Rheonome Geometrie. Absolute Mechanik*).

(Geometria reonomiczna. Mechanika bezwzględna).

Von
A. Wundheiler.

Das Hauptergebnis dieser Arbeit sind neue und überaus einfache Gleichungen für nichtholonom und rheonome Systeme. Sie lauten (§ 14):

\[\frac{\delta y}{\delta t} + W' \dot{\theta} = Q + S \]

Die Anwendungen sind an verschiedenen Plätzen zerstreut. Wir nennen z. B. die Skleronomeit (§ 26) und Holonomitätbedingungen (§ 20), Bedingungen für die Existenz eines „Energieintegrals“ für rheonome Systeme (§ 28), für die infinitesimalen Verbiegungen eines Riemannraumes (§ 10). Das alles

*) Die vorliegende Arbeit stellte einen Auszug aus einer der math.-naturw. Fakultät der Univ. Wunschan eingereichten Inauguraldissertation dar.
läßt sich nur in invariablen Sprache machen. Eine *Theorie der Reaktionskräfte* allgemeiner dynamischer Systeme (**§ 30, 31**) schließt die Arbeit.

Wir setzen die Elemente der gewöhnlichen Tensorrechnung als bekannt voraus.

Bedeutungen.

Indizes. Nach Vorbild der Schouten'schen Schule \(^{1}\) erhalten die Bestimmungszahlen einer Größe in verschiedenen Koordinatensystemen immer dieselben „Kernbuchstaben“, und die Unterteilung der Koordinatensysteme erfolgt ausschließlich durch die Art der Indizes. Verschiedene Bestimmungszahlen derselben Größe in einem und demselben System werden durch angehängte Zeichen („Signaturen“) unterschieden, z. B.

\[v^1, \ldots, v^n; \quad v, \nu, \nu_i; \quad x^2, x^3, \ldots, x^5. \]

Verschiedene Koordinatensysteme haben prinzipiell verschiedene Systeme der unterscheidenden Zeichen (Signaturen), z. B.

\[1, 2, \ldots, n; \quad 1', 2', \ldots, n'; \quad 1, 2, \ldots, n. \]

Verschiedene Indizes durchlaufen prinzipiell verschiedene Zeichenreihen, so daß z. B. \(x^i \) und \(x^i \) nicht a priori gleich vorausgesetzt werden können. Die Zeichenreihen sind als voneinander verschiedene Narrative zu betrachten.

Derivationsskreuztransformation schreiben wir:

\[x' = x'(x^i). \]

Im folgenden halten wir uns an die Festsetzungen:

\[h, i, j, k = 1, 2, \ldots, n; \]

\[\alpha, \beta, \gamma = 1', 2', \ldots, m; \]

\[l, m, n = 1, 2, \ldots, n; \]

\[\lambda, \mu = l', m', n'. \]

Deriviertes. Wir schreiben immer

\[\frac{\partial}{\partial x^i}, \quad \frac{\partial}{\partial x'^i}; \quad \frac{\partial}{\partial x^i}, \quad \frac{\partial}{\partial x'^i}. \]

\(t \) bedeutet bei uns ausschließlich die Zeit. \(\beta \) bedeutet immer die kovariante Differenzial.

Summenzeichen. Wie jetzt schon allgemein üblich, wird in einem Monom über doppelt auftretende Indizes automatisch summiert.

Wir benutzen oft ohne besondere Erläuterung eine verkürzte Schreibweise, in der die Tensoren ganz ohne Indizes geschrieben werden. Das geschieht in den Fällen, wo auf eine leichte Entartung der Matrix gerechnet werden darf.

doeh ebensowohl eine andere Darstellung wählen:

\[x^I = x^I(x^i; t), \quad I = 1, 2, \]

(2)

\[x = x(x^i; t), \quad i = 1, \ldots, n; \quad J = 1, \ldots, n. \]

und von den beiden Darstellungen is doch keine (im allgemeinen Falle) der anderen gegenüber ausgeschieden. Die Transformation (2) ändert natürlich die "Identität" der Flächenpunkte. Die Größen der "rheomischen Geometrie" müssen, den obigen Ausführungen gemäß, den Transformationen (2) gegenüber invariant sein, da doch die "Identität" ihrer Punkte keine Eigenschaft der sich bewegenden Fläche darstellt, außer vielleicht wenn sie stern ist. Wir erklären also die Rheomische Geometrie als die Invariantentheorie der "kinematischen Gruppe" (3).

Wir kōnten natürlich auch in einem gewöhnlichen Riemannschen Raum von sich ähnliche Koordinatensystemen einführen und so einem Seelen von Rheomitt schaffen. Wir werden in einem solchen Falle von einem "streng ärmeren" Raum sprechen. Es wird oft notwendig sein zu sehen, was aus den allgemeinen rheomischen Größen im streng älteren Falle wird. Das erlaubt oft ihren Sinn zu erfassen.

2. Die elementare Verschiebung. In der gewöhnlichen Differentialgeometrie nennen wir die elementare Verschiebung den infinitesimalen Vektor von den Komponenten \(dx \). In der rheomischen Geometrie kann sich diese Aufsatzung nicht behaupten: wir müssen die elementare Verschiebung vermittels des Größensystems \(dx; \ dt \) charakterisieren. Für diesen Standpunkt sprechen zwei Argumente:

1\(^{a}\) Betrachten wir als gleichwertig alle durch (2)

\[x^i = x(x^i; t) \]

verbundenen Koordinatensysteme, so sind die Komponenten der Verschiebung \(dx \) im System (4) durch die \(dx^i \) allein noch nicht bestimmt, sie hängen noch von \(dt \) ab. Bei denselben \(dx^i \) und verschiedenen \(dt \) werden zwei Verschiebungen in verschiedenen Koordinatensystemen verschiedene Komponenten haben. Eine genau, d. h. eindeutig in allen rheomischen Systemen bestimmte Verschiebung muß noch ein bestimmtes \(dt \) besitzen.

2\(^{a}\) Betrachten wir den Fall einer sich bewegenden Fläche. Eine Verschiebung — d. h. zwei unendlich nahe Punkte \(A \) und \(B \) — ist als bestimmt zu betrachten, wenn ihr in dem umgebenden Raume ebenfalls eine bestimmte Verschiebung entspricht. Nun, wenn sich die Fläche bewegt, so ist das Punkt-paar, daß sie mit \(A \) und \(B \) deckt, von dem Augenblick abhängig, in welchem \(A \) und \(B \) im umgebenden Raume fixiert wurden, also auch von der Dauer der Verschiebung, also von \(dt \).

Wir setzen also fest:

Als elementare Verschiebung in einem rheomischen Raume bezeichnen wir das System der Differentiale \(dx^i; \ dt \).

3. Die inhomogene quadratische Differentialform. Die Riemannsche Geometrie ist die Invariantentheorie einer quadratischen Differentialform

\[dx^i = a_{ij} dx^j \ dx^i. \]

Unser Vorbild der sich deformatierenden Flächen lehrt, daß in der rheomischen Geometrie die inhomogene Form

\[dx^i = a_{ij} dx^j \ dx^i + 2a_{ijk} dx^j dt + A dx^i \]

zu Grunde genommen werden muß. Berechnen wir diese Form für die bewegliche Fläche, die durch

\[x^i = x^i(x^i; t), \quad \lambda = 1, 2, 3; \quad i = 1, 2, \]

gegeben ist, so kommt:

\[\alpha = a_{ij} \frac{\partial x^j}{\partial \xi} \frac{\partial x^i}{\partial \xi}; \quad A = a_{ij} \frac{\partial x^j}{\partial x^i}. \]

(Differentiation \(\frac{\partial}{\partial t} \) bei konstanten \(x^j \)). \(\alpha \) ist also die Projektion der "Führungs-
geschwindigkeit" \(\frac{\partial x^j}{\partial t} \) auf die Fläche: die "Längsrichtung", \(A \) — die "Längungs-
Kraft der Führung". Beide Größen sind natürlich nicht invariant, da sie auf ein bestimmtes Koordinatensystem bezogen sind. Wir leiten aber aus ihnen später invariante Größen ab.

4. Starke Tensoren. Wir nennen einen starken (kontravarianten) Vektor ein System \(\xi^i \) von \(n \) Zahlen, die sich unter

\[\xi^i = x^i(x^i; t) \]

(5)

nach den Formeln

\[\xi^i = \frac{\partial x^i}{\partial x^j} \xi^j \]

transformieren, also wie ein gewöhnlicher Vektor unter der geometrischen Transformation

\[x^i = x^i(x^j). \]
Ganz ähnlich werden nach wohlbekannten Mustern kovariante Vektoren und verschiedene Tensoren definiert.

Zur Erläuterung bemerken wir, daß die $d\alpha^i$ anders wie im gewöhnlichen Fall, keinen Vektor bilden, denn es ist:

$$d\alpha^i = \frac{\partial}{\partial x^i} d\alpha^i + \frac{\partial}{\partial t} dt.$$

Diese Tatsache bildet den fundamentalen Unterschied zwischen der gewöhnlichen und "rheomotorisch" Invariantentheorie. Dagegen ist

$$\frac{\partial f}{\partial x^i}$$

ein starker kovarianter Vektor, wenn nur f ein starker Skalar ist. In der Tat, ist sowohl bei (6), als bei (5):

$$\frac{\partial f}{\partial x^i} = \frac{\partial f}{\partial \alpha^i} \frac{\partial \alpha^i}{\partial x^i}.$$

Der folgende einfache und wichtige Satz erlaubt starke Tensoren zu bilden.

(7) Ist T ein von α^i, α^i und t abhängiger starker Tensor, so ist es auch $\frac{\partial T}{\partial \alpha^i}$.

In der Tat, es gilt

$$\frac{\partial T}{\partial \alpha^i} = \frac{\partial^2}{\partial x^i} \frac{\partial T}{\partial \alpha^i} + \frac{\partial}{\partial t} dt,$$

also

$$\frac{\partial^2 T}{\partial x^i} = \frac{\partial T}{\partial \alpha^i} \frac{\partial \alpha^i}{\partial x^i}.$$

Die $\frac{\partial \alpha^i}{\partial x^i}$ sind aber von α^i unabhängig. Differenzierend man also z. B.

$$\frac{\partial}{\partial \alpha^i} \frac{\partial T}{\partial \alpha^i} = \frac{\partial T}{\partial x^i}, \quad K = 1, \ldots, n,$$

nach α^i, so erhält man sofort den Satz.

5. Die fundamentalen starken Tensoren. Wir gehen nun von der Form

$$2T = a_k \alpha^i \alpha^k + 2 \alpha^i \alpha^k + A, \quad i, k = 1, \ldots, n,$$

aus, die nach Voraussetzung invariant gegenüber

$$\alpha^i = \alpha^i(\alpha^i, t)$$

sein soll.

Die Anwendung des eben ausgesprochenen Satzes (7) ergibt den kovarianten starken Vektor

$$\frac{\partial}{\partial \alpha^i} \frac{\partial T}{\partial \alpha^i} = a_k \alpha^i \alpha^k + 2 \alpha^i \alpha^k + A.$$

Dann wir die "Länge gleichzuschwindigkeit" nennen. Nochmalige Anwendung desselben Satzes (7) liefert den zweifach kovarianten starken "Fundamentalsensor".

$$\frac{\partial}{\partial \alpha^i} \frac{\partial T}{\partial \alpha^i} = a_k \alpha^i \alpha^k.$$

Wir führen, wie üblich, den inversen Tensor α^i ein:

$$\alpha^i a_k = \delta^i_k, \quad i, k = 1, \ldots, n.$$

Setzen wir nun:

$$\alpha^i = \alpha^i a_k,$$

so kommt als starker kontravarianter Vektor:

$$\alpha^i = \alpha^i \alpha_k = \delta^i_k + \alpha^i.$$

dt ist natürlich ein starker Skalar. Also ist

$$\delta^i_k = \delta^i_k dt = \delta^i_k dt.$$

Ein starker (infiniteresimaler) Vektor, den wir die "absolute elementare Verschiebung" nennen. In unserem Kalkül tritt er an die Stelle von dx^i.

Im streng akleronomischen Fall ist in einem geeignet gewählten Koordinatensystem $\alpha^i = 0$. Wir sehen, daß in diesem Fall die absoluten Koordinaten des Elements mit den gewöhnlichen (ausgezeichneten) übereinstimmen. Die absoluten Komponenten des Elements haben also gewissermaßen die durch falsche Koordinaten herbeigeführte scheinbare Rheomotorität auf.

