28 B. Kalicun-Chodowicki.

Proste t, , i plaszczyzna kierownicza 7io (rzutnia pionowa) wyzna-
czajq parabolojde Il;, ktéra majac z konojda $cista stycznoéé w trzech
punktach wspélnej tworzacej g, a mianowicie w punkcie A i punktach
przeciecia sie z kierownicami £ i £’ (proste dwukrotne konojdy), ma
scistq styczno$é wzdfui calej tej tworzacej g.

Rys. 11,

Inhaltsangabe,

In ersten 8 Artikeln entwickelt Verf, und begriindet mittels der
kinematischen Geometrie eine Konstruktion der Kriimmungsmittelpunkte
der ebenen Schnittkurven des hyperbolischen Paraboloides in seinem
Punkte A, indem er diesen Punkt annimmt:

1) im Scheilel des gleichseitigen Paraboloides Il,, 2) im Scheitel
des allgemeinen Paraboloides II, 3) in einem solchen Punkte, dessen
Beriihrungsebene normal zu einer der Leitebene steht, 4) in einem
beliebigen Punkte des Paraboloides.

In den letzteren 5 Artikeln gibt Verf, einige Beispiele der An-
wendung dieser Konstruktion ftir Bestimmung -der Krimmungsmittel-
punkte und der Haupttangenten (Inflexionstangenten) in einem beliebigen
Punkte: 1) an einem hyperbolischen Paraboloid, 2) an einem einschaligen
Hyperboloid, 3) an einer schrigen Schraubenfliche, 4) an einer geraden
Schraubenfldche, 5) an einem Kreiskonoid — indem diese windschiefen
Reglflichen in zwei orthogonalen Projektionen vorgestellt werden.
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On the order of magnitude of the difference
between consecutive prime numbers.

By
Harald Cramér (Stockholm).

Introduction,

Let p, denote the n: th prime number, It has been proved by Hoh-
eisel [8]1) that we have

(1) Pt~ pu= O (ps")

for some §>0. On the other hand, it is known (Westzynthius [11])
that the relation

2 Prit— Pn == ] (10g Pa)

is certainly not true. Thus with respect to the maximum order of the
difference ppyi-—pn there remains a large domain of uncertainty.

If the Riemann hypothesis is assumed, it is possible (Cramér
[4]) to improve (1) to ‘ i

(3] Pudt — Pn== @] [lpn 1og Pn)y

but obviously even in this case a comparatively wide gap is still left
open between (2) and (3). It has been conjectured by Piltz [9] that

we have for every e™=0
Prr = pu == O (pr%),

but this has never been proved.

) Numbers in brackets refer to the appended list of references.
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In the first section of the present paper, an heuristic methot foun-
ded on probability arguments is briefly exposed. It is suggested that
the true maximum order of put1—px should be equal to (log pu)°. so
that we should be able to replace (1) and (3) by?)

(4) Prtr— Pn== 0] ( UOQJM]Q) .

In the second section it will be shown that, if the Riemann
hypothesis is assumed, a number of results may be proved which, rough-
ly speaking, may be interpreted in the following way. Let us consi-
der the primes p,, such that the difference prji—pn is exceptionally
large, i. e. larger than some function f(ps) increasing more rapidly than
(log pa)®. Then the frequency of such primes pn is small

We shall here only mention two particular theorems belonging to
this order of ideas. (For preliminary results cf. Cramér [4], [5], [6].)

1} Consider the sums

S(x)= z (Patr — Pa)
P
and

St (x) = Z,(Pr1-4-1 — ),

Pye

—

the first of which is extended to all primes p,< x, while in the second
the summation is restricted to those p,<(x which satisfy

Prt _‘pn> [Iogpn)a .
We then obviously have, as x tends to infinity,
Sx)eox,

while it will be shown that on the Riemann hypothesis we have

S0 =0 J=oln.

This is only a very particular case of our theorem ]I, which gives an
upper limit for the frequency of ,prime intervals" (pn, puj1) satislying
an inequality of the form puyi— pu > pu* (log pa)f.

2) If the relation (4) could be proved, it is immediately seen that
the series

%) CL the numerical data given by Western [10].
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S (s —pa)®

Nl Pn Uog pfi))’

would be convergent for X >4, It will be shown that this is actually
the case, if the Riemann hypothesis is true. (For 22 the series is
certainly divergent.)

The proofs of the theorems of Section II are founded on a num-
ber of Lemmas, some of which are independent of the Riemann hy-
pothesis, In particular, we would draw the attention to Lemma 3, from
which i a. a proof of Hoheisel's theorem (1) may be obtained.?)

