, (%), and Fy (v) are regular for I« >

Proof. Ii‘: is easily seen that any comparison function in the sense
of 1204 is regular throughout the half-plane J¢>0. Hence, by (67),
(57), and 1-211, it is sufficient to prove that

{70)
Suppose, then,

Then, by (1) and (11},

CO

}0,,[!]—1 [ /zz‘enlmzci <ZZ . wz“

m==1 ms:

CO 1
<22z =t =03),
) Z,l( 3 ) (9=03)
and hence
¥q (%) # 0 (4=073).
Also, by (12),
: ﬂmﬂ 5 (1) —2 ' =2 gv:l (e
< ! 24
<2 3 T
m=-1
so that %, (c) % 0, and (70) is proved.
1-214. We have
(1) ‘ Fy(—1)==F, () (0=1.2.3).
Proof. By (1), (11), and (12),
(72) ¥ (—7) =39, (1) 0=0,2,3)

Hence, by 1+207 and 1211,
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9 (—1) =1, (x) (¢=0,2 3).

From this and (72) and (57) we obtoin

g7 =g (1) (9=0,23),
which, together with (67), proves (71).
1-215, Let
(73) G, (0)=F, (2:” log z) (g=1,2,3).
Then Gy(2) is regular for 0< |z | < e-r,

This follows from (68) and 1 -213.
1-216. Let 2>>0, letz

1) (ir—ic)= exist for 1==1, and let (U)
be an abbreviation for ‘

quniformly for — »—4()6__\: ! .
2 2
Then
(74) lim D LA ir—i(xig))e=0 (V)
Yoo T
Proof. Put
(75) YA Lirt =,

which is permissible by 1-13. Then

1})?0; [L(r)] ir+1]—=¢,,
and hence, by (75),
(76) lim Z L) | | ir--1]-*=0.
@R | >a

Now let = be any positive number. Then, by (76), there is an @ such

that

(77) ML) ] Jird1] e 2,
=t

Let y=1 and — A<\x;~,_ ~~~~~ Then
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lir—iady |z irt|— 2= o lirt,

and hence .
| ir—ilefiy) | =20 | ir b1,

so that, by (77),

-1
(78) N i) (ir i i3) )<< L,

|r|>a

Also, if | 7 | = a and y >0, then

lir—ix+4y | ==y =y |ir-1] (@} 1),

so that, by (75),

Z Ln{ir—itx+4iy)}—

Iriza

Syelaf1)e ) (L) | [ird1]
|

rliza
=y la-1) e

Hepnce there is a y,==1 such that

1 1 .
LA ir—i ()Yl e Vo).
S ittt i)l e v
From this and (78) it follows that
DU ir— i (e iy) e <o (v ).

We have thus established the following‘result:
To every positive ¢ there is a ¥, such that, for every x satisfying

-———;—<x§"; and every ¥ =1¥,, we have

]Zl[r]{ir—i(x—[-iy)}.r.a

Formula (74) is, of course, only a shorter enunciation of this result.
1-217. Let

e,

lim f(c)=L,

REtee]
and let ¢ (%) be the c¢. f. —a of f(r). Then

lim ¢{x-4-iy)=L ().
PO
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This follows from 1204 and 1-216.

1-218. Henceforth let s=8, so that § is now restricted to the va-
lues 5, 6, 7, and 8. Then the three functions Gy (2) defined by (73) are
regular also at the origin.

. Proof. It is sufficient to prove that
lim {2 G, (2)V=0.
21%1 { ql ]/
This is equivalent to

(79) lim {02::1‘(,\'—{— W (G, (esiletin } =0 (.

JEes)

Hence, by (73), it is sufficient to prove that

(80) lim { &= Fy (51 y)} =0 ().

Yo
Now, by (11) and (1),
lim ¥ (x4 iy)=lim 9 (x - iy)==1 (U),
Y-y Y0

and hence, by 1211, 1-217, and (57),

(81) Jim g (xtiy)=lim g, (v+iy)=1 (U]
Also, by (12),
o
(82) lim {e"‘é“““"“""”n-g (x+-zy)}=2 )
Y220

and lim 9 (v)==0, so that, by 1211 and 1-217,

:\,1‘9‘;’%3

(83) lim ¢, (x+iy)=0 ().

