

Universal Waring theorems with cubic summands.

Ву

L. E. Dickson (Chicago).

1. Introduction. We shall obtain systematically 1 116 cubic polynomials f(x) with rational coefficients such that f(x) has an integral value ≥ 0 for every integer $x \geq 0$ and such that every positive integer is proved to be a sum of nine values of f(x) for integers $x \geq 0$. The proof avoids the use of other papers. For several of the f, we obtain facts which indicate that it is highly probable that (instead of 9) 5 or 4 values suffice.

The triangular and pyramidal numbers are

$$T(x) = \frac{1}{2}(x^2-x), \qquad P(x) = \frac{1}{6}(x^3-x).$$

THEOREM 1. The following functions F(y) are integers ≥ 0 for all integers $y \geq k$, while every integer ≥ 0 is a sum of nine values of F(y) for integers $y \geq k$:

$$P(y)$$
, $P+1$, $P+y$ for $k=0$; $P+y+1$, $k=-1$;
 $P-y+1$, $k=0$, -1 , -2 , -3 ;
 $P-2y+3$, $k=-2$, -3 , -4 ; $P-4y+8$, $k=-2$, -3 , -4 , -5 ;
 $P-5y+11$, $-6 \le k \le 0$; $P-7y+18$, $-7 \le k \le 0$;

¹⁾ The general theory applies to many further f(x), for which it is improbable that 4 or 5 summands suffice.

$$P-9y+26$$
, $-8 \le k \le 2$; $P-11y+35$, $-9 \le k \le 1$; $P-14y+50$, $-10 \le k \le 2$: $P-16y+61$, $-11 \le k \le 4$; $P-20y+85$, $-12 \le k \le 3$; $P-27y+133$, $-14 \le k \le 4$.

Such a theorem concerning F(y) for integers $y \ge k$ is equivalent to the like theorem concerning F(x+k) for integers $x \ge 0$. For example, if F=P-9y+26, k=-3, then F(x-3) is

(1)
$$G(x) = P(x) - 3T(x) - 6x + 49.$$

It is shown that every integer 2) from 0 to 30,000 inclusive is a sum of four values of G(x) for integers $x \ge 0$. Then in Lemma 3 we have m = 247 and conclude that every integer from 0 to 2,478,752 is a sum of five such values. Both facts 3) evidently hold also for G(x-t) when t = 1, 2, 3, 4 or 5, since G(-t) > 0, G(-6) = -13.

When
$$F = P - 7y + 18$$
, $k = -4$, $F(x - 4)$ is

(2)
$$H(x) = P(x) - 4T(x) - x + 36$$
.

It is shown that every integer from 0 to 20,000 inclusive is a sum of four values of H(x) for integers $x \ge 0$. In Lemma 3 we have m = 199 and conclude that every integer $\le 1,351,900$ is a sum of five such values. Both facts hold also for H(x-t) with t=1, 2 or 3, since H(-t) > 0, H(-4) = -10,

When
$$F = P - 11y + 35$$
, $k = -3$, $F(x-3)$ is

(3)
$$J(x) = P(x) - 3 T(x) - 8x + 64.$$

Every integer \leq 25,000 is a sum of four values of J(x) for integers $x \geq 0$. Thus every integer \leq 1,895,771 is a sum of five such values by Lemma 3 with m=226. Both facts hold also for J(x-t) with $t=1,\ldots,6$, since J(-t)>0.

Four summands suffice to 6000 for P-16y+61, $y \ge -6$ (§ 7).

2. Sums of nine values of f(x) = P(x) + g x.

LEMMA 1. Given the positive integers n and s, and any integer h, we can find an integer m such that

$$s \equiv f(3m) \pmod{3^n}, h \leq m < 3^n + h$$

By induction on n, we see that f(x+3r)-f(x) is not divisible by 3^n if r is not. Let j and k be any two distinct ones of the integers

(4)
$$h, h+1, \ldots, h+3^n-1.$$

Then r=j-k is not divisible by 3^n . Also take x=3k. Then

$$f(3j) - f(3k) = f(x+3r) - f(x) \not\equiv 0 \pmod{3^n}$$
.

