L. INFELD.

Fale świetlne w teorii względności.

Les ondes lumineuses dans la théorie de la relativité.

Rozdział pierwszy.

§ 1.

Podstawowym zagadnieniem ogólnej teorii względności, zagadnieniem, którego rozwiązanie stanowi jej tryumf, jest problem grawitacji. Konsekwencje tej teorii sięgają jedynie głęboko w istotę naszych dotychczasowych pojęć fizycznych. Barząc dawnie podstawowe pojęcia fizyczne, a stawiając na ich miejscu nowe, zmienia teoria ta tematem matematyczną formę praw fizycznych i warunki, jakim prawa te muszą zadość czynić. Różnica ta występuje na jaw przy rozważaniu jakiegokolwiek prawa fizycznego z punktu widzenia teorii klasycznej, szczególnej i ogólnej teorii względności. Uwypatnienia się ona dla pola elektromagnetycznego, którego zbadanie w przypadku periodycznych drgań o bardzo wielkiej częstości stanowi przedmiot tej pracy.

Dla ocenienia tej zmiany porównajmy na razie różnicę pomiędzy czterema zasadniczymi prawami fizycznymi w Mechanice klasycznej i szczególnej teorii względności.

Prawa Mechaniki klasycznej spełniają ze względu na układ, dla którego są ważne, i na formę, którą posiadają, następujące warunki:

1. Prawa te są ściśle ważne dla układów inercjalnych.
2. Wszelkie wielkości fizyczne są skalarami, wektorami, tensorami trójwymiarowej euklidesowej przestrzeni, a wszelkie prawa fizyczne są związanymi pomiarami wielkościami fizycznymi, niezmiennymi ze względu na ortogonalne, linijowe przekształcenie przestrzenne kartezjańskie układu spółrzędnych.
3. Prawa te czynią zadość zasadzie względności Galileusza.

Z pod warunku trzeciego wylaną się teoria Maxwell'a oraz teoria elektronowa. Rozwój tych właśnie teorii i doświadczalne sprawdzenie ich konwestacji.
sekwencyjnej stanowiły może największy triumf Fizyki zesłego wieku. Próby pogodzenia teorii Maxwell'a z zasadami względności Galileusza stały w sprzeczności z doświadczeniem. Teoria zaś elektronowa, zarzucając zasadę względności Galileusza i definiując nam za pośrednictwem etern pewien jedyny układ, dla którego prawa Fizyki są ważne, nie zdołała zadowalająco wytłumaczyć doświadczeń Michelsona, Troutona i Noble'a, Rankine'a i innych. Doświadczania te, skierowane przeciwnie zasadzie względności, a mające stwierdzić istnienie układu bezwzględnego, stworzyły fundament doświadczalny postawionej przez Einstein'a szczególnej teorii względności, przyniósł temu osiągnięcie wymienioną trudność.

Szczególna teoria względności Einsteina zachowuje treść fizyczną teorii względności Galileusza, a zmienia jej formę matematyczną przez definicję mierzenia czasu i przez postać stałej prędkości światła niezależnie od tego, czy źródło emituje się w ruchu, czy w spoczynku względem wybranego układu.

Szczególna teoria względności zmienia formę matematyczną praw fizycznych, a warunki, które prawom tym stawia co do formy i układu odniesienia, możemy ująć w następujący sposób:

1. Prawa te są ściśle ważne jedynie dla układów inercjalnych.
2. Wszystkie wielkości fizyczne są skalarami, wektorami, tensorami czterowymiarowej pseudoeuklidesowej rozmaistości, a prawa Fizyki są związkami niemiernymi ze względu na przekształcenia ortogonalne linijne czasowo-przestrzenne.

Kontynuum czterowymiarowe pseudoeuklidesowe charakteryzuje forma kwadratowa:

$$x_1^2 + x_2^2 + x_3^2 - L = 0 \quad (1)$$

(x_1, x_2, x_3, oznaczają spółrzedne miejsca, a L oznacza spółrzędną czasu).

Forma ta kwadratowa jest niezmienna wobec przekształceń ortogonalnych, t. zw. przekształceń Lorentza.

§ 2. O promieniach światłowych w próżni.

Przechodząc do zagadnienia znalezienia kierunku promieni światłowych według szczególnej teorii względności, uogólniamy związki, otrzymane przez Sommerfelda a spełniające co do formy matematycznej warunki teorii klasycznej.