By (57), (82), and (83},

| it N
yllﬂlﬁ l@" &rlx4-1y) ]4:0 .
which means that
N [ —— 1-3‘1:,5' y l
115’0‘ e * é’z(x“}“y)f=0 ().
V0

Since $=58, it follows that
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(84) lim {e™¥ gy (x-Fiy)}==0 ().
Y500

From (67), (81), and (84) we obtain (80).

1219, Let the set A consist of the origin and those points 2
for which |2 | <1 and [log 2 | = 2=. Then it is easily seen that A
is closed and contained in the circle | z | < e~*, that it contains the
circle | 2| < e?*, and that its boundary consists of those points 2 for
which | 2| <1 and | log 2| =2=.

1220, Let z be any poini on the boundary of A.
is real (g=1, 2, 3).

Proof. By the last part of 1219, 2| <1 and |log 2 | ==2=%,
Hence the number

Then G, (2)

— 1 z
: 2%l o
satisfies 1-11 and
(85) Jt]=1
Also, by (73),
(86) Gy (2) = Fy ).

Now, by (85), — L =7, and hence, by (69) and (71), F, (5) == F, ( 1)
T

=F,(—<)=Fy(s), which implies that F,(s) is real, Hence, by (86),
G, (2) is real.

1-221. Let D, and D, be domains, let E be a closed bounded set
contained in D, and containing D,, and let f(z) be regular in D, and real
on the boundary of E. Then f(2) is a constant.

Proof. The imaginary part of a regular function, considered in
a closed bounded set, assumes its, maximum and its minimum on the
boundary of the set. Since 3f(2)==0 on the boundary of £, it follows
that If(2) =0 throughout E. Hence f(z) is real throughout the do-
main D,, and this implies the result stated,

1-222, G((2), Gy(2), and G, (2) are conslants.

Proof, We apply 1-221, taking for E the set A of 1-219 and
for Dy and D, the circles | 2 | <[ e " and | 2| < &% respectively. Then,
by 1-215, 1-218, and 1-220, G,(2) is regular in D), and real on the
boundary -of £. Hence, by 1221, G,(2) is a constant,

1-223. g(t)=1,

Proof, 1t follows from (67) that g,(c) is a root of the cubic
10
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wW—F (t)u* - F, (xyu—F, (z) =0.

By (73) and 1-222, this cubic has constant coefficients. Hence g, (%)
is a constant, and it follows from (81) that this constant is 1.

Uy* (1) = @4 (7).

This follows. from (57) nnd 1 - 223,
1-225. By (55) and (10),

1-224,

(=] 1

=14 > Y W29 rt2ig—iz *

0<rz=2 g=—0C0

(87)

Now it follows from (48} and (1) that % (r-2g¢)=>X(r) for any integer 4.
Hence, putting

co _1y

(88) F)= Y @ig—iv *
=00 .

we have, by (87),

(89) =1+ > W()F—r),

072

It easily follows from (88) that F (x) has period 2 and that

lim F(x-}7y)=0 uniformly in x. Hence
00
CD
(90] F (1) = bn eﬁ[m;
where
o2
(91) b,,=é~ f Fl(x) e dx,

To

T, being any number in the upper hali-plane.
ty==i/1l, we obtain from (91) and (88)

Taking, in particular,

ifn42

bn = El
2

K
in

o0

1
Z @Rig—in)" 2 "e—sim g

g0

(92)

oo 2 1
:é Z f (2ig—ix)~ 2 grint—2)g
vl
lin

111
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o in—2042 L
— i . (_‘ I Z}_i‘ ¥ e =inz o
2 lIn—2q
[n00 1 1
—— . e g1
=1 (—iz) ? eidz=cn?
2,
iin—0o
where
i+C0
93) = L (—iw) % e dw
2
i—QD
y (89), (90), and (92),
o0 )
-1
(99) 2 () =1+c Z % (1) Z 7 e
oo 1 '
=1 + ¢ Z n2 erinz 1S (I‘) ewinr,

P 0<rz2

(The inversion of the order of the summations is justified by (47), since
§=5). From (2), (94), and 1-224 we obtain, on equating the coelficients
Of Ewim,

(95) ) (#) e=inr (n=1,2,...).