I. Results suggested by probability arguments.

In investigations concerning the asymptotic properties of arithme-
tic functions, it is often possible to make an interesting heuristic use
of probability arguments. If, e. g., we are interested in the distribution
of a given sequence S of integers, we then consider S as a member of
an infinite class C of sequences, which may be concretely interpreted
as the possible realizations of some game of chance,?) It is then in
many . cases possible to prove that, with a probability==1, a certain re-
lation R holds in C, L. e. that in a definite mathematical sense ,almost
all“ sequences of C satisfy R, Of course we cannot in general conclu-
de that R holds for the particular sequence S, but results suggested in
this way may sometimes afterwards be rigorously proved by other
methods.

With respect to the ordinary prime numbers, it is well known
that, roughly speaking, we may say that the chance that a given inte-

!) While the present paper was being printed, N, Tchudakoff has published
a theorem (C. R, Acad. Sci. U, R, S, S, vol. I, 1936, p, 201) on the zeros of the function
% (s), from which he states (without proof) that it is possible to deduce the relalion

3
Prjr — P = O(P,lii+e) for every ¢ >0, This deduction can be performed Ly means

of our Lemma 3,

1) Arguments of this character being frequently misunderstood, it will be con-
venient to make the {ollowing remarks, By the methads of the modern theory of pro-
bability, the class C may be defined in a purely analytic way as an abstract space with-
out any reference to concrete inlerpretation, The term ,almost all* is then inter-
preted in the sense of the Lebesgue measure theory, Up to this point, the develop-
ments indicated in the text are thus mathematically exact, The heuristic part of the
argument does not come in until it is suggested that the relation R may hold for the
particular sequence §, The present Section I being of an introductory character. we

~shall not enter upon all details of the proofs, The theorems on probability required in

the sequel will be found in a convenient form e. g. in Cantelli [2], p. 334 and 336,
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1 .
ger 7 should be a prime is approximately —I——g—,; This suggests that by
o

considering the following series of independent trials we should obtain

sequences of integers presenting a certain analogy with the sequence

of ordinary prime numbers p..

Let Uy, U,, U,, ... be an infinite series of urns containing black
and white balls, the chance of drawing a white ball from U, being
1
logn
chosen. We now assume that one ball is drawn from each urn, so
that an infinite series of alternately black and white balls is obtained.
If P, denotes the number of the urn from which the 7n: th white ball
in the series was drawn, the numbers Py, P,, ... will form an increa-
sing sequence of integers, and we, shall consider the class C of all pos-
sible sequences (P,). Obviously the sequence S of ordinary prime

numbers (p.) belongs to this class.

for 7°>2, while the composition of U; and U, may be arbitrarily

thus forming an analogy to the ordinary notation w(x) for the number
of primes p.=x, Then II(x) is a random variable, and if we denote

by z, a variable taking the value 1 if the n: th urn gives a white ball
and the value O in the opposite case, we have

I [x):Z 2n,

nELx

and it is easily seen that the mean value of [[(x) is, for large values
of X, asymptotically equal to Li(x). It is, however, possible to obtain
much more precise information concerning the behaviour of I1(x) for
large values of x. As a matter of fact, it may be shown (cf. Cra-
mér [6]) that, with a probability =1, the relation

) i sup 109 = Li

£ o |/‘§,‘C . V log |
log x

is satisfied. With respect to the corresponding difference 7 ()~ Li (%)
in the prime number problem, it is known that, if the Riemann hypo-
thesis is assumed, the true maximum order of this difference lies be~
tween the functions ilvgf’& and X -logx, It is interesting to find that

A

‘the order of the function occurring in the denominator of (5) falls
inside this interval of indetermination.
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We shall now consider the order of magnitude of the difference
Pyy1—Py. Let ¢>0 be a given constant and let E, denote the event
that black balls are obtained from all urns Upnt, with 1=V = ¢ (log m)%.
Then it is seen that the following two events have the same probabi-
lity: a) The inequality

6) Pn»{-l —Py>c (log [J”)‘.:

is satisfied for an infinity of values of 7, and b) An infinite number
of the events £, are realized.
If & denotes the probability of the event E,, we have

¢ (log m)? 1
gp== I | I ~~~-»\)
ves log (m - v)
and it is easily shown that we can {ind two positive constants 4 and B
such that for all sufficiently large values of m

) -
me mé

Thus if ¢>1 the series Y&, is convergent, and consequently the
probability of the realization of an infinite number of events E, is equal
to zero. (Cf. Cantelli [2], p. 334)

On the other hand, suppose c-<1 and let us consider the events
Em,- Em,, IEEEEE] where ny =2 and

Mygy ==, |- [ ¢ (log ms)* 14 1.

