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Universal Waring theorems with
cubic summands.

By
L. E. Dickson (Chicago).

1. Introduction. We shall obtain systematically?) 116 cubic poly-
nomials f (x) with rational coefficients such that f(x) has an integral
value = 0 for every integer x = 0 and such that every positive integer
is proved to be a sum of nine values of f(x) for integers x = 0. The
proof avoids the use of other papers. For several of the f, we obtain
facts which indicate that it is highly probable that (instead of 9) 5 or 4
values suffice,

The triangular and pyramidal numbers are

T[x]=—;—(x2——x], P (x) =—é—[x3——x).

THEOREM 1. The following functions F(y) are integers = 0 for
all integers y =k, while every integer =0 is a sum of nine values of F(y)
for integers y =k:

P(y), P41, P4y for k=0; P+y-1, k=—1;

P—y41, k=0, —1, -2, —3;

P—2y-43, k=2, —3, —4 P—4y-+8 k=-—2 —3, —4, —5;
P—5y-+11, —6=k=0; P—7y+18, —T=k=0;

4 The general theory applies to many further f(x), for which it is improbable

that 4 or 5 summands suffice.
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P—9y 426, —8=<h=2 P—11y+35 —9=h=1;
P—14y-450, —10=h=2 P—16y161, —11=k=4;

Such a theorem concerning F(y) for integers y=% is equivalent
to the like theorem concerning F(x-%) for integers X= 0. For example,
if F=P—9y--26, k=—3, then F(x—3) is

(1) G(x)=P(x)—3 T (x) —6x 49,

It is shown that every integer®) from 0 to 30,000 inclusive is a sum
of four values of G(x) for integers ¥==0. Then in Lemma 3 we have
m =247 and conclude that every integer from 0 to 2,478,752 is a sum
of five such values, Both facts®) evidently hold also for Gx—1)
when =1, 2, 3, 4 or 5, since G(—1#) >0, G(—6)=—13,

When F=P—7y-+18, b= —4, Flx—4) is

(2) H(x)=P(x)— 4 T (x) — x-36,

It is shown that every integer from 0 to 20,000 inclusive is a sum of
four values of H(x) for integers %0, In Lemma 3 we have m==199
and conclude that every integer = 1,351,900 is a sum of five such values.
Both facts hold also for H{x—1f) with £=1, 2 or 3, since H(—1#)>0,
H(—4)=-—10,

When F=P—11y-435 k=—3, Flx—3) is
3) J(x)=P (%) —3 T (x)— 8 x - 64.

Every integer = 25000 is a sum of four values of J(x) for integers
x=0. Thus every integer = 1,895,771 is a sum of five such values by
Lemma 3 with m =226, Both facts hold also for J (x—1) with £=1,,..,6
since J(—1) >0, '

2. Sums of nine values of fl=Px)+gx,

*) Since we used 59 values of G
problem on cubes to 59% = 205,379.

3 ; .

) Their extensions to a larger range are more likely to hold than the facts for
G (x) since we now have available new summands,
224 '
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LEMMA 1. Given the positive integers n and S, and any integer h,
we can find an integer m such that
=f(3m) (mod 3%, A=m< 3"+~

By induction on 7, we see that f(x-37)--f(x) is not divisible
by 3" if 7 is not. Let / and % be any two distinct ones of the integers

{4) . R R1, L, B3P —1
Then r=j—=% is not divisible by 3". Also take x=3%. Then
FBN—FfBR=Ff(x+3r)—f(x)Z£0

Hence when m ranges over the 3" integers (4), the values of f(3m)
are incongruent modulo 3", whence s is congruent to one of those
values. A simple computation yields

LEMMA 2. If 0=h=234, g<15773, m< 3"+ h,
fBm)<5.3%"

If s and C are given positive numbers, we can evidently choose
a positive intedger 7 so that

(mod 37),

n=8, then

Then s is one of the integers s; of the three sub -intervals
(5) 3—1C3Pr= 5,< 303 (i=1, 2 3.
By Lemma 1 we can choose an integer m; so that
(6) si=f(@3m) 43" M, h==m< 3"+ h,
where M; is an integer. Let f(3m;) = 0. Using also Lemma 2, we get
(31 C—5)32 < M; <3 C32%n,
Write M; ==3%"- N;. Then
(7 B1C—~—6)32n < N; < (3°C—1)32%",
Henf:eforth employ summands f(x), x =¢ where { =23/
(8) 0= t=1702 — 38 = g< 15713, n=8,