Hence when m ranges over the 3^n integers (4), the values of f(3m) are incongruent modulo 3^n , whence s is congruent to one of those values. A simple computation yields

LEMMA 2. If $0 \le h \le 234$, g < 15,773, $m < 3^n + h$, $n \ge 8$, then $f(3m) < 5 \cdot 3^{3n}$.

If s and C are given positive numbers, we can evidently choose a positive integer n so that

$$C.27^n \le s \le C.27^{n+1}$$

Then s is one of the integers s_i of the three sub-intervals

(5)
$$3^{i-1}C3^{3n} \le s_i < 3^iC3^{3n}$$
 ($i = 1, 2, 3$).

By Lemma 1 we can choose an integer m_i so that

(6)
$$s_i = f(3 m_i) + 3^n M_i, h \le m_i < 3^n + h,$$

where M_i is an integer. Let $f(3m_i) \ge 0$. Using also Lemma 2, we get

$$(3^{i-1}C-5)3^{2n} < M_i < 3^iC3^{2n}$$
.

Write $M_i = 3^{2n} + N_i$. Then

(7)
$$(3^{i-1}C-6) 3^{2n} < N_i < (3^iC-1) 3^{2n}.$$

Henceforth employ summands f(x), $x \ge t$ where t = 3h:

(8)
$$0 \le t \le 702, -3^{18} \le g < 15773, n \ge 8.$$

Then $b_1 = 5$, $b_2 = 7$, $b_3 = 11$, C = 168 satisfy the inequalities 15 Prace Matemat-Fiz. T. 43.

²) Since we used 59 values of G(x) our result is to be compared with a Waring problem on cubes to $59^3 = 205,379$.

³⁾ Their extensions to a larger range are more likely to hold than the facts for G(x) since we now have available new summands, 224

L. E. Dickson.

(9)
$$\frac{9}{8}b_i^3 + \left(1 - \frac{t}{3^n}\right)^2 + 6 + \frac{S_i}{3^{2n}} \le 3^{i-1}C \le \frac{3}{8}b_i^3 + \frac{b_i}{2}\left(\frac{3}{2}b_i - \frac{t}{3^n}\right)^2 + \frac{1}{3} + \frac{S_i}{3^{2n+1}}$$

for i = 1, 2, 3, where $S_i = \left(1 + \frac{1}{2}b_i\right)(6g - 1)$. Then (7) imply

(10)
$$l_{i} \leq N_{i} \leq L_{i}, \ l_{i} = \frac{9}{8} b_{i}^{3} 3^{2n} + (3^{n} - t)^{2} + S_{i},$$
$$L_{i} = \frac{9}{8} b_{i}^{3} 3^{2n} + \frac{3}{2} b_{i} \left(\frac{3}{2} b_{i} 3^{n} - t\right)^{2} + S_{i}.$$

Write

(11)
$$A_i = 6 \left[\frac{N_i + 1 - 6g}{3b_i} - g \right] - \frac{9}{4} b_i^2 3^{2n} + 1, G_i = A_i - \frac{2}{b_i} (3^n - t)^2.$$

These with (10) imply

(12)
$$G_i \ge 0$$
 (whence $A_i \ge 0$), $\sqrt{\frac{1}{3}} A_i \le \frac{3}{2} b_i 3^n - t$.

For any number v_i in the interval

(13)
$$\frac{3}{2}b_i 3^n + \sqrt{\frac{1}{3}G_{ij}} \leq v_i \leq \frac{3}{2}b_i 3^n + \sqrt{\frac{1}{3}A_i}.$$

the final inequality (12) and the first one (13) give

$$(14) t < v_i \leq 3 b_i 3^n - t.$$

Employ the abbreviation

$$V_i = v_i - \frac{3}{2} b_i 3^n.$$

Thus (13) give

226

$$(15) V_i \ge \sqrt{\frac{1}{3}} G_i, \quad \sqrt{\frac{1}{3}} A_i \ge V_i.$$

These imply

$$0 \leq N_i + 1 - 6g - 3b_i \left[g + \frac{1}{6} \left\{ 3 V_i^2 + \frac{9}{4} b_i^2 3^{2n} - 1 \right\} \right] \leq (3^n - t)^2.$$

