

$\overline{x}_i = \overline{x}_i(x_1, \ldots, x_n, t), \overline{t} = t,$

W pracy niniejszej wykazuję, że teorję geometrji reonomicznej można skonstruować, wychodząc z następującego zagadnienia równoważności: dane są dwa ruchy ciągłego ośrodka w n-wymiarowej przestrzeni euklidesowej; zbadać, czy ruchy te można przeprowadzić jeden w drugi za pomocą przekształcenia euklidesowego o spółczynnikach będących funkcjami czasu t. Zagadnienie to postawił i rozwiązał prof. K. Żorawski w rozprawie ogłoszonej w r. 1911 w Biuletynie Akademji Umiejętności w Krakowie. W ust. 1 i 2 tego artykułu rozwijam inne rozwiązanie tego zagadnienia, oparte na zastosowaniu układów form Pfaffa. W następnych dwóch ustępach wyprowadzam z równań zagadnienia równoważności teorję koneksji reonomicznej oraz uzasadniam równania jej struktury.

On the representations of a number as a sum of squares.

By

T. Estermann (London).

Introduction.

If $r_s(n)$ denotes the number of solutions of the equation

$$x_1^2 + x_2^2 + \dots + x_s^2 = n$$

in integers x_1, x_2, \ldots, x_s , and 1)

(1)
$$\vartheta_3(\tau) = \sum_{m=-\infty}^{\infty} e^{\pi i m^2 \tau} \qquad (\Im \tau > 0),$$

then

(2)
$$\{\vartheta_3(\tau)\}^s = \sum_{n=0}^{\infty} r_s(n) e^{\pi i n \tau} \qquad (\Im \tau > 0).$$

The object of this paper is to use (2) for the evaluation of $r_s(n)$ in the cases s=5, 6, 7, 8 in a more elementary way than has been done before 2). Thus I hope to make the subject accessible even to those

¹⁾ Readers familiar with elliptic functions will perhaps prefer the notation $\vartheta_1(0|\tau)$, but the simpler notation $\vartheta_2(\tau)$ is sufficient for the present purpose.

²⁾ Hardy, Trans. American Math. Soc. 21 (1920), 255 — 284, and Proc. Nat. Acad. of Sciences 4 (1918), 189 —193.

Mordell, Quart. J. of. Math. 48 (1917), 93 - 104 and Trans. Camb. Phil. Soc. 22 (1919), 361 - 372.

Dickson, Studies in the Theory of Numbers (1930), ch. XIII.

who know nothing of the theories of modular functions, theta functions, and Gaussian sums.

The main result of Part 1 is this:

THEOREM 1. Let

$$\xi_m = e^{2\pi i/m},$$

(4)
$$A_k = \sum_{h} \left\{ \frac{1}{2h} \sum_{q=1}^{2h} \xi_{2h}^{hq^2} \right\}^s \xi_{2h}^{-nh},$$

where h runs through all positive integers $\leq 2k$ and prime to k, and

$$S(n) = \sum_{k=1}^{\infty} A_k.$$

Then, for any positive integer n,

(6)
$$r_s(n) = cn^{\frac{1}{2}s-1}S(n)$$
 $(s = 5, 6, 7, 8).$

where c depends only on s.

In Part 2 I obtain expressions for S(n) in the cases 3) s=8 and s=5 which, when substituted in (6), lead to the following two theorems:

THEOREM 2. Let $\sigma_3(x)$ denote the sum⁴) of the cubes of the positive divisors of x. Then, for any positive integer n.

$$r_8(n) = 16 \,\sigma_3(n) - 32 \,\sigma_3\left(\frac{1}{2}n\right) + 256 \,\sigma_3\left(\frac{1}{4}n\right).$$

THEOREM 3. Let

(7)
$$R(l) = C_l \pi^{-2} l^{\frac{3}{2}} \sum_{m=1}^{\infty} \left(\frac{l}{m} \right) m^{-2},$$

where $\left(\frac{l}{m}\right)$ is Jacobi's residue symbol⁵) if (m, 2l) = 1, $\left(\frac{l}{m}\right) = 0$ otherwise, $C_l = 80$ if $l = 0 \pmod{4}$ or $l = 1 \pmod{8}$, $C_l = 160$ if l = 2 or l = 112 if l =

(8) $r_{5}(n) = \sum_{q} R\left(\frac{n}{q^{2}}\right),$

where q runs through those positive integers whose squares are divisors of μ .

It follows easily from (8) that R(l) is the number of primitive representations of l as a sum of 5 squares, i. e. the number of solutions of the equation

$$x_1^2 + x_2^2 + x_3^2 + x_4^2 + x_5^2 = l$$

in integers x_1 , x_2 , x_3 , x_4 , x_5 with greatest common divisor 1.

None of these results are new, and for the general ideas underlying my proof of Theorem 1 I am greatly indebted to the papers quoted, especially the first, but I hope the publication of Part 1 is justified by the simplifications obtained in it. The method used in Part 2 is my own.

Part 1.

1 · 1. Notation.

1.11. x and y are real numbers, and τ is a number whose imaginary part is positive.

1.12. r is a rational number.

1.13. In $\sum_{r} \dots r$ runs through all rational numbers. Similarly,

in $\sum_{r=0}^{\infty} \dots \sum_{0 < r \le 2}^{\infty} \dots$, etc., r runs through all rational numbers satisfying the condition stated.

These sums are said to exist only if they are absolutely convergent. It follows that, if $\sum_{r=0}^{\infty} f(r)$ exists, then

(9)
$$\sum_{r \neq 0} f(r) = \sum_{r \neq 0} f\left(-\frac{1}{r}\right),$$

and if $\sum f(r)$ exists, then

(10)
$$\sum_{r} f(-r) = \sum_{r} f(r) = \sum_{0 < r = 2} \sum_{m = -\infty}^{\infty} f(r + 2m).$$

1.14. $\log z$ is the principal value of the logarithm of z, so that $-\pi < \Im \log z \le \pi$ ($z \ne 0$).

 z^{α} means exp $(\alpha \log z)$.

 $^{^{\}rm a})$ Following Hardy, I have chosen these as typical, but my method can also be applied when s is 6 or 7.

 $^{^{4}}$) If x is not an integer, it has no divisors. The sum is then 'empty' and interpreted as 0.

s) Usually denoted by $\left(\frac{l}{m}\right)$. The dotted line is used here to prevent confusion with the quotient of l and m.

On this definition, the equation $(z_1 z_2)^{\alpha} = z_1^{\alpha} z_2^{\alpha}$ is not always true. but it is true if $\Re z_1 > 0$, $\Re z_2 \ge 0$, and $z_2 \ne 0$

1.15. $\lim_{\substack{x \to \infty \\ x \to \infty}} f(x) = l''$ means $\lim_{\substack{y \to \infty \\ y \to \infty}} f(x + iy) = l$ for every x''.

1.151. It easily follows that, if $\lim_{t \to 0} f(t) = l$, a > 0, and b is any number, then $\lim_{\Im \tau \to \infty} f(a \tau + b) = l$.

1.16. $f^s(\tau)$ is an abbreviation for $\{f(\tau)\}^s$.

1.17. $z = \Re z - i \Im z$ (i. e. z is the conjugate complex number to z).

1 · 2. Proof of Theorem 1.

1 · 201. Let 6)

(11)
$$\vartheta_0(\tau) = \sum_{m=-\infty}^{\infty} (-1)^m e^{\pi i m^2 \tau}$$

and

(12)
$$\vartheta_2(\tau) = \sum_{m=-\infty}^{\infty} e^{\pi i \left(m + \frac{1}{2}\right)^2 \tau}.$$

Then, by (1), (11), and (12),

(13)
$$\vartheta_0(\tau+1) = \vartheta_3(\tau)$$
, $\vartheta_3(\tau+1) = \vartheta_0(\tau)$, $\vartheta_2(\tau+1) = e^{\frac{1}{4}\pi i}\vartheta_2(\tau)$.
1:202. We have

(14)
$$\vartheta_3(z) = (-iz)^{-\frac{1}{2}}\vartheta_3\left(-\frac{1}{2}\right).$$

Many proofs of this formula are known. Here is the outline of one: It is sufficient to prove (14) in the case $\tau = i \eta$, $\eta > 0$, when it reduces to

(15)
$$\sum_{m=-\infty}^{\infty} e^{-\pi m^2 \eta} = \eta^{-\frac{1}{2}} \sum_{m=-\infty}^{\infty} e^{-\pi m^2 / \eta},$$

Now the residue of the function $f(z) = e^{-\pi z^2 \eta} \cot \pi z$ at z = m is $\pi^{-1} e^{-\pi m^2 \eta}$. It easily follows that

$$\sum_{m=-\infty}^{\infty} e^{-\pi m^2 \eta} = \frac{1}{2i} \int_{-i-\infty}^{-i+\infty} f(z) dz + \frac{1}{2i} \int_{l+\infty}^{l-\infty} f(z) dz$$

$$= i \int_{l-\infty}^{l+\infty} f(z) dz = \int_{l-\infty}^{l+\infty} e^{-\pi i z} + \frac{e^{\pi i z}}{e^{-\pi i z} - e^{\pi i z}} dz$$

