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also wegen

2 i
fcos(lt cost) drt=27%J, (1), fsin(u cost)dt=0

1]

offenbar F(u)==eJ,(u) ist. Mithin gilt

(o)
A(gn)=-exp(Aui) 1T Jo (2 |cal* u),

n=:1

[e)
Sy

== ZZ |cn’2.
LSS

und daraus folgt (vgl. meine zweiterwihnte Arbeit), dass auch 7(x} fir
alle x Ableitungen beliebig hoher Ordnung besiizt,
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On general Fourier series with gaps.
By
Salomon Bochner Princeton University.

Introduction. Paley and Wiener [6]!) have proved the following
theorem. .

Let f(1) be a complex-valued function in — oo<t< oo of integrable
square in every finile interval, which satisfies the following condition: there
exist two positive numbers o, B, (== 1), such that for any integer N=1,
2,...,and any real numbers t, ..., v, any complex numbers C,, ..., Cy,
and any real numbers X, ¥,

ot W 2 e N 2
2 | ' e sets)|ar=e | Sc e a
¥ o=t ) f e o

This condition is necessary and sufficient in order thatf (1} be an almost periodic
function of the Stepanoff?) class [S*®], whose every pair of different Fourier

1) See the bibliography at the end of the paper,

%) * See [7] and [1]. — According to Stepanoffs original definition a function

f{t) belongs to class S”, p == 1,if it belongs to the Lebesgue class Lp over every interval
and il for some (and, therefore, for any) § >0, corresponding to any = =0, there exists
a length [(e), such that any interval ¢t <Ct<Ct-}-/(¢) contains a number t = 7, for which

x4p P

‘ LFit o) — f(8) | dE=te?

“

X

— D < <D

In this paper we shall have to apply another, but equivalent definition which is
a duplication of the present author’s definition of Bohr's almost periodicity. According

to this definition f(f) belongs to class S”, if it belongs to Lp on any finite interval, and
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exponenis is spaced apart by a fixed positive length. The meoning of the
latter siatement is as follows. If we introduce the Fourier series

@ Fl)~ Do (all @, 0)

then there exisis a number [>>0 such that
(3) | Aw—A, \ = m s n

In the present note we shall be mainly (although not exclusively)
concerned with the sufficiency of the condition (1) of Paley-Wiener; this
part of the theorem is perhaps the only case of a gap theorem in which
the occurence of gaps in the range of exponents isin no way postulated
in the hypothesis but is exhibited solely in the assertion of the theorem.

Now we shall analyze this (part of the) theorem by way of a ge-
neralization. In so doing we shall find that the theorem is a ,gap theo~
rem" only by accident. If adapted to (more general) abstract functions
it turns out to be a theorem interesting enough - bearing, however, not
on the nature of Fourier exponents but on the nature of Fourier cecf-
ficients. And yet, if applied to Paley-Wiener's special case, our asser-
tion concerning the Fourier coefficients will entail Paley-Wiener's sta~
tement (3) concerning the exponents.

In Part I we shall state our generalization; in Part II we shall
apply it to Stepanoff functions, not only of class S* but of any
class S7, p=1. And in Part Il we shall reproduce, in a somewhat
simplified version, the proof for the necessity of condition (1), also ge-~
neralizing the class of underlying functions.

if every infinite sequence {tn} contains an infinite subsequence{t/e”’ such that for any > 0.
4B P
lim Lub J 1 FlE-btiy) — it ) | d =0,
QX

m, =¥
X

The equivalence of these two definitions is a consequence of the statemenls in
[2], § 2. Namely if, as in Part II of the present paper, we introduce the abstract [unclion

Ft)==f(x-t1. 0 p,

then the equivalence of the two definitions follows from the theorems (proved loe, cil}
stating that F(f) is ,normal” if and only if it is a (continuous) almost perodic functions
And that F(t) is a continuous function follows directly from the assumption that f(f) be=
longs to Lp on everv finite interval (compare the reasoning concerning the nalure of
F(t) in the subsequent Part II),

64

icm°®

On general Fourier series with gaps. 3

Part L

Our general functions will be certain “abstract” functions that
were first considered by the present author in this context (see [2]).
Let © denote any complex Banach space, that is a linear vector metric
completé space in which any element can be multiplied (not only by
any real but also) by any complex number. The norm of an element
A of 2 will be denoted by ||A|, Thus we hawe [|[A4B|=|4|--|B].