Write

(16)
$$B_i = 3 b_i \left\{ g + \frac{1}{6} \left[9 b_i^2 3^{2n} - 1 - 3 v_i (3 b_i 3^n - v^i) \right] \right\}.$$

Then the last inequalities give

(17)
$$0 \le N_i + 1 - 6g - B_i \le (3^n - t)^2.$$

Write

(18)
$$w_i = 3 b_i 3^n - v_i, R_i = f(v_i) + f(w_i)$$

Hence $R_i = 3^n B_i$. The identity

$$\sum_{i=1}^{3} \left\{ f(3^{n} - x_{i}) + f(3^{n} + x_{i}) \right\} = 3^{3n} + 3^{n} (Q_{i} - 1 + 6g), Q_{i} = x_{1}^{2} + x_{2}^{2} + x_{3}^{2}.$$

and (6) show that $s_i = f(3 m_i) + 3^n (3^{2n} + N_i)$ will be the sum of the values of f(x) for the nine values

(19)
$$3m_i, v_i, w_i, 3^n - x_j, 3^n + x_j \quad (i = 1, 2, 3)$$

of x provided only

(20)
$$Q_i = N_i + 1 - 6 g - B_i$$

is a sum of three squares x_i^2 . In that case, (17) gives $3^n - x_i \ge t$. By (14) and (18), both v_i and w_i are $\geq t$. By Lemma 1, $3 m_i \geq t$ since t=3h. Thus the nine arguments (19) are all $\geq t$.

It remains only to prove that we can choose an integer v_i so that Q_i will be a sum of three integral squares.

Consider the difference D_i between the limits in (13):

(21)
$$D_i = \sqrt{\frac{1}{3} A_i} - \sqrt{\frac{1}{3} G_i}, \ p_i = \frac{2 (3^n - t)^2}{b_i A_i}.$$

By (11_2) and $G_i \geq 0$

$$\frac{G_i}{A_i} = 1 - p_i, \ 0 < p_i \le 1.$$

Thus D_i is the product of $\sqrt{\frac{1}{3} A_i}$ by

$$1 - \sqrt{1 - p_i} = \frac{p_i}{1 + \sqrt{1 - p_i}} > \frac{p_i}{2},$$

whence

(22)
$$D_{i} > \frac{(3^{n} - t)^{2}}{b_{i} \sqrt{3} A_{i}}.$$

By (7) for C = 168 and (11).

(23)
$$3 A_i < 18 \left\{ \frac{(168 \cdot 3^i - 1) \cdot 3^{2n} + 1 - 6 \cdot g}{3 b_i} - g \right\} - \frac{27}{4} b_i^2 \cdot 3^{2n} + 3.$$

We readily find that each $D_i > 8$. Hence (13) holds for at least eight consecutive integers v_i . But

$$2B_i - 6b_i g = b_i F$$

where F denotes the quantity in square brackets in (16). It involves the function v(k-v), where k=3 b_i 3^n is odd. Evidently v(k-v) can be made congruent ito any assigned even integer modulo 8 by choice of v. Hence in (20) we can choose v_i (mod 8) so that $2Q_i \equiv 2z$ (mod 8), where z is an arbitrary integer. Take z=1. Then $Q_i \equiv 1 \pmod 4$. But $Q_i \ge 0$ by (17). Hence Q_i is a sum of three integral squares. This proves 4)

THEOREM 2. Every integer $\geq 168 \cdot 3^{24}$ is a sum of nine values of $f(x) = gx + \frac{1}{6}(x^3 - x)$ for integral values $\geq t$ of x, if $0 \leq t \leq 702$, $-3^{13} \leq g < 15773$, and if $f(x) \geq 0$ for every integer $x \geq t$.