 $= \int_{-\pi z^2 \eta} \left\{ 1 + 2 \sum_{m=1}^{\infty} e^{2\pi i m z} \right\} dz = a_0 + 2 \sum_{m=1}^{\infty} a_m,$

$$a_m = \int_{i-\infty}^{i+\infty} e^{-\pi(z^2\eta - 2imz)} dz$$

$$=\int\limits_{l-iml^{\gamma_{l}}-\infty}^{c-\pi w^{2}\eta-\pi m^{2}/\eta}d\,w=\int\limits_{-\infty}^{\infty}e^{-\pi w^{2}\eta-\pi m^{2}/\eta}\,d\,w,$$

as is shown by the substitution $z = w + i m/\eta$ and a subsequent application of Cauchy's theorem. Hence

$$a_m = e^{-\pi m^2/\eta} \int_{-\infty}^{\infty} e^{-\pi w^2 \eta} dw = c_0 \eta^{-\frac{1}{2}} e^{-\pi m^2/\eta},$$

where

where
$$c_0 = \int_{-\infty}^{\infty} e^{-\pi x^2} dx$$
, and we obtain

(16)
$$\sum_{m=-\infty}^{\infty} e^{-\pi m^2 \eta} = a_0 + 2 \sum_{m=1}^{\infty} a_m = c_0 \eta^{-\frac{1}{2}} \sum_{m=-\infty}^{\infty} e^{-\pi m^2 / \eta}.$$

Since this holds, in particular, for $\eta = 1$, we have $c_0 = 1$, which, together with (16), proves (15). Incidentally, we have proved the well-known formula

$$\int_{-\infty}^{\infty} e^{-\pi x^2} dx = 1.$$

1 · 203. We have

(17)
$$\vartheta_2(\tau) = (-i\tau)^{-\frac{1}{2}}\vartheta_0\left(-\frac{1}{\tau}\right).$$

Proof. By (12) and (1).

$$\vartheta_2(\mathfrak{r}) = \sum_{m=-\infty}^{\infty} e^{\frac{1}{4}\pi i (2m+1)^2 \mathfrak{r}} = \sum_{n \text{ odd}} e^{\frac{1}{4}\pi i n^2 \mathfrak{r}}$$

7. Prace Matematyczno-Fizyczne, T. 45.

⁶⁾ Cf. footnote to formula (1),

$$\begin{split} &= \sum_{n=-\infty}^{\infty} e^{\frac{1}{4} \pi i n^2 \tau} - \sum_{n \text{ even}} e^{\frac{1}{4} \pi i n^2 \tau} = \vartheta_3 \left(\frac{1}{4} \tau\right) - \sum_{m=-\infty}^{\infty} e^{\frac{1}{4} \pi i (2m)^2 \tau} \\ &= \vartheta_3 \left(\frac{1}{4} \tau\right) - \vartheta_3 \left(\tau\right). \end{split}$$

Hence, by (14), (1), and (11),

$$\begin{split} \vartheta_{2}(\tau) &= \left(-\frac{1}{4}i\tau\right)^{-\frac{1}{2}}\vartheta_{3}\left(-\frac{4}{\tau}\right) - \left(-i\tau\right)^{-\frac{1}{2}}\vartheta_{3}\left(-\frac{1}{\tau}\right) \\ &= \left(-i\tau\right)^{-\frac{1}{2}}\left\{2\sum_{n=-\infty}^{\infty}e^{-\pi i(2n)^{2}/\tau} - \vartheta_{3}\left(-\frac{1}{\tau}\right)\right\} \\ &= \left(-i\tau\right)^{-\frac{1}{2}}\left\{2\sum_{m \text{ even}}e^{-\pi im^{2}/\tau} - \sum_{m=-\infty}^{\infty}e^{-\pi im^{2}/\tau}\right\} \\ &= \left(-i\tau\right)^{-\frac{1}{2}}\left\{\sum_{m \text{ even}}e^{-\pi im^{2}/\tau} - \sum_{m \text{ odd}}e^{-\pi im^{2}/\tau}\right\} \\ &= \left(-i\tau\right)^{-\frac{1}{2}}\sum_{m=-\infty}^{\infty}\left(-1\right)^{m}e^{-\pi im^{2}/\tau} = \left(-i\tau\right)^{-\frac{1}{2}}\vartheta_{0}\left(-\frac{1}{\tau}\right). \end{split}$$

1 · 204. Let us call a function $\varphi(\tau)$ the comparison function of dimension $-\alpha$ or, more briefly, the c.f. $-\alpha$, of $f(\tau)$, if the following conditions hold:

- (i) $\alpha > 0$.
- (ii) $f(\tau)$ is regular for $\Im \tau > 0$.

(iii) There is a number L and a function l(r), defined for every r (cf. 1·12), such that

- (a) $\varphi(\tau) = L + \sum_{r} l(r) (ir i\tau)^{-\alpha}$ for every τ (which implies the existence of the last sum as defined in 1·13).
- (b) $\lim_{\Im \tau \to \infty} f(\tau) = L$, and
- (c) $\lim_{\Im \tau \to \infty} \left\{ (-i\tau)^{-\alpha} f\left(r \frac{1}{\tau}\right) \right\} = l(r)$ for every r.

1.205. It is obvious that any function $f(\tau)$ cannot have more than one c.f. $-\alpha$ (for a given α).

1 206. Let $\varphi(\tau)$ be the c.f. — α of $f(\tau)$, and let α be a constant.

(i) $\alpha \varphi(\tau)$ is the c. f. $-\alpha$ of $\alpha f(\tau)$.

(ii) $\varphi(\tau+1)$ is the c. f. $-\alpha$ of $f(\tau+1)$,

(iii) $(-i\tau)^{-\alpha}\varphi\left(-\frac{1}{\tau}\right)$ is the c. f. $-\alpha$ of $(-i\tau)^{-\alpha}f\left(-\frac{1}{\tau}\right)$.

It may be left to the reader to prove (i) and (ii).

Proof of (iii). We are given that there is a number L and a function l(r) such that

(18)
$$L = \lim_{\Im \tau \to \infty} f(\tau),$$

(19)
$$l(r) = \lim_{\Im \tau \to \infty} \left\{ (-i\tau)^{-\alpha} f\left(r - \frac{1}{\tau}\right) \right\},\,$$

and (20) $\varphi(\tau) = L + \sum_{i} l(r) (ir - i\tau)^{-\alpha}$

$$= L + l(0) (-i\tau)^{-\alpha} + \sum_{r=0}^{\infty} l(r) (ir - i\tau)^{-\alpha}.$$

Putting

(21)
$$f_1(\tau) = (-i\tau)^{-\alpha} f\left(-\frac{1}{\tau}\right),$$

we have to prove that there is a number L_1 and a function $l_1(r)$ such that

(22)
$$L_1 = \lim_{\substack{\searrow \tau \to \infty}} f_1 \ (\tau),$$

(23)
$$l_1(r) = \lim_{\Im \tau \to \infty} \left\{ (-i\tau)^{-\alpha} f_1\left(r - \frac{1}{\tau}\right) \right\},$$

and

(24)
$$(-i\tau)^{-\alpha} \varphi\left(-\frac{1}{\tau}\right) = L_1 + \sum_{r} l_1(r) (ir - i\tau)^{-\alpha}.$$

Now, by (9),

$$\sum_{r\neq 0} l(r) (ir - i\tau)^{-\alpha} = \sum_{r\neq 0} l\left(-\frac{1}{r}\right) \left(-\frac{i}{r} - i\tau\right)^{-\alpha},$$

and hence, by (20),

(25)
$$\varphi\left(-\frac{1}{\tau}\right) = l\left(0\right)\left(\frac{i}{\tau}\right)^{-\alpha} + L + \sum_{r \neq 0} l\left(-\frac{1}{r}\right)\left(-\frac{i}{r} + \frac{i}{\tau}\right)^{-\alpha}.$$

By 1 · 11 and 1 · 14,

$$(26) \qquad \qquad (-i\tau)^{-\alpha} \left(\frac{i}{\tau}\right)^{-\alpha} = 1$$

and

(27)
$$(-i\tau)^{-\alpha} \left(-\frac{i}{r} + \frac{i}{\tau} \right)^{-\alpha} = \left(-\frac{\tau}{r} + 1 \right)^{-\alpha} = \left(-\frac{i}{r} \right)^{-\alpha} (ir - i\tau)^{-\alpha} (r \neq 0).$$

Hence, putting

(28)

$$L_1 = l(0),$$

(29)

$$l_1(0) = L$$

and

(30)
$$l_1(r) = l\left(-\frac{1}{r}\right)\left(-\frac{i}{r}\right)^{-\alpha} \qquad (r \neq 0),$$

we have, by (25),

$$(-i\tau)^{-\alpha}\varphi\left(-\frac{1}{\tau}\right) = l(0) + L(-i\tau)^{-\alpha} + \sum_{r=0}^{\infty} l\left(-\frac{1}{r}\right)\left(-\frac{i}{r}\right)^{-\alpha} (ir - i\tau)^{-\alpha}$$

$$= L_1 + \sum_{r=0}^{\infty} l_1(r)(ir - i\tau)^{-\alpha},$$

which implies (24).