( )52/4"”.

From this and (46),

L
ri(n)=cn?
0<rz2

1-226. By 1-13 and (3),

where 7 runs through the same values as in (4).
(4), and (5) it follows that
e [,»] g Fnr == § (’ZL

0<r:i:2

which, together with (95), proves (6).
Theorem 1 is thus established.

Part 2.
2-1.
211,
(96)
112

Evaluation of )\ (r).
We have
MO)=1, A (1)=0,

icm
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(91 Mr-2)=
and
(98) + (“ ‘1") =) (r#£0).
r

(96) and (97) follow immediately from (46) and (3).
Proof of (98), By (48) and 1 - 151,

20 = lim |(—irts i) ra,
R ®s]

Hence, by (14) and (48),
Fay-132 p— S 1 ..L’E¥ '
([’) 5 ( ) \-lifn'\ lT+I )‘ (T+r>l

REzTee] l —]—

— lim J(— 7192
REtenl
q. e d.
2-12. Let = be an aggregate of rational numbers, containing the
numbers 0 and 1, and such that, {o every r which it confains, it also con-

tains the numbers r-+2 and r—2 and, if ¥ <0, 1he number ——1 Then a

contains all rational numbers.

Proof, Let %(r) and k(r) be the numerator and the denominator
of ¥ when expressed as a fraction in its lowest terms, the denominator
being taken positive, so that

=h(r)/k(r), (R("), R(N)=1, k(r)> 0.

Define an aggregate B of positive integers as follows:

The number 7 is to be in B if and only if there is an r, nof in o,
such that | A(r) | 2k (1) ==n

Suppose « does not contain all rational numbers. Then @ is not
empty, and so § has a least member 7y, say. There is an 7,, not in «,
such that

[hrg | -2k (r)==1,.

Now 0, 1, and —1 are in @, so that |r,| is neither 0 nor {. Put
8. Prace Matematyczno-Fizyczne, T. 45, 113
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ro—2 if ry > 1,
ro=3ro+2 if rg<{—1,
l*l/fo it 0| r| <L
=1 h(r) | +2(r)

Then r, is not in «, and hence n, is in f. On the other hand, n, is less
than n,, the least member of B. This is a contradiction.

and

2-13. Let two Functionis fu(r) (m=1,2) be defined for every r and
have the following properlies:
(99 £ O =£(0. f; =/, (1),
(100) S =2) =Fm (1),
and
(101) Im (— »~1r—)=-r"2fm (r) (r+#0)
Then
(102) fi)=/ra(r)

for every r.
This follows from 2:12 on taking for « the aggregate of those
numbers r for which (102) holds.
2-14. We have
0 (2th(F k1)
103 =l
(103) "= ez () (— 101 @ | RN R ().

This follows from 2 - 13 on taking for f; (r) and fa2(r) the two sides
of (103), and applying 2 - 11.

2-2. Evaluation of S(n) for s=38.

2-21. Henceforth k,k L, m n, g u, and v denote positive integers,
and Z,x, and y denote integers.

¢4 (%) denotes the sum of the x-th powers of the primitive u#-th
roots of unity (Ramanujan's sum).

It follows that
Z ¢y (%)
ulw

is the sum of the x-th powers of all v-th roots of unity, so that

; Cy (X)) = {z

If u is odd, and p, pay..
114

(v %)
(v+x).

., pm are the primitive «-th roots of unity,

(104)

icm
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it is easily seen that —p,, —p,. ..., —pmn are the primitive 2u-th
roots of unity.

Hence _
(105) Can (X) = [— 1) €u (X) (2t u).
2-22. Let (#,R)=1. Then, by (103),
(106) 28 (h) =[0 @thk)
k] |kt (2] hk).
Also, by (4) and (46),
(107) Ap= Z 0 (»Z) GRS