Na podstawie założenia, że promień światłowy jest w ośrodku izotropowym prostopadły do powierzchni równych faz oraz że prędkość posuwania się tej powierzchni mierzy nam prędkość światła, wykazał Sommerfeld 1, że zachodzi równość

$$\frac{\partial \varphi}{\partial x} + \frac{\partial \varphi}{\partial y} + \frac{\partial \varphi}{\partial z} = \frac{\varphi^2}{c^2}, \quad (2)$$

w której przyjęte są następujące oznaczenia:

φ oznacza fazę, jako funkcję ciągłą różniczkowalną miejsca (x, y, z) i czasu (t);

$$\nu = \frac{2\pi}{T} \quad \text{oznacza częstość, a } T \quad \text{okres drgań}$$

$$n = \frac{c}{v} \quad \text{jest spoczynkiem załamania, co do którego zakłada-

Ścisła perędyczność drgań światłowych pociąga za sobą linijkową zależ-

Funkcja φ spełniać musi związek

$$\nabla \varphi = \nu \quad (3)$$

Przez kierunek przestrzenny promieniowania światłowego rozumieimy kierunek wektora jednostkowego prostopadlego do powierzchni równych faz. Składo-

we jego są:

$$\pm \frac{\partial \varphi}{\partial x} \quad ; \quad \pm \frac{\partial \varphi}{\partial y} \quad ; \quad \pm \frac{\partial \varphi}{\partial z} \quad (4)$$

$$\nabla \varphi \quad ; \quad |\nabla \varphi| \quad |\nabla \varphi| \quad (5)$$

Znaki dodatni stosujemy, gdy $\frac{\partial \varphi}{\partial x} > 0$, znak zaś ujemny, gdy $\frac{\partial \varphi}{\partial x} < 0$.

Związki te uogólniamy w wypadku próżni $|n=1|$ dla szczególnej teorii względności. Równość (2) przybiera ze względu na (3) w tym przypadku postać:

$$(\nabla \varphi \cdot \nu)^2 = \left(\frac{\partial \varphi}{\partial x}\right)^2 + \left(\frac{\partial \varphi}{\partial y}\right)^2 + \left(\frac{\partial \varphi}{\partial z}\right)^2 + \left(\frac{\partial \varphi}{\partial z}\right)^2 = 0 \quad (6)$$

niezmienną wobec przekształceń Lorentza $(x_1, x_2, x_3, oznaczają spółrzedne miejsca, a x_1=F-1 e)$. Równość ta wyraża, że utworzony z funkcji

skalanej czter- wektora \(\gamma \) jest wektorem zerowym. Wykonajmy na wektorze \(\gamma \) przekształcenie Lorentza, które odpowiada przekształce- niu układu \(K' \) o spóźnieniach \(\Delta \alpha', \Delta \beta', \Delta \gamma' \), poruszającym się względem pierwotnego układu \(K \) ruchem jednostajnym wzdłuż osi \(z \) z prędkością \(q \), otrzymamy związki:

\[
\frac{\partial \gamma}{\partial x_1'} = \frac{2 \gamma - q \frac{\partial \gamma}{\partial x_1}}{\sqrt{1 - q^2}} = \frac{2 \gamma - q \frac{\partial \gamma}{\partial x_1}}{\sqrt{1 - q^2}}.
\]

W przypadku szczególnym fali płaskiej, tworzącej z osiami układu kąty \(\alpha, \beta, \gamma \), otrzymujemy z wzorów tych, przy podstawieniu \(v \cos \alpha, v \cos \beta, v \cos \gamma \), -\(q \) w miejsce \(\frac{2 \gamma}{\Delta \alpha}, \ldots, \frac{2 \gamma}{\Delta \alpha} \) oraz odpowiednio \(v \cos \alpha', v \cos \beta', v \cos \gamma' \), -\(q \) w miejsce \(\frac{2 \gamma}{\Delta \alpha'}, \ldots, \frac{2 \gamma}{\Delta \alpha'} \) oraz odpowiednio \(v' \cos \alpha', v' \cos \beta', v' \cos \gamma' \),

\[
v' = v - \frac{q \cos \alpha}{\sqrt{1 - \frac{q^2}{c^2}}}, \]

\[
v' \cos \alpha = v \cos \alpha - \frac{q \cos \alpha}{\sqrt{1 - \frac{q^2}{c^2}}}; \quad v' \cos \beta = v \cos \beta - \frac{q \cos \alpha}{\sqrt{1 - \frac{q^2}{c^2}}}; \quad v' \cos \gamma = v \cos \gamma - \frac{q \cos \alpha}{\sqrt{1 - \frac{q^2}{c^2}}}.
\]

a z nich przez dzielenie kolejne każde z równości (8) przez (7):