As to (22), it follows immediately from (28), (19), and (21). It thus remains to prove (23). Now, by (21) and (26),

$$(-i\tau)^{-\alpha}f_1\left(-\frac{1}{\tau}\right) = (-i\tau)^{-\alpha}\left(\frac{i}{\tau}\right)^{-\alpha}f(\tau) = f(\tau),$$

and hence, by (29) and (18),

(31)
$$l_1(0) = \lim_{\Im \tau \to \infty} \left\{ (-i\tau)^{-\alpha} f_1\left(-\frac{1}{\tau}\right) \right\}.$$

Finally, if $r \neq 0$, by (21) and 1 · 14,

$$(32) \qquad (-i\tau)^{-\alpha} f_1\left(r - \frac{1}{\tau}\right) = (-i\tau)^{-\alpha} \left(-ir + \frac{i}{\tau}\right)^{-\alpha} f\left(\frac{-\tau}{r\tau - 1}\right)$$

$$= (-r\tau + 1)^{-\alpha} f\left(\frac{-\tau}{r\tau - 1}\right)$$

$$= \left(-\frac{i}{r}\right)^{-\alpha} (-ir^2\tau + ir)^{-\alpha} f\left(\frac{1}{r} - \frac{1}{r^2\tau - r}\right)$$

$$= \left(-\frac{i}{r}\right)^{-\alpha} g\left(r^2\tau - r\right),$$

where

(33)
$$g(\tau) = (-i\tau)^{-\alpha} f\left(-\frac{1}{r} - \frac{1}{\tau}\right).$$

By (19) and (33),

$$l\left(-\frac{1}{r}\right) = \lim_{\Im t \to \infty} g(t),$$

and hence, by 1 · 151,

(34)
$$l\left(-\frac{1}{r}\right) = \lim_{\tau \to \infty} g\left(r^2 \tau - r\right).$$

By (30), (34), and (32)

$$l_1(r) = \lim_{\Im \tau \to \infty} \left\{ \left(-\frac{i}{r} \right)^{-\alpha} g\left(r^2 \tau - r \right) \right\} = \lim_{\Im \tau \to \infty} \left\{ \left(-i \tau \right)^{-\alpha} f_1\left(r - \frac{1}{\tau} \right) \right\} \qquad (r \neq 0),$$

which, together with (31), proves (23).

1 · 207. Let $f(\tau)$ be such that

$$(35) f(-\overline{\mathfrak{r}}) = \overline{f(\overline{\mathfrak{r}})}$$

for every τ , and let $\varphi(\tau)$ be the c. f. $-\alpha$ of $f(\tau)$. Then

(36)
$$\varphi(-\overline{\tau}) = \overline{\varphi(\tau)}.$$

(37)
$$\varphi(\tau) = L + \sum l(r)(ir - i\tau)^{-\alpha},$$

where

(38)
$$L = \lim_{2\tau \to \infty} f(\tau)$$

and

(39)
$$l(r) = \lim_{\gamma \to \infty} \left\{ (-i\tau)^{-\alpha} f\left(r - \frac{1}{\tau}\right) \right\}.$$

Now, by (37) and (10),

(40)
$$\varphi(-\overline{\tau}) = t + \sum l(-r)(-ir + i\overline{\tau})^{-\alpha}.$$

Also, by (38), (39), and 1 · 15,

$$(41) L = \lim_{y \to \infty} f(iy)$$

and

(42)
$$l(r) = \lim_{y \to \infty} \left\{ y^{-\alpha} f\left(r + \frac{i}{y}\right) \right\},\,$$

so that

$$(43) l(-r) = \lim_{y \to \infty} \left\{ y^{-\alpha} f\left(-r + \frac{i}{y}\right) \right\}.$$

Using (35) with $\tau = r + i/v$ (v > 0), we find that f(r + i/v) and f(-r + i/v)are conjugate complex numbers. Hence, by (42) and (43)

$$(44) l(-r) = \overline{l(r)}.$$

Similarly, using (35) with $\tau = i y$, we deduce from (41) that

$$(45) L = \overline{L}$$

(which, of course, means that L is real). Also $ir-i\tau$ and $-ir+i\tau$ are conjugate complex numbers and, by 1.11, certainly not ≤ 0 . Hence, by 1 · 14, $(ir-i\tau)^{-\alpha}$ and $(-ir+i\tau)^{-\alpha}$ are conjugate complex numbers. From this and (40), (37), (45), and (44) we obtain (36),

1 208. For any integers h, k, such that k > 0 and (h, k) = 1, let

(46)
$$\lambda \left(\frac{h}{k}\right) = \frac{1}{2} \sum_{q=1}^{2k} \xi_{2k}^{hq^2},$$

where ξ_{2k} is defined by (3). Then $\lambda(r)$ is defined for every r.

1 · 209. We have

$$\left|\lambda\left(\frac{h}{k}\right)\right| \leq k^{-\frac{1}{2}} \qquad (k > 0, (h, k) = 1).$$

Proof. By (46), (3), and 1 · 17,

$$2 k \lambda \left(\frac{h}{k}\right) = \sum_{n=1}^{2k} \xi_{2k}^{h(m+q)^2}$$

for any integer m, and

$$2k\lambda\left(\frac{h}{k}\right) = \sum_{m=1}^{2k} \xi_{2k}^{-hm^2}.$$

Hence

$$4 k^2 \left| \lambda \left(\frac{h}{k} \right) \right|^2 = \sum_{m=1}^{2k} \xi_{2k}^{-hm^2} \sum_{q=1}^{2k} \xi_{2k}^{h(m+q)^2} = \sum_{q=1}^{2k} \xi_{2k}^{hg} \sum_{m=1}^{2k} \xi_k^{hmq}.$$

Observing that $\sum_{k}^{\infty} \xi_{k}^{hmq}$ is equal to 2k or 0 according as q is or is not a multiple of k, we deduce from the last formula that

$$4 k^{2} \left| \lambda \left(\frac{h}{k} \right) \right|^{2} = 2 k \left(\xi_{2k}^{hk^{2}} + \xi_{2k}^{h(2k)^{2}} \right) = 2 k \left((-1)^{hk} + 1 \right) \le 4 k,$$

winch implies (47).

102

1.210. We have

(48)
$$\lambda(r) = \lim_{\Im \tau \to \infty} \left\{ (-i\tau)^{-\frac{1}{2}} \vartheta_3 \left(r - \frac{1}{\tau} \right) \right\}.$$

Proof. Let

(49)
$$r = \frac{h}{k}, \quad k > 0, \quad (h, k) = 1.$$

Then, by (1) and (3),

(50)
$$(-i\tau)^{-\frac{1}{2}} \vartheta_{3} \left(r - \frac{1}{\tau}\right) = (-i\tau)^{-\frac{1}{2}} \sum_{q=1}^{2k} \sum_{m \equiv q \pmod{2k}} \xi_{2k}^{hm^{2}} e^{-\pi i m^{2}/\tau}$$

$$= \sum_{n=1}^{2k} \xi_{2k}^{hq^{2}} u_{q} ,$$

where

(51)
$$u_{q} = (-i\tau)^{-\frac{1}{2}} \sum_{m \equiv q \pmod{2k}} e^{-\pi i m^{2}/\tau}$$

$$= \sum_{m \equiv q \pmod{2k}} \int_{m^{2}}^{\infty} \pi (-i\tau)^{-\frac{3}{2}} e^{-\pi i v/\tau} dv$$

$$= \int_{0}^{\infty} \pi (-i\tau)^{-\frac{3}{2}} e^{-\pi i v/\tau} \Psi_{q}(v) dv,$$

and $\Psi_q(v)$ is the number of those integers m for which $m \equiv q \pmod{2k}$ and $m^2 \leq v$, so that

$$\left|\Psi_{q}\left(v\right)-\frac{\sqrt{v}}{k}\right|\leq1.$$

To evaluate the integral

$$\int\limits_{0}^{\infty}\pi\left(-i\,\varepsilon\right)^{-\frac{3}{2}}e^{-\pi iv/\varepsilon}\sqrt{v}\,d\,v\,.$$

we put $v = -i \tau z$, and replace the new path of integration (a half-line in the half-plane $\Re z > 0$) by the positive real axis, which does not alter the value of the integral, as can be shown in a well-known way by means of Cauchy's theorem. Thus we obtain

(53)
$$\int_{0}^{\infty} \pi \left(-i\tau\right)^{-\frac{3}{2}} e^{-\pi i v/\tau} \sqrt{v} \, dv = \int_{0}^{\infty} \pi e^{-\pi z} \sqrt{z} \, dz = \frac{1}{2}.$$

(Readers not familiar with the Γ -function may deduce the last equation from the formula at the end of $1\cdot 202$.) By (51), (53), and (52),

$$\left| u_{q} - \frac{1}{2k} \right| = \left| \int_{0}^{\infty} \pi \left(-i\tau \right)^{-\frac{3}{2}} e^{-\pi i v/\tau} \left\{ \Psi_{q}(v) - \frac{\sqrt{v}}{k} \right\} dv \right|$$

$$\leq \int_{0}^{\infty} \pi |\tau|^{-\frac{3}{2}} \exp\left(-\pi v |\tau|^{-2} \Im \tau \right) dv = |\tau|^{\frac{1}{2}} (\Im \tau)^{-1}.$$

Hence, by 1 · 15,

$$\lim_{\mathbb{S}^{\tau}\to\infty}u_q=\frac{1}{2\,k}\,.$$

From this and (50), (46), and (49) we obtain (48).