Nun schreiben wir die quadratische Fundamentalf orm vermittels der absoluten Verschiebung um, um zu nennen Invarianten zu gelangen.

$$ds^2 = a_k (d\alpha^i + \alpha^i dt) (d\alpha^i + \alpha^i dt) + (A - a_k \alpha^i \alpha^k) d\alpha^i,$$

$$ds^2 = a_k \alpha^i \alpha^k + (A - a_k \alpha^i \alpha^k) d\alpha^i.$$

Die linke Seite und der erste Summand der rechten sind stark invariant. Dasselbe gilt also auch von

$$\alpha^i = A - a_k \alpha^k.$$

α^i nennen wir die "transversale leitende Kraft". Der Leser möge selbst verifizieren, daß im Fall einer sich starr bewegenden Fläche α^i das Quadrat der transversalen Komponente der Führungsgeschwindigkeit ergibt.

Im streng akleronomischen Falle ist natürlich $\alpha^i = 0$, denn im ausgezeichneten Koordinatensystem ist $A = a_i = 0$, da die Form homogen wird.

102

1. Das Differential eines Skalars ist dem gewöhnlichen Differential gleich:
 \[\delta p = dp. \]

3. Das Differential ist additiv und "partiell":
 \[\delta (U + V) = \delta U + \delta V; \quad \delta (U V) = U \delta V + V \delta U. \]

4. Diesen durchaus notwendigen Bedingungen fügen wir noch hinzu:
 \[\delta (U, V) = U \delta V + V \delta U. \]

5. Das Differential des Fundamentaltensors ist gleich Null:
 \[\delta a_{\alpha} = 0. \]

Das Postulat 1. ist als Definition des kovarianten Differentialen eines Skalars zu betrachten. Setzen wir

\[\delta x^i = dx^i + a_{\alpha} dx^\alpha, \]

\[\delta x^{\alpha} = dx^{\alpha} + \delta a_{\alpha}, \]

(wo \(a_{\alpha} \) und \(\delta a_{\alpha} \) sind Differentialformen in \(dx^{\alpha} \) und \(dx^i \)) und analog in bekannter Weise für Tensoren, so ist (8, a) erfüllt. Verlangen wir noch:

\[a_{\alpha} + \delta a_{\alpha} = 0, \]

so erreichen wir auch (8, b). Es bleibt aber noch das schwierigste (8, a) und (8, e).

Wir betrachten den Ausdruck

\[\varphi = \delta (a_{\alpha} dx^\alpha dx^i) + \delta (a_{\alpha} dx^\alpha dx^i) = \delta (a_{\alpha} dx^\alpha dx^i), \]

und nehmen uns vor ihn als eine Differentialform in \(dx^i \) umzuschreiben. Die Koeffizienten dieser Form geben uns dann einen Tensor, der sich als das kovariante starke Differential \(\delta x^i \) erweisen wird. Damit das aber möglich wird, müssen wir die elementare Verziehung passend wählen: das ist der wesentliche Griff der Methode.

Wir setzen (invariant):

\[ds = dt = 0, \]

also

\[\delta x^i = dx^i, \quad \delta x^\alpha = dx^\alpha, \]

und wählen außerdem die Verschiebungen \(a_{\alpha}, \delta a_{\alpha} \) vertauschbar:

\[\delta dx^i = \delta dx^i, \quad (\alpha, \beta = 1, 2, 3) \]

Wir entwickeln nun (9), benutzen mehrmal (10), (11) und (12), und erhalten eine Form in \(\delta x^i \). Die Rechnung gestaltet sich wie folgt:

\[\delta (a_{\alpha} dx^\alpha dx^i) = a_{\alpha} \delta dx^\alpha dx^i + a_{\alpha} dx^\alpha dx^i + \delta a_{\alpha} dx^\alpha dx^i \]

\[= a_{\alpha} \delta dx^\alpha + a_{\alpha} \delta dx^i + \delta a_{\alpha} \delta dx^i \]

\[\delta (a_{\alpha} dx^\alpha dx^i) = (a_{\alpha} dx^\alpha \delta dx^i) + (a_{\alpha} dx^\alpha \delta dx^i) \]

\[= a_{\alpha} \delta dx^\alpha + a_{\alpha} \delta dx^i + \delta a_{\alpha} \delta dx^i \]

Die dünn unterstrichenen Glieder heben sich fort. Der Rest besitzt \(\delta dx^i \) als

105
"Faktor" und also einen starken Tensor bilden. Die stark unterstri-
chenen Glieder bilden in der aus der Riemannschen Geometrie ge-
laufenen Weise die cyclische Bildung mit den Koeffizienten:

\[2 \Gamma_\alpha^\beta = \delta_\alpha^\gamma + \delta_\gamma^\beta - \delta_\beta^\gamma, \quad \Gamma_\alpha^\beta = \delta_\alpha^\beta \Gamma_\alpha^\beta. \]

Außerdem setzen wir analog:

\[2 \Gamma_\alpha^\beta = \delta_\alpha^\gamma + \delta_\gamma^\beta - \delta_\beta^\gamma, \quad \Gamma_\alpha^\beta = \delta_\alpha^\beta \Gamma_\alpha^\beta. \]

und erhalten:

\[\psi = \delta_\alpha^\gamma \left(2 a_\alpha \delta \alpha^\gamma + 2 \Gamma_\alpha^\beta \delta \alpha^\gamma \delta \alpha^\beta + 2 \Gamma_\alpha^\gamma \delta \alpha^\beta \delta \alpha^\gamma \delta \alpha^\beta \right) \]

Setzen wir nun für einen starken Vektor \(\psi \) definitorisch:

\[\delta \psi = \delta \psi + \Gamma_\alpha^\beta \delta \psi \delta \alpha^\beta + \Gamma_\alpha^\gamma \delta \psi \delta \alpha^\gamma \delta \alpha^\beta \delta \alpha^\gamma \delta \alpha^\beta, \]

bzw.

\[\delta \psi = \delta \psi - \Gamma_\alpha^\beta \delta \psi \delta \alpha^\beta - \Gamma_\alpha^\gamma \delta \psi \delta \alpha^\gamma \delta \alpha^\beta. \]

so ist jetzt leicht zu sehen, daß dieses Differential die Bedingungen (8.1; 8.3; 8.5) erfüllt.
Zuerst haben wir:

\[\psi = 2 a_\alpha \delta \alpha^\beta \delta \alpha^\gamma \]

und daraus folgt, daß \(\psi \) stark skalar und \(\delta \psi \) ein beliebiger Vektor, daß \(a_\alpha \delta \alpha^\beta \delta \alpha^\gamma \)

also auch \(\delta \psi \) ein starkes Vektor ist.

Weiter gilt:

\[\delta \psi = \delta \psi + \Gamma_\alpha^\beta \delta \alpha^\beta \]

Hier ist die linke Seite stark skalar, \(\delta \psi \), wie eben bewiesen, ein starker Vektor. Also ist auch \(\delta \psi \) skalar und somit \(\delta \psi \) ein starker Vektor. Gehen wir von dem Ausdruck \(\psi \delta \psi \delta \psi \), aus, so beweisen wir analog, daß \(\delta \psi \) ein starker Vektor ist und ähnelt es für die höheren Tensoren.

Um endlich (8.1; 8.3; 8.5) zu beweisen, genügt es in (9) \(a_\alpha \delta \alpha^\beta \)

zu setzen. Wir erhalten dann

\[\psi = \delta \psi + \Gamma_\alpha^\beta \delta \psi \delta \alpha^\beta \delta \alpha^\beta. \]

Andererseits ist aber, wenn wir denselben Ausdruck partiell kovariant aus-

werten:

\[\psi = \delta \alpha^\beta \delta \alpha^\beta \delta \alpha^\beta + a_\alpha \delta \psi \delta \alpha^\beta \delta \alpha^\beta. \]

Daraus folgt wegen (14 a)

\[\delta \alpha^\beta \delta \alpha^\beta \delta \alpha^\beta = 0 \]

für beliebiges \(\delta \psi \), also

\[\psi = a_\alpha \delta \psi \delta \psi \delta \alpha^\beta. \]

w. u. b. w.

\[\delta \psi = \frac{\partial \psi}{\partial \alpha} \delta \alpha + \frac{\partial \psi}{\partial t} \delta t + \Gamma_\alpha^\beta \psi \delta \alpha \delta \alpha^\beta + \Gamma_\alpha^\gamma \psi \delta \alpha \delta \alpha^\gamma \delta \alpha^\beta. \]

Die Koeffizienten dieser Form geben Anlaß zur Bildung des Gegenstücks der partiellen Ableitungen. In der Tat folgt nach dem Satze (7), daß der Koeffizienten von \(\delta \psi \)

\[\frac{\partial \psi}{\partial \alpha} \delta \alpha + \frac{\partial \psi}{\partial t} \delta t + \Gamma_\alpha^\beta \psi \delta \alpha \delta \alpha^\beta + \Gamma_\alpha^\gamma \psi \delta \alpha \delta \alpha^\gamma \delta \alpha^\beta \]

e in starker Tensor ist. Wir bezeichnen ihn mit \(\psi \), und die entsprechende Operation allgemein mit \(\psi \). Sie ist mit der gewöhnlichen kovarianten Diffe-

rentiation identisch, die wir in der Riemannschen Geometrie benutzen: sie erweist sich nicht nur als gewöhnlicher, sondern auch als ein starker Tensor

\[\left(\text{vgl. } \frac{\partial \psi}{\partial \alpha} \right). \]

Dagegen ist der Koeffizient von \(\delta t \) kein starker Tensor, und wir müssen also das Gegenstück der partiellen Ableitung nach der Zeit etwas tiefer steh-

zen. Zu diesem Zweck transformieren wir das kovariante Differential in eine Form der absoluten elementaren Verschiebung. Der Koeffizient von \(\delta t \)

bleibt dieselbe, wie vorher bei \(\delta \alpha^\beta \), bei \(\delta t \) erhalten wir dagegen z. B.

\[\frac{\partial \psi}{\partial \alpha} + \Gamma_\alpha^\beta \psi \delta \alpha \delta \alpha^\beta - a_\alpha \psi \psi \delta \alpha. \]
Wir nennen diese Bildung die „Invariante starkes partielle Ableitung nach der Zeit“ und bezeichnen sie mit p, p'.

Für einen starken Skalar erhalten wir z. B. statt $\frac{\partial f}{\partial t}$:

$$p_f = \frac{\partial f}{\partial t} - \alpha' \frac{\partial f}{\partial \alpha'}.$$

Allgemein, um zu der starken partiellen Ableitung nach t zu gelangen, werden wir von dem Koeffizienten bei dt die Größe $\alpha' p$ abziehen müssen. Wir werden oft das starke Differential in der totalen starken Form:

$$\delta T = p_t T + \frac{\partial T}{\partial t} dt$$

schreiben.

8. Der Dehnungstensor.

Wir werden nun einen Tensor auffinden, der gewissermaßen eine Bezeichner der rheologischen Geometrie bildet und kein Analogon in der Riemannschen Geometrie besitzt. Er erweist sich als maßgebend für die Dehnung des Raumes und verschwindet für einen sich ständig bewegenden Raum. Da eine einfach unschädliche Flächeneinheit stets als eine sich bewegende Fläche aufgefaßt sein kann, so wird er sich auch für das Problem der infinitesimalen Isometrie von Wichtigkeit erweisen. In diesem Falle (allgemein im Falle einer Hyperfläche) ist er nahe mit der zweiten Fundamentalform verwandt [14, 24].

Dieser Tensor ist für den rheologischen Raum in dem Sinne intrinsisch, daß er sich ausschließlich durch die inhominogene Fundamentalform ermittelt. Wir führen ihn mittels der Methode, die auf S. 104 § 6 auseinandergesetzt worden war.