It is then shown without difficulty that we have for some constant K
and for all sufficiently large r

m,<<Kr(logr)?,

and thus according to (7) the series Y&, is divergent if c<<1. The
events Ej, being mutually independent, we conclude that with a pro-
bability == 1 an infinite number of these events will be realized. (Cf.
Cantelli [2], p. 336.)

Thus the probability of an infinite number of solutions of the
inequality (6) is equal to zero if ¢ >1 and to one if ¢<(1. Combining
these two results, we obtain the following theorem: With a probabilily==1,
the relation
' Pria-—Pu _

lim sup -
oy D (logp'1]2
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is satisfied. — Obviously we may take this as a suggestion that, for the
particular sequence of ordinary prime numbers p,, some similar relation
may hold.

II. Some theorems concerning the difference puj1— pa.

We shall begin by proving a series of Lemmas, the three first of
which are independent of the Riemann hypothesis,— Let us denote by
s=06-}it a.complex variable and by p=@--iv, (v >0), a complex
zero of {(s), situated in the upper half-plane. By A (1) we denote the
arithmetical function defined by the relations

I logp for n==pm"  (p prime, m integer),
A=,

l 0 otherwise.

We shall consider the following two analytic functions:

(8) F(s)= Ef‘"-9=§-1 e-li—ips,

the sum being extended to all zeros p in the upper half- plane, and

o0
9) G(s)= Z Al (_Mﬂjl_.,w - .1, ) .
L=t \s—ilogn ilogn

Obviously the Dirichlet series with complex exponents represen-
ting F(s) is absolutely convergent for 6>>0, and F(s) is regular in
every point of this half-plane, G(s) is a meromorphic function with
simple poles in the points s==1ilogp™. Putting

(10) H(s)=2=%F ()G s),

it can be shown (cf. Cramér [3]) that, if a cut is made in the $-plane
along the negative imaginary axis from §==0 to §==-—ivn, [{(8) is
regular and uniform in every finite domain which has no point common
with the cut. In this paper we shall, however, only consider the func-
tion H(s) in the domain D defined by the inequalities

0<o =1, T

In the first place, the following Lemma will be proved.

Lemma 1. We have
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WH () =50 (%)

uniformly in D.
According to a theorem which [ have previously given (Cramér
3], formula (13), p. 114), we have for o >0

i
1 e

-i-?ﬂf?“"——-s f‘ff"“’log\:(’vﬂdi’ﬁﬂ ; f. _uﬁ.,,._,'i1
¥ g )

where & denotes a real constant and the last integral is taken along

the vector arg z=0o with O<iﬂ/\; If, now, we suppose that § belongs
to the domain D, we get by some easy calculation

25 F(s) = — Go)-4-bi— N (”) -

M"\=
1

—s { evlog | £ (0) | dv - 0<i) .
a T
0

Throughout the proof of this Lemma, all O's hold uniformly in D.
By well-known properties of the Gamma function we have in D

" (5 ) = log -+ T; 40 (,1 ) )

D \x) T

Thus we obtain by (10) X

W (s) =7 N § f e log | £(0) | dv -0 (1)
T
3

1

n s]t’ log | £(0) | dv= OU (17 elog ii/ dv) =0 (717 )

T

We find, however, easily
1

Q 0
and thus Lemma 1 is proved.
Introducing the definition of G (5) according to {9). we obtain from
Lemma 1
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A @ o

. =n—2n)
n ot {v—logn)?

ol

If in this relation we take o very small and © very large, and consider
the quantity

(11)

n=2

(n=2,3,... ),

c“—l—[ﬂ:wlogn" '

it is readily seen that this quantity is large for values of 1 lying near
7, but becomes small as soon as 7 differs considerably from ¢, This
makes it possible to show that the value of the sum in the first member
of (11)is dominated by the terms corresponding to values of # in a certain
vicinity of €&, As A(n) differs from zero only when 7 is a power of a
prime number, and the influence of the squares and higher powers can
be estimated without difficulty, we can in this way obtain some infor-
mation as to the occurrence of primes in a given interval. This will be
shown by Lemma 3 below. For the proof of this Lemma, the following
elementary Lemma 2 will be required.