It follows from (106), 107] and (3) that

(108) Ap— [t cn(n) (2t4)
1A= oo () 21| k&)
Let
o0
(109) utc,(n), S;= ey (n), Sy== u4cy ().
=y 2 =
Then, by (5) and (108),
(110) Sn=3S8,+16S,.
Also, by (109) and (105),
S — Sy — S, = vte, (1) = 204 o) = =W,
! = e o am =" s,
and hence, by (110),
(111) S =168, —15S,— (— 1)1.S,.
2+23. It remains to evaluate S, and S,.
Let
O
(112) a= 4,
Then o
XD
(113) Dot=a—>"(20)" 4_.4,_,_,,

wodd

y (109), (112), and (104),

as, ——Z (Lv)y=4c, (1) -—-Z g Zc,, ()

u,v g=1 ulg

) P

qin

U=\

(114)

115
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Similarly, by (109), (113), and (104),

15 - N - S‘ —3— 3 g (L)
115) 248, = =) 47— g3=n"3c,(n)—n c:,k n.
[ ) 16 []n%l q;rz q;\(jn 2
qln 1

Now, if 1 is odd, then o (% n):O. Hence, by (111), (114), and (115),

(21n)
(2] n).

6y (1)

l —a,(n) 4165, (; ll)

. . . 1
uy; are all those positive divisors of ) n

(116) Lza/z’*S(/z) =

If nis even, and i, Uy, ...,

which do not dividei«n, then 2uy,2u,,...,21, are all those positive

divisors of 72 which do not divide -; 1, Hence

5y (1) — gy ( ) Z (2um)? == Z Um®

m==1 m==1

1 |
=8, [—1|—8a; | 1
"(2 ) a4V )
and hence, by (116),

15 1 1
117 “andS(n)=o,(n)—20, [—n\--16a,(— 1|,
(117 2 ansm =0, 5(2)! (4)

(2] n),

From this and (6) we obtain

1 )
118 rg{n)=a Io n) —206, |-~ n)-F160, [ nj|l,
[ ) s(] 1[3(] .3(2 )]‘ 5(4 )]
where a; is a constant. Substituting 1 for # in this formula, we obtain
a1==16, which, together with (118), proves Theorem 2.

23, Evaluation of S(n) for s==25,

2-301, If & is odd, then, by (4), (46), (103), and (3),
2m A—
119 A= m(q n)
( ) ‘ mzLh ( )2/3 L;l‘
(m,k) =21 .
k k
=k 5"1[‘7“_'1) =k"3Y "¢, (g2 —n),
[mk) =1
116
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in the notation introduced in 2-21.

Let /
1 )
(120) dil) = ; cr (g*— x)
and
(121) v(m, 1) = 1

g=m
g*==f(modm)

(which means that v(m,£) is the number of solutions of the congruence
x*=={(modm)). Then, by (119) and (120),

(122) Ap =k dy (1) (2t 4).
Similarly ‘
(123) Ap=—Fk2dy(n) (2 7).

Now ¢ (¢ — x), considered as a function of g, has period £. Hence
it follows from (120) that, if & | m, then

a () =23 e (g — ),
m =
and hence, by (104) and (121},

) K] o
(124) D=3 . D exlgr —x)
kim q=1 Rlm
= 1 (2, x).
m\q:m
2-302. Let k be odd. Then
(125) dy (%) =0,
Proof. It has been observed that cx{g*— x), considered as a func-
tion of ¢, has period 2 From this, (120), (105), and the identity
20 k
D =Y {rg4Fla+ 0}
=1 =1
we obtain ' ' !
2% 2k
2Ry () =Y ca (g x) =Y (—1)7*¢c; (¢® — x)
Lk
= 1Y el =0 {(— 07 4 (= o),
=1

117
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and
(— )9+ (— 1)+ =0
since % is odd.

2+303. We have
1

(126) | du(n) | =207,
Proof. It follows from (4), (46), and (47) that

w

{127 | 4 | S22k 7,
From this and (122) we obtain (126) immediately if # is odd. If 4 |
it follows from (123) that

1

2
dy(n) = — (’2“ u) A,}_, wt
3

'which. together with (127), again proves (126), Finally, if #==2(mod4),
it follows from 2-302 that d,(n)=0. Thus (126) holds in all cases,
2:304. Let

(o]
(128) Sy = Z utdy (n), S,= Z u2d, (n).
u=1 uodd

These sums are absolutely convergent by (126), and it follows from
2-302 that

(129) Sy — 8= Z wtd, (1) _Z (2 B)~2 dy (1),

4|u 20k
By (5), (122), (123), (128), and (129),
(130) S)=8;—4(S,—S;)=55,—45,.