and |a 4 =|a]| |A|, where @ is any complex number and |a| its abso-
lute value.
A continuous function F(£), —co<£<co, whose values are ele-

ments of S3), is almost periodic, see [2], § 2,if every sequence {i,,} con-
tains a subsequence {#,} for which the sequence of functions‘{F(t—{—tkn]}
is uniformly convergent in —co<f{<co, These functions have many
properties of the Bohr fuctions. In particular, each of them has a Fourier

expansion
Y
@ F(y~ D Agetn!

n

(Ay is real, A, is element of ) by which it is characterized in a unique
manner, Each coefficient A, can be represented by the mean value

Tt

a1 __1_._. ’ ~iApt
[5] Ag —T'licnéz Tj f(’t]g dr
Zrpe
(uniformly in — co<(#<co), see [2], p. 168. Since the integrand is
continuous the integral on the right side may be interpreted as a Rie-
mann integral which can be easily generalized from numerical function
to the abstract functions under consideration. For the whole term

Ay e’ we have ”
©6) Ay @Mt = lim L j Fllde ™ de
a2 T
[—T]
(uniformly in — co <[ £<c0),
Now the following theorem holds.
Theoremn I. Let F () be a confinuous function in — co<t< co whose
values are elements of E, and which salisties the following condition: the sel

%  Continuous in the sense of the “strong” topology crealed in & by the norm of
its elements,

5. Prace Malemalyczno-Fizyczne, T. 43, 65
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of values which F(t) assumes in — ca< i< co has, as a set of €, a com-
pact closure?), and there exisls a positive number o, {¢=:1), such that for

any integer N==1, 2,..., any real numbers t, ..., %y, any complex num-

bers Cy. ..., Cy any and real numbers X, y
. N N
N ‘
m PRI ER DI
|
y=1 y=s1

Then F(f) is almost periodic, and any two different of ifs Fourier
coefficients, Am, An satisfy the relation

®) loAntoe* Anf == allp Anoe Aul

for any positive numbers p, o, and any real numbers X, y.
In particular, i € is a Hilbert space H, this relation is equivaleni
with the relation
—1

n —L ““““ Am‘ All'
) l(Am.A)\Sa+1H 1A

in which (A, B) denotes the inner product of any two elemenis A, B3 of H),
In other words, the cosine of the angle which is formed in & by any
A, o

Ao
| :

| Aal

_An

-1
L, , thus compelling
| Anm|

two different among -the directions = l )
O el

any two of these directions to be spaced apart by an angle which cannot
become arbitrarily small.

Proof. For the proof of the first statement, namely the almost-
periodicity of F (f), we shall require the relation (7) only for N==2,
o=t t,=1t", C,=—1, C,=1, x=1, y=0, where #, ¥, I are any
real numbers; inwhich case (7) reads:

(10) [F (¢t ) — F (t+ )| ol F () — F ()

.

In fact, if {tn} is' any infinite sequence of real numbers, owing to the com-
pectness of the closure of {F[t]} there exists an infinite sub-sequence
{t,} . for which

(11 lim|| P (t4,) — F (t,) | = 0.

my YO0

%) If F(t) is a numerical function, that is if & is the space of complex numbers,
this part of the condition simply requires that F (f) be bounded,

%) Unlike relation (1), relation (7) is not an inequality belween integrals. The
connection will be elucidated later in Part II,

% See [8]. Chapter L
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This, in conjunction with

(12) |F 42— F -+t )|= 2 Fltn,) —F(t,) ],

implies the uniform convergence of the sequence of functions {F(f4-1,)}
in —oo<(t<co. Thus, according to our definition, see [2], § 2, F(f)
is almost periodic,

Let (4) be its Fourier series.

By (6},

T
(13) pAnem’ 4o A,em ! = tim L [ F(t ) (p et oo 1) de,
Toco 2 T
Zr
uniformly in —C<O<t<00. Being almost periodic, F (f) is uniformly
continuous. Hence the limit on the right side of (13) can be approxi-
mated to, uniformly in —oo << oo, by a sum

N
ch Ft4=).