Wir betrachten die skalare Form

$$\psi = \delta (a_t \delta x \delta x') = \delta a_t \delta x \delta x'$$

und wählen die verantwortlichen Verschiebungen in der folgenden (invariante) Weise:

$$dt = 0, \delta x = 0 \text{ also } \delta x' = -\alpha' dt.$$

Die Verschiebung δ ist also ausgenommen rein zeitlich und entspricht gewissermaßen einer partiellen Differentiation nach der Zeit. Die Verschiebung δ ist deswegen ein Intervall zwischen zwei „gleichzeitigen“ Punkten. ψ würde in diesem Falle die Dehnung eines rein „räumlichen“ Intervales in der Zeit dt anzeigen. Im streng skleromorphen Fall gilt das alles wörtlich und ψ ist natürlich Null. Dasselbe gilt für eine starre Fläche. Die Deutung bleibt bestehen für eine sich deformierende Fläche. Nun rechnen wir ψ aus.

$$\psi = \delta (a_t \delta x' \delta x') = \delta a_t \delta x \delta x' + 2 a_t \delta a \delta x'$$

$$= (\delta a_t - \alpha' \delta a) \delta x \delta x' \delta t - 2 a_t \delta a \delta x' \delta x' \delta t$$

$$= (\delta a_t - \alpha' \delta a) \delta x \delta x' \delta t - 2 a_t \delta a \delta x' \delta x' \delta t.$$

Diese letzte Schritt war notwendig, um einen in i und k symmetrischen Koeffizienten zu erhalten. Denn nur der symmetrische Teil wird durch die Werte einer quadratischen Form bestimmt. Setzen wir also:

$$W_a = \frac{1}{2} \delta (a_t a_0 - a_0 \delta a_t - a_0 \delta a_0 - a_j \delta a_j - a_j \delta a_j)$$

$$= \frac{1}{2} (\delta a_t a_0 - p_0 a_0 - p_0 a_t),$$

wie man sich durch Ausrechnen überzeugt, so gilt

$$\delta (a_t \delta x' \delta x') = 2 W_a \delta x' \delta x' \delta t,$$

und da $\delta x'$ beliebig ist, schließen wir den Tensorcharakter von W_a. Wir nennen ihn den „Dehnungstensor“.

Um diesen Namen endgültig zu rechtfertigen, betrachten wir eine sich beliebig bewegende Fläche und wählen „Identität“ ihrer Punkte „normal“, d. h. derart, daß die Bahnen ihrer Punkte orthogonalen Trakturen zur Familie aller Lager der Fläche werden. Dann werden wir natürlich $a_0 = 0$ haben und der Dehnungstensor reduziert sich auf $\frac{1}{2} \delta a_t$. Daraus folgt, daß er die rein longitudinalale Dehnung mißt.

Aus dem obigen folgt unmittelbar, daß

die notwendige und hinreichende Bedingung, damit eine sich „transversal“ bewegende Fläche stattfindet, ist das Verschwinden ihres Dehnungstensors.

Dasselbe läßt sich auch so ausdrücken:

Eine einfach unschädliche Flächeneinheit ist orthogonal isotrophen dann und nur dann, wenn der Dehnungstensor verschwindet, wobei der die Verteilung unterschiedende Parameter als Zeit zu deuten ist. Wir heben als wichtig hervor, daß diese Bedingung stark invariant ist, also ganz unabhängig von der gewählten Darstellung der Flächenfamilie.

Wir können auch jetzt die notwendige und hinreichende Bedingung der strengen Skleromorphität des Raumes angeben. Sie lautet

$$W = 0, a \delta = 0,$$

wobei $a' = A - a_0$ ist (vgl. S. 105). Sie ist in der Tat notwendig, denn in dem ausgezeichneten Koordinatensystem ist die Form homogen und von der Zeit unabhängig, also gelten die Gleichungen (23). Aber auch umgekehrt, sind (23) erfüllt, so wählen wir die Koordinaten laut der Bedingung $a' = 0$ (was offenbar immer möglich ist). Da (23) invariant ist, so müssen sie auch in diesem Koordinatensystem gelten, also ist dann:

$$\delta_t a_0 = 0, A = 0.$$
9. Zusammenhang mit der zweiten Fundamentallform. Beweist sich ein m-dimensionaler Raum \mathfrak{I} in einem n-dimensionalen Raum \mathfrak{S}, so fügt er ein "Kanal" durch, das ein $m+1$-dimensionaler Raum \mathfrak{E} ist. In diesem Raum ist \mathfrak{S} in jedem Augenblick eine Hyperfläche, und hat also eine bestimmte zweite Fundamentallform (der erwähnten Krümmung). Wir zeigen, dass sie eng mit dem Dehnungstensor zusammengängt.

Wir wählen das Koordinatensystem auf den \mathfrak{S} derart, dass die Projektorien von konstanten x' orthogonal zu den \mathfrak{S} ausfallen. Setzen wir

$$x^2 = x', \quad l = 1, \ldots, m; \quad x^2 = t,$$

so haben wir ein Koordinatensystem (x^2) im $m+1$-dimensionalen Kanal \mathfrak{E}. Bedeutet δ, wie in § 7, eine Verschiebung mit $\delta x' = 0$, so geschicht sie in diesem Koordinatensystem, da hier $x^2 = 0$ und $\delta x' = dx'$ ist, längs der t-Linie, ist also normal zu \mathfrak{S} in \mathfrak{E}. Setzen wir

$$\delta x^a = B^a \delta t,$$

so ist B^a die Quergeschwindigkeit des \mathfrak{S}. Sie ist natürlich, ihrem Sinne gemäß, ein starker Vektor. Setzen wir

$$B^a = B_{ai} x^i,$$

so ist w^a der Einheitsnormalen zu \mathfrak{E} in \mathfrak{E}.

Nun sei δ eine mit δ vertauschbare, "rein räumliche" Verschiebung mit $\delta t = 0$. Dann haben wir ($\delta \mathfrak{I} = 0$)

$$\delta x^a = \delta B^a \delta t = \delta B^a \delta t,$$

oder noch

$$\delta x^a = \delta B^a \delta t.$$

Jetzt schreiben wir:

$$\delta (a^a \delta x^a dx^a) = \delta (\delta x^a dx^a) = 2 \delta x^a dx^a = 2 \delta B^a \delta x^a \delta t.$$

Hier ist das erste Glied gleich $2 W_{ab} \delta x^a dx^a \delta t$ nach (22). Das letzte aber, wegen der Definition der zweiten Fundamentallform h_{ab} ents $-2 B_{ab} \delta x^a dx^a \delta t$. Da W_{ab} sowohl wie h_{ab} in der \mathfrak{S} liegen, so ergibt sich

$$W_{ab} = -B h_{ab}.$$

Das ist die angeeignete Relation.

Es ergibt sich sofort der folgende Satz:

{{\begin{tabular}{l}
Beweist sich ein Raum transversal ohne Dehnung, so ist er geodätisch in dem durchgeführten Kanal. \\
\end{tabular}}}

Der Beweis ergibt sich sofort aus dem Satz von S. 108, der $W = 0$ verlangt, und aus der Relation $h_{ab} = 0$ für geodätische Hyperflächen.

10. Bedingungen für Biegung ohne Dehnung. Denken wir uns eine einparametrische Raumeinheit und stellen wir uns die Frage, ob sie aufeinander isomorph abbildbar sind, d. h. ob sie als eine Reihe von Lagen eines sich ohne Dehnung bewegenden Raumes sich auffassen lassen. Dann ist notwendig und hinreichend, dass eine solche Darstellung der Raumeschar existiere, bei welcher $\delta i a_0 = 0$ wird. Der Dehnungstensor erlaubt uns dieses Problem präzis zu formulieren.

Verschiedene Darstellungen (26) stellen verschiedene Koordinatensysteme dar. Existiert zwischen ihnen ein solches, für welches $\delta i a_0 = 0$ ist, so nehmen wir den entsprechenden Wert von a_0 in Betracht, und nennen w^a einen starken Vektor, der in diesem ausgewählten Koordinatensystem die Komponenten $-a_0$ hat. Wegen $\delta i a_0 = 0$ gilt in diesem Koordinatensystem nach (21):

$$2 W_{ab} = -v a w_a = v a w_a + v a w_a$$

Diese Relation zwischen Tensoren muss immer bestehen, wenn sie in einem speziellen Koordinatensystem besteht. Die Bedingung der Existenz eines Vektors w_a, für den

$$v a w_a + v a w_a = 2 W_{ab}$$

gilt, ist also für die Isometrie der Flächenfamilie notwendig. Dass sie hinreichend ist, ergibt sich durch eine umgekehrte Überlegung. Existiert so ein Vektor w_a, so wählen wir ein Koordinatensystem in dem $a_0 = -w_a$ (das ist sicher möglich).

In diesem System nimmt aber die Relation (26) eben die Gestalt $\delta i a_0 = 0$ an.

Die Gleichung (26) erlaubt lebhaft an dieKillische Gleichung für eine starre Deformation und geht in diese über, sofern $W_{ab} = 0$, also wenn es eine starre orthogonalen Deformation existiert. Aus dieser Gleichung lassen

110
sich übrigens noch andere Schluße ziehen, namentlich die infinitesimale Isometrie und die Aufstellung aller möglichen Isometrien betreffend\(^1\).

11. Stark kovariante Vertauschbarkeitsbedingung. Wie bekannt, nennt man zwei Verschiebungen \(\delta x, \delta' x\) vertauschar, wenn

\[
\delta \delta' x = \delta \delta' x. \tag{27}
\]

Im rheonomen Räume kommt noch

\[
\delta d t = \delta' d t
\]

hinzu. Die Bedingung (27) ist zwar eine inverse Relation, aber ihre einzelnen Glieder sind offenbar keine Vektoren. Wir stellen uns die Aufgabe, sie stark invariant umzuschreiben.

Zu diesem Zwecke betrachten wir den Ausdruck

\[
\delta \delta' x = \delta \delta' x + I_{\alpha \beta} \delta x^\alpha d x^\beta + I_{\alpha} \delta x^\alpha dt
\]

Da \(\delta \delta' x = \delta' \delta x\) ein starker Tensor ist, ist es auch die letzte Ausdruck. Wählen wir aber das Koordinatensystem normal, d. h. \(\theta_{\alpha} = 0\), so wird er wegen \(\delta \delta' x = \delta \delta' x\) mit

\[
I_{\alpha} (\delta x^\alpha dt - \delta x^\alpha dt) = \frac{1}{2} \theta^a \theta^b \theta^c \delta x^d dt + \delta x^d dt = W_{\alpha} (\delta x^d dt - \delta x^d dt)
\]

identisch. Das muß in jedem Koordinatensystem gelten, also haben wir:

\[
\delta \delta' x = W_{\alpha} (\delta x^d dt - \delta x^d dt) \tag{28}
\]

Das ist die gesuchte Formel. Wir könnten den Dehnungstensor vermittels dieser Formel definieren, und schlagen wirklich bei einer Erweiterung dieses Weg ein (S. 119).

12. Begriff der rheonocholonomen Geometrie. Um den mechanischen Anwendungen gerecht zu werden, müssen wir unsere Begriffe und Ergebnisse auf nichtkolonom und gleichzeitig rheonome Räume übertragen. Wir geben

zunächst die allgemeine Richtlinie an. Bewegt sich eine Fläche im Raum laut den Gleichungen:

\[
x^i = x^i (x^a, t), \quad i = 1, \ldots, 3; \quad \alpha = 1, 2
\]

\[
d x^a = \psi^a_\alpha d x^\alpha + \nu^a dt, \quad \psi^a_\alpha = \partial x^a_\alpha, \quad \nu^a = \partial x^a_\nu
\]

so existieren in jedem Augenblick in jedem Punkte der Fläche ein durch \(\psi_\alpha^a\) gegebenes Flächen-Element und eine Führungsge schwindigkeit \(\nu^a\). Diese sind als Ableitungen bestimmter Funktionen durch gewisse Integrалisbeziehungen miteinander verküpf, also einzig nicht frei wählbar.

Nun versuchen wir — und das ist der fundamentale Schritt — auf diese Bedingungen und wählen die \(\psi_\alpha^a\) und \(\nu^a\) vollkommen unabhängig voneinander. Wir erhalten ein Gebilde, daß aus einem zeitabhängigen \(m\)-dimensionalen Richtungsvektor und einem Vektor in jedem Punkte des Raumes besteht. Wir nennen es einen "nichtkolonom rheonomen Unterraum".

Da aber hier in jedem Punkte des Raumes ein solches Paar Element Vektor vorausgesetzt ist, so haben wir hier nicht das Analogon einer sich bewegenden Fläche, sondern einer sich bewegenden Flächenfamilie. Ist \(n\) die Dimensionzahl des Oberraumes und \(m\) die des Richtungsvektors, so wird im kolonomalen Falle eine Familie von \(m\) Flächen erhalten. Darauf ist wohl zu achten, wenn man sich die nichtkolonome Geometrie richtig veranschaulichen will. Die Mißachtung dieser Tatsache hat bei verschiedenen Autoren mehrmals zu Fehlern geführt (verauschubare Verschiebungen!).