 $1\cdot 211$. Henceforth let $s \ge 5$. Then it easily follows from (47) that

$$\sum_{r} \lambda^{s}(r) (i r - i \tau)^{-\frac{1}{2}s}$$

exists for any \(\tau\). Also, by (1),

$$\lim_{\mathbb{Q}(\tau\to\infty)}\vartheta_{3}\left(\tau\right)=1.$$

Put

(55)
$$\varphi_{3}(\tau) = 1 + \sum_{r} \lambda^{s}(r) (ir - i\tau)^{-\frac{1}{2}s}.$$

Then, by 1 · 204, (54), and (48), $\varphi_3(\tau)$ is the c.f. $-\frac{1}{2}s$ of $\vartheta_3s(\tau)$.

Put

(56)
$$\varphi_0(\tau) = \varphi_3(\tau + 1), \quad \varphi_2(\tau) = (-i\tau)^{-\frac{1}{2}s} \varphi_0\left(-\frac{1}{\tau}\right).$$

Then, by 1·206, (13), and (17) $\varphi_0(\tau)$ and $\varphi_2(\tau)$ are the c.f. $-\frac{1}{2}s$ of $\vartheta_0^s(\tau)$ and $\vartheta_2^s(\tau)$ respectively.

1 · 212. Putting

(57)
$$g_{q}(\tau) = \varphi_{q}(\tau) \vartheta_{q}^{-s}(\tau) \qquad (q = 0, 2, 3).$$

we have, by (13), (17), and (56),

(58)
$$g_0(\tau) = g_3(\tau + 1)$$

and

$$(59) g_2(\tau) = g_0\left(-\frac{1}{\tau}\right).$$

Also, by 1 · 206, 1 · 211, and (13), $\varphi_0(\tau + 1)$ is the c.f. $-\frac{1}{2}s$ of $\vartheta_3^s(\tau)$. Hence, by 1 · 205,

(60)
$$\varphi_0\left(\tau+1\right) = \varphi_3\left(\tau\right).$$

Similarly, by 1.206, 1.211, and (14), $(-i\tau)^{-\frac{1}{2}s} \varphi_3\left(-\frac{1}{\tau}\right)$ is the c. . $-\frac{1}{2}s$ of $\vartheta_3^s(\tau)$, and hence, by 1.205,

(61)
$$(-i\tau)^{-\frac{1}{2}s} \varphi_3 \left(-\frac{1}{\tau}\right) = \varphi_3 (\tau).$$

By (57), (60), and (13),

$$(62) g_0(\tau+1) = g_3(\tau),$$

By (57), (61), and (14),

$$(63) g_3\left(-\frac{1}{\tau}\right) = g_3(\tau).$$

Also, by 1 · 206 and 1 · 211, $\varphi_2(\tau+1)$ is the c.f. $-\frac{1}{2}s$ of $\vartheta_2^s(\tau+1)$, and $e^{\frac{1}{4}\pi is}\varphi_2(\tau)$ is the c.f. $-\frac{1}{2}s$ of $e^{\frac{1}{4}\pi is}\vartheta_2^s(\tau)$. Hence, by (13) and 1.205,

(64)
$$\varphi_{2}(\tau+1) = e^{\frac{1}{4}\pi i s} \varphi_{2}(\tau).$$

By (57), (64), and (13),

(65)
$$g_2(\tau + 1) = g_2(\tau).$$

Finally, on substituting $-\frac{1}{\tau}$ for τ in (59), we obtain

(66)
$$g_2\left(-\frac{1}{\tau}\right) = g_0(\tau).$$

Put

(67)
$$\begin{cases} F_{1}(\tau) = g_{0}(\tau) + g_{2}(\tau) + g_{3}(\tau), \\ F_{2}(\tau) = g_{0}(\tau) g_{2}(\tau) + g_{0}(\tau) g_{3}(\tau) + g_{2}(\tau) g_{3}(\tau), \\ F_{3}(\tau) = g_{0}(\tau) g_{2}(\tau) g_{3}(\tau). \end{cases}$$

Then, by (62), (65), and (58),

(68)
$$F_q(\tau+1) = F_q(\tau)$$
 $(q=1, 2, 3),$

and, by (59), (66), and (63),

(69)
$$F_q\left(-\frac{1}{\tau}\right) = F_q(\tau)$$
 $(q = 1, 2, 3).$

1 213. The functions $F_1(\tau)$, $F_2(\tau)$, and $F_3(\tau)$ are regular for $\Im \tau > \frac{1}{2}$.

Proof. It is easily seen that any comparison function in the sense of $1 \cdot 204$ is regular throughout the half-plane $\Im \tau > 0$. Hence, by (67), (57), and $1 \cdot 211$, it is sufficient to prove that

(70)
$$\vartheta_q(\mathfrak{r}) \neq 0 \qquad \left(q = 0, 2, 3; \ \Im \mathfrak{r} > \frac{1}{2}\right).$$

Suppose, then,

$$\Im \tau > \frac{1}{2}$$

Then, by (1) and (11),

$$|\vartheta_{q}(\mathfrak{r})-1| \leq 2\sum_{m=1}^{\infty} |e^{\pi i m^{2}\mathfrak{r}}| < 2\sum_{m=1}^{\infty} e^{-\frac{1}{2}\pi m^{2}}$$
 $< 2\sum_{m=1}^{\infty} \left(\frac{1}{3}\right)^{m} = 1$ $(q=0,3)$,

and hence

$$\vartheta_a(\tau) \neq 0$$
 $(q = 0.3)$

Also, by (12),

$$\left| e^{-\frac{1}{4}\pi i \tau} \vartheta_2(\tau) - 2 \right| = 2 \left| \sum_{m=1}^{\infty} e^{\pi i (m^2 + m)\tau} \right|$$

$$< 2 \sum_{m=1}^{\infty} e^{-\frac{1}{2}\pi (m^2 + m)} < 1,$$

so that $\vartheta_2(\tau) \neq 0$, and (70) is proved.

1 · 214. We have

(71)
$$F_q(-\tau) = F_q(\tau) \qquad (q = 1, 2, 3).$$

Proof. By (1), (11), and (12),

(72)
$$\vartheta_q(-\tau) = \overline{\vartheta_q(\tau)} \qquad (q = 0, 2, 3)$$

Hence, by 1 · 207 and 1 · 211,

106

$$\varphi_q(-\overline{\tau}) = \overline{\varphi_q(\tau)} \qquad (q = 0, 2, 3).$$

From this and (72) and (57) we obtoin

$$g_q(-\overline{\tau}) = \overline{g_q(\tau)} \qquad (q = 0, 2, 3),$$

which, together with (67), proves (71).

1 · 215. Let

(73)
$$G_q(z) = F_q\left(\frac{1}{2\pi i}\log z\right) \qquad (q = 1, 2, 3).$$

Then $G_q(z)$ is regular for $0 < |z| < e^{-\pi}$.

This follows from (68) and 1.213.

1.216. Let
$$\alpha > 0$$
, let $\sum_{r} l(r) (ir - i\tau)^{-\alpha}$ exist for $\tau = i$, and let (U) be an abbreviation for

"uniformly for
$$-\frac{1}{2} < x \le \frac{1}{2}$$
".

Then

(74)
$$\lim_{y \to \infty} \sum_{r} l(r) \{ ir - i(x+iy) \}^{-\alpha} = 0 \qquad (U)$$

Proof. Put

(75)
$$\sum_{r} |l(r)| |ir+1|^{-\alpha} = c_1,$$

which is permissible by 1 · 13. Then

$$\lim_{a\to\infty}\sum_{|r|\leq a}|l(r)||ir+1|^{-a}=c_1.$$

and hence, by (75),

(76)
$$\lim_{a \to \infty} \sum_{|r| > a} |l(r)| |ir + 1|^{-\alpha} = 0.$$

Now let ϵ be any positive number. Then, by (76), there is an a such that

(77)
$$\sum_{|r| > a} |l(r)| |ir + 1|^{-\alpha} < 2^{-\alpha - 1} \varepsilon.$$

Let
$$y \ge 1$$
 and $-\frac{1}{2} < x \le \frac{1}{2}$. Then

$$|ir-ix+y| \ge |ir+1| - \frac{1}{2} \ge \frac{1}{2} |ir+1|$$

and hence

$$|ir-i(x+iy)|^{-\alpha} \leq 2^{\alpha} |ir+1|^{-\alpha}$$
.

so that, by (77).