Lemma 2. Two positive constants a and b being given, we can
always determine C=C (a, b) such that
O \(lz) /zlogx

<A I x log i

holds for x>2,h>2 a logx<<h<bx.

1 A
Denoting by f(X)==( x]—}——;v:(xz ) +... the well-known prime
number function introduced by Riemann, we have

Am 102_;|;1

(flx AR —f(x)

x<n=xtn N

log(x-4-1)
Tlog 2
log (6 4-1) 1 1
:,og(,—l—] 2 l(ﬂ: ((x _,l_}l) r )m 73(.\7 ,-))
X rrerl o
(‘lngx ‘1‘ 1 = 1
< C _1,2_3,_{2_ 11 (7: (X7 ~f-hxr 1) e (X1 )),
=l

Throughout the proof of this Lemma, the letter C will be used to de-
note an - unspecified constant depending only on @ and 4, -~ We have
further (cf. Brun [1] p. 32 — 35, Hardy-Littlewood [7] p. 69)
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h
- < C ",
logh

- L LI
)—m (k7)< hxT

and thus we obtain

rehxt

1= ;/%—H. (r=2),

/ Clogx
_‘\; (’7) <_’ C 19g_f~ (_hA _1_ (.//i -}M 1) ? L)
noo x \logh 4

XXl

e[ (o ogiop
X

logh Vx

so that Lemma 2 is proved. — We now proceed to the proof of the

fundamental Lemma 3.
Lemma 3. If is possible fo find two positive absolute constants 1
and t, such that the inequality

(gT‘FA)—‘lC (e¥ A) (1—‘3\)lF(S]]

where
A
T —{— log 5!
holds for
T Ty,
(12) clogite < o< 1 ,

In order to prove this Lemma, we shall consider (11). Putting

\(n) a

no of w}— (': — log /l)

A
t-tlog o Aa

we shall first show that ) and v, may be so determined that we
have, subject to the conditions (12),

Zn =

R

-8

N Vo, e 1
(13) S=N"Z, <>,
) 3

the sum being extended to all 7232 such that
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[t—logn | >ipo.
We put
(14) S= 81+ 8+ S+ Sy,

the sums Si,...,S, containing the groups of terms Z, defined by the
inequalities:

Si log n<t—1,
Sy t—1%Zlogn<t—ims,
Sy trpo<llogn o1,

Sy ©4-1<Clogn.

One or more of these sums may be empty, if the corresponding in-
equalities are not satisfied by any integral value of 7, We shall assume
from the beginning © >, > 10, and the letter K will be used to denote
an unspecified absolute constant. From (12) we obtain easily
(15) 1<l

log =

We now proceed to the evaluation of the sums S,. In the first

place, we have by (12)

{16) &<i5§;§UH<1KST<3KV

Further, if we put

ss=Yu.
A Zl
with
Uu = . ZH
avZllogn:Stfv-pt
<2 Al Ko
v wolognett1 M Ty '
we have
- - K
17) . S;«< Ko< o

We shall now consider S, Putting

\ 1

V, == Z
w-(hs-by)a<Cloghze(hpmbv-1)2

"y

we have
60
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(18)

(19) Po-re<tZ=Qot+r41)0,

We have further ‘)
1 ! An

(20) shg~-vF [3:y+v]1~(lr1g>l;‘ e gt t)a B

In order to estimate the sum in the second member of (20) by means
of Lemma 2, we put in the inequality stated in this Lemma

X === gt
h== [e: . 1) %
Then we have by (19) for v==0, 1,....,r

< x < evrt,
Further we obtain by (12), observing the assumption t, =10,

h>cx >ae >clogt
S oX >0er

N 1
>t log %,
>e>log

and
h<2e6x<2x.

1 -
For t,>10 we thus have x >2, 27>2 and —~2~1og x < h<2x, so that

according to Lemma 2 we obtain from (20)

Ve g 208 logx 1 logx !
"7 xelogox)  s(hp log (6x) (o)
T 1 Ko

X : = -
=K log(ser)  (p+v*  (o—vP
Then (18) gives us )
o N ____mj__ wwwwww )
(21) Sy <Ko L QO

Now we have for ¢ 1

61


GUEST


12 H. Cramér.

If 2>>1 we have by (15) 29 >1 and so we obtain from (21)
(22) Sy < ?