Wir werden einen rheonocholonomen Raum als die Gleichungen

\[
d x^i = \psi^i_\alpha d x^\alpha + \nu^i dt, \quad \alpha = 1, \ldots, m
\]

gegeben voraussetzen. Es ist leicht einzusehen, daß die nichtkolonome Geometrie die Invariantentheorie der Gruppen

\[
d x^i = \delta^i_\alpha d x^\alpha + \omega^i dt, \quad I = 1, \ldots, \tilde{n}
\]

\[
d x^a = \delta^a_\beta d x^\beta + \omega^a dt, \quad \lambda = 1, \ldots, m
\]

sein muß. In der Tat, durch (29) ist nicht nur ein Unterraum, sondern auch ein Koordinatensystem in diesem Unterraum erklärt. Nimmt man in den \(d x^a\) eine lineare Transformation (31) vor, so erhält man eine andere Darstellung

\[
d x^a = \psi^a_\lambda d x^\lambda + \nu^a dt
\]

deselben Unterraumes, die ebenso gut ist, wie die vorigen. Von Koordinatensystem (also auch von der gewählten Darstellungssort (29)) unabhängige Eigenschaften müssen also den Transformationen (31) gegenüber invariant sein.

Wir erklären also die rheonichtholonome Geometrie als Invariantentheorie der Gruppen

$$\text{d}x' = a_1 \text{d}x^1 + a_2 \text{d}x^2 + \ldots$$

$$\text{d}x^m = b_1 \text{d}x^1 + \ldots$$

und einer inhomogenen quadratischen Differentialform. Die Begriffe dieser Geometrie müssen als Spezialfälle die bisher eingeführten enthalten. Es zeigt sich aber, daß die Kompliziertheit des holonomen Fall gegenüber nur bedeutend ist. Das erkannte sich damals, daß die Eigenschaften des ersten Differentialgrades, die von den Integrabilitätsbedingungen unabkömmlig sind, und das sind eben die wichtigsten — offenbar gleich in den beiden Fällen lauten.

Für $m = n$ wird der Unterraum mit dem Oberraum identisch und (31) wird einfach eine Koordinatentransformation in dem Oberraum. Wir werden zur Abbildung in diesem Falle die Bedeutung unserer Begriffe nachprüfen.

Rheonichtholonome Räume werden wir mit (B) bezeichnen.

Unsere Aufgabe besteht nun in der Verallgemeinerung der in I. eingeführten Begriffe auf nichtholonome Unterräume. Es handelt sich, u. a., um den Fundamentalsensor, um die Langzeitgeschwindigkeit, das kovariante starke Differential, den Dehnungstensor usw. Alle diese Einheiten müssen im holonomen Falle in die gewöhnlichen übergehen.

13. Projektionen in den virtuellen Unterraum. Der rheonichtholonome Unterraum sei durch die Gleichungen

$$\text{d}x' = b_1 \text{d}x^1 + \ldots$$

gegeben. Die Verschiebungen, denen $\text{d}t = 0$ entspricht sind durch

$$\text{d}x'' = b_2 \text{d}x^2$$

gegeben. Sie bestimmen "den virtuellen Unterraum" B. Ein Vektor v' liegt in diesem Unterraum, wenn er sich in der Gestalt

$$v'' = b_2 v'$$

darstellen läßt. Ein Vektor ist zu B orthogonal, wenn er zu jedem in B liegenden Vektor orthogonal ist. Diese Begriffe übertragen wir auf beliebige Tensoren, indem wir sie auf einen bestimmten Index beziehen.

Man verfeinert leicht die folgenden Sätze. Setzen wir

$$b_\alpha = a_\alpha b'^\alpha, \quad b_{\beta} b_{\gamma} = b'_{\beta} = \begin{cases} 1, & \alpha = \beta, \\ 0, & \alpha \neq \beta \end{cases}, \quad b_{\gamma} b^\alpha = b'_{\gamma} b'^\alpha,$$

$$b''_\alpha = b''_{\beta} b'^\beta$$

so geben die Überschreibungen

$$v'' = bv'$$

immer die Projektion des Vektors v in die B, und zwar in verschiedenen Koordinaten: das Projizieren ist mit der Multiplikation mit b gleichbedeutend. Wir nennen b den Einheitsensor von B und betrachten die Größen (33) als seine verschiedenen Darstellungen durch Komponenten. Offenbar ist immer, d. h. in jeden Komponenten symbolisch:

$$bb = b.$$

Hat ein Tensor an einer Stelle den Index α, so kann man nach der Formel

$$T'' = b''_\alpha T'$$

an diese Stelle den allgemeinen Index i bringen.

Setzen wir symbolisch

$$c = a - b$$

so ist c der Einheitsensor des zu B orthogonalen Raumes C.

Die Begriffe der Projektion und des In-B-liegens werden auch auf Tensoren übertragen mit Relativierung in bezug auf einen oder mehrere Indizes. Liegt ein Tensor in bezug auf einen Index in B, so ist er zu C in bezug auf diesen Index orthogonal und umgekehrt.

14. Nichtholonome Fundamentalsgrößen und kanonische Gestalt. (Vgl. § 5). Wir haben zuerst:

$$\text{d}x'' = b''_\alpha \text{d}x^\alpha + (\alpha' + \nu') \text{d}t'$$

$$\nu'' = b''_{\beta} \nu''^\beta + (\alpha' + \nu').$$

Ähnlich wie im Satz (T) S. 102, beweisen wir, daß $\frac{\text{d} \nu''}{\text{d} \alpha'} = b''_{\nu}$ ein starker Vektor in bezug auf den Index i ist. In bezug auf α ist ν' aber ein Skalar, also ist $\frac{\text{d} \nu''}{\text{d} \alpha} = b''_{\nu}$ in bezug auf α ein starker kovariabler Vektor.
Um die Fundamentalf orm für den Untertraum zu finden, setzen wir (34) in den Ausdruck \(ds^a \) ein. Es kommt:

\[
ds^a = b_{a0} dx^0 dx^a + 2 \beta_a dx^a dt + B dt^a.
\]

Hier ist \(\beta_a = \nu_a (\alpha^a + \nu^a) \).

Daraus folgt, wie auf S. 103, daß

\[
b_{a0} = a_a b_0 b_0
\]
ein starker kovarianter Tensor in \(\alpha, \beta \) ist. Weiter sind ebenso, wie in \(\S \ 5 \):

\[
v_a = b_{a0} \delta^0 + \nu_{a1}, \quad \delta_{a0} = b_{a0} \delta^0 + \beta_a dt,
\]

\[
\sigma^a = \alpha^a + \beta^a, \quad \delta^a = dx^a + \beta a dt
\]

starke Vektoren. Der Strich unter den Symbolen soll auf den Untertraum beziehen. Wir nennen sie die Längsgeschwindigkeit und absolute elementare Ver-}schiebung in \([3] \).

Jetzt können wir die Gleichung (34) in der Form

\[
ds^a = b_a dx^a + (\alpha^a + \nu^a - b_a \beta^a) dt
\]

umformen, aus welcher nun folgt, daß

\[
B^a = \alpha^a + \nu^a - b_a \beta^a
\]
ein starker Vektor ist. Wir nennen ihn die Quergeschwindigkeit und schreiben:

\[
ds^a = \nu_a dx^a + B dt,
\]

\(\nu_a = \nu_a dx^a + \beta a dt \).

Das ist eine kanonische und vollständig invariante Gestalt der Gleichungen des \([3] \). Wir geben ihre geometrische Interpretation.

Wir sehen sofort, daß \(B^a \) zu \(\mathcal{B} \) orthogonal ist. In der Tat:

\[
b_B B^a = b_B (\alpha^a + \nu^a) - b_B \beta^a = b_B (\alpha^a + \nu^a) - \beta^a = 0.
\]

Daraus folgt, daß \(\nu_a \beta^a \), also auch \(\nu^a \) in \(\mathcal{A} \) liegt.

Aus den Gleichungen (35) folgt, daß jeder aus \([3] \) gehörende Vektor die zu \(\mathcal{B} \) orthogonale Komponente \(B^a \) hat. Wir können das schreiben:

\[
\alpha dx = B dt, \quad ev = B,
\]

wenn wir mit \(e \) den Einheitsensor des orthogonalen Raumes \(\mathcal{G} \) bezeichnen.

Die geometrische Interpretation für \(m = 2, n = 3 \) ist sehr anschaulich. Die Endpunkte aller in \([3] \) gehörenden Vektoren, die von demselben Punkt ausstrahlen, liegen auf derselben Ebene, die zu der virtuellen Ebene \(\mathcal{B} \) parallel ist.

Weiter haben wir die zu \(ds \) analoge invariante
Wegen der Vertauschungserhaltung (35) ist
\[\frac{\partial}{\partial x'} = \frac{\partial}{\partial x'} + W'_x W' x' \frac{\partial}{\partial t} + W'_y \frac{\partial}{\partial t} \]
also ist (39) tatsächlich eine Form in \(x' \). Es ist leicht \(S \) explizit zu berechnen. Man erhält:
\[S = S'_x (\frac{\partial}{\partial x'}, x', t, B, B', B'_x, B'_y, W, W') \]
S, spielt in den mechanischen Anwendungen eine fundamentale Rolle, und wird ihrerseits "absolute Zentrifugalkraft" genannt. Außerdem wird er uns in den Holonomiediebedingungen begegnen.

18. Dehnungstensor für nichtholonome Räume. Wir führen nun, wie S. 112 angesagt, den Dehnungstensor für nichtholonome Räume ein, indem wir aus der Vertauschbarkeitsbedingung ausgehen. Hier biete sich aber die folgende Schwierigkeiten: liegen zwei Felder \(x' \) und \(x'' \) in \(\mathfrak{F} \), so sind sie im allgemeinen nicht vertauschbar. Wir modifizieren also das Verfahren in dem Sinne, daß wir nur die Vertauschbarkeit längs einer in \(\mathfrak{F} \) gelegenen Kurve fordern, was stets erreichbar ist. Aus
\[x' = x'' + B' dt \]
erhalten wir durch nochmalige Differentiation
\[\frac{\partial}{\partial x''} = \frac{\partial}{\partial x'} + B' \frac{\partial}{\partial t} + B'' \frac{\partial}{\partial t} \frac{\partial}{\partial t} + B'_x B'_y \frac{\partial}{\partial t} + B'_x B'_y \frac{\partial}{\partial t} \frac{\partial}{\partial t} + B'_x B'_y \frac{\partial}{\partial t} + B'_x B'_y \frac{\partial}{\partial t} \frac{\partial}{\partial t} \]
Projektion auf \(\mathfrak{F} \) ergibt
\[\eta \frac{\partial}{\partial x'} = \frac{\partial}{\partial x'} + B' \frac{\partial}{\partial t} + B'' \frac{\partial}{\partial t} \frac{\partial}{\partial t} + B'_x B'_y \frac{\partial}{\partial t} + B'_x B'_y \frac{\partial}{\partial t} \frac{\partial}{\partial t} \]
Ähnlich
\[\eta \frac{\partial}{\partial x'} = \frac{\partial}{\partial x'} + B' \frac{\partial}{\partial t} + B'' \frac{\partial}{\partial t} \frac{\partial}{\partial t} + B'_x B'_y \frac{\partial}{\partial t} + B'_x B'_y \frac{\partial}{\partial t} \frac{\partial}{\partial t} \]
Wir subtrahieren glattweise:
\[\frac{\partial}{\partial x''} - \frac{\partial}{\partial x''} = \eta \left(\frac{\partial}{\partial x'} - \frac{\partial}{\partial x'} + B' \frac{\partial}{\partial t} + B'' \frac{\partial}{\partial t} \frac{\partial}{\partial t} + B'_x B'_y \frac{\partial}{\partial t} + B'_x B'_y \frac{\partial}{\partial t} \frac{\partial}{\partial t} \right) \]
Sind \(\delta \) und \(\delta \) in \(\mathfrak{F} \) längs einer \(\mathfrak{F} \)-Kurve vertauschbar, so können wir in den Punkten dieser Kurve (35) anwenden und es kommt:
\[\frac{\partial}{\partial x''} - \frac{\partial}{\partial x''} = \frac{\partial}{\partial x'} + B' \frac{\partial}{\partial t} + B'' \frac{\partial}{\partial t} \frac{\partial}{\partial t} + B'_x B'_y \frac{\partial}{\partial t} + B'_x B'_y \frac{\partial}{\partial t} \frac{\partial}{\partial t} \]
Da aber
\[\frac{\partial}{\partial x''} - \frac{\partial}{\partial x''} = B' \frac{\partial}{\partial t} + B'' \frac{\partial}{\partial t} \frac{\partial}{\partial t} + B'_x B'_y \frac{\partial}{\partial t} + B'_x B'_y \frac{\partial}{\partial t} \frac{\partial}{\partial t} \]
so gilt:
\[\frac{\partial}{\partial x''} - \frac{\partial}{\partial x''} = B' \frac{\partial}{\partial t} + B'' \frac{\partial}{\partial t} \frac{\partial}{\partial t} + B'_x B'_y \frac{\partial}{\partial t} + B'_x B'_y \frac{\partial}{\partial t} \frac{\partial}{\partial t} \]
und da δ und $\bar{\delta}$ in \mathbb{B} liegen, so gilt:

$$\langle \delta \bar{\delta} - \bar{\delta} \delta \rangle \omega = \beta' \beta' (W'_4 + \varphi'B) (\delta \bar{\delta} \delta t - \bar{\delta} \delta \delta t).$$

Endlich ist:

$$\langle b \beta' \delta \beta' \bar{B} = \beta' \beta' \delta \beta' \bar{B} = - \beta' \beta' \delta \beta' \bar{B} = - \beta' H'_{\alpha},$$

nach (88). Also endgültig:

$$\langle \delta \bar{\delta} - \bar{\delta} \delta \rangle x = \beta' \beta' W'_{\alpha} - B, H_{\alpha}^b.$$

Wir nennen $d\xi'$ und $d\bar{\xi}'$, die Projektionen vertauschbarer Differentials in \mathbb{B} sind, quasi-vertauschbare Differential. Ist $[\mathbb{B}]$ holonom, so sind die quasi-vertauschbaren Differentialen schlechthin vertauschbar, und die Formel bestimmt den Dehungsstensor des holonomen Raumes \mathbb{A}.