In other words, corresponding to any >0, there exists an expression
of the form (14) which, if denoted by G (f), satisfies the relation

— oo < t<co,

{14)

15) o Amebnidc 4, e’ —G ()=,

By assumption (7), for every G (£), the relation

holds for any real numbers x, y. Therefore, we also have

Gl = |G

(16) p A e o Ay S | alp Ay e™m¥deo A, et

Since ) ) ) ]
lpApetnidc A, enl|=|eMn | p Ay o Ay em=tnl |

= pAnt-a Ay ettt |,
and since, for Ay— A, £ 0, the quantity gWn—2d" ryps over the same
values as € if ¢ runs from ~—coto-co (namely, over all complex num- .
bers of absolute value 1); the relation (16) entails the relation (8), and
this proves the second statement of the theorem.
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In particular, let €
[A+4B|*=(A+B, A+ D)
=4 *+ 1B * (A, B)+(4, B)
=42+ IBI|* +2 N [(A, Bk
hence (8) is equivalent with
o2 Auf 2o [Au 220 s M [(An, e Ad) ]
oo [Au] 2+ 2 1A 200 N [(An e¥ AT,

=(4, A+ B)-+(B A)--(B, B)

this relation holding for p >0, " >0, x, y real, Now

N[ (A, et B)] ="M [e= (4, B)]=cost N [(A,B)]— sint-

hence |M (4, B]]\ 2| (4,B)]|, and there exists a value X for which
M{(A.e*B)]=I(4, BH and a value y for which 0 [ (4, &V B) ] =—| 4, B)|.
Thus (17) is equivalent with

I[(AB)],

02 A |2 -2 A,z|]“—|-«2pnl(/lm,/~l,,]|
(18) T’iafp 1 Ap| 24 o? IA,““mprs[(A,,,, ,,)|}

this relation being taken for all pairs of positive numbers p, 5.
(17) we can write

For

| (Am Ai) |
A1 4]

h/\

%— ll(PMm‘i_
2412 \s] 4l

Taking the minimum of the rxght side with respect to p >0, 37>0,
finalla obtain

5] A H) '
plldn]
we

| (e A
[An]| 1A

and this completes the proof of our theorem.

Part 1II,

1. Nothing in our argument leading to the proof of (8) excluded
the possibility of & being the space of complex numbers. In this case
An, Anare complex numbers, and |[p A, -~ 4, ¢ | is simply |p Ap - 3 A, €.
It 4, A, are both #0, the minimum of this expression, for p > 0,070,
68
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t real, is zero; in consequence of (8), for any minimizing pair 9, 5,
0 Ap--se* A, vanishes for all real X, and this is contradictory. Hence
a numerical function F (£} cannot satisfy condittion (7) unless it has the
trivial form Aeid,

2. But not so if F (f) is an abstract function. In fact, if € =5,

let 4;, A, ... be any sequence of elements of & which are mutually
orthogonal,
(19) (Am- An] =0 m==n,
and for which
(20) S| An|? is finite;

n
let A, Ay, ... be any sequence of different real numbers; and let
F(t) be the function
(21)

3 An et lantl
-
"

On account of (20), (21) converges uniformly in — oo << o, thus F (£)
is almost periodic. And for any such function F (f). (7) is fulfilled. even

for the strogest possible value of #, namely for fj-—l In fact,
N N
Y Wl N
OO= > G Ft+e)= > (> Guemnt) a,em:

=1 n =1

and thus, on account of (19),

GEP=(a@. 6

m—Z[?Cv oo | A44]2

n =1

but the last sum is independent of 7.

Incidentally, our last statement can be inverted in the following
way. In case &=, it F (f) satisfies the hypotheses of theorem 1 for
@==1, then (19) and (20) hold. In fact, (19) is nothing else but the re-
lation (9), an (20) is a consequence of Bessel's inequality for almost
periodic functions which persists in € =0, see [2], § 8.