In exactly the same way it can be shown that S, satisfies an inequality
of the same form, and thus we conclude from (14), (16), (17) and (22)

S<1<(_1.+,.1A+WL)_
T LN

Here K is an absolute constant, and thus it is possible to choose A

and 7, such that for ©t>t, we have Sf<é~, i, e. (13) is proved,

The value of » determined in this way will be regarded as defi-
nitely fixed, while obviously the value of £, may without inconvenience
be further increased. From (11) and (13) it follows that if ¢, is suffi-
ciently large we have, always subject to the conditions (12),

—~

) Z, > i —2aMF(s).

{e—logn|=dgo

The terms Z, occurring in (23) are different from zero only when 7 is
a power of a prime number, n=p", and in this case we have
An) o {/c—-|-- hpa 1

(24) Zy == . ~ .
n GQ+[T ———1og ’1]2 Ges-hio m

It follows from (12) and (15) that rpcs<~1»}———, and thus if t, is suffi-
) T log -
ciently large the right hand side of (24) is less than

3 s m
This being so, we obtain from (23 X i i
i S (23), f(x) denoting the Riemann fun-

27 T

3 . ;—(;(f{ec-f-i,lrc] ___f[ec—xl;u));’:’v;c”‘%:m Pls).

(25) flestres)—fer—239) >.?_€’..".(58’..,., 3M F(s}) .
T

We shall i ibuti
o shall now estimate the contribution to the left hand side of

icm®
(25) which is due to the squares and higher powers of prime numbers.
If t, is sufficiently large, we have by (12) and (15)

et

Tlog2 4 Tthea € s
Z . T e m —xle m
-
mazd
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K=

g od-lgc ¢ b 3
I P A ASEW
2mle e L)< Kl rgoe Z =+ log-
0 g tlogry o ( S ST
<K . ()\(‘p'l:(: -} 5 o ) <K p re ' Tog ©
:,,.qt?f
Taa

and thus we obtain from (25), observing that hpo =24,
L o€
mlestrre)—m(er=r77) >—(1—3NF(s))
T

Thus Lemma 3 is proved.

Lemma 3 gives a lower limit for the number of primes in a cer-
tain interval. For a fixed value of 7, it is easily seen that the length
of this interval is a steadily increasing function of o between the limits
imposed by (12). Let us now consider & as a function of © which for
all sufficiently large < satisfies the second relation (12). H, for a cer-
tain form of this function, it can be proved that

(26) N F(s) <~§~
for all sufficiently large values of %, it follows from Lemma 3 that there
is at least one prime p in the interval e*(1—2 A< p=e(1+24) The
smaller we can take the order of the function o = (t), the smaller be-
comes the order of magnitude of this interval. The principal difficulty
of the problem consists in proving (26) for functions o () of sufficiently
small order.

Putting in particular o==¢"%, it is possible to show that, if 9>>0
is sufficiently small, (26) holds for all sufficiently large <. According to
Lemma 3 it follows that, from a certain value of © on, there is at least

IS — 2 .
one prime p in the interval &— {2 Sopttr I pE et - T3 e, Sub-
. bl .
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) 5\
stituting here x for e‘——-hzv)—i =it and ¢ for i -, we conclade that
1— 8 —

for all sufficiently large x, there is at least one prime p in the interval
x<pSx4cxt—t. Taking x=p,, we thus obtain a new proof of
Hoheisel's relation (1). The detailed proof of (26) in this case will, ho-
wever, not be given here®).

Up to this point, everything has been independent of the Rie-
mann hypothesis. We shall now develop some consequences of this
hypothesis, which in the sequel will be referred to as ,the R. h." In
the first place, it will be shown that by the aid of Lemma 3 we obtain
a simple proof of the following theorem, first proved in 1919 (Cramér
{4]).

Theorem 1. If the R. h. is true, then

Pt ——pPpn= (0] (V[ﬁ; log }-711) .

If the Riemann hypothesis is true, every complex zero p of {(s)
has the real part /,, and thus we have

(,1,4,,'.()“. —-;1 Ty
e 2 =¢ * ‘}_’ e,

7ol

27 :)tF(s)EIF(S)§<Z

10

Now, it is known that the number N{(7) of zeros salisfying the ine-
quality 0<y<{T is of the form
T

{28) N{(T) 5
T

<log2—7;;-— 1 )—|~ O(log T),

and hence we deduce for 56— 0

(29) M= c/ N@ e do oo ' log 1|
= 4 2no b
Putting
! T
(30) g=te *

we conclude from (29)