Wir setzen also definitiisch:

$$W'_{\alpha} = \beta' \beta' W_{\alpha} - B, H_{\alpha}^b.$$

Es folgt aus dieser Formel, daß wenn der Umraum entweder geodätisch oder homogen ($B' = 0$) ist, so sind die Dehungsstensoren für den Ober- und Unterumraum gleich. Wegen der Holonomitätsbedingung (S. 118) haben wir sofort:

Für holonome Umräume und nur für solche ist der Dehungsstensor W_{α} symmetrisch.

$$d\omega = (\delta \bar{\delta} - \bar{\delta} \delta \delta \omega)$$

aus, so erhalten wir nach einer aus der Riemannschen Geometrie wohlbekannten Rechnung:

$$d\omega = (\delta \bar{\delta} - \bar{\delta} \delta \delta \omega)$$

aus, so erhalten wir nach einer aus der Riemannschen Geometrie wohlbekannten Rechnun:}

$$d\omega = R_{\rho \nu \sigma} \delta \omega^{\sigma} + R_{\rho \sigma} \omega^{\sigma} (\delta \bar{\delta} - \bar{\delta} \delta \delta t).$$

Nur müssen wir hier rechtzeitig statt $d\xi', \, d\bar{\xi}'$ die absoluten Verschiebungen $d\xi$ und $d\bar{\xi}$ einführen, um die vollständig stark invarierte Form zu haben.

Für die stärksten Krümmungstensoren $R_{\rho \nu \sigma}$ und $R_{\rho \sigma}$ haben wir:

$$R_{\rho \nu \sigma} = \bar{\delta} \bar{\rho} \bar{\nu} \bar{\sigma} = \bar{\delta} \bar{\rho} \bar{\nu} \bar{\sigma} + \bar{\rho} \bar{\nu} \bar{\sigma} \bar{\delta} - \bar{\sigma} \bar{\nu} \bar{\rho} \bar{\delta},$$

$$R_{\rho \sigma} = \bar{\delta} \bar{\rho} \bar{\sigma} = \bar{\delta} \bar{\rho} \bar{\sigma} + \bar{\rho} \bar{\sigma} \bar{\delta} - \bar{\sigma} \bar{\rho} \bar{\delta}.$$

Wir müssen aber auch einige Bemerkungen machen. In dem \mathbb{B}-Differential liegt zwar der differentiierte Vektor u in \mathbb{B}, aber die Verschiebung längs welcher man das Differential berechnet ist ganz beliebig. Deshalb kann man im Ausdruck für das \mathbb{B}-Differential:

$$d\omega^\alpha = d\omega^\alpha + \Gamma^\alpha_{\beta \gamma} \omega^\beta d\xi^\gamma + \Gamma^\alpha_{\beta \gamma} \omega^\gamma d\xi^\beta,$$

der dritte »Differential«-Index i der $\Gamma^\alpha_{\beta \gamma}$ mit einer beliebigen Größe verknüpft werden. Daß zieht aber nicht nach sich, daß die Krümmungstensoren die ersten zwei »Vektor«-Indices in \mathbb{B} haben, die letzten zwei aber — die »Differential-indices« — haben eine beliebige Lage im Oberraume. Die Einführung solcher Größen sichert eine größere Gleichmäßigigkeit der Apparate in Behandlung der Krümmungsaufgaben, z. B. der Variationsgleichungen (S. 29).

Deckt sich \mathbb{B} mit \mathbb{A}, so bleiben alle Rechnungen gültig, und wir erhalten einfach die Krümmungstensoren des holonomen Raumes \mathbb{A}, die mit allen Indices beliebig liegen. Wir bemerken noch einmal, daß die allgemeinen Größen sich auf Vektoren beziehen, die zwar in \mathbb{B} liegen, aber beliebig verschoben werden.

20. Holonomitätsbedingung. Die Gleichungen

$$d\xi' = b_{\nu}^\nu d\omega + \nu \omega d\xi,$$

wie schon oben erwähnt, bestimmen nicht nur einen Umraum, sondern auch ein Koordinatensystem im derselben. Es kann sich wohl ereignen, daß der Umraum holonom ist, das Koordinatensystem (ν) aber nicht. Daher könnten die üblich gegebenen Bedingungen:

$$b_{\nu}^\nu \delta_{\nu}^\nu \omega_{\nu} = b_{\nu}^\nu \delta_{\nu}^\nu \omega_{\nu}$$

überall nicht erfüllt sein, sogar bei holonomen Umräumen. Die richtige Holonomitätsbedingung muß der Transformation

$$d\omega = b_{\nu}^\nu \delta_{\nu}^\nu \omega + \nu \omega d\xi$$

wie auch

$$d\xi = a_{\xi} d\omega + \omega d\xi$$

Betrachten wir nun den rhomben Umraum \mathbb{B}, so ist es holonom sein, so muß sowohl der virtuelle Raum \mathbb{B} als auch der Umraum \mathbb{A}, der dann durch die Bewegung von \mathbb{B} entsteht, holonom sein. Das genügt aber nicht; der Vektor B_{ν}, der zum unseren rhomben Umraumes gehört, muß gerade die Quergeschwindigkeit x sein.

Ist \mathbb{B} holonom, so muß nach dem S. 118 zitierten Satze

$$H_{\nu} = H_{\nu}^\nu$$

für alle
sein. Ähnlich fordert die Holonomitt von \(C \)
\[
\epsilon'_{\alpha} \delta'_{\beta} = \epsilon'_{\beta} \delta'_{\alpha},
\]
 wenn \(\epsilon' \) den Einheitsensor von \(C \) bedeutet. Diese Bedingungen müssen wir durch \(b \) und \(B' \) ausdrücken. Setzen wir
\[
B' = B a',
\]
wo \(a' \) ein Einheitsvektor ist, so verifiziert man leicht, daß
\[
\epsilon'_{\alpha} = b_{\alpha} + a' n_{\alpha}.
\]
Wir entwickeln nun (43) auf Grund von (44) und \(b_{\alpha} B' = 0 \):
\[
\epsilon'_{\alpha} \delta'_{\beta} = \frac{1}{2} b_{\alpha} b_{\beta} + \frac{1}{2} b_{\beta} b_{\alpha} + n_{\alpha} n_{\beta} + n_{\beta} n_{\alpha} - b_{\alpha} b_{\beta} n_{\alpha} n_{\beta} - b_{\alpha} b_{\beta} n_{\alpha} n_{\beta}.
\]
Die Symmetrie des dritten Summanden ist evident. Die des ersten folgt aus (45). Die Symmetrie des zweiten folgt aus der folgenden Rechnung:
\[
\frac{1}{2} b_{\alpha} b_{\beta} n_{\alpha} n_{\beta} = \frac{1}{2} b_{\alpha} b_{\beta} n_{\beta} n_{\alpha} = - n_{\alpha} n_{\beta} - n_{\beta} n_{\alpha} + \frac{1}{2} b_{\alpha} b_{\beta} n_{\alpha} n_{\beta} = \frac{1}{2} b_{\alpha} b_{\beta} + \frac{1}{2} b_{\beta} b_{\alpha} + \frac{1}{2} b_{\alpha} b_{\beta} - \frac{1}{2} b_{\beta} b_{\alpha}.
\]
und dieser Ausdruck ist wegen (42) symmetrisch. Es bleibt der Ausdruck:
\[
(b_{\alpha} b_{\beta} - b_{\beta} b_{\alpha}) (n_{\alpha} n_{\beta}) = 0.
\]
Führen wir die Bezeichnung:
\[
\Phi_{(a)} = \Phi_{a} - \Phi_{a'}
\]
ein, so können wir (43) in der Gestalt umschreiben:
\[
(b_{\alpha} u_{\alpha} + b_{\alpha} u_{\alpha}) (n_{\alpha} n_{\beta}) = 0.
\]
Das ersetzen wir mit \(u' \), dann mit \(u' \) und erhalten die gleichwertigen Bedingungen:
\[
(b_{\alpha} u_{\alpha} + b_{\alpha} u_{\alpha}) (n_{\alpha} n_{\beta}) = 0, \quad b_{\alpha} u_{\alpha} (n_{\alpha} n_{\beta}) = 0,
\]
die wir in der Gestalt
\[
(b_{\alpha} u_{\alpha} + b_{\alpha} u_{\alpha}) (n_{\alpha} n_{\beta}) = 0
\]
endgültig notieren.

Es bleibt noch die Bedingung für \(B' \). Ist \(B' \) holonom, so führt die Verschiebung \(\delta' \) in (39) das Element \(a_\alpha \alpha' \) offenbar wieder in einer, das in \(B' \) liegt. Also ist dann nicht nur \(B_\alpha = 0 \) sondern auch \(\delta' (B_\alpha a_\alpha) = 0 \) und man erhält
\[
\beta_\alpha = \frac{1}{2} u_{\alpha} a_\alpha.
\]
III. Die absoluten Gleichungen der Mechanik.

21. Überblick über die Anwendung der Tensorrechnung auf die Mechanik. Schon die Schöpfer des absoluten Differentialkalküls, Ricci und Levi-Civita, haben im Jahre 1900 die Bewegungsgleichungen eines sklerischen und holonomischen Systems in der Tensorialsymbolik hingegrieben, wobei die kovariante Ableitung benutzt wurde. Diese Gestalt enthält also nur gegenüber Punkttransformationen
\[
\alpha' = \alpha (\alpha')
\]
invariante Größen. Dazu wurde das mechanische System als ein Punkt eines mehrdimensionalen Riemannschen Raumes, des sog. "Konfigurationsraumes" betrachtet, dessen Fundamentalform
\[
d s^2 = 2 T d^s = a_{\alpha} d^\alpha d^\alpha
\]
war, wo \(2 T \) die lebendige Kraft des Systems war. Sie weisen auch auf die Möglichkeit der Aufzweigung der Koordinaten mit Hilfe der Gleichungen einiger der hier behandelten Gleichungen der Mechanik, der Gleichungen der Geodätischen auf den Bahnen mechanischer Systeme, des konformen Transformationsgesetzes zuordnen und die Painlevé auf
einem anderen, mehr formalen Weg erarbeitet hat (3).

sorption stammt von J. L. Synge (1926) [13]. Er benutzt dort zweifellos mehrdimensionale Abbildungen des mechanischen Systems. Die eine ist die schon besprochene mittels des „kinematischen dx“ (48), die andere beruht auf dem dt der Aktion:

\[ds^4 = 2(k - V) T dt^2. \]

Synge schreibt ebenfalls die mechanischen Gleichungen für skleroneome und nichtholonom Systeme vermittels der kovarianten Ableitung, gibt aber als Anwendung nur Betrachtungen über die Stabilität der Bewegung, die auf Variationsgleichungen führen, die er noch vor der Levi-Civitaschen Verallgemeinerung der Jacobischen Gleichungen erhalten hat. Er gibt auch Kriterien für die Existenz von n - 1 cyclischen Koordinaten.