Then b, =35, by==17, by==11, C==168 satisfy the inequalities
15 Prace Matemat-Fiz. T. 43. 225
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3i-1 0= §b1+b_‘ 3 bi b
9) —b 3+(1—7\) +6—|_q32n " =8 ! 212 3n
LR

for i=1, 2, 3. where S;=(1+-~--12~bi>(6g-“1)- Then (7) imply

(10) LENZEL L ,=-w-b332"4 (3" —1)* 4 S
9b332r£+ ( b3”~vl> —I'—S[.
Write
Nk 168 ]9 pegmiq, Gi= A2 (30—
(11) A=6l“"3’b‘,i”'—g] Jhesr . G=Am )

These with (10) imply

) 1 = "
(12) G;=0 (whence A4;=0), ]/ = 2 b 30— ¢,

For any number ¥; in the interval

13) %biaur]/lgo,-,gm =2hy+ ]/—1341;.
the final inequality (12) and the first one (13) give
(19 t<u=303—t
Employ the abbreviation
Vi=v — 3 b;3",
2
Thus (13) give

(15) _]/—— Gi, -—A@ Vi.
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‘These imply
— ' 1 a1 9 2. 1 2
0= N+1—6g—3b|g+—13Ved —b23m—1l|= @3 —12
6 | 4 f
Write

(16} Bi=3bi{g+-—é—— [917;‘232"*-“1 —3'0,'(31713”—’0")]‘.

J

Then the last inequalities give

{17) 0N, +1—6g—B=(3"— )2
Write

18) @ =3b; 3" —v;, Ri=f{v:)+ f(wi).

Hence R;=3"B;. The identity

3

no__. % F n ]: 3n n’
> {rer - tre =
=1
and (6) show that s;i=f(3m)-+3"(3%"4N,) will be the sum of the va-
lues of f(x) for the nine values

Qi —1-+6g), Qi =x,2-%,24-x,2

{19) 3mi, vi, wy, 3" —x;, 3% (=1, 2,3
of x provided only
(20) Qi=Ni+1—6g—B8;

is a sum of three squares X In that case, (17) gives 3"—x;={ By
{14) and (18), both v; and w; are ={ By Lemma ], 3m/=¢ since
t=3h. Thus the nine arguments (19) are all =1

It remains only to prove that we can choose an integer v: so
that Q; will be a sum of three integral squares,

Consider the difference D; between the limits in (13):

1 1, 23—
(21 D =]/—« Ai— 1/~~ Gi, pi=-50
(21) 1= 3 3 14 b Ar

B

v (11,) and G:=0

G

=1—p, 0=t
A, piy 0 p
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Thus D; is the product of]/? A; by

— e pi pi
1—V1—p = p— a
1 —}—1/ 1—pi 2
whence
[311 — t)z
) Di> .
(2 ] b[ Vv 3/4,'

By (7) for C="168 and (11),

Mgy 3,
4

) [[168.3"~~1)§2"—]—1—6g_g}

3A4:< 181 35,

We readily find that each D;>8. Hence (13) holds for at least
eight consecutive integers v, But

2B;—6b;g=>0;F,

where F denotes the quantity in square brackets in (16). It involves
the function v(k —v), where k=35;3" is odd. Evidently v(k—7) can
be made congruent fo any assigned even integer modulo 8 by choice
of v. Hence in (20) we can choose 7; (mod 8) so that 2 Q;==22 (mod 8),
where z is an arbitrary integer, Take z=1. Then Q;=1 (mod 4).
But Q;==0 by (17). Hence Q; is a sum of three integral squares. This
proves*) -

THEOREM 2, Every integer = 168.3" is a sum of nine values

of f(x]=gx+—1~(x3—x) for integral values =1t of x, if 0=1=702,
6

—38=< g < 15773, and if f(x) = 0% or ‘every integer X =1¢.

3. LEMMA 3. Lef a polynomial f(x) take an integral value =0
for every integer x==1, where the given infeger ¢ may be negative.
Make the hypothesis (H) that every integer [ for which [<i’s
is a sum of k— 1 values of f(x} for integers x == t, Let

(24) FU+HN—F(N<<g—! U=t,..
h 5 When t=0, I had proved that every integer = 171,3% is a sum of nine
values if 2 g 3% also a like theorem for gx - AP(x). Trans, Amer, Math, Soc..
vol, 36 (1934), p, 740; cf, pp. 1 — 12, 493 —510.

2287
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where the integer m exceeds ¢, Then every integer which exceeds [ f(t)
and is =g f(m-1) is a sum of £ values of f(x) for integers x=1¢,
For a fixed j consider an integer / for which

g+rN<d=g+rfUu+1).