N

e eyt
>0 4r

%) From Tchudakoff's theorem (cf. footnote %) it follows that we can here choose
for 3 any positive number <
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as ©— 09, and thus by (27) the relation (26) is certainly satisfied for
I‘J
all sufficiently large v, Putting in Lemma 3 s==<e 2 it thus follows
that, from a certain value of t on, there is at least one prime p in the
1 1 1

interval ee—2Xte? <p<e - 2rre? B Substituting x for e#—2Xce? ’
we conclude that for all sufficiently Jarge x there is at least one prime
p in the interval x<p==x--5%)xlogx. Taking X ==pus, we obtain
Theorem I,

As soon as we choose for s=a (1) any function of lower order
than (30), it seems very difficult to prove that (26) holds for all suffi-
ciently large values of r, If the R, h, is assumed we can, however, in
certain cases prove that (26) holds on the average, as will be shown
by the following Lemma 4.

Lemma 4. Lef s ==0{t) denote a function tending to zero as t
tends to infinity, such that for all =™>m™>0, o(c) is steadily decreasing
and safisfies the inequality 0<c (t)< 1, Then if the R. h. is true we
can find an absolute constant K such that for all t™>m

#1

i ; 2 . e G(t} 9 1
Flo--it)|® t 2. .
tj] (o-Fiv)|?de< Ke Y. l}leg PYPIIRY

Putting e. g, 5 (t) =e—¢" with-;<c<1, we have

b1
f\F(s b in) [P d el K 42 et

3

and it is seen that, although in this case o (1) is of lower order than (30),
[F(s}| and thus a fortiori also | F(s)] is small on the average for large
values of .

Throughout the proof we shall suppose #>>m, and as before we
shall use the letter K to denote an unspecified absolute constant.—
Putting

Jle) = e,

g0

we have on the R, h. for #<(t<f~-1

5. Prace Malematyczno-Fizyezne, T. 45, 65
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|F(s)|2= e |F(s)[*
41 141
1) f\F(G~i~iTH‘“’dT<P“’f\f(d-l—ifl\”(“'
{ i
Putting

‘X_“ .
b (v,1) = 2. e-iit,
Y

we have further

[&]

flo4in= Z et == g ] G ) e dy,
b
o L
1fc+irw:;oﬂ( ( @ ende )
B
[ee) C;'J
= “e—"’d'v- f | (v, ) |Pedo
0 0
V"‘O
-5 f | (0,7) [*e d v,
b

141 SR

32) f\f g |Pds< o (f) ’ rwmdwf\q: 0,4) |t dr.

Denoting by g (%) the function

gx)=2-—|x|,

we have g(x) >0 for — 2« x< 2 and g(¥)">1 for 0= X 1,
we have
11 2
(33) f | (0,9) |2 d v ) g (%) | ® (0, t-]-x) [P d %
¢ Yo
::_Z fg(x]gl(!—‘r')(/“)d‘c
T e
gl<ly 2
66
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2
fg (%) eli—vix d x
—2 !

1—cos2(1—1)
2 tr—7')®

=2

<Y

=4

We have, however,

1—cos2(r—7) sz( L )
(v—v"® f— 7 7)E
and hence
1—cos2(r -7) -
g (‘l""‘"(llg )
N (N{r=-1)— Ny N{x+-2)—N(r1) N@)=N(y+lv—1)
<z;d<ﬂ( ()= N SO ¢ SO )
log ( Y I—1 log {1 [v—1])
K (1o oo teg iAo —1l)
< Z( g+ oy gl

< Klogu N(@)< Kvlogiv.
Thus we obtain from (32) and (33)

£

f\f{cw[—im)“Qdm\/\KG[t)f@log%e‘”ﬂf'ﬂ)d'v
0

¢

<K o (&) 1 .
TS (tR1) ot 1)

Finally, the truth of Lemma 4 follows from (31).

We are now in a position to prove a theorem which gives an
upper limit for the frequency of certain exceptionally large ,prime
intervals" (pn, put1). We shall first introduce some new notations.
Let @ and f be constants such that ‘

log?

1
(34 0o ss—-, =0,
(34) “E B
Putting
(35) h==h(x)=x*logfx,

we denote by S,p(x) the sum
67
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al
(36] Su.ﬁ [)C] = }...I [,Uu S Pu]
pu:ﬁ‘;x
’, _H"ﬂ ”>h )

which is equal to the total length of all prime intervals (P, Pni1) such
that g, =x and

(37 P Pu 2> B pa).