Alle diese Untersuchungen waren grundsätzlich nur für skleroneome Systeme geführt. Zwar schreibt Hörák seine Gleichungen auch für römmome Systeme, aber sie werden, was Übersichtlichkeit anbelangt, durch nichts auszeichnet, was ihnen einen Vorrang vor älteren expliziten Gleichungen (Wronsz, Ténoff, Hamel) sichern könnte. Dasselbe gilt in noch größeren

22. Die absolute Mechanik. Der Grund für diese Übelsfälle ist der folgende. Die Theorie der rheomen Systeme kann nur dann einfach ausgeführt, wenn sie in adäquaten Termi aufgefaßt wird. Adäquat aber sind in diesem Falle diejenigen Termi, die von zulässigen Koordinatensystemen unabhängig sind, eine intrinsische Bedeutung haben. Nun ist es klar — und das ist der sprengende Punkt — das für ein rheones System, das auf die Parameter \(\alpha \) bezogen ist, alle durch eine zeitabhängige Transformation

\[\alpha' = \alpha'(\alpha, t) \]

Wir müssen aber einen Schritt weiter gehen, um den nichtholonom Systemen gerecht zu werden. Ist ein solches durch die Bedingungsungleichungen

\[dx^a = \frac{\partial}{\partial s} dx^a + \alpha^a ds \]

gegeben, so werden für dieses System gleichzeitig unabhängige „nichtholome“ Parameter eingeführt. Wie schon S. 113 bei einer ähnlichen Gegen- hobe auseinandergesetzt wurde, sind alle anderen Darstellungen, die man durch Anwendung der Parametertransformationen

\[dx^a = \frac{\partial}{\partial s} dx^a + \beta^a ds \]

erhält, durchaus gleichwertig und ununterscheidbar. Soll also eine sich auf ein nichtholonomes System beziehende Größe eine intrinsische Bedeutung haben, „eine absolute mechanische Größe“ sein, so muß sie sich den Transformations- nen (50) gegenüber invariant verhalten. Nur mit diesen Bildungen kann der Nagel auf den Kopf getroffen werden, wenn man eine adäquate Theorie der rheomen Systeme bilden will, und nur in diesen Größen können die expliziten

Gleichungen der allgemeinen Systeme einfach ausfallen. Wir setzen also eingängig fest:

\[2T = a_{i} \alpha_{i} \alpha^{2} + 2 \alpha_{i} \alpha^{2} + A. \]

Die Anwendungen, die wir weiter geben, werden vermutlich diesen Standpunkt als gerechtfertigt erscheinen lassen. Wir behalten aber ausdrücklich hervor, daß die absolute Mechanik nur für wirklich rheo- und nichtholosome Systeme am Platze ist; für ein skleronomes System, in dem es ein ausgezeichnetes Koordinatensystem gibt, reicht nachstehend die Invarianz gegenüber gewöhnlichen Punkttransformationen vollkommen aus.

23. Mechanische Interpretation der starken Größen

Es sei zunächst ein mechanisches holonomes System auf die Parameter \(\alpha \) bezogen. Seine lebendige Kraft sei:

\[2T = a_{i} \alpha_{i} \alpha^{2} + 2 \alpha_{i} \alpha^{2} + A. \]

Wir haben in § 5 die Größe \(\alpha \), "longitudinale Führung" genannt. Denkt man sich z. B. einen Punkt auf einer im dreidimensionalen Raum beweglichen Fläche

\[\alpha^{i} = x^{i}(x', t), \]

so rechnet man wie auf S. 101, (4) leicht aus, daß \(\alpha \), eben die Projektion der Mitführungsgeschwindigkeit auf die Fläche ist. \(A \) wird aber das Quadrat der Mitführungsgeschwindigkeit, also die "lebendige Kraft der Mitführung". Diese beiden Größen hängen natürlich von dem auf der Fläche gewählten Koordinatensystem, von der "Identität" der Flächenpunkte ab, sind also die absoluten mechanischen Größen. Darüber aber ist die "transversale lebendige Kraft"

\[\alpha^{i} = A - \alpha', \]

d. h. in unserem Beispiel das Quadrat der Mitführung in der absoluten, zur Fläche orthogonalen Richtung, eine starke Größe.

Ähnlich ist \(\alpha' \) keine starke Größe, da sie ebenfalls von der gewählten "Identität" der Flächenpunkte abhängt. Nehmen wir dagegen die Größe:

\[\alpha' = \alpha^{i} + \alpha', \]

so verfeinert man in unserem vorbildmäßigen Beispiel, daß sie die Projektion der absoluten Geschwindigkeit eines auf der Fläche beweglichen Punktes auf

24. Absolute Gleichungen für ein holonomes System

Es handelt sich nun um eine Form der Bewegungsgleichungen, die nicht nur den rheonomen Transformationen gegenüber invariant ist — denn eine solche ist schon die Lagrangesche — sondern auch ausschließlich aus absoluten mechanischen Größen besteht. Das ist für die Lagrangeschen Gleichungen nicht mehr der Fall. Zwar ist \(\alpha = \frac{dT}{d\alpha} \) eine starke Größe, aber das gilt von \(\frac{d}{dt} \) und \(\frac{d}{dt} \) nicht mehr.

Wir gehen von dem Hamiltonschen Prinzip in der Form
\begin{align*}
\int (\delta \mathbf{T} + Q \delta \mathbf{a} \mathbf{t}) \, dt &= 0 \\
\text{aus und rechnen vom Anfang an stark kovariant. \(\delta\) bezeichnet das starke Differential längs der Bahnkurve, \(\delta\) eine mit ihm vertauschbare „starke kovariante Variationsgröße.“ Wir haben: (\(\delta t = 0\))}
\end{align*}
\begin{align*}
\delta \mathbf{T} &= \delta (V + \mathbf{a} \mathbf{t}) = \delta (V_0 + \mathbf{a} \mathbf{t}) = 2 \delta V \mathbf{a} \mathbf{t} + \delta \mathbf{a} \mathbf{t}.
\end{align*}
Weiter ist:
\begin{align*}
\delta V \mathbf{a} \mathbf{t} \, dt &= \delta \mathbf{a} \mathbf{t} (0 \, dt) = \delta \mathbf{a} \mathbf{t} \\
\text{und nach der Vertauschungsrelation:}
\end{align*}
\begin{align*}
\delta V \mathbf{a} \mathbf{t} \mathbf{t} = \mathbf{V} \mathbf{a} \mathbf{t} \delta \mathbf{a} \mathbf{t} = \delta (\mathbf{V} \mathbf{a} \mathbf{t}) - \delta \mathbf{V} \mathbf{a} \mathbf{t} = \mathbf{V} \mathbf{a} \mathbf{t} \delta \mathbf{a} \mathbf{t}.
\end{align*}
Das vollständige Differential wird in (52) ausintegriert und es bleibt:
\begin{align*}
- (\delta V \mathbf{a} \mathbf{t} + \mathbf{W}' \mathbf{a} \mathbf{t} \mathbf{t}) \, dt.
\end{align*}
Wir schreiben nun:
\begin{align*}
\delta \mathbf{a} \mathbf{t} = \delta \mathbf{a} \mathbf{t} \mathbf{t} = 2 \delta \mathbf{a} \mathbf{t}.
\end{align*}
Nun erhalten wir also die Bewegungsgleichungen in der Gestalt:
\begin{align*}
(53) \quad \delta V \mathbf{a} \mathbf{t} + \mathbf{W}' \mathbf{a} \mathbf{t} \mathbf{t} = \delta \mathbf{a} \mathbf{t} = 0.
\end{align*}
Der Leser wird leicht nachpräufen, daß in Fällen einer rotierenden Ebene \(\Omega\) das Potential der Zentrifugenkraft und \(\Sigma\) die Zentrifugalkraft selbst ist. Daher der Name „abseitiger Zentrifugalkraft“. \(\mathbf{W}'\mathbf{a} \mathbf{t}\) erinnert an die Corioliskraft, ist aber etwas ganz verschiedene, da die Corioliskraft keine absolute Größe ist und in einem gesehen, Koordinatensystem, als eine nur relative, fiktionale Kraft, verschwindet. Man sieht sofort welche Vereinfachungen durch \(\delta \mathbf{a} \mathbf{t} = 0\) eintreten.

Es ist vielleicht interessant die bekannte Theorie der Relativbewegung in dieser Auffassung zu betrachten. Wir haben hier einen Punkt im gewöhnlichen Raums, also ein streng skleronomes System. Die Gleichungen der Bewegung reduzieren sich hier auf die „Newtonssche“ Gestalt:
\begin{align*}
\delta \mathbf{a} \mathbf{t} = \mathbf{Q}.
\end{align*}

Ist das Koordinatensystem rhenonom (wie es bei beweglichen Achsen eben der Fall ist) so expliziert sich die Gleichung wie folgt:
\begin{align*}
\frac{d \mathbf{a} \mathbf{t}}{dt} + \mathbf{T}' \mathbf{a} \mathbf{t} \mathbf{a} \mathbf{t} + \mathbf{T}' \mathbf{t} \mathbf{t} = \mathbf{Q} + \mathbf{S}.
\end{align*}

25. Gleichungen für nichtholonome Systeme. Für nichtholonome Systeme mit den suplementären Bedingungen in kanonischer Form
\begin{align*}
\mathbf{a} \mathbf{t} = \mathbf{a} \mathbf{t} + \mathbf{B},
\end{align*}
haben wir
\begin{align*}
\frac{d \mathbf{a} \mathbf{t}}{dt} + \mathbf{W}' \mathbf{a} \mathbf{t} = \mathbf{S} + \mathbf{Q} + \mathbf{B},
\end{align*}
wo \(\mathbf{S}\) die zu dem virtuellen Raum normale Reaktionskraft bedeutet. Wir projizieren auf den virtuellen Raum \(\mathbf{S}\) und führen überall die auf ihn bezogen (unterstrichenen) Größen ein:
\begin{align*}
\frac{d \mathbf{a} \mathbf{t}}{dt} + \mathbf{W}'' \mathbf{a} \mathbf{t} &= \mathbf{S} + \mathbf{Q} + \mathbf{B}.
\end{align*}
Das geschieht in (54) ein und projizieren auf \(\mathbf{B}\), wobei \(\mathbf{B}^*\mathbf{B}\) verschwindet:
\begin{align*}
\frac{d \mathbf{a} \mathbf{t}}{dt} + \mathbf{B}' (\mathbf{W}'' + \mathbf{V}^* \mathbf{B}^*) \mathbf{a} \mathbf{t} + \mathbf{B}' (\mathbf{S} + \mathbf{B}^* \mathbf{V}^* \mathbf{B} + \mathbf{V}^* \mathbf{B}) = \mathbf{B}^* \mathbf{Q}.
\end{align*}
Nach den Formeln (59*) und (40) ist das aber:
\begin{align*}
\frac{d \mathbf{a} \mathbf{t}}{dt} + \mathbf{W}'' \mathbf{a} \mathbf{t} = \mathbf{S} + \mathbf{Q}.
\end{align*}
Das ist die angezeigte absolute Gestalt für rhenonichtholonome Systeme. Sie führt sofort zu einer richtigen und sinnvollen Klassifikation der dynamischen Systeme.

Wir fassen an dieser Stelle die Holonomitätsbedingungen (42), (45), (46) noch einmal zusammen:

\[H_{i j} = H_{j i} \]
\[b_i \cdot m_j \cdot \delta (x_i + x' n_j) = 0 \]
\[S_a = \frac{1}{2} \delta \varepsilon^{abc} \]

Skleronimität. Wir haben schon für ein holonomes System bewiesen (S. 109), daß es streng skleronom, daß heißt in einem geeigneten Koordinatensystem eine von der Zeit gänzlich unabhängige homogene kinetische Energie hat, wenn gleichzeitig:

\[W = 0, \quad \varepsilon = 0 \]

Wir können aber auch als besonders einfach ein System hervorheben, für welches nur

\[W = 0 \]

Für nichtholomene Systeme kann man sich die Klassifikation, durch die Bewegungsgleichungen (56) geleitet, wie folgt denken:

\[W_{a b} = 0 \quad \text{halbskleronom;} \]
\[W_{a b} = 0 \quad \varepsilon = 0 \quad \text{quasiskleronom;} \]
\[W_{a b} = 0, \quad \varepsilon = 0, \quad \varepsilon' = 0, \quad \text{skleronom.} \]

27. Die natürlichen Gleichungen der Bewegung. In der gewöhnlichen Punktmechanik nennt man natürlich die Gleichungen, die die Projektionen der Bewegungsgleichungen auf die Tangente und die Normale zur Bahkurve darstellen:

\[\frac{dv}{dt} = F, \quad v' = F' \]

Es sei in einem rhenehmonen Untersueme (Z) die „Kurve“

\[x' = x'(t) \]

gespeziert. Damit ist eigentnd ein Gebilde gedacht, daß jedem (rheomenen) Koordinatensystem eine gewisse Kurve zuordnet: etwas m. m. einem Vektor ähnliches. Wir setzen allgemein (indem wir die längsten unteren Striche bei Z-Größen einfachheitsshalter auslassen):

\[d\sigma = b \cdot dx \cdot dx' \]

Das ist unser Bogenelement. Offenbar ist:

\[v = \frac{dx}{dt}, \quad (v^2 = b_{ii} v^i v' i) \]

Es ist auch

\[1 = b \frac{dx'}{d\sigma} \frac{dx}{d\sigma} \]

Wir nennen \(u' = \frac{dx'}{d\sigma} \) die Einheitsabtangente oder einfach die Tangente der Kurve.