Write i=/—f(j+1). By (24) and (25), g=i>g +r—FU+1)>1L
By (H), i is therefore a sum of k—1 values of f(x), whence / is a sum
of & values. Apply the latter result for j=¢, .o J=m in turn, and
note that each interval (25) ends just where the next begins, Hence
every integer which exceeds g--f(f) and is =g--f(m-1) is a sum
of & values of f(x). By (H), those from [ to & are sums of £—1 values;
employ the further value f(f); hence all from [+ f(f) to g-+f(f) are
sums of k& values, The two conclusions together vield the lemma.

(25)

4. Proof of Theorem 1. For each function F=P(y)—ry-+ts
in Theorem 1, we have — 1 =r =27, 0=5=133. We shall verify later
that all integers from 0 to 2000 inclusive are sums of five values
of F(y) for integers y =, where —2=f<{4. Let a function F have
the latter property when

(26) —63=¢=21, —15=r=27 0=s=133.

Apply Lemma 3 with [=0, g=2000, k==6. Since

Fj+1)—F() =%(j2+j)—r.

condition (24) is equivalent to
(27+1)<16001 487

and holds if —63 =/ =62. Hence for any ¢ in (26), (24) holds if m — 62
Then

& =g+ F(63) = 43664 — 63 r -5, F(£)<2000.
Hence Lemma 3 shows that every integer =g, is a sum of 6 values
of F(y) for integers y =/,
Apply Lemma 3 with /=0, g=g,, k=17. Now (24) is
(27 - 1)2< 349313 — 496 r 8 s,
For any r and s in (26), this holds if (274 1)*<(579)%, Thus for any ¢
in (26), (24) holds if m =289, Then
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&» =g, F(290) = 4108449 — 353 r -+ 235,

:;md every 4integet =g, is a sum of 7 v.alues‘of‘F‘(y] fo£ infegers y=t
The next m is 2862, and

g, = g, - F (2863) = 3915331000 — 3216 7 + 3 .

All integers = g, are sums of 8 values. Then 7 ~—=88488, and -all inte-
gers = 11,548,650 X 10’ are sums of 9 values. This number exceeds

168 XX 32t = 4,744,816 3 107,

If N is a sum of 9 values of f(¥) then N-}95s is a sum of 9 values
of f(¥)-s. Theorem 2 implies a like result when { is negative, We have
now proved

THEOREM 3. Let all integers from 0 to 2000 inclusive be sums

of five values of F=-é—(y3 —3y)—ry-s forintegers y=1t, where
r, s, t satisty inequalities (26), and F =0 for every integer y=1t. Then
every infeger =0 is a sum of nine values of F for infegers y=1t.

This implies Theorem 1.

5. Conditions for a universal Waring theorem. Any cubic
function with rational coefficients may evidently be written in the form

(27 F(x)=APx)+BTx)+Cx+D, A+#0,
where A,

..., D are rational numbers, We assume

(28) F(x)is an integer =0 for every integer x=0,

The fact that 4, ..., D are integers follows from

F(©)=D, F(1)=C~+D, F2)=A-+B-+2C+D,
F(3)=4A-+3B-+3C-+D.

Then (27) is an integer for every integer . Also, A>0 by (28) with
x==00, We desire that

(29) every integer == 0 shall be a sum of v values of F(x),

where =9, The smaller A is, the more slowly will F(x) increase
with x, and the smaller  will be in general, Hence we shall take A=1,’

By (28) and (29), F(#)=0 for some integer 2==0, Let the trans-,
230,
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formation . y=x 4% replace F(y) by f(x).v Then f (0)=F (4)=0.

Hence Waring's problem for F(y) reduces to that for o

30) Fx)=P)+bTH) Fcx, x=—h.

The ‘maximum % will be found tentatively in each case, as for (1)—(3).

By (29), f(z)=1 for some integer 2, .Since all terms of 6f(2) are pro-

ducts of z by integers, z must divide 6, whence 2= 11, +2, +3,+6,
The cases 2=6 and z=-—3 are excluded since .

f(6)=35-+15b4+6c=1, f(—3)=—4+6b—3c=1

are impossible in integers, in fact, modulo 3.
6. Case z=1. Thus c=1=f(1). If 6<0,f (3)=7-+3b=0

requires b=—1 or—2, Postponing to Section 12 less interesting
special cases, let =2, When x=—3b—1, f(x)=x. Also, f(—3b)=
1

=?b[3b——5)>0. Besides the root 0 und the root between —3b—1 -

and — 306 of f{x)=0, there is a root between 0 and 1 if =3, but

a root between ——;~ and 0 if 6=2. Hence f(x) =0 for every integer

=--3b. If =23, the least integral values of f(x) are 0, 1, b—1=

=f(—1). Thus 5—2 summands 1 aré required to produce the num-

ber b —2, and hence at least six summands are needed when b=S8.