Further, we denote by N, (x) the number of primes py . X satisfying (37),
so that

by
(38) Ng= > 1

Ao
w p
/”H_ T (ﬂ”)

It is then trivial that we have
Sup (¥) =0 (x),

and hence it can be simply deduced that we have
N () = o('*?).
h

If the R. h. is true, these results can be considerably improved, as
shown by the following Theorem IL

Theorem II. If the R. h. is irue, the functions S, (%) and N, {x)
defined by (36) and (38) satisty the relations

. 3
(39a)  Snplt)=0 ﬂ?.gﬁ.i“.) for 00 _1,’ 600,
hlogh 2 '
and for fl-m~1 0B,
2
(B9b)  S,.plx)=0(1) for J; ‘ Bt
and
3
(40a) Na,g(x]=0<xl°g~£ Cfor 0=l g
}Zz 10g /7 v . 2 S 1
(40b); N, s(x)=0(log2*x)  for - ; L0 g1,

68
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40c) N (x)=0(1) for s=— B>L

As soon as f(x) increases for large values of x at least as rapidly
as log"x, (39) and {40) give better results than the trivial relations
given above. Putting e. g. in (39a) Z(x)=1log’x, we get the result

h X
= n4-1 " Pu) == O T
So3 (%) ,%"‘L (Prs = Pa) (10g10g x)

—p “logh
pzz—[ 1 pn" log /’n

stated in the Introduction.

Putting on the other hand /i (x)= Vx log x, it follows from (40b)
that the number of primes p, =x, satisfying the inequality

Prgr— Pn > l""/p—ll log pa,

is at most of the form O(logx). If the second member of the last
inequality is replaced by CVpn log pn. it follows from Theorem I that
the constant C may be so determined that the modified inequality is
not satisfied by any prime number p,.

(40c) follow immediately from Theorem I. Thus it remains to prove (39a),
(40a) and (40b) in the following cases:

(41a) =0, E>2

(41b) o<a.<—-12—. =0,

(41c) o=l o=p=1.
2

We now proceed to the proof of (39) and (40) in these cases. For a
later purpose we shall, however, in the case a==1 until further notice
consider also values of f>1.

We put in Lemmas 3 and 4
1 .
42 g =0 (t) == ——— b1 pla—z (g ¢ o (B — 1) log 7).
(42) (r) 4 (oo~ (f — 1) log 7)
Bearing in mind that in the case =0 we have B >2, it is then seen

that for all sufficiently large values of t, say for t >/, the conditions
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of Lemmas 3 and 4 are both satisfied, (It is even seen that if § haf
a fixed value >>2, the value of M can be chosen independently og
o for 0204, This remark will be used in the proof of the followins
Theorem IIL).

Let us now consider the interval [« t=<f{-}~1, where M,
Putting

x=ét, Sz et

we establish a one-to-one correspondence between the intervals (¢, £-|-1)
and (5, ex). Let (P4, Pntt) be a prime interval on the f-axis such that

()

k(x) being defined by (35). The number of intervals (pn, pri1) satistying
(43) is obviously greater than

(44) N,

(43) R pa P <5 Pani—Pal

e(2x)—

as soon as M is sufficiently large.
For the length of the corresponding interval
the t-axis, we have the inequality

Nop (%)

(log pu. log pui1) on

h n 1 0
{45) log[]/z»\ul —log pu >> “1'2~(f;) == 5- Pt lOg[‘ Pu
n
1
St B glu—)t
- 2e

if M is sufficiently large,
Further, we have in the notation of Lemma 3

1
o 53 e (@t 4 (B—1) log )

T ctbloge ant(B—1)loge--log (st (B
Thus as soon as M is sufficiently large we have by (45)

1) log ©) — log (242)

(46) - AL 21;1 o ple—ie log pu).

1
4 (log prya -

From (46) it follows that for every value of © between the limits

47) l_ogg_n_ﬁé—hlqgﬁ,; + log puj1 —log pa )
+ 4

the interval (¢ —A4, 1--4) falls entirely in the interior of the interval

(log pn, log prys). Thus for every © between the limits (47) we have
70
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© (eth) — w (e8) =0,
and so obtain from Lemma 3

1
NF(s)=—.
(48) Rz

The distance between the limits (47) is according to (45) greater than

! f# pla—1)
12

The number of different intervals (log pn, log payt) satislying (43) being
greater than the quantity (44), we have by (48) for all ¢ >M

£+
j[‘h Flo

H

1

(49) +it))Pde > . ;— Pl (N, g (2 %) — Nag (X)),

Introducing the expression (42) for ¢ into Lemma 4 we obtain, however,

41
(50) j | F

t

(519 | *dn <l Ko

thest (ot (B—1)logt)

if M is sufficiently large, K being always an absolute constant. From

(49) and (50) we obtain, since in the case 2=0 we have § >2,

25) — 3 et
a X (A T R
A P < K ot
Substituting x for ¢/, we obtain
51 Nep (28) — Nos (6) < K 1082

h* log h

for all x oM, if M is sufficiently large.