Let
o0
(131) a, = Z vt
Then )
(132) Z r2l=yg __f (2 0)=? = 3.
vodd ’ ==l - 4 v

By (128), (131), and (124),

(133) a, S, *_Z (pv)2d, (n) = Z anZ du{n)

nim
== }__‘ m~2v(m,n),

M=

118
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Similarly, by (128), (132), and (124),

(134) —3-a2 Ss=2 m—2vy(m, n).
4 modd
2-305. A function f(x) is said to be multiplicative if f(uv)
whenever (#,7)==1. This notion will be used several times
remainder of this paper.

=/ f(@)

in the

Use will also be made of the following elementary lemmas:

(@) If fi(u) and f,(#) are multiplicative, and
= > /(@) f(2),

q,v
then f, () is multiplicative. =
(ii) If (z,v)=1, and f(x) has period uv, then

Zf(q) >3 s tos)

x=1y=1

(i) If (1,9)=1. and f(x) has period u, then

D flg=3"flgo).
g==1 g=1
(iv) If f(x) has period m, then
k. m
Y=t f@
g=1 g=1
2:306. Let (r,v)=1. Then

(135) . vy t)=v t)v(v ).

In other words: v(u,%) is a multiplicative function of u.
Proof. Define the auxiliary function g (x,t,m) as 1 if x*=¢
and 0 otherwise. Then, by (121},

(136) v (m, t) 22 glat,m).
g=1
Hence, by lemma (ii) of 2 - 305,
(137) v[zw,t):Z 2g(ux+vy, t,uv).
azl y =1

Now it follows from the definition of g (x, £, m) that

(mod m),

119
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(138) glux+vy tuv)=glvy t,a)gxtw),
and from lemma (iii) of 2305 and (136) that
(139) D gy b= glqta=yu1
: y=1 g=1

and similarly
(140) Z glux, t,v)=v(v, 1.
sl

From (137) —(140) we obtain (135).

2-307. We have
(141) v(w*myut ty=uv(m,1),

Proof. By (136),
(142) vm et =Y glguttutm).

7=
Now g(g,4%¢,u*m) =0 unless ¢ is a multiple of #. Hence
wm um

(Z glg,ut, u*m)= 2 guw, utt, u*m),
= v=

(143)

and it follows from the definition of g (x,7, m) that
(144) gluv ut, u*m)=g(v,t,m.
By (142), (143), (144), and lemma (iv) of 2 - 305,

um m

v (i m,u? f) = Z glv, t,m)= 112 g(v, t,m,

v=1 V==l
which, together with (136), proves (141),
2-308. An integer is said to be square-free (quadratfrei) if it is
not divisible by any square other than 1, Let us define the auxiliary

function % (m) as 1 or 0 according as 7 is or is not square-free, This
function is obviously multiplicative. Hence, if we put

(145) V(g ) == w (m, ) v (m, 1),

the inner pair of brackets in ([, t)) belonging to the symbal for the
greatest common divisor, it follows from 2 -306 that v/ (m. 1) is a multi-
plicative function of m. Also

120
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(146) v(m,n)= Z qv (u,v).
g, v
qru=m
qru=n

In fact, the sum on the right, in spite of its three variables of summa-
tion, has only one possibly non-vanishing term, namely that in which ¢
is the greatest integer whose square divides m and 7, and it follows
from (145) and (141) that this term is equal to v(m,n),

2+:309. By (133) and (146),

()

\ ' \ 1 o
(147) a, S =>_J }_ﬂ g Y (1, v)
m==l g, u, v
qu=m
qus=n
N} . N
== L i u (u,v) = 2 g3 Ty (v),
g, u, v q.v
qro=zn Qro=n
where
)
(148) C Ti(@)= ) wtV(u).
u=1