We exclude this case. ) ‘
To (30). apply the transformation x=y —b; we get

(31) F(y)=P(y)+{1——é—(b+b2) }y+f(—b)-

Thus if 6=2, F(y)==0 for every integer y=-—20.
The most interesting case has =4, Then

(32) F(y)=P(y)—9y-+26.

Its values for y=-—9, —8, ..., T are —13, 14, 33, 45, 51, 52, 49, 43,
35, 26, 17, 9, 3, 0, 1, 7, 19. Hence we have a universal Waring problem
F{x-h), for integers x=0, when —8<=h=4 We discard r=4,
since 6 is not a sum of fewer than'six values of F(x +4). Also =3,
since 100 is not a sum of five values of F{x-~3), but all others =506
are sums of five. ‘
When k==2, the only integers < 506 which are not sums of four
values of F(x-2) for integers x==0 are - : .
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62, 89, 97, 99, 135, 181, 183, 190, 236, 263, 265, 328, 336, 391, 433,

437, 443, 445, 500.

We readily conclude that all integers == 2906 are sums of five such
values. :
The least positive integer not a sum of four values of F(x-}4)
for integers X=10 is 97 if A=1, 336 if 2=0, 539 if h=—1, 7243 if
h=—2,

By use of a new table of sums of three values of F(x—3) for
integers x=0 covering 0— 3500, 15000 — 18000, it was verified that
every positive integer = 30000 is a sum of four such values. Note that
F(x—3) is the function (1) discussed in Section 1.

7. Case z=—1. Thus b=c-+1 in (30).
When x=3¢+2, f(—x)=2x; also

Also, f(1)=cz=0.

f(—3c~3)=-;—(c+1)(4~3c]. FR)=2+3c,
fl=1)=1, fl—2)=24c.

Hence if =2, f(x) is =0 for every integer *==—3c—2 and its least
values are 0, 1, ¢. Thus ¢c—1 is a sum of ¢—1, but not fewer values.
To (30) apply the transformation x=y—c—1; we get

(33) ) =P =+ e 2y+fl—c—1)

We saw that if ¢=2, F(y) is =0 for every integer y=—2c¢—1, but
is negative if y =—2c—2,

First, let c=3, Then F(y)=P(y) —7y+18, ¥z=—1. The least
positive integer L which is not a sum of four values of F(v) is

v

y 2 or 1 0 or —1 —2 —3

s
L J 19 43 203 2831 3437
while every integer = 20000 is a sum of four values of F(y) for integers
¥=—4. Note that F(x-—4) is function (2). All integers = 15883 are
sums of five values of F(y), y=0.
) Second, let c==4, Then F=P— 11y+35 y=—9, Now the least
integer not a sum of four values is 11 if y=4, 54 if ¥=3 or 2, and 363

if 21,0, —1 or —2, But every integer = 25000 is a sum of four values
232 ‘
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of F(y) for integers y == —3. Since all < 363 are sums of four values
of F for integers y=1, all = 3377 are sums of five such values by
Lemma 3.

Third, let c=2. Then F=P—4y-}8, y=—5. All integers:
= 200 except 90,163, and 167 are sums of four values with y=—1.
All = 2000 except only 562, 710, 881, 1869, and 1893 are sums of four
values with ¥y =—2. All but 1869 of these five exceptions become
sums of four values with ¥y = -—4. Since F(—5)=8=F(0), 1869 is not
a sum of four values with y=—35.

Fourth, let ¢=1. Then F=P—2y+3, y=—4, Fory=2
{or y=1), 22 is not a sum of five values. The only useful case is
¥=—2. Then all = 543 are sums of four values except 191, 331, 334.
It follows readily that all = 4335 are sums of five.

Fifth, let c=0. Then F=P—y -1, and

F(—4)=—5, F(—3)=0=F(1), F(—2)=F(—1)=2=F(3).

Hence we may take y=0. The integers = 609, except twenty seven,
are sums of four values. From them we find that 0 — 4718 are all sums
of five values. .

Sixth, let ¢==5. Then F=P—16y-+61, y= —11. If y=5, 14
requires six summands, The least integer not a sum of four values is
33ify=4(or y=3), 63 if y=2, 175 if y=1 or y=0,955ify=—1

sums of four values of F(y], for y=—6. We have not yet used the

available summands
F(—17) =117, F(—8)=105=F(11), F(—9) =85,
F(—10)=56, F(—11)=17=F(3).