\[
\cos \alpha = \frac{\cos \alpha - \frac{q \cos \alpha}{\sqrt{1 - \frac{q^2}{c^2}}}}{1 - \frac{q \cos \alpha}{\sqrt{1 - \frac{q^2}{c^2}}}}; \quad \cos \beta' = \frac{\cos \beta - \frac{q \cos \alpha}{\sqrt{1 - \frac{q^2}{c^2}}}}{1 - \frac{q \cos \alpha}{\sqrt{1 - \frac{q^2}{c^2}}}}; \quad \cos \gamma' = \frac{\cos \gamma - \frac{q \cos \alpha}{\sqrt{1 - \frac{q^2}{c^2}}}}{1 - \frac{q \cos \alpha}{\sqrt{1 - \frac{q^2}{c^2}}}},
\]

znane związki, z których (7) wyraża prawo Dopplera, a (9) przekształcenia funkcyj trygonometrycznych kąta zawartego pomiędzy kierunkiem promieniowania i osiami układu.

Przez kierunek przestrzenno-czasowy promieniowania, gdy dana jest funkcja \(\gamma \), rozumieć należy kierunek wektora \(x_1 \) składowych:

\[
\frac{\partial \gamma}{\partial x_1}.
\]

Linia zerowa o równaniu parametrycznym:

\[
x_1 = x_1(p).
\]
ν' oznacza ν częstość w układzie K', a ν' prędkość rozchodzenia się światła w tymże układzie, zależną zarówno od spółczynnika n jak i prędkości ośrodka.

Opierając się na charakterze skalarnym funkcji τ, możemy równaniu (2) nadać postać:

$$(\nu_0 - \nu')^2 = \left(\frac{\nu_0}{\nu} \right)^2 + \left(\frac{\nu}{\nu_0} \right)^2 = \frac{\nu_0^2}{\nu^2} \left[1 - \frac{1}{c^2} \right]$$

Z równości tej wynika ze względu na niezmiennność strony lewej, że

$$\frac{\nu^2}{1 - \frac{1}{c^2}} = \nu_0^2 \left[1 - \frac{1}{c^2} \right]$$

jest nieznienikiem wobec przekształcenia Lorentza. Stosując wzory (12) do fal płaskiej w ośrodku niejednorodnym o stałym spółczynniku załamania, otrzymujemy znane wzory przekształcenia dla v i v'.

Z równań:

$$1 - \frac{q}{c} \cos \alpha \cdot n
\frac{v'}{v} = \sqrt{1 - \left(\frac{q}{c} \right)^2}$$

$$\frac{q}{c} \cos \alpha \cdot v = v \frac{\cos \alpha \cdot n - \frac{q}{c}}{\sqrt{1 - \left(\frac{q}{c} \right)^2}}$$

wynika bowiem przez utworzenie sumy kwadratów (15) i podzielenie przez (14), lub ze względu na niezmienność wyrażenia (13),

$$\frac{v'}{v} = \frac{1 - \frac{q}{c} \cos \alpha \cdot n}{\sqrt{\left(\frac{n \cos \alpha - \frac{q}{c} \cos \beta \cdot n \cos \psi \cdot v' \cdot \frac{q}{c} \cos \alpha \cdot \cos \beta \cdot v \right)^2 + \left(\frac{n \cos \alpha - \frac{q}{c} \sin \beta \cdot v' \cdot \frac{q}{c} \sin \alpha \cdot \cos \beta \cdot v \right)^2}}$$

Oznaczmy przez $S_i (i = 1, 2, 3, 4)$ składowe jednostkowego wektora światła o charakterze przestrzennym, stycznego do linii świata promieni światłowych. Składowe jego są:

$$S_i = \frac{\partial \mathbf{r}}{\partial x_i}$$

z czego wynika związek:

$$\mathbf{P} \cdot \left(\mathbf{v} \times \mathbf{v}' \right) = 0,$$

który wektor powyższy spełnić musi.

§ 4. Właściwości fal krótkich w ośrodku niejednorodnym.

Wykażemy, że równania (2), którymi posługiwaliśmy się poprzednio, otrzymać możemy nietykalnie — jak je otrzymał Sommerfeld — na drodze rozumowania, opierającego się na zasadach Optyki geometrycznej, ale również z teorii fizycznych, jeżeli przyjmujemy pewne upraszczające założenia fizyczne. Jako podstawę rozważań przyjmujemy równania Maxwella dla ośrodka niejednorodnego, izotropowego, przerzuczonego. Zakład zbadanych fal elektromagnetycznych ograniczamy przez założenie bardzo wielkiej częstotliwości, oraz przez założenie, że zarówno amplitudy, jak i stała dielektryczna ε i zdolność magnetyczna