(78)
$$\left|\sum_{|t|>a} l(r) \left\{ ir - i(x+ty) \right\}^{-a} \right| < \frac{1}{2} \varepsilon.$$

Also, if $|r| \leq a$ and y > 0, then

$$|ir - ix + v|^{-\alpha} \le v^{-\alpha} \le v^{-\alpha} |ir + 1|^{-\alpha} (a + 1)^{\alpha}$$

so that, by (75),

$$\left| \sum_{|r| \leq a} l(r) \{ i \, r - i \, (x + i \, y) \}^{-\alpha} \right| \leq y^{-\alpha} (\alpha + 1)^{\alpha} \sum_{|r| \leq a} |l(r)| |i \, r + 1|^{-\alpha}$$

$$\leq y^{-\alpha} (\alpha + 1)^{\alpha} c_{\alpha}.$$

Hence there is a $y_0 \ge 1$ such that

$$\left|\sum_{|r| \leq a} l(r) \left\{ i \, r - i \, (x + i \, y) \right\}^{-a} \right| \leq \frac{1}{2} \varepsilon \qquad (y \geq y_0).$$

From this and (78) it follows that

$$\left|\sum_{r}l(r)\{ir-i(x+iy)\}^{-\alpha}\right|<\varepsilon \qquad (y\geq y_0).$$

We have thus established the following result:

To every positive ϵ there is a y_0 such that, for every x satisfying $-\frac{1}{2} < x \le \frac{1}{2}$ and every $y \ge y_0$, we have

$$\left|\sum_{r}l(r)\{i\,r-i\,(x+i\,y)\}^{-a}\right|<\varepsilon.$$

Formula (74) is, of course, only a shorter enunciation of this result. 1 · 217. Let

$$\lim_{\Im\tau\to\infty}f(\tau)=L.$$

and let $\varphi(\tau)$ be the c.f. — α of $f(\tau)$. Then

$$\lim_{y \to \infty} \varphi(x + iy) = L \qquad (U).$$

This follows from 1 · 204 and 1 · 216.

1.218. Henceforth let $s \leq 8$, so that s is now restricted to the values 5, 6, 7, and 8. Then the three functions $G_q(z)$ defined by (73) are regular also at the origin.

Proof. It is sufficient to prove that

$$\lim_{z\to 0} \left\{ z G_q(z) \right\} = 0.$$

This is equivalent to

(79)
$$\lim_{y \to \infty} \left\{ e^{2\pi i (x+iy)} \ G_q \left(e^{2\pi i (x+iy)} \right) \right\} = 0$$
 (U).

Hence, by (73), it is sufficient to prove that

(80)
$$\lim_{y \to \infty} \left\{ e^{-2\pi y} F_q(x - |-i y) \right\} = 0 \qquad (U).$$

Now, by (11) and (1).

$$\lim_{y \to \infty} \vartheta_0(x + iy) = \lim_{y \to \infty} \vartheta_3(x + iy) = 1 \tag{U},$$

and hence, by 1 · 211, 1 · 217, and (57),

(81)
$$\lim_{y \to \infty} g_0(x+iy) = \lim_{y \to \infty} g_3(x+iy) = 1 \qquad (U).$$

Also, by (12),

(82)
$$\lim_{y \to \infty} \left\{ e^{-\frac{1}{4}\pi i(x+iy)} \vartheta_2(x+iy) \right\} = 2$$
 (U)

and $\lim_{\tau \to \infty} \vartheta_2(\tau) = 0$, so that, by 1.211 and 1.217,

(83)
$$\lim_{y \to \infty} \varphi_2(x+iy) = 0 \qquad (U).$$

By (57), (82), and (83),

$$\lim_{y \to \infty} \left\{ e^{\frac{1}{4} s\pi i (x+iy)} g_2(x+iy) \right\} = 0 \tag{U},$$

which means that

$$\lim_{y\to\infty}\left\{e^{-\frac{1}{4}s\pi y}g_2(x+iy)\right\}=0 \qquad (U).$$

Since $s \leq 8$, it follows that

(84)
$$\lim_{y \to \infty} \left\{ e^{-2\pi y} g_2(x + iy) \right\} = 0 \qquad (U).$$

From (67), (81), and (84) we obtain (80).

1.219. Let the set A consist of the origin and those points z for which |z| < 1 and $|\log z| \ge 2\pi$. Then it is easily seen that A is closed and contained in the circle $|z| < e^{-\pi}$, that it contains the circle $|z| < e^{-2\pi}$, and that its boundary consists of those points z for which |z| < 1 and $|\log z| = 2\pi$.

1 · 220. Let z be any point on the boundary of A . Then $G_q(z)$ is real $(q=1,\ 2,\ 3)$.

Proof. By the last part of 1·219, $\mid z \mid < 1$ and $\mid \log z \mid = 2\pi$. Hence the number

$$\tau = \frac{1}{2\pi i} \log z$$

satisfies 1 · 11 and

(85)

$$|\tau|=1.$$

Also, by (73),

(86)
$$G_q(z) = F_q(z).$$

Now, by (85), $-\frac{1}{\tau} = -\overline{\tau}$, and hence, by (69) and (71), $F_q(\tau) = F_q\left(-\frac{1}{\tau}\right)$ = $F_q(-\overline{\tau}) = \overline{F_q(\tau)}$, which implies that $F_q(\tau)$ is real. Hence, by (86), $G_q(z)$ is real.

1 · 221. Let D_1 and D_2 be domains, let E be a closed bounded set contained in D_1 and containing D_2 , and let f(z) be regular in D_1 and real on the boundary of E. Then f(z) is a constant.

Proof. The imaginary part of a regular function, considered in a closed bounded set, assumes its maximum and its minimum on the boundary of the set. Since $\Im f(z) = 0$ on the boundary of E, it follows that $\Im f(z) = 0$ throughout E. Hence f(z) is real throughout the domain D_2 , and this implies the result stated.

1 · 222. $G_1(z)$, $G_2(z)$, and $G_3(z)$ are constants.

Proof. We apply 1 221, taking for E the set A of 1 219 and for D_1 and D_2 the circles $|z| < e^{-z}$ and $|z| < e^{-2z}$ respectively. Then, by 1 215, 1 218, and 1 220, $G_g(z)$ is regular in D_1 and real on the boundary of E. Hence, by 1 211, $G_g(z)$ is a constant.

1 · 223. $g_3(\tau) = 1$.

110

Proof. It follows from (67) that $g_3(c)$ is a root of the cubic

$$u^3 - F_1(\tau) u^2 + F_2(\tau) u - F_3(\tau) = 0$$

By (73) and 1.222, this cubic has constant coefficients. Hence $g_3(\tau)$ is a constant, and it follows from (81) that this constant is 1.

1 · 224.
$$\vartheta_3^s(\tau) = \varphi_3(\tau)$$
.

This follows from (57) and 1 · 223.

1 · 225. By (55) and (10),

(87)
$$\varphi_{8}(\tau) = 1 + \sum_{0 < r \leq 2} \sum_{q = -\infty}^{\infty} \lambda^{s} (r + 2q) (ir + 2iq - i\tau)^{-\frac{1}{2}s}.$$

Now it follows from (48) and (1) that $\lambda(r+2q) = \lambda(r)$ for any integer q. Hence, putting

(88)
$$F(\tau) = \sum_{q=-\infty}^{\infty} (2iq - i\tau)^{-\frac{1}{2}s},$$

we have, by (87),

(89)
$$\varphi_{8}(\tau) = 1 + \sum_{0 \leq r \leq 2} \lambda^{s}(r) F(\tau - r),$$

It easily follows from (88) that $F(\tau)$ has period 2 and that $\lim_{y\to\infty} F(x+iy) = 0$ uniformly in x. Hence

(90)
$$F(\tau) = \sum_{n=1}^{\infty} b_n e^{\pi i n \tau},$$

where

(91)
$$b_n = \frac{1}{2} \int_{\tau}^{\tau_0+2} F(\tau) e^{-\pi i n \tau} d\tau,$$

 τ_0 being any number in the upper half-plane. Taking, in particular, $\tau_0=i/n$, we obtain from (91) and (88)

(92)
$$b_n = \frac{1}{2} \int_{i/n}^{i/n+2} \sum_{q=-\infty}^{\infty} (2 i q - i \tau)^{-\frac{1}{2} s} e^{-\pi i n \tau} d\tau$$

$$= \frac{1}{2} \sum_{q=-\infty}^{\infty} \int_{lm}^{l(n+2)} (2iq - i\tau)^{-\frac{1}{2}s} e^{-\pi i n(\tau - 2q)} d\tau$$

$$= \frac{1}{2} \sum_{q=-\infty}^{\infty} \int_{||n-2q|}^{i|n-2q+2} (-iz)^{-\frac{1}{2}s} e^{-\pi inz} dz$$

$$=\frac{1}{2}\int_{ln-\infty}^{l(n+\infty)} (-lz)^{-\frac{1}{2}s} e^{-\pi i nz} dz = c n^{\frac{1}{2}s-1}$$

where

(93)
$$c = \frac{1}{2} \int_{i-\infty}^{i+\infty} (-iw)^{-\frac{1}{2}s} e^{-\pi iw} dw.$$

By (89), (90), and (92),

(94)
$$\varphi_{s}(\tau) = 1 + c \sum_{0 < r \le 2} \lambda^{s}(r) \sum_{n=1}^{\infty} n^{\frac{1}{2}s-1} e^{\pi i n \tau} e^{\pi i n (\tau - r)}$$
$$= 1 + c \sum_{n=1}^{\infty} n^{\frac{1}{2}s-1} e^{\pi i n \tau} \sum_{0 < r \le 2} \lambda^{s}(r) e^{-\pi i n r}.$$

(The inversion of the order of the summations is justified by (47), since $s \ge 5$). From (2), (94), and $1 \cdot 224$ we obtain, on equating the coefficients of $e^{\pi i n \tau}$.