3. LEMMA 3. Let a polynomial f(x) take an integral value ≥ 0 for every integer $x \geq t$, where the given integer t may be negative. Make the hypothesis (H) that every integer t for which $t < t \leq g$ is a sum of k-1 values of f(x) for integers $x \geq t$. Let

(24)
$$f(j+1)-f(j) < g-i$$
 $(j=t, ..., m),$

where the integer m exceeds t. Then every integer which exceeds l+f(t) and is $\leq g+f(m+1)$ is a sum of k values of f(x) for integers $x \geq t$. For a fixed j consider an integer I for which

(25)
$$g+f(j) < I \le g+f(j+1)$$

Write i=l-f(j+1). By (24) and (25), $g \ge i > g+f(j)-f(j+1) > l$. By (H), i is therefore a sum of k-1 values of f(x), whence l is a sum of k values. Apply the latter result for $j=t,\ldots,j=m$ in turn, and note that each interval (25) ends just where the next begins. Hence every integer which exceeds g+f(t) and is $\le g+f(m+1)$ is a sum of k values of f(x). By (H), those from l to g are sums of k-1 values; employ the further value f(t); hence all from l+f(t) to g+f(t) are sums of k values. The two conclusions together yield the lemma.

4. Proof of Theorem 1. For each function F = P(y) - ry + s in Theorem 1, we have $-1 \le r \le 27$, $0 \le s \le 133$. We shall verify later that all integers from 0 to 2000 inclusive are sums of five values of F(y) for integers $y \ge t$, where $-2 \le t \le 4$. Let a function F have the latter property when

(26)
$$-63 \le t \le 21, -15 \le r \le 27, 0 \le s \le 133.$$

Apply Lemma 3 with l=0, g=2000, k=6. Since

$$F(j+1)-F(j)=\frac{1}{2}(j^2+j)-r$$

condition (24) is equivalent to

$$(2j+1)^2 < 16001 + 8r$$

and holds if $-63 \le j \le 62$. Hence for any t in (26), (24) holds if m = 62 Then

$$g_1 = g + F(63) = 43664 - 63 r + s$$
, $F(t) < 2000$

Hence Lemma 3 shows that every integer $\leq g_1$ is a sum of 6 values of F(y) for integers $y \geq t$.

Apply Lemma 3 with l=0, $g=g_1$, k=7. Now (24) is

$$(2j+1)^2 < 349313 - 496r + 8s$$

For any r and s in (26), this holds if $(2j+1)^2 \le (579)^2$. Thus for any t in (26), (24) holds if m=289. Then

⁴⁾ When t=0, I had proved that every integer $\geq 171.3^{24}$ is a sum of nine values if $2g \leq 3^{15}$; also a like theorem for gx+AP(x). Trans. Amer. Math. Soc., vol. 36 (1934), p. 740; cf., pp. 1-12, 493-510.

$$g_0 = g_1 + F(290) = 4108449 - 353 r + 2 s$$

and every integer $\leq g_2$ is a sum of 7 values of F(y) for integers $y \geq t$. The next m is 2862, and

$$g_3 = g_2 + F(2863) = 3915331000 - 3216 r + 3 s.$$

All integers $\leq g_8$ are sums of 8 values. Then m = 88488, and all integers $\leq 11,548,650 \times 10^7$ are sums of 9 values. This number exceeds

$$168 \times 3^{24} = 4,744,816 \times 10^{7}$$
.

If N is a sum of 9 values of f(y) then N+9s is a sum of 9 values of f(y)+s. Theorem 2 implies a like result when t is negative. We have now proved

THEOREM 3. Let all integers from 0 to 2000 inclusive be sums of five values of $F = \frac{1}{6}(y^3 - y) - ry + s$ for integers $y \ge t$, where r, s, t satisfy inequalities (26), and $F \ge 0$ for every integer $y \ge t$. Then every integer ≥ 0 is a sum of nine values of F for integers $y \ge t$.

This implies Theorem 1.

5. Conditions for a universal Waring theorem. Any cubic function with rational coefficients may evidently be written in the form

(27)
$$F(x) = A P(x) + B T(x) + C x + D, A \neq 0,$$

where A, \ldots, D are rational numbers. We assume

(28)
$$F(x)$$
 is an integer ≥ 0 for every integer $x \ge 0$.