Weiter führen wir den starken Vektor (\(\delta \) ist das starke Z-Differential)

\[\delta = \frac{dx'}{d\sigma} \]

als Krümmung unserer Kurve ein. Der absolute Betrag dieses Vektors:

\[k = \sqrt{b_{ii} \frac{dx'}{d\sigma} \frac{dx'}{d\sigma}} \]

\[\delta = h u' \]

ist die skolare Krümmung. Offenbar gilt:

\[\frac{du'}{d\sigma} = 0 \]

Es ist wohl überflüssig zu bemerken, daß im strengholomenen Falle alle diese Größen sich mit den altbekannten (bei gewöhnlichen Sinne des Wortes) decken.

Nun schreiben wir:

\[\frac{dx'}{dt} = v \frac{dx}{dt} + v' \frac{dx}{dt} = v^s \frac{dx'}{d\sigma} + v' \frac{dx}{dt} \]

180
Das ist die wohlbekannte Zerlegung in Tangential- und Normalbeschleunigung. Setzen wir das in die Bewegungsgleichungen ein und multiplizieren, unter Beachtung von (54), einmal mit u_1, das andere mit a_1, so erhalten wir bezw.
\[
\frac{de}{dt} = (S' + Q') u_1,
\]
\[
\phi' k = (S' + Q') n_1.
\]

Das sind die angegebenen natürlichen Gleichungen. Man kann sagen, daß

\begin{equation}
\frac{dS}{dt} = Q' u_1,
\end{equation}
\begin{equation}
\phi' k = Q' n_1
\end{equation}

an, und die Krümmung ist natürlich von der Zeit explizit unabhängig. Man kann aus diesen Gleichungen eine Anzahl Painlevéischer Schlüsse (2) ziehen, was auch Franck 15) in gewissem Grade gemacht hat, aber auf Grund anderer, minder anschaulicher und einfacher Gleichungen, die nicht genau in geometrischen Terminen geschrieben wurden.

28. Energieintegral für rheo- und nichtbolonomie Systeme. Wir geben nun einen Fall, wo ein Integral existiert, daß dem Energieintegral für skleronomie Systeme analog ist. Wir werden in erweitertem Sinne das Energieintegral ein Integral der Gestalt
\[
T = h' - V'(x', t)
\]
neuen, die wir wegen
\[
\phi' + \phi = 2T
\]
(58) auch in der Gestalt
\[
\phi' k = h - 2V(x', t)
\]
schreiben können. Das Problem kann allgemeiner gestellt werden, indem man Integrale sucht, die nur in den quadratischen Gliedern mit der kinetischen Energie übereinstimmen, in den linearen aber sich unterscheiden können. Sie werden die absolute Gleichung

\[\text{v}^2 = A_1 v^2 = 2V(x', t) + k\]

haben, wo A_1 ein starker Vektor, V ein starker Skalar ist. Ein solches Integral finden wir in dem bekannten Fall von Painlevé 13). Unsere absoluten Gleichungen erlauben auch diese Frage zu beantworten, aber die sich ergebenden Kriterien lassen sich nicht explizitieren, denn sie fordern die Integrierbarkeit gewisser partieller Differentialgleichungen. Wir beschränken uns also auf den Fall, wo ein Integral (52) existiert und führen einen neuen Begriff ein, der ein rheonome Gegenstück des Potentials ist.

Wir nennen V ein absolutes Potential des Vektorfeldes X_1, wenn die stark invarianten Beziehungen
\[
X_i = -\frac{\partial V}{\partial x_i}, \quad \phi_i V = 0
\]
erfüllt sind.

Man verifiziert sofort, daß dann die Gleichung
\[
X_i \Phi i = -V
\]
gilt, die wiederum ein invariantes Gegenstück der Gleichung der elementaren Arbeit ist.

Wir kehren zum Energieintegral zurück. Wir multiplizieren die Bewegungsgleichungen
\[
\phi' = W_{a} v^2 = S_i + \phi_i
\]
(die unteren Striche, die sich auf den Unterraum beziehen, haben wir hier unterlassen) skalar mit der Geschwindigkeit:
\[
\phi' = W_{a} v' = (S_i + \Phi_i) v^2.
\]

Die kovariante Ableitung eines Skalares ist mit der gewöhnlichen identisch:
\[
\frac{1}{2} \frac{de}{dt} + W_{a} v^2 v' = (S_i + \Phi_i) v^2.
\]
Soll eine Gleichung (58) stattfinden, so dürfen rechts keine in v quadratischen Glieder vorkommen, also muß der Dehnungstensor schiefsymmetrisch sein. Setzen wir noch voraus, daß die Summe $S_i + \Phi_i$ ein absolutes Potential besitzt,
\[
S_i + \Phi_i = -\frac{\partial V}{\partial x_i}, \quad \phi_i V = 0,
\]
so können wir schreiben
\[
(S_i + \Phi_i) v' = \frac{dV}{dt}.
\]

Ist für ein dynamisches System

\[W_0 = -W', \quad S = Q_1 = -\delta V, \quad \rho V = 0, \]

so besteht es das Energieintegral

\[\varphi h = \frac{1}{2} \omega \omega + U. \]

Diese Bedingungen nehmen eine interessantere Gestalt für ein holonomes System an. Da der Dealungstensor dann symmetrisch ist, so muß einfach \(W = 0 \) sein, also das System muß halbkliner sein. Setzen wir noch voraus, daß \(V \) ein Potential \(-U\) im gewöhnlichen Sinne gibt und setzen wir

\[V = \frac{1}{2} \omega \omega - U, \]

so wird \(V \) das absolute Potential von \(S + Q_1 \), wenn die Bedingung \(\rho V = 0 \) erfüllt ist, die gewissermaßen die Unabhängigkeit von \(V \) von \(t \) fordert. Das Energieintegral nimmt die Gestalt:

\[\varphi h = \frac{1}{2} \omega \omega + 2U, \]

an. Also

\[\text{Sind für ein holonomes System vom Potential } -U \text{ die Bedingungen } \]

\[W_0 = 0, \quad \rho(\omega \omega + 2U) = 0 \]

erfüllt, so besteht es ein Energieintegral (1).

Wir bemerken ausdrücklich, daß dieser Fall von dem Painlevéschen \(^{14}\) verschieden ist. Die in diesen Sätzen angegebenen Bedingungen sind aus grundsätzlichen Gründen, in dem Sinne, daß \(W = 0 \) jedenfalls statthätte zu machen. Die Bedingungen für die Existenz des Potentials läßt sich schwächer fassen.

\[c_2 \delta x^2 = B' \delta t \]

erfüllt (vgl. 361).

\(^{14}\) Painlevésche Bedingung.

Wir definieren zuerst die Abweichung für zwei unendlich nahe Kurven \(C \) und \(C' \), von denen wir noch voraussetzen, daß sich in unendlich nahen Punkten auch ihre Richtungen unendlich wenig unterscheiden. Wir bezeichnen beliebig die Punkte beider Kurven aufeinander (jeder von diesen hat eine bestimmte Zeitkoordinate, wobei natürlich entsprechende Punkte unendlich nahe sind. Mit \(\delta \) bezeichnen wir die Verschiebung, die von einem Punkte von \(C \) zu dem entsprechenden von \(C' \) führt.

Den Vektor

\[p' = \delta \omega ' \]

nehmen wir die Abweichung der Kurven \(C \) und \(C' \). Bezeichnen wir mit \(\delta \) die Elementarverschiebung längs der Kurven \(C \) und \(C' \), so haben wir

\[\delta \frac{dt}{dt} = \delta t', \quad \delta \omega ' = \delta \omega, \quad \delta \omega ' = W'_1 (\omega + \delta \omega) + \delta \omega. \delta t, \]

Wir haben aus (59)

\[(60) \]

\[\delta \omega ' = \delta \omega, \delta x^2 + c_2 \delta \omega ' = \delta \omega ' + B' \delta t \]

Nach der Formel (19)

\[\delta = p' \rho + \delta t, \rho, \]

und wegen (60) erhalten wir aus (61) nach einigen Rechnungen die folgende Differentialgleichung, die die transversale Komponente des Differential \(\delta x^2 \) bestimmt.

Diese Gleichungen sind aber der Praxis gegenüber ganz unzweckmäßig, denn für die meisten Anwendungen ergibt sich eine "invariantliche" Variation, für die \(\delta t = 0 \) ist. Wir haben dann auch \(\delta t = 0 \) und die Gleichungen (61) werden in \(p' \) homogen:

\[c_2 \delta x^2 = -\rho, \delta \omega + \delta B', \rho \omega + \delta B, \rho \omega \delta t \]

und erhalten wir aus (61) nach einigen Rechnungen die folgende Differentialgleichung, die die transversale Komponente des Differential \(\delta x^2 \) bestimmt.

Ist (82) akternom, so ist \(W = \delta W = 0 \) und wir erhalten einfach:

\[c_2 \delta \omega ' + \delta \omega ' = 0. \]

Diese Gleichungen gelten für beliebige Kurven in [8]. Haben wir es aber mit einer besonderen Klasse zu tun, so lassen sich neue Gleichungen aufstellen. Sind z. B. die \(C \) und \(C' \) Bewegung eines dynamischen Systems, so haben wir noch die Bewegungsgleichungen. Bemerken wir zuerst:

\[\delta \omega ' = \delta \omega '. \]
Wegen (28) haben wir:
\[\frac{\partial \omega}{\partial t} = \frac{\partial y}{\partial t} + W\left(\frac{\partial x}{\partial t} - \frac{\partial y}{\partial t} \right) = \frac{\partial y}{\partial t} + W\left(\nu \frac{\partial \omega}{\partial \nu} - y \right) + \nu \mu, \]

wo \[\mu = \frac{\partial \omega}{\partial t} \]

unendlich klein ist. Gehen wir nun von der Gleichung für das "zyklische Differential"
\[(\partial \delta - \partial \delta) \sigma = \sigma \sigma \]

aus, so lassen sich nicht schwer die obigen Abweichungsbeziehungen bilden, die im allgemeinen Falle recht kompliziert sind, für ein skieronomes System aber und eine isochronische Variation die Gestalt
\[\frac{\partial \delta}{\partial t} - (\nu \sigma + \delta \mu \nu) \]
annehmen. Im Spezialfall \(Q = 0 \) erhalten wir die Levi-Civita'sche Verallgemeinerung der Jacobischen Gleichungen (18).

Charakteristisch für die hier befolgte Methode ist die Anwendung der "starke kovariante Variation" (19), der wir schon bei der Ableitung der absoluten Gleichungen aus dem Hamiltonschen Prinzip begegnet waren.

IV.
Theorie der Reaktionskräfte.

30. Der Fundamentalsatz über Reaktionskräfte. Wir werden nun in der ganzen Allgemeinheit vermittels unserer mehrdimensionalen Repräsentation

11) Diese Formel findet man nicht invariant geschildert bei Synge, l. c. S. 79.

136

Ehrenmus Geometrie. Absolute Mechanik. 41

und der erhaltenen Bewegungsgleichungen einige fundamentale Aufgaben über Reaktionskräfte (sehen 20). Die Sätze, die wir bewiesen werden, beziehen sich nicht nur auf die Reaktionen, die die Gesamtgleichung der Bindungen erzeugen, aber auch auf Reaktionen, nach derer Einführung ein Teil der Bindungen ersetzt wird. Wir werden diese Reaktionskräfte "partiell" nennen.

Wir stellen folgende Aufgaben:

1° Für glatte Bindungen ist die äquivalente Reaktion explizit zu berechnen.

2° Wie findet die Komposition der Reaktionen statt? D. h.: wie hängt die Reaktion, die mehrere Bindungen erzeugt, von den Reaktionen, die diese Bindungen einzelnen ersetzen?