(95)
$$r_s(n) = c n^{\frac{1}{2}s-1} \sum_{0 \le r \le 2} \lambda^s(r) e^{-\pi i n r} (n = 1, 2, ...).$$

1 · 226. By 1 · 13 and (3),

$$\sum_{0 \le r \le 2} \lambda^{s}(r) e^{-\pi i n r} = \sum_{k=1}^{\infty} \sum_{h} \lambda^{s} \left(\frac{h}{k}\right) \xi_{2k}^{-nh},$$

where h runs through the same values as in (4). From this and (46), (4), and (5) it follows that

$$\sum_{0 \le r \le 2} \lambda^s(r) e^{-\pi i n r} = S(n),$$

which, together with (95), proves (6).

Theorem 1 is thus established.

Part 2.

2 1. Evaluation of $\lambda^4(r)$.

2·11. We have

(96)
$$\lambda(0) = 1, \lambda(1) = 0,$$

(97) $\lambda (r+2) = \lambda (r),$ and

(98)
$$\lambda^2 \left(-\frac{1}{r} \right) = (i r)^{-1} \lambda^2 (r) \qquad (r \neq 0)$$

(96) and (97) follow immediately from (46) and (3). *Proof of* (98). By (48) and 1 · 151.

$$\lambda^2(r) = \lim_{\mathfrak{F} \to \infty} \left\{ (-i r^{-2} \tau - i r^{-1})^{-1} \vartheta_{\mathfrak{F}^2} \left(r - \frac{1}{r^{-2} \tau + r^{-1}} \right) \right\}.$$

Hence, by (14) and (48),

$$\begin{split} (ir)^{-1} \lambda^{2} (r) &= \lim_{\mathfrak{I} \to \infty} \left\{ \frac{r}{\mathfrak{r} + r} \vartheta_{3}^{2} \left(\frac{r \mathfrak{r}}{\mathfrak{r} + r} \right) \right\} \\ &= \lim_{\mathfrak{I} \to \infty} \left\{ \frac{r}{\mathfrak{r} + r} \left(\frac{-ir\mathfrak{r}}{\mathfrak{r} + r} \right)^{-1} \vartheta_{3}^{2} \left(-\frac{\mathfrak{r} + r}{r\mathfrak{r}} \right) \right\} \\ &= \lim_{\mathfrak{I} \to \infty} \left\{ (-i\mathfrak{r})^{-1} \vartheta_{3}^{2} \left(-\frac{1}{r} - \frac{1}{\mathfrak{r}} \right) \right\} = \lambda^{2} \left(-\frac{1}{r} \right), \end{split}$$

q. e. d.

 $2\cdot 12$. Let α be an aggregate of rational numbers, containing the numbers 0 and 1, and such that, to every r which it contains, it also contains the numbers r+2 and r-2 and, if $r\neq 0$, the number $-\frac{1}{r}$. Then α contains all rational numbers.

Proof. Let h(r) and k(r) be the numerator and the denominator of r when expressed as a fraction in its lowest terms, the denominator being taken positive, so that

$$r = h(r)/k(r), (h(r), k(r)) = 1, k(r) > 0$$

Define an aggregate \$\beta\$ of positive integers as follows:

The number n is to be in β if and only if there is an r, not in α , such that |h(r)| + 2k(r) = n.

Suppose α does not contain all rational numbers. Then β is not empty, and so β has a least member n_0 , say. There is an r_0 , not in α , such that

$$|h(r_0)| - 2k(r_0) = n_0$$

Now 0, 1, and -1 are in α , so that $|r_0|$ is neither 0 nor 1. Put 8. Prace Matematyczno-Fizyczne, T. 45.

$$r_{1} = \begin{cases} r_{0} - 2 & \text{if } r_{0} > 1, \\ r_{0} + 2 & \text{if } r_{0} < -1, \\ -1/r_{0} & \text{if } 0 < |r_{0}| < 1. \end{cases}$$

and

$$n_1 = |h(r_1)| + 2k(r_1).$$

Then r_1 is not in α , and hence n_1 is in β . On the other hand, n_1 is less than n_0 , the least member of β . This is a contradiction.

 $2 \cdot 13$. Let two functions $f_m(r)$ (m = 1, 2) be defined for every r and have the following properties:

(99)
$$f_1(0) = f_2(0), f_1(1) = f_2(1),$$

$$(100) f_m(r+2) = f_m(r),$$

and

(101)
$$f_m\left(-\frac{1}{r}\right) = -r^{-2} f_m(r) \quad (r \neq 0).$$

Then

(102)

 $f_1(r) = f_2(r)$

for every r.

This follows from $2 \cdot 12$ on taking for α the aggregate of those numbers r for which (102) holds.

2 · 14. We have

(103)
$$\lambda^{4}(r) = \begin{cases} 0 & (2+h(r)k(r)) \\ k^{-2}(r)(-1)^{k(r)-1} & (2 \mid h(r)k(r)). \end{cases}$$

This follows from $2 \cdot 13$ on taking for $f_1(r)$ and $f_2(r)$ the two sides of (103), and applying $2 \cdot 11$.

- 2.2. Evaluation of S(n) for s=8.
- $2 \cdot 21$. Henceforth h, k, l, m, n, q, u, and v denote positive integers, and t, x, and y denote integers.
- $c_u(x)$ denotes the sum of the x-th powers of the primitive u-th roots of unity (Ramanujan's sum).

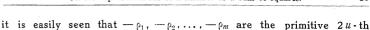
It follows that

$$\sum_{u|v}c_u\left(x\right)$$

is the sum of the x-th powers of all v-th roots of unity, so that

(104)
$$\sum_{u|v} c_u(x) = \begin{cases} v & (v \mid x) \\ 0 & (v \mid x). \end{cases}$$

If u is odd, and ρ_1 , ρ_2 , ..., ρ_m are the primitive u-th roots of unity, 114



Hence

roots of unity.

(105) $c_{2u}(x) = (-1)^x c_u(x) \qquad (2+u).$

 $2 \cdot 22$. Let (h, k) = 1. Then, by (103),

(106)
$$\lambda^{8} \left(\frac{h}{k} \right) = \begin{cases} 0 & (2+hk) \\ k^{-4} & (2+hk) \end{cases}$$

Also, by (4) and (46),

(107)
$$A_k = \sum_{\substack{h \le 2k \\ (h,k)=1}} \lambda^8 \left(\frac{h}{k}\right) (\xi_{2k}^{-h})^n.$$

It follows from (106), (107), and (3) that

(108)
$$A_k = \begin{cases} k^{-4} c_k(n) & (2+k) \\ k^{-4} c_{2k}(n) & (2+k) \end{cases}$$

Let

(109)
$$S_1 = \sum_{u=1}^{\infty} u^{-4} c_u(n), \ S_2 = \sum_{u \text{ odd}} u^{-4} c_u(n), \ S_3 = \sum_{4|u|} u^{-4} c_u(n).$$

Then, by (5) and (108),

(110) $S(n) = S_2 + 16 S_3$

Also, by (109) and (105),

$$S_1 - S_2 - S_3 = \sum_{v=2 \text{(mod 4)}} v^{-4} c_v (n) = \sum_{u \text{ odd}} (2 u)^{-4} c_{2u} (n) = \frac{(-1)^n}{16} S_2$$
,

and hence, by (110),

(111)
$$S(n) = 16 S_1 - 15 S_2 - (-1)^n S_2.$$

2.23. It remains to evaluate S_1 and S_2 . Let

(112)
$$a = \sum_{v=1}^{\infty} v^{-4}.$$

Then

(113)
$$\sum_{v \text{ odd}} v^{-4} = a - \sum_{u=1}^{\infty} (2 u)^{-4} = \frac{15}{16} a.$$

By (109), (112), and (104),

(114)
$$a S_1 = \sum_{u,v} (u v)^{-4} c_u(n) = \sum_{q=1}^{\infty} q^{-4} \sum_{u|q} c_u(n)$$
$$= \sum_{q=1}^{\infty} q^{-3} = n^{-3} \sigma_{s}(n).$$

Similarly, by (109), (113), and (104),

(115)
$$\frac{15}{16} a S_2 = \sum_{\substack{q \text{ odd} \\ q \mid n}} q^{-3} = \sum_{\substack{q \mid n}} q^{-3} - \sum_{\substack{q \text{ even} \\ q \mid n}} q^{-3} = n^{-3} \sigma_3(n) - n^{-3} \sigma_3\left(\frac{1}{2}n\right).$$

Now, if *n* is odd, then $\sigma_3(\frac{1}{2}n) = 0$. Hence, by (111), (114), and (115),

(116)
$$\frac{15}{16} a \, n^3 \, S(n) = \begin{cases} \sigma_3(n) & (2+n) \\ -\sigma_3(n) + 16 \, \sigma_3\left(\frac{1}{2} \, n\right) & (2+n). \end{cases}$$

If n is even, and u_1, u_2, \ldots, u_q are all those positive divisors of $\frac{1}{2}$ n

which do not divide $\frac{1}{4}n$, then $2u_1, 2u_2, \ldots, 2u_q$ are all those positive

divisors of n which do not divide $\frac{1}{2}n$. Hence

$$\sigma_{3}(n) - \sigma_{3}\left(\frac{1}{2}n\right) = \sum_{m=1}^{q} (2u_{m})^{3} = 8\sum_{m=1}^{q} u_{m}^{3}$$

$$= 8\sigma_{3}\left(\frac{1}{2}n\right) - 8\sigma_{3}\left(\frac{1}{4}n\right) \qquad (2 \mid n).$$

and hence, by (116).