The fact that A, \ldots, D are integers follows from

$$F(0) = D$$
, $F(1) = C + D$, $F(2) = A + B + 2C + D$,
 $F(3) = 4A + 3B + 3C + D$.

Then (27) is an integer for every integer x. Also, A > 0 by (28) with $x = \infty$. We desire that

(29) every integer ≥ 0 shall be a sum of v values of F(x),

where $v \leq 9$. The smaller A is, the more slowly will F(x) increase with x, and the smaller v will be in general. Hence we shall take A=1.

By (28) and (29), F(h) = 0 for some integer $h \ge 0$. Let the trans-

formation y = x + h replace F(y) by f(x). Then f(0) = F(h) = 0. Hence Waring's problem for F(y) reduces to that for

(30)
$$f(x) = P(x) + b T(x) + c x, x \ge -h.$$

The maximum h will be found tentatively in each case, as for (1)—(3). By (29), f(z) = 1 for some integer z. Since all terms of 6f(z) are products of z by integers, z must divide 6, whence $z = \pm 1$, ± 2 , ± 3 , ± 6 ,

The cases z=6 and z=-3 are excluded since

$$f(6) = 35 + 15b + 6c = 1$$
, $f(-3) = -4 + 6b - 3c = 1$

are impossible in integers, in fact, modulo 3.

6. Case z=1. Thus c=1=f(1). If b<0, f(3)=7+3, $b\ge0$ requires b=-1 or -2, Postponing to Section 12 less interesting special cases, let $b\ge2$. When x=-3, b-1, f(x)=x. Also, $f(-3b)=\frac{1}{2}$, b(3b-5)>0. Besides the root 0 und the root between -3, b-1, and -3, b of f(x)=0, there is a root between 0 and 1 if $b\ge3$, but a root between $-\frac{1}{2}$ and 0 if b=2. Hence $f(x)\ge0$ for every integer ≥-3 , If $b\ge3$, the least integral values of f(x) are 0, 1, b-1=f(-1). Thus b-2 summands 1 are required to produce the number b-2, and hence at least six summands are needed when $b\ge8$. We exclude this case.

To (30) apply the transformation x=y-b; we get

(31)
$$F(y) = P(y) + \left\{1 - \frac{1}{2}(b + b^2)\right\} y + f(-b).$$

Thus if $b \ge 2$, $F(y) \ge 0$ for every integer $y \ge -2b$. The most interesting case has b=4. Then

(32)
$$F(y) = P(y) - 9y + 26.$$

Its values for y=-9, -8, ..., 7 are -13, 14, 33, 45, 51, 52, 49, 43, 35, 26, 17, 9, 3, 0, 1, 7, 19. Hence we have a universal Waring problem F(x+h), for integers $x \ge 0$, when $-8 \le h \le 4$. We discard h=4, since 6 is not a sum of fewer than six values of F(x+4). Also h=3, since 100 is not a sum of five values of F(x+3), but all others ≤ 506 are sums of five.

When h=2, the only integers < 506 which are not sums of four values of F(x+2) for integers $x \ge 0$ are

62, 89, 97, 99, 135, 181, 183, 190, 236, 263, 265, 328, 336, 391, 433, 437, 443, 445, 500.

We readily conclude that all integers ≤ 2906 are sums of five such values.

The least positive integer not a sum of four values of F(x+h) for integers $x \ge 0$ is 97 if h=1, 336 if h=0, 539 if h=-1, 7243 if h=-2.

By use of a new table of sums of three values of F(x-3) for integers $x \ge 0$ covering 0-3500, 15000-18000, it was verified that every positive integer ≤ 30000 is a sum of four such values. Note that F(x-3) is the function (1) discussed in Section 1.

7. Case z = -1. Thus b = c + 1 in (30). Also, $f(1) = c \ge 0$. When x = 3c + 2, f(-x) = x; also

$$f(-3c-3) = \frac{1}{2}(c+1)(4-3c), \ f(2) = 2+3c,$$

$$f(-1) = 1, \ f(-2) = 2+c.$$

Hence if $c \ge 2$, f(x) is ≥ 0 for every integer $x \ge -3c-2$ and its least values are 0, 1, c. Thus c-1 is a sum of c-1, but not fewer values. To (30) apply the transformation x = y - c - 1; we get

(33)
$$F(y) = P(y) - \frac{1}{2}(c^2 + c + 2)y + f(-c - 1).$$

We saw that if $c \ge 2$, F(y) is ≥ 0 for every integer $y \ge -2c-1$, but is negative if y = -2c-2.