3. Let G be a domain of the k-dimensional Cartesian spece whose
points will be denoted by x={x,... %1y, The Lebesgue- measurable
complex-valued functions of integrable square in G form a well defined
Hilbert space $; for any two elements f, g of £ the inner product {f, &)

is defined as }'f(x) lg ()] dx. see [8], p. 23, Theorem 1.24, — Let 7 be
P
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any integer (==1,2.,..), and 8ps(x), p,o=1,..., 7, a square array of
bounded measurable cnmplex-valued functions in G, with the properties

poo=1,,,..,r

(22)

r
>3

cp
p=1

in (22), ¢ and C are positive numbres independent of the pomt X in (i, and

the vector & ,...,& . Now consider all vector point- functlonsjm e Sy
with components f;,,.., fr belonging to O, and define the inner product

By =g &) as
(7. 9=

f ( Z 3ps (%) fo (%) g= (%) ) dx

et pa=1

of two elements f={,...

It is easy to verify that this defines a Hilbert space; we shall denote
it by 9. For. the special case

%dmzf&p#o
|1, p=0
compare [8], p. 29. Theorem 1.25,

Le F(f) be a continuous function in — o< <~ whose values
N
are elements of §. I G(f) is any linear combination >“ Cﬂ;(x

i
=Y

'[" ), let

[|G {t)|| be always independent of # by theorem I, F (#) is almost peuo'
dic; and if its Fourier series is denoted by

(23) Ft)~ > A et
el
then "
(24) (A A)=0 "ot

Each coefficient A, is a vector {Am,..., 4n ry whose components are
elements of $, and in terms of these components relation (24) reads

[

(; [

(25) 5? 5 (%) Amp [«‘C)Z}z;(k’)‘) dx=0 mefen,
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In a problem concerning the nature of solutions of the wave equation

> %

see [3], the following special’'case arises: (0) ¥ =k - 1, and 8p4t1= 041, p=0
forp==1,. k, (B) 3ps(x) is denoted by aps(x) for po=1,..., & and

do
axrs

)=p:(x] Ze,

(26) ot

(ap (x)

tr+1, h+1 is denotet by (), (7) the function F{t) is derived from a (nu.
merical) solution ¢ =9 (;x,,...%) of (26) in the following way. The
function ¢ (¢ xy,...

,xs) is defined for # in —oc<f< oo and xin G,
and the 241 components of F(t) are the k1 functions

do dy 0dv
J x, ‘0x," ot
(3) corresponding to each n==1,2,... there exists a function A,=

An{x,...., %) such that the Fourier coefficient Zn of F (¢} is the vector
{Q'A“" 0 A,
())Cl d X I

In this special case our conclusion (25) reads

[(3 sG] axmtate 400 Annds.
. e

dJCp 0 x5

(27)
G pa=t

This result is nothing new; in fact, by a simple direct operational argu-
ment even more can be shown, namely that each side of (27) equals
zero, We only wanted to show how our general result tallies with the
operational results concerning the equation (26).

4. Finally we are going to establish the connection with the the-
orem of Paley-Wiener. We shall prove the following.

Theorem I, Corresponding fo any positive numbers o, B, o= 1, the-
re exists a positive number |=l(x, B) with the following property: If f(2)
is a numerical function which, for some p = 1, belongs to the class L, over
any finite interval, and if

R 1\{1 » )’:’rﬂ\ A
(28) J \“C.,f(t~{—r.,)%dtgaﬁ.J|
X Y

v==1

p|

Cf (4| at

n
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for any C,. ©,, %, ¥ then f(f) in an almost periodic function of the Ste-
panoff class SP; and introducing its Fourier series (2), the relation

(29) An—Ai =l men
holds.
Proof. First of all, (28) includes the relations

f #
(30) (17t apras=a (170 du:
| i ;
3 [
0 [Ifstan Flebardisae (610 S0 dr
0 h

(30) implies that

.