Similarly, by (134) and (146),

(149) 2 58= Y T,
Z‘:o’léd
gv=n
where
(150) To@)= ), =V (7).
wodd
By (149),
(151) a8 =S—S,
where :
(152) Si= D) ¢PTE,  Si= 2 =T,
g v 4T
g g even

qru=an

Substituting 2m for g and-;li» [ for v in the last sum, we obtain

1
153 Si= Y @em—T (1 z) =L N s, (- z)
my il 4 8 m, i 4
41 mil=n
mAl=zn
where T, (®)==0 if @ is not an integer.
121
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By (130) and (151),
60,8 (1) =—24a,S, +40S; — 40 S, .
Hence, putting
(154) T,()=—24Ti()+40 T,()—5T, (1 )

we have, by (147), (152), and (153),

(155) 6a, S(n)= Z T, 0).
Zqﬂll::n
2:310. Letf p be a prime. Then
(156) s (pm =1 +(%) (ptt, p>2),
(157) Vip, 1) =1 (pit),
and
(158) v (pm, 8) =0 (plt,m>1).

Proof, If pt¢ and p>>2, it is known that v (p™ 1) (as defined in
2-301) is 2 or 0 according as f is or is not a quadratic residue mod p,
and we have (p” f)=1, so that = ((p™ f)}=1. From this and (145) we
obtain (156).

It plt, we have, by (121),

vp =D 1=1,

q=p
¢*=20 {mod p)

and %((p,f)) =#(p)=1. From these formulae and (145) we obtain (157).

If pIt and m>1, we consider the cases p?|# and p®+ ¢ separately,
In the former, {p™ ) is divisible by p? and therefore not square-free,
so that z((p™ £))=10, In the latter, by (121),

viprm =Y

-
_.m
g5p
gheat(mod pm)

1=0,

sinf:e the condition ¢*=={ (mod p™) now implies that p|g® and prta,
which is impossible, so that the sum is empty, Thus it follows from (145)
that (158) holds in either case,

2+311. We have

(159)
122

V{1, =2 t)=1,

icm
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2 (t==1 (mod 4))

(160) V4 )=
0 (otherwise) .

and
4 (t==1 (mod 8), m=3)

(161) v(@2m f) =

I 0] (t=£1 (mod 8), m=3).

(159) and (160) follow easily from (145) and (121). If ¢ is odd, (161)
can be established by an argument similar to the proof of {156). If ¢ is
even, (161) is implied in (158).

2-312, Let p be an odd prime,
, t t
ro-(2)et)

This follows easily from 2-310.

Then

(162)

2-313. We have
(163) =3 (1)@ @t
AL
Proof. It follows from 2-308 and lemma (i) of 2-305 that both

sides of (163) are multiplicative functions of %, and the equation is
obviously true for w==1, Hence it is sufficient to prove that (163)
holds if # is a power of an odd prime, and this follows from (162).

2-314. Let
(164)

Then, by (150) and (163),

(165) T, ()=

o0

=2 B (gre=a )

since ( l)ZO if ¢ is even,
q

Since ¥ (1, [) is a multiplicative function of z, it follows from (148)

and (150) that
123
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ﬂm=§jimx

(166)
nodd x==0
| — i Ty,

where
co

(167)

x=0

Since Ts(w) has been defined
follows from (165) that

u)2Y (2%, )V (u,])

di= 2%V (2%, 1)

as 0 if @ is not an integer, it

1 [ T, () 419
(168) 7;( ~n)==
4 | o (410,
By (154), {166), and (168),
(169) Ta [l) = 8;‘ TQ [[J s
where
—24d,4-35 (4]
[170} €)=
—24d,-4+40 (4t)).

2:315. By (167) and 2- 311,

24d,= 1 35

Hence, by (170),

From this and the definition of C (i

it follows that
(171)

By (169),
124

(171), (165), and (7),

({51 (mod 4))
({==1 (mod ‘8] )
({==5 (mod 8)).

41

{{==2 or 3 (mod 4))
{({==1 (mod 8))
({5 (mod 8) ), .

in the enunciation of Theorem 3)

Cz=16€1.

icm°®
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T, () =a,R(}),

where @, is a constant. Hence, by (6) and (155),

er(z)

r]‘l =13

e
—-a, Z R( 1)=05>AR(_£.),
/?’l gin q

3

(172) ry(n)=cn®Sn)=6 a,)”

where 2; is a constant. In particular

rs (=a; R(1).
Now 74(1)==10, and it follows from (7) that

R(1)=8072 Y

modd

m—?== 10,

Hence a,=1, which, together with (172), proves Theorem 3.

University College, London,
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