All integers = 3515 are sums of five values of F for y=-4.

8. Case z=2, Thus 6-2¢c==0, f(1)=c=0. If c¢=0, then
fX)=Px), f(—2)=—1, f(—1)=0=f(0), and we may take x=0.
While 17 is not a sum of four values of P(x), every positive integer
N=I7000 is a sum of five pyramidal numbers ).

Next, let ¢=1. Then f(3)=4—3¢=0 only when ¢=1. Then
b=—2. Take x=y -2, Then f(x) becomes 1-}~P(y). By the result
quoted, N5 is a sum of five values of 1+ P(y) for y==0 and hence
of five values of f(x) for x=2. Hence for 0= M =17005, Mis a sum of
five values of f(x) for x=0. But 56 is not a sum of four values of f(x).

5 K. C. Yang, Chicago Dissertation, 1928,
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Thus b=—1-c. By f(4)=4—2c3=0, c=

9. Case z==3.
=01 or 2 IFc=0, f(x]s%x(x—i) (¥—2) is pyramidal. If c=1,

then'b=1—‘2 (ehd‘of § 8): :If c":Z, b=--3; taking X=3y+3, we get
P—y-+1 (case ¢=00f§ 7). - ‘

10, Case z=—6. Thus1=21b—6c—35 6=2B, c=T7B -6,
whence B=1 since f(1)=¢=0. But f(—5)=10—5B220, whence
B=<2 ‘By f(—4)=14—8B=0, B%2 Hence B=1, b=2, c¢=1
(duplicate of fourth case c=1 in § 7). ;

11. Case z=—2, Thus 1=3b~—2¢—~1, b=2B, ¢=3B—1,
B=1. By f(—1)=1-—-B=0, B=1, b=2, ¢=2. For x=y—2,
f(x) becomes P—y-}-1 (case c=0 of § 7).

12, Case z =1 concluded. 1f b =0, f=P{x)-} x. Since
f(—1)=—1, x=0. Except only 37, 115, 122, 166, 334, 372, 541,
every positive integer = 2030 is a sum of four values of f. Then by
Lemma 3 all integers between 541 and A = 28236 are sums of five
values. Employ - ) k

B=F(55)=27775, C=f(54)=26289, D = f(22)= 1793.

Then B+541=C-+ D234 is'a sum of five, since 234 is a sum of
three, values. Hence by adding B to 461 — 2030, we conclude that
all integers from A to 29805 are sums of five values. Similarly, by

adding in turn f(56), ..., f(64), we see that all = 45774 are sums
of five. ‘

When b=—1, take x=y - 1; we get G=P-+y-1. Let  range
over the former exceptions 37, ..., 541. Thus all integers from 4 to 2034

except the seven 4-f are sums of four values of G for integers y= 0.
But

41=G(4)+G(5), 119=G(5)-+G(8)," 126 =3 G (6),
170=C (6)+2G (7), 338 = G (6) G (1) -+ G (11).

Since G(—1)==0, all integers = 2034 except only 376 and 545 are
sums of four values of G(y) for integers y == — 1. Evidently all = 45779
are sums of five such values,
If b=1, f(x) is the pyramidal number P(x--1).
" If b=2, we have the fourth case c=1 of Section 7.

V If 5=—2, we have the second case of Section 8.
234
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Let 5=3. By (31), F=P—5y+411, y=—6. For y=3, 31 is
not a sum of five values. The least positive integer not a sum of four
is27 il y=2 or y=1, 53 ify=0 or y=—1, 696if y=—2, 1631 if
y=—3, 1652 if y==—4 or y=—5 or y=—6. For y=0, 53, 85,
217, 351, 391, 472 are the only integers = 501 which are not sums of
four values of F. We readily conclude that all = 2700 are sums of
five values.

Let 6=5. By (31), F=P— 14y -}50, y = —10. The least integer
not a sum of five values of F is 37 if y=4, and 63 if y=3. Also 19
is not a sum of four values with y==—10. Using the twenty -four
integers = 500 which are not sums of four values of F for y=2, we
find that all = 3000 are sums of five.

Let 6=6. Then F=P-—20y-+85 y=-—12. Then 13 is not
a sum of four values. For y==4, 122 is not a sum of five. All in-
tegers = 3775 are sums of five values of F for y=3.

Finally, let 6=7. Then F=P—27y-+$+133, y=—14. Then 5 is
not a sum of four values. For y =5, 43 is not a sum of five. Every
integer = 10000 is a sum of five values of F for y=4.

(Received 8 June, 1935))
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