B
(32) flf(x—l—f)l"dt is bounded in -~ < X<~y
b

we shall say that f(f) is p-bounded, Since f(f) belongs to [, on every
finite interval, by a theorem of Lebesgue,

B
1imf|f(6—}-t)——f(t)\/’ dt=0.
0‘)00
From a combination with (31) results
f
(35) tim L0 (17 (e 240) — Fla- 8 dt =0,

0

we shall say that f{f) is p-continuous uniformly in —- ~- £ ~, We
consider for any fixed £27>0, (275p), the function '

h
Frlt) = '}fo(u_ o ds,
0

Since

h h 1

; 1t r g

a0l = [15te4-o) de = (,12] Pl ds),
0 0
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it follows from (32) that f» (#) is bounded in —eco<f<oc, And since
F(#) is uniformly p-continuous in — oo < ¢<(eo, fr(f) is uniformly con-
tinuous in — o< t<=o; this follows from the inequality

I
il +2)—fa )l = (712 [1fte 249 —Flet) d)

&
1 - .
=+ (1f 249 —fsHor d
0
Furthermore from the inequality

f B 13
j\f(x+t)—fh(x+ orar= | [ih ﬂf(x+t)—f(x+f+mydc]’d ¢
0 o

0
‘1 ? h
=4 farfirtern—futitoras
10 , 0 ?
g,/{ljmj\f[x+t)—f(—’c+lf+tn”df
0 0

=h x

B
<lLub. l.u‘b{]f(x—[—t)~f(x-|—t+a);pdt,
0=0: .0
in conjuction with (31), we infer the important relation

8
lim L 1.0. [‘\f[x—[—t)——f,, (-t de=0;

h0 x

0
we shall say that fi (£) is uniformly p-convergent towards f{¢).

After these preliminaries we consider, as in [2], § 9, the complex
Banach space & consisting of all functions ¢(x) belonging to class L,
on the intervall 0= x = {, with the norm

! '
”’f*=( [ 1e ol dx)"

0
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and we construct the abstract function
F(ty=7F (e 1)

for any real t==1,, ist value is the element Jx-te) (0= x = p8), of &,
We also introduce, for each #>>0, the corresponding abstract function
Fu()=f(x-41#). The uniform p-continuity of f(£) entails the uniform
continuity of F(#). Thus F(f) is continuous. Furthermore, the uniform
p-convergence of fi () towards f () implies the uniform convergence of
Fi (f) tovards F(#). From the uniform continuity and the boundedness
of fu () it follows easily that, for each /2>0, the range of values of the
abstract function Fi(f) possesses the following property; given any
e >0, there exist a finite number of elements %, ... ,9p, such that for
each real ¢

min [1Fy () — onl =gy

1Emsp

and since F(f) is the uniform limit of F(£) for #— 0, the same proper-
ty also holds for the function F(f) itselfl. But this implies that the clo-
sure of the range of values of F(f), —co<£< o0, isa compact set in &.
Finally, relation (28) for f(Z) is precisely the relation (7) for F(Z).

But these are the hypotheses laid down in tneorem I Thus, in the
first place, F(f) is almost periodic. For f(f) this means precisely that
f(f) is an almost periodic function of clas S” according to the alterna-
tive definition stated in footnote 1; this proves the first statement of
our present theorem.

F(f) has a Fourier series (4); f(£), as a function of $”, has a Fo-
urier series (2). By what was shown in [2], § 8 the follwing relation holds:

An (-\'J) =a, glAlz B 0 , P ﬁ

Therefore, by the second statement of Theorem I, for m < n,

B
J lp @m e’ g 6™ g, etn! P dr
s

B
— J . f ,
= j |P . B’Am _I__ 5 e/«" an (;’A/I ‘ ‘[1 d t,
0

For an appropriate choice q!f p. 0, %,y we deduce, writing 20= A, — Ap,
14
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B B
f\l—]—emt\l’ dtgo.nf 11— e®p at,
; o

or N
of

i
(34) ﬁcos trdt < of |l|sintlf di.
. 0 0
This implies .
pd=arctan —,
20

and, therefore, (29) is satisfied for

l=1(a, [3)=2i[3 arctanf;~

Part IIL

Theorem III, Corresponding to any number [0, there exist positi-
ve . numbers ¢, B, (= = 1) having the following property.

Let § be any (finite %) or infinile dimensional) Hilbert space and

(35) Fif) ~ > Aneht
an almost periodic function having values belonging to & such that

(36) [Am— Ad| =1 m=£n
Then the relation

+p N " ):+ _AL‘ . "
e l ZCVF(H—M‘!“ME%?‘[ [ ZCVF(t_,Lw)ﬁdz

y=1

i =1
x M »

holds for any N, C,. w, X, .