(117)
$$\frac{15}{16} a n^3 S(n) = \sigma_3(n) - 2 \sigma_3\left(\frac{1}{2}n\right) + 16 \sigma_3\left(\frac{1}{4}n\right).$$

From this and (6) we obtain

(118)
$$r_8(n) = a_1 \left\{ \sigma_3(n) - 2 \sigma_3 \left(\frac{1}{2} n \right) + 16 \sigma_3 \left(\frac{1}{4} n \right) \right\}.$$

where a_1 is a constant. Substituting 1 for n in this formula, we obtain $a_1 = 16$, which, together with (118), proves Theorem 2.

2.3. Evaluation of S(n) for s=5.

2:301. If k is odd, then, by (4), (46), (103), and (3),

(119)
$$A_{k} = \sum_{\substack{m \le k \\ (m,k)=1}} \lambda^{4} \left(\frac{2m}{k}\right) \frac{1}{2k} \sum_{q=1}^{2k} \xi_{2k}^{2m(q^{2}-n)}$$
$$= k^{-3} \sum_{\substack{m \le k \\ (m,k)=1}} \sum_{q=1}^{k} \xi_{k}^{m(q^{2}-n)} = k^{-3} \sum_{q=1}^{k} c_{k} (q^{2}-n),$$

in the notation introduced in 2.21.

Let

(120)
$$d_k(x) = \frac{1}{k} \sum_{q=1}^k c_k(q^2 - x)$$

and

(121)
$$v(m,t) = \sum_{\substack{q \le m \\ \sigma^2 = n \mid \{l \text{ mod } m \}}} 1$$

(which means that v(m, t) is the number of solutions of the congruence $x^2 \equiv t \pmod{m}$. Then, by (119) and (120),

(122)
$$A_k = k^{-2} d_k(n)$$
 (2+k).

Similarly

(123)
$$A_k = -k^{-2} d_{2k}(n)$$
 (2 | k).

Now $c_k(q^2-x)$, considered as a function of q, has period k. Hence it follows from (120) that, if $k \mid m$, then

$$d_k(x) = \frac{1}{m} \sum_{q=1}^m c_k(q^2 - x),$$

and hence, by (104) and (121).

(124)
$$\sum_{k|m} d_k(x) = \sum_{q=1}^m \frac{1}{m} \sum_{k|m} c_k(q^2 - x)$$

$$= \sum_{\substack{m \mid m \mid m \\ m \mid m \mid m}} 1 = \gamma(m, x).$$

2 · 302. Let k be odd. Then

$$(125) d_{2k}(x) = 0.$$

Proof. It has been observed that $c_k(q^2-x)$, considered as a function of q, has period k. From this, (120), (105), and the identity

$$\sum_{q=1}^{2k} f(q) = \sum_{q=1}^{k} \{ f(q) + f(q+k) \}$$

we obtain

$$2 k d_{2k}(x) = \sum_{q=1}^{2k} c_{2k}(q^2 - x) = \sum_{q=1}^{2k} (-1)^{q^2 - x} c_k(q^2 - x)$$
$$= (-1)^{\frac{k}{2}} \sum_{q=1}^{k} c_k(q^2 - x) \left\{ (-1)^{q^2} + (-1)^{(q+k)^2} \right\},$$

and

$$(-1)^{q^2} + (-1)^{(q+k)^2} = 0$$

since k is odd.

2 · 303. We have

$$|d_u(n)| \leq 2u^{\frac{1}{2}}.$$

Proof. It follows from (4), (46), and (47) that

$$(127) |A_k| \leq 2 k^{-\frac{3}{2}}.$$

From this and (122) we obtain (126) immediately if u is odd. If $4 \mid u$ it follows from (123) that

$$d_u(n) = -\left(\frac{1}{2}u\right)^2 A_{\frac{1}{2}u},$$

which, together with (127), again proves (126). Finally, if $u = 2 \pmod{4}$, it follows from 2.302 that $d_u(n) = 0$. Thus (126) holds in all cases, 2:304. Let

(128)
$$S_4 = \sum_{u=1}^{\infty} u^{-2} d_u(n), \quad S_5 = \sum_{u \text{ odd}} u^{-2} d_u(n).$$

These sums are absolutely convergent by (126), and it follows from 2:302 that

(129)
$$S_4 - S_5 = \sum_{4|u} u^{-2} d_u(n) = \sum_{2|k} (2k)^{-2} d_{2k}(n).$$

By (5), (122), (123), (128), and (129)

(130)
$$S(n) = S_5 - 4(S_4 - S_5) = 5S_5 - 4S_4$$
Let

$$a_2 = \sum_{n=1}^{\infty} v^{-2}$$
.

Then

(131)

(132)
$$\sum_{v \text{ odd}} v^{-2} = a_2 - \sum_{u=1}^{\infty} (2 u)^{-2} = \frac{3}{4} a_2.$$

By (128), (131), and (124),

(133)
$$a_2 S_4 = \sum_{u,v} (u v)^{-2} d_u(n) = \sum_{m=1}^{\infty} m^{-2} \sum_{u|m} d_u(n)$$
$$= \sum_{m=1}^{\infty} m^{-2} v(m,n).$$

Similarly, by (128), (132), and (124),

(134)
$$\frac{3}{4} a_2 S_5 = \sum_{m \text{odd}} m^{-2} v(m, n).$$

2.305. A function f(u) is said to be multiplicative if f(uv) = f(u) f(v)whenever (u, v) = 1. This notion will be used several times in the remainder of this paper.

Use will also be made of the following elementary lemmas:

(i) If $f_1(u)$ and $f_2(u)$ are multiplicative, and

$$f_3(u) = \sum_{\substack{q,v \ q = u}} f_1(q) f_2(v),$$

then $f_3(u)$ is multiplicative.

(ii) If (u, v) = 1, and f(x) has period uv, then

$$\sum_{q=1}^{uv} f(q) = \sum_{x=1}^{v} \sum_{v=1}^{u} f(u \, x + v \, y).$$

(iii) If (u, v) = 1, and f(x) has period u, then

$$\sum_{q=1}^{u} f(q) = \sum_{q=1}^{u} f(q \ v).$$

(iv) If f(x) has period m, then

$$\sum_{q=1}^{km} f(q) = k \sum_{q=1}^{m} f(q).$$

 $2 \cdot 306$. Let (u, v) = 1. Then

(135)
$$v(u v, t) = v(u, t) v(v, t) .$$

In other words: v(u, t) is a multiplicative function of u.

Proof. Define the auxiliary function g(x, t, m) as 1 if $x^2 \equiv t \pmod{m}$, and 0 otherwise. Then, by (121),

(136)
$$v(m,t) = \sum_{q=1}^{m} g(q,t,m).$$

Hence, by lemma (ii) of 2.305,

(137)
$$v(uv,t) = \sum_{x=1}^{v} \sum_{y=1}^{u} g(ux + vy, t, uv).$$

Now it follows from the definition of g(x, t, m) that

(138)
$$g(ux + vy, t, uv) = g(vy, t, u)g(ux, t, v),$$

and from lemma (iii) of 2 · 305 and (136) that

(139)
$$\sum_{v=1}^{u} g(vy, t, u) = \sum_{q=1}^{u} g(q, t, u) = v(u, t)$$

and similarly

(140)
$$\sum_{x=1}^{v} g(ux, t, v) = v(v, t).$$

From (137)—(140) we obtain (135). 2:307. We have

(141)
$$v(u^2 m, u^2 t) = u v(m, t) .$$

Proof. By (136),

(142)
$$v(u^2 m, u^2 t) = \sum_{n=1}^{u^2 m} g(q, u^2 t, u^2 m).$$

Now $g(q, u^2t, u^2m) = 0$ unless q is a multiple of u. Hence

(143)
$$\sum_{q=1}^{n^2 m} g(q, u^2 t, u^2 m) = \sum_{v=1}^{nm} g(u v, u^2 t, u^2 m),$$

and it follows from the definition of g(x, t, m) that

(144)
$$g(uv, u^2t, u^2m) = g(v, t, m).$$

By (142), (143), (144), and lemma (iv) of 2:305,

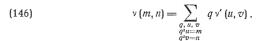
$$v(u^2 m, u^2 t) = \sum_{v=1}^{um} g(v, t, m) = u \sum_{v=1}^{m} g(v, t, m),$$

which, together with (136), proves (141),

 $2\cdot 308$. An integer is said to be square-free (quadratfrei) if it is not divisible by any square other than 1. Let us define the auxiliary function $\kappa(m)$ as 1 or 0 according as m is or is not square-free. This function is obviously multiplicative. Hence, if we put

(145)
$$v'(m,t) = z ((m,t)) v(m,t)$$

the inner pair of brackets in $\varkappa((m,t))$ belonging to the symbol for the greatest common divisor, it follows from 2 306 that $\nu'(m,t)$ is a multiplicative function of m. Also



In fact, the sum on the right, in spite of its three variables of summation, has only one possibly non-vanishing term, namely that in which q is the greatest integer whose square divides m and n, and it follows from (145) and (141) that this term is equal to v(m,n).