First, let c=3. Then F(y)=P(y)-7y+18, $y \ge -7$. The least positive integer L which is not a sum of four values of F(y) is

$$y \ge$$
 3
 2 or 1
 0 or -1
 -2
 -3

 L
 19
 43
 203
 2831
 3437

while every integer ≤ 20000 is a sum of four values of F(y) for integers $y \geq -4$. Note that F(x-4) is function (2). All integers ≤ 15883 are sums of five values of F(y), $y \geq 0$.

Second, let c=4. Then F=P-11y+35, $y \ge -9$. Now the least integer not a sum of four values is 11 if $y \ge 4$, 54 if $y \ge 3$ or 2, and 363 if $y \ge 1$, 0, -1 or -2. But every integer ≤ 25000 is a sum of four values 232

of F(y) for integers $y \ge -3$. Since all < 363 are sums of four values of F for integers $y \ge 1$, all ≤ 3377 are sums of five such values by Lemma 3.

Third, let c=2. Then F=P-4y+8, $y\ge -5$. All integers ≤ 200 except 90,163, and 167 are sums of four values with $y\ge -1$. All ≤ 2000 except only 562, 710, 881, 1869, and 1893 are sums of four values with $y\ge -2$. All but 1869 of these five exceptions become sums of four values with $y\ge -4$. Since F(-5)=8=F(0), 1869 is not a sum of four values with $y\ge -5$.

Fourth, let c=1. Then F=P-2y+3, $y \ge -4$. For $y \ge 2$ (or $y \ge 1$), 22 is not a sum of five values. The only useful case is $y \ge -2$. Then all ≤ 543 are sums of four values except 191, 331, 334. It follows readily that all ≤ 4335 are sums of five.

Fifth, let c=0. Then F=P-y+1, and

$$F(-4) = -5$$
, $F(-3) = 0 = F(1)$, $F(-2) = F(-1) = 2 = F(3)$.

Hence we may take $y \ge 0$. The integers ≤ 609 , except twenty seven, are sums of four values. From them we find that 0-4718 are all sums of five values.

Sixth, let c=5. Then F=P-16y+61, $y\ge -11$. If $y\ge 5$, 14 requires six summands. The least integer not a sum of four values is 33 if $y\ge 4$ (or $y\ge 3$), 63 if $y\ge 2$, 175 if $y\ge 1$ or $y\ge 0$, 955 if $y\ge -1$ or $y\ge -2$ or $y\ge -3$, 2221 if $y\ge -4$ or $y\ge -5$. But all ≤ 6000 are sums of four values of F(y) for $y\ge -6$. We have not yet used the available summands

$$F(-7) = 117$$
, $F(-8) = 105 = F(11)$, $F(-9) = 85$,
 $F(-10) = 56$, $F(-11) = 17 = F(3)$.

All integers ≤ 3515 are sums of five values of F for $y \geq +4$.

8. Case z=2. Thus b+2c=0, $f(1)=c\ge 0$. If c=0, then f(x)=P(x), f(-2)=-1, f(-1)=0=f(0), and we may take $x\ge 0$. While 17 is not a sum of four values of P(x), every positive integer $N\le 7000$ is a sum of five pyramidal numbers 5).

Next, let $c \ge 1$. Then $f(3) = 4 - 3c \ge 0$ only when c = 1. Then b = -2. Take x = y + 2. Then f(x) becomes 1 + P(y). By the result quoted, N + 5 is a sum of five values of 1 + P(y) for $y \ge 0$ and hence of five values of f(x) for $x \ge 2$. Hence for $0 \le M \le 7005$, M is a sum of five values of f(x) for $x \ge 0$. But 56 is not a sum of four values of f(x).