Proof. Since the fuuction

N N
-~ <A . iAn
};C\,F[t-{— = (Z_lcve n ) Apein!

ye=1
% In particular, § may be the space of complex numbers as in the case of the
theorem of Paley and Wiener. See the remark following the proof of Theorem IIL
15
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has the same Fourier exponents as F(f), it also satisfies condition (36).
Hence it is sufficient to prove only the relation

x4+ y+b
(38) le(m At <o [ IF ()1® dt,

o
v

for numbers 2, § not depending on F(f). Furthermore, replaéing t by

glt, we may assume /=3, that is
{39) |Am' - A/I| t.'\,_' 3;

and we have to prove the existence of two absolute numbers «,f for
which (38) holds.

We shall employ the relation

(oo}
(40) J IF (812 S‘E“f — \ A

For a finife sum F(f)=23A4, ™" (40) follows from the relation

F6)) = (Z Apent, > 4, ot )
n

m

"Z{Mnh '}“ S (Am, n] W At

ﬂl n

the relation (39), and the known formula

(e b
1 f sin®x et o = ’1 ‘;‘, =2
T . x“
=0 l 0 [Mo=2

see, .for instance, [4], p. 15. In the case of a general funclion [F(f) we
consider a sequence of finife sums

Q .
Flot(f) == Z A, gt
n

converging uniformly to F (f).
76
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lation .
< 23027 ! 2
41 For(g)| 2o di=x A ml :
o Jlel s
—Ca

The left side of {41) obviously converges to the left side of (40); but so
also does the right side, since, for any almost periodic function (35)

the Persevel equality

S‘HAHH —lim —IHF @ |2dt

holds, compare [2], § 8. Thus (40) holds always.
Since the "translated” function Fy{f)=F(x-1?) has the Fourier
Mn¥eitn? and since A, €M% 2=||A4|2% we infer from (40),
f)||2="F« (), the relation

series YA, e
putting [[F

sin®Z

’/‘fx t]——vdZ—-C ~—‘(:.J<x<c."3‘

Since 'slr};;f- has a positive minimum in the interval 0 =751, there exists
an absolute uumber «,(>0), such that
(42) Jf,(t)dtgao C —co<lzl oo

Putting z=x 4y, f-({) =f:(v+?), we obtain

y41
(43) [ft Hdt=e,C, —ool xy<co,
¥
Since - sin <;,~t—S—[— (4) implies the existence of an infeger f{>>0), such that
v PP
B dt=—C
(J J )f‘ =2
o f
Hence )
Y. sin® 1
HEt 2 dt=—C,
| dr=
—fu
11
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and this implies
r+28

1
dt=
Jf(t] = 5 C.

v

(44)

On the other hand, from (43) follows easily

‘ x—tAZED
(45) f FOdt=2809 C.

And our relation (38) follows from (44) and (45), if we put B==2§,
=482, This completes the proof of theorem IIL

Remark. Let A, A,,... be any sequence of elements of , and

A,, A,,... any sequence of real numbers satisfying the relation.
(39). Applying (42) to the function
n
N Y
Funlt)= > A, e’
m--1
we obtain
x4l ‘ R no
8 . 2
{46) J‘\Fﬂx,n(t]i{ dt=o, = Z’H‘lv% .
x m-1
Now let us assume that
o 1
D A * s Finite,
n
In this case (46) implies
Xy,
A ] e 19
47 lim Lu.b. v Ay e
“n Jim tas. [ S 4, emr e
¢ -1

By the author's extension of Lebesgue's theory of integration to abstract

functions, see [5], {47) implies that a certain sequence of partial sums
of the series

>4, eftn!
1a e
n

converges, almost everywhere in —oo<(f< w9, to a function F({).
This function is uniquely determined., up to a t-set of measure zero-
18
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Relation (47) shows more than that: if § is the space of complex-num-
bers, it follows from (47) that F(#) belongs to the Stepanoff class S%,
for a general §, F (f) belogs to a class of almost periodic functions
which might de denoted by $-—5° And our above proof of theorem III
can be easily seen to remain valid, almost literally, for functions of the
class §—S% And if thus completed, our theorem Til represents a full
generalization of the one half the theoremof Paley and Wiener as
ennuciated in the introduction.
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