2:309. By (133) and (146).

(147)
$$a_2 S_4 = \sum_{m=1}^{\infty} \sum_{\substack{q, u, v \\ q''u=m}} q^{-3} u^{-2} v'(u, v)$$

$$= \sum_{\substack{q, u, v \\ close - v}} q^{-3} u^{-2} v'(u, v) = \sum_{\substack{q, v \\ close - v}} q^{-3} T_1(v),$$

where

(148)
$$T_1(v) = \sum_{i=1}^{\infty} u^{-2} v'(u, v).$$

Similarly, by (134) and (146),

(149)
$$\frac{3}{4} a_2 S_5 = \sum_{\substack{q, v \\ q \text{ odd}}} q^{-3} T_2(v).$$

where

(150)
$$T_{2}(v) = \sum_{n} u^{-2} v'(u, v).$$

By (149),

(151)
$$\frac{3}{4} a_2 S_5 = S_6 - S_7,$$

where

(152)
$$S_6 = \sum_{\substack{q, \ v \\ q^2v = n}} q^{-3} T_2(v), \qquad S_7 = \sum_{\substack{q, \ v \\ q \text{ even} \\ q^2v = n}} q^{-3} T_2(v).$$

Substituting 2m for q and $\frac{1}{4}l$ for v in the last sum, we obtain

(153)
$$S_7 = \sum_{\substack{m, l \\ \frac{1}{4}, l \\ m \neq 1}} (2 m)^{-3} T_2 \left(\frac{1}{4} l\right) = \frac{1}{8} \sum_{\substack{m, l \\ m \neq 1 = n}} m^{-3} T_2 \left(\frac{1}{4} l\right),$$

where $T_2(w) = 0$ if w is not an integer.

By (130) and (151).

$$6 a_2 S(n) = -24 a_2 S_4 + 40 S_6 - 40 S_7$$
.

Hence, putting

(154)
$$T_3(l) = -24 T_1(l) + 40 T_2(l) - 5 T_2\left(\frac{1}{4}l\right),$$

we have, by (147), (152), and (153),

(155)
$$6a_2 S(n) = \sum_{\substack{q, 1 \\ a \nmid l = n}} q^{-3} T_s(l).$$

2.310. Let p be a prime. Then

(156)
$$v'(p^m, t) = 1 + \left(\frac{t}{p}\right) \qquad (p+t, p > 2),$$

(157)
$$v'(p,t) = 1$$
 $(p \mid t)$,

and

(158)
$$v'(p^m, t) = 0 (p \mid t, m > 1).$$

Proof. If p+t and p>2, it is known that $v(p^m,t)$ (as defined in $2 \cdot 301$) is 2 or 0 according as t is or is not a quadratic residue mod p_t and we have $(p^m, t) = 1$, so that $x((p^m, t)) = 1$. From this and (145) we obtain (156).

If $p \mid t$, we have, by (121),

$$v(p,t) = \sum_{\substack{q \le p \\ q^2 \equiv 0 \pmod{p}}} 1 = 1$$
,

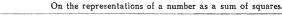
and $\kappa((p,t)) = \kappa(p) = 1$. From these formulae and (145) we obtain (157). If $p \mid t$ and m > 1, we consider the cases $p^2 \mid t$ and $p^2 + t$ separately. In the former, (p^m, t) is divisible by p^2 and therefore not square-free, so that $u((p^m, t)) = 0$. In the latter, by (121),

$$u\left(p^{m},t\right) = \sum_{\substack{q \leq p^{m} \ q^{n} \equiv t \pmod{p^{m}}}} 1 = 0,$$

since the condition $q^2 \equiv t \pmod{p^m}$ now implies that $p \mid q^2$ and $p^2 + q^2$. which is impossible, so that the sum is empty. Thus it follows from (145) that (158) holds in either case.

2 · 311. We have

(159)
$$v'(1, t) = v'(2, t) = 1,$$



(160)
$$\forall (4, t) = \begin{cases} 2 & (t \equiv 1 \pmod{4}) \\ 0 & (\text{otherwise}) \end{cases},$$

and

(161)
$$v'(2^m, t) = \begin{cases} 4 & (t \equiv 1 \pmod{8}, \ m \geq 3) \\ 0 & (t \not\equiv 1 \pmod{8}, \ m \geq 3). \end{cases}$$

(159) and (160) follow easily from (145) and (121). If t is odd, (161) can be established by an argument similar to the proof of (156). If t is even. (161) is implied in (158).

2.312. Let p be an odd prime. Then

(162)
$$\forall (p^m, t) = \left(\frac{t}{p^m}\right) + \left(\frac{t}{p^{m-1}}\right).$$

This follows easily from 2 310.

2 · 313. We have

(163)
$$v'(u,t) = \sum_{\substack{q,v\\qv=u}} \left(\frac{t}{q}\right) \kappa(v) \qquad (2+u).$$

Proof. It follows from 2:308 and lemma (i) of 2:305 that both sides of (163) are multiplicative functions of u, and the equation is obviously true for u=1. Hence it is sufficient to prove that (163) holds if u is a power of an odd prime, and this follows from (162).

2 · 314. Let

(164)
$$a_3 = \sum_{v \text{ odd}} v^{-2} \kappa(v).$$

Then, by (150) and (163),

(165)
$$T_2(l) = \sum_{\substack{u \text{ odd} \\ q \text{ to } u}} \sum_{\substack{q, v \\ q \text{ to } u}} (q v)^{-2} \left(\frac{l}{q}\right) x(v)$$

$$= \sum_{q \text{ odd}} \sum_{v \text{ odd}} q^{-2} \left(\frac{l}{q}\right) v^{-2} \times (v) = a_3 \sum_{q=1}^{\infty} \left(\frac{l}{q}\right) q^{-2},$$

since $\left(\frac{l}{q}\right) = 0$ if q is even.

Since $\sqrt{(u, l)}$ is a multiplicative function of u, it follows from (148) and (150) that

(166)
$$T_1(l) = \sum_{u \text{ odd}} \sum_{x=0}^{\infty} (2^x u)^{-2} v'(2^x, l) v'(u, l)$$
$$= d_l T_2(l),$$

where

(167)
$$d_{l} = \sum_{x=1}^{\infty} 2^{-2x} v'(2^{x}, l).$$

Since $T_2(w)$ has been defined as 0 if w is not an integer, it follows from (165) that

(168)
$$T_2\left(\frac{1}{4}l\right) = \begin{cases} T_2(l) & (4 \mid l) \\ 0 & (4 \mid l). \end{cases}$$

By (154), (166), and (168).

(169)
$$T_3(l) = e_l T_2(l)$$
, where

(170)
$$e_{l} = \begin{cases} -24 d_{l} + 35 & (4 \mid l) \\ -24 d_{l} + 40 & (4 \mid l). \end{cases}$$

2.315. By (167) and 2.311,

$$24 d_{l} = \begin{cases} 30 & (l \not\equiv 1 \pmod{4}) \\ 35 & (l \equiv 1 \pmod{8}) \\ 33 & (l \equiv 5 \pmod{8}). \end{cases}$$

Hence, by (170).

$$e_{l} = \begin{cases} 5 & (4 \mid l) \\ 10 & (l = 2 \text{ or } 3 \pmod{4}) \\ 5 & (l = 1 \pmod{8}) \\ 7 & (l = 5 \pmod{8}). \end{cases}$$

From this and the definition of C_l (in the enunciation of Theorem 3) it follows that

(171)
$$C_l = 16 e_l$$

By (169), (171), (165), and (7),

$$l^{\frac{3}{2}}T_{3}(l) = a_{4}R(l),$$

where a_4 is a constant. Hence, by (6) and (155),

(172)
$$r_5(n) = c n^{\frac{3}{2}} S(n) = (6 a_2)^{-1} c \sum_{\substack{q,l \\ q^2l = n}} l^{\frac{3}{2}} T_3(l)$$

$$= a_5 \sum_{\substack{q,1\\q^2 = n}} R(l) = a_5 \sum_{q^2 \mid n} R\left(\frac{n}{q^2}\right),$$

where a_5 is a constant. In particular

$$r_5(1) = a_5 R(1)$$
.

Now $r_5(1) = 10$, and it follows from (7) that

$$R(1) = 80 \pi^{-2} \sum_{m \text{ odd}} m^{-2} = 10.$$

Hence $a_5 = 1$, which, together with (172), proves Theorem 3. University College, London,

(Received 27 February, 1936.)