3° Wie verändert sich die Reaktion bei einer Verstärkung der Bindungen, d. h. bei Hinaufreibung einer neuen?

4° Wie unterscheidet sich die Reaktion in der reellen Bewegung von Reaktionen in den virtuellen Bewegungen?

Wir erhalten die Beweisweise aller dieser Fragen als einfache Konsequenzen eines fundamentalen Satzes, den wir sofort beweisen werden. Der Satz, den man als eine ziemlich einfache Verallgemeinerung des "Mannerschen Theorems" betrachten kann, betrifft die Änderung der Reaktionskräfte bei Verstärkung der Bindungen. Der "Mannersche Theorem betrifft die
Flächenkurven, die in denselben Punkte eine gemeinsame Richtung haben, und sagt etwas über die Projektion des Krümmungs auf die Flächennormale. Unserer Theorem betrachtet Bewegungen, die mit den Bindungen verträglich sind, und durch dieselbe Lage mit denselben Geschwindigkeiten führt und sagt etwas über die Komponente der Reaktion in der zu den richtung. Man sieht sofort, wie sich die Sätze entsprechen. Um uns bequem auszudrücken können, definieren wir:

Zwei Bewegungen berühren sich, wenn sie durch dieselbe Lage (Konfiguration, Punkt) mit denselben Geschwindigkeiten aller Punkte führen.

Wir müssen hier von virtueller Raum sprechen, da wir den allgemeinen räumlichen Fall betrachten. Wir bezeichnen ein ganz beliebiges System mit \([\mathbf{F}]\), also wie den ihm entsprechenden Unterraum. Unser Theorem lautet:

Für alle tangentialen Bewegungen des Systems \([\mathbf{F}]\), die mit den Bindungen \([\mathbf{B}]\) verträglich sind, hat die Reaktionskraft, die für das System \([\mathbf{F}]\) die Bindungen \([\mathbf{B}]\) erzeugt, dieselbe Projektion auf die Richtung, die in \([\mathbf{F}]\) liegt und zu \([\mathbf{B}]\) orthogonal ist.

Beweis. Die Gleichungen der virtuellen Bewegung des Systems \([\mathbf{F}]\) lauten:

\[
d\varphi = W\varphi = S + Q + R,
\]

wo \(R\) die Reaktion bezeichnet, die der virtuellen Bewegung entspricht. Anderen Bewegungen brauchen keine Erklärung: einfacherhalber haben wir die unteren Striche aufgegeben. Wir haben auch das Indizes unterlassen, was wohl keine Mißverständnisse droht. Die Bindungen \([\mathbf{B}]\) nehmen wir sofort in der kanonischen Gestalt (33):

\[
\delta = B,
\]

wo \(\delta\) den Einheitsensor des Raumes \(\mathbf{F}\), der in \([\mathbf{F}]\) zu \([\mathbf{B}]\) vollständig orthogonal ist.

Wir erhalten den Satz sofort durch Projektion auf \(\mathbf{F}\), d. h. durch Multiplikation mit \(\delta\):

\[
\delta = -cW\varphi + cS + cQ + cR.
\]

Wir transformieren nun die links Seite dieser Gleichung, indem wir zeigten, daß sie aus der Lage und der Geschwindigkeit, also vom Zustand abhängt, nicht aber von der Beschleunigung \(\frac{d\varphi}{dt}\). Das ist der sprichwörtige Punkt:

\[
\frac{d\varphi}{dt} = \frac{dc}{dt} = cB - c\varphi.
\]

Wir haben also für die transversale Komponente der Reaktion:

\[
R = cR = cW\varphi - c\frac{dc}{dt} + cB - cQ.
\]

Hier ist die rechte Seite eine quadratische Funktion der \(\varphi\) und der Lage, denn die Ableitungen sind längs der Bewegung genommen, also lineare (im allgemeinen wegen der Röhrenform) nicht homogene Funktionen der \(\varphi\), also auch der \(\varphi\). Die linke Seite hängt also ausschließlich vom Zustande, und nicht von den Beschleunigungen ab, und hat also für alle tangentialen Bewegungen, die mit \([\mathbf{B}]\) verträglich sind, denselben Wert. Setzen wir voraus, daß \([\mathbf{B}]\) der euklidische Raum, \([\mathbf{B}]\) eine Fläche in diesem Raum, \(Q = 0\) und \(t = 0\) (Bogenlänge) ist, so wird die Reaktionskraft der Krümmung gleich und wir erhalten den *Metrischen* Satz.

Prinzip der kleinsten Reaktion.

Der wirkliche Bewegung entspricht eine kleinere Reaktion, als jeder anderen möglichen Bewegung.

Das ist die Antwort auf die 4. Frage. Der Beweis erhält man sofort. In der wirklichen Bewegung ist die Reaktion \(R\) zum virtuellen Raum normal, d. h. sich also mit ihrer transversalen Komponente. In jeder anderen möglichen Bewegung hat die Reaktion nach dem obigen Satz (32) die transversalen Komponenten \(R\) ist also größer als ihre Projektion \(R\).

Wir bemerken noch, daß dieser Satz nicht nur für die totale, sondern auch für jede partielle Reaktionskraft eintritt.

31. Wir beantworten die Frage 2. der vorigen §.

Bei einer Verstärkung der Bindungen weicht die Reaktion um eine zu ihrer orthogonalen Komponente.

Beweis. Wir können zum System \([\mathbf{F}]\) zurück und setzen voraus, daß zu den Bindungen \([\mathbf{B}]\) neue hinzugefügt worden sind, so daß der entsprechende rheomische Unterraum zu \([\mathbf{B}]\) zusammengeschraubt ist. Wir bezeichnen mit \(c\) den Einheitsensor des Raumes \(\mathbf{F}\), der in \([\mathbf{F}]\) zum neuen virtuellen Unterraum \(\mathbf{B}\) orthogonal ist.

Wir können dann schreiben:

\[
\delta = c + (\delta - c).
\]

Die den Bindungen \([\mathbf{B}]\) entsprechende Bewegung ist für die Bindungen \([\mathbf{B}]\) eine mögliche. Nach dem Fundamentalsatz haben wir, wenn wir die Reaktionskraft in dieser Bewegung mit \(R\) bezeichnen:

\[
\varrho R^2 = E^\varrho,
\]

woraus der Satz:

"Die Projektion der resultierenden Reaktionskraft auf den zu einem partiellen virtuellen Raum orthogonalen Raum ist gleich der entsprechenden partiellen Reaktionskraft."

Wir behaupten, daß die Sätze (60) und (66) die Reaktion vollständig bestimmen. In der Tat, es kann nicht zwei Vektoren in \(G \) geben, die dieselben Projektionen auf \(G_\varrho \) haben (wie das der Satz (65) verlangt), denn ihre Differenz wäre ein Vektor in \(G \), der auf jeden \(G_\varrho \) eine Projektion Null hätte, also auf ihm senkrecht stünde. Aber so ein Vektor existiert nicht, denn jeder Vektor aus \(G \) ist eine lineare Kombination gewisser Vektoren aus \(G_\varrho \), kann also nicht zu allen \(G_\varrho \) gleichzeitig orthogonal sein.

Der Sinn der bewiesenen Satzen ist eigentlich der folgende:

"Die resultierende Reaktion hängt nicht unmittelbar vom Zustand, sondern ist durch die partiellen Reaktionen und rein geometrische Daten vollständig bestimmt."

Diese Folgerung ist keineswegs evident, denn die partiellen Reaktionen bestimmen durchaus nicht den Zustand, dem sie entsprechen.

Wir kommen zu mehr bestimmten Ergebnissen, wenn die Dimension jedes \(B_i \), nur um 1 von der Dimension von \(A \) kleiner ist. Dann werden die normalen Räume einfach Gerade. Auf jeder dieser Geraden liegt nach (66) der Vektor \(E_\varrho (a = 1, \ldots, k) \) und die resultierende Reaktion ist ein Vektor, der in dem durch die \(E_\varrho \) aufgespannten Raum liegt, und auf die Richtung jedes dieser Vektoren eine seiner Länge gleiche Projektion hat. Man kann die resultierende Reaktion als eine orthogonale Summe der partiellen Reaktionen bezeichnen.

Streszezenie.

Praca nieznane zawsze podnosi dwa teorie: Jedną z nich jest geometria reonomiczna, geometria odkrywaczy się przezmiennych, a więc taka, jaką poda mogł i wyprowadzić swą własną z teorii przestrzenei. Drugą — to interpretacja w języku geometrii wielosurowaniowej mechaniki układów reonomicznych (t. j. we współczesnych od czasu), przeszczepionym rozważyć odmiane najgólniejszy przykłady układów zas was z nich niemożliwych. Teorii układów reonomicznych właściwie dość niema, bo poprawna taka teoria
powinna operować wielkościami nieskończeniemi od przypadkowego doboru dopuszczalnych parametrów. Spotrroznezenia to prowadzi do wniosku, że mechanika układów rekoncyjoniznych powinna być teorią nieskończonych przedstawień
(*)

\[x' = x'(x, t) \]
podczas gdy geometria jest teorią nieskończonych przedstawień tylko punktowych:

\[x' = x(x') \].

Z takiego postawienia sprawy wynika, że geometria równoważna i mechanika "bezwołynna" — jak ją nazywamy przez analogię do "rachunku różniczkowego bezwołynnego" — są formalnie identyczne z teorią nieskończonych grup (*) i pewnej niejednokrotniej kwadratowej formy równoważnej, a więc z pewnym uogólnieniem "mocnym" rachunku tensorów. Ponieważ pragniemy objąć również układy nieholonomiczne, więc rozszerzamy naszą grupę do wszystkich przedstawień

\[dx = dx' + α dx' dt, \]
co jeszcze wzmacnia nasz rachunek tensorów.

Nieskończono zasady nasycone nieskończonościami mechanizmy bezwołynnemi i one to przedstawiają poprawnie, właściwe i adekwatne terminy do rozstrzygnięcia takich zagadnień, jak kryteria sklero-, holonomiczności, istnienia całki energii. One to pozwalają zrozumieć łatwo ogólnie, bezwołynne równania ruchu dla układów holonomicznych:

\[\frac{d\varphi}{dt} = W_S = \dot{S} + Q, \]

znaczenie przestaje od spotykanych dotąd w literaturze, bo wpisane w terminach istotnych.

Zaczytany od zbudowania podstawowych wielkości mechaniki równoważnej, które między innymi stosujemy do kształtowania warunków izometryj (wygląda na boczną) dla rodziny powierzchni. Uogólniają pojęcia geometrii riemannowskiej na przestrzenie holonomiczne, potem przeładowane do interpretacji mechanicznej tych wielkości, a więc do wielowymiarowego wjęcia mechaniki. Podajemy kryteria sklero-, holonomiczności, równania ruchu w terminach bezwołynnych, adekwatnej klasyfikacji układów mechanicznych, uogólnienia równań równoważnych ruchu na układy holonomiczne, równania wrzeczywiste i konkretny teorią rachunku dla dowolnych układów, rozważającą dzięki interpretacji wielowymiarowej bardzo prosto szereg zadań, poruszających ostatnio przez kilku autorów.

Sur le produit \(\Gamma^{(g)} \sum \frac{\alpha_a}{n^a} \)

(O illoczynie \(\Gamma^{(g)} \sum \frac{\alpha_a}{n^a} \))

par S. Mandelbrojt

Le but de ce travail est de donner une relation de la forme

\[\Gamma^{(g)} \zeta_p(t) = F(t) + \int P(t) e^{-\frac{W_S}{2}} dt, \]

où \(\zeta_p(t) = \sum \frac{\varphi(t)}{n^a} \), \(F(t) \) est une fonction entière et où \(P(t) \) s'exprime au moyen des \(\alpha_a \); \(2 \sum \alpha_a n^a = \varphi(m) \).

\[N^1 \text{ Soit } \varphi(u) = \sum \frac{\alpha_a}{n^a} \text{ une fonction entière telle que } \]

(1) \(|\varphi(u)| < e^{\varphi(u)} \text{ où } 0 < \varphi < 1. \)

On a, dans ces conditions:

(2) \(\mathcal{S} |\alpha_a n^a| < e^{\varphi(u)} \)

où \(\varepsilon \) est une constante positive, et la série

(3) \(\sum (\alpha_a n^a) = C_1 \)

converge.

On sait d'après une formule bien connue que pour \(y > 0 \) et \(v \) réel

(4) \(\int e^{-y \alpha_a + \alpha_a v} \, du = \frac{1}{\sqrt{y}} e^{-\frac{v^2}{y}}. \)