(It will be seen without difficulty that, during all the calculations
leading up to (51), the remark made above with respect to the value
of M for a fixed B >2 holds true.)

From (51) we deduce

11
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- xloghtx
. S () REOEE
(52) Sus(2X) — Saa(x) < i log

So far, we have disregarded the condition f:5 1 in the case (41c).
Henceforth we shall suppose « and § so chosen that one of the cases
(41a) — (41c) is present.

X X

REEE]

X
Substituting in (51) and (52) successively 2! o

£z

Iln;! M
2 Clog 2

for ¥ and adding the results, we obtain (39a), (40a) and (40b). Thus

Theorem II is proved.

We shall now consider the convergence problem for the series

(53) 3 Pactt — P
=iPn 10g7‘ Pn

and

(54) ' 3 (g1 —pa)’

= Dn log"[?n

Theorem Il. a) The series (53) is divergent for L1 and conver-
gent for A>>1. — b) The series (54) is divergent for »*= 2. If the R. h
is true, (54) is convergent for A >>4, '

a) and the first part of b) are almost obvious, We need only ob-
serve that pui1—p, is on the average of the order log pu, and that

the series
Z 1
Prloghpu

is divergent for X =0, convergent for 2 >0.

Thus it only remains to prove the convergence of (54) for ) .4,
For a fixed p such that 2<B<(3, it follows from the remark made

above in connection with the relation (51) that we have for 0° o- !
2
and for all x> e where M may depend on B but not on «,

Qe x) =Ny (2x) — Ny (x) < K x4+ ,;4.1,01;3 ..?.ﬁf\: R
alog x|~ Blog log x
K being an absolute constant,
72
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We have further for x>eM

(55) Z (D1 —pa)? <K*J—C— clog?* x = K xlog®#—'x
x<pyx log x
l’/z—i»l"l’/z'é“’k‘p/’n
and
1
i
(56) S e =<K [ Logh 5P (= Q)
NP iRy b
/’/x~[~1“"I’/1>I°5§al’u
i
2
< KQ (0, %) log? x -+ K log?+ x f %2 Q (2, %) de
[
L
xlogtx s “__ da o
I iogrog T | T logloga | < frIog Floglog
0 log x

From (55) and (56) we obtain, since 8 >2,
(57) Z (Pt — pu) <K 6 logh— x

Ayl
for all sufficiently large x. Hence we obtain
(pn-H — 1711]2 K
x<pp2y Pn loglpn (log x)tHi—2

Substituting here 2x, 22x, ... for x, it follows that (54) is convergent
for A\>>28. Since f may be taken as near to 2 as we please, (54)
converges for all X>>4, and Theorem III is proved.

From (57) we can also obtain other similar relations, as e. g.

ZA (Pag1—pu)* = O (xlog*+* x)

TR
7y

and

—p\?
v (HE:‘";‘.,«EE) = O (x log* x)

72\ logpn

for every £ >0, which hold if the Riemann hypothesis is true.
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Sur la connexion rhéonome et sur un
probléme de I'équivalence.

(O koneksji reonomicznej i o pewnem zagadnieniu
réwnowaznoscei,)

Par

W, Slebodzinski.

Dans un Mémoire inséré aux Prace mat.-fiz.!) M. Wundheiler
a développé la théorie d'une connexion géométrique, associée a la for-
me quadratique

n

Z aydxi dx,+z\ adxdi--Adt

Ij=1 i—;.l
suivant une loi invariante par les transformations cinématiques
Xpz= X (g oo, X, 1), E=1

Dans les pages qui suivent nous allons montrer qu'on est conduit a la
méme connexion, en partant du probléme de I'équivalence suivant: étant
donnés dans l'espace euclidien deux mouvements d'un milieu continu,
définis au moyen des systémes d'équations dilférentielles ordinaires du
premier ordre, reconnaitre, si ces mouvements peuvent étre transfor-
més l'un dans l'autre par une transformation du groupe euclidien
a coefficients fonctions du temps £ Ce dernier probléeme a été posé

) A, Wundheiler, Rhéonome Geometrie, Absolute Mechanik, Prace mat,-
fiz. t. 40 (1932), p, 97 — 142,
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