⁵⁾ K. C. Yang, Chicago Dissertation, 1928.

9. Case z=3. Thus b=-1-c. By $f(4)=4-2c \ge 0$, c=0,1, or 2. If $c=0,f(x)=\frac{1}{6}x(x-1)$ (x-2) is pyramidal. If c=1, then b=-2 (end of § 8). If c=2, b=-3; taking x=y+3, we get P-y+1 (case c=0 of § 7).

10. Case z=-6. Thus $1=21\ b-6\ c-35$, $b=2\ B$, $c=7\ B-6$, whence $B\ge 1$ since $f(1)=c\ge 0$. But $f(-5)=10-5\ B\ge 0$, whence $B\le 2$. By $f(-4)=14-8\ B\ge 0$, $B\ne 2$. Hence B=1, b=2, c=1 (duplicate of fourth case c=1 in § 7).

11. Case z=-2. Thus 1=3b-2c-1, b=2B, c=3B-1, $B \ge 1$. By $f(-1)=1-B \ge 0$, B=1, b=2, c=2. For x=y-2, f(x) becomes P-y+1 (case c=0 of § 7).

12. Case z=1 concluded. If b=0, f=P(x)+x. Since f(-1)=-1, $x\geq 0$. Except only 37, 115, 122, 166, 334, 372, 541, every positive integer ≤ 2030 is a sum of four values of f. Then by Lemma 3 all integers between 541 and A=28236 are sums of five values. Employ

$$B = f(55) = 27775$$
, $C = f(54) = 26289$, $D = f(22) = 1793$.

Then B+541=C+D+234 is a sum of five, since 234 is a sum of three, values. Hence by adding B to 461-2030, we conclude that all integers from A to 29805 are sums of five values. Similarly, by adding in turn $f(56), \ldots, f(64)$, we see that all ≤ 45774 are sums of five.

When b=-1, take x=y+1; we get G=P+y+1. Let t range over the former exceptions 37,..., 541. Thus all integers from 4 to 2034 except the seven 4+t are sums of four values of G for integers $y \ge 0$. But

$$41 = G(4) + G(5)$$
, $119 = G(5) + G(8)$, $126 = 3G(6)$,

$$170 = G(6) + 2G(7)$$
, $338 = G(6) + G(7) + G(11)$.

Since G(-1) = 0, all integers ≤ 2034 except only 376 and 545 are sums of four values of G(y) for integers $y \geq -1$. Evidently all ≤ 45779 are sums of five such values.

If b = 1, f(x) is the pyramidal number P(x+1).

If b=2, we have the fourth case c=1 of Section 7.

If b = -2, we have the second case of Section 8.

Let b=3. By (31), F=P-5y+11, $y \ge -6$. For $y \ge 3$, 31 is not a sum of five values. The least positive integer not a sum of four is 27 if $y \ge 2$ or $y \ge 1$, 53 if $y \ge 0$ or $y \ge -1$, 696 if $y \ge -2$, 1631 if $y \ge -3$, 1652 if $y \ge -4$ or $y \ge -5$ or $y \ge -6$. For $y \ge 0$, 53, 85, 217, 351, 391, 472 are the only integers ≤ 501 which are not sums of four values of F. We readily conclude that all ≤ 2700 are sums of five values.

Let b=5. By (31), F=P-14y+50, $y\ge -10$. The least integer not a sum of five values of F is 37 if $y\ge 4$, and 63 if $y\ge 3$. Also 19 is not a sum of four values with $y\ge -10$. Using the twenty-four integers ≤ 500 which are not sums of four values of F for $y\ge 2$, we find that all ≤ 3000 are sums of five.

Let b=6. Then F=P-20y+85, $y \ge -12$. Then 13 is not a sum of four values. For $y \ge 4$, 122 is not a sum of five. All integers ≤ 3775 are sums of five values of F for $y \ge 3$.

Finally, let b=7. Then F=P-27y+133, $y \ge -14$. Then 5 is not a sum of four values. For $y \ge 5$, 43 is not a sum of five. Every integer ≤ 10000 is a sum of five values of F for $y \ge 4$.

(Received 8 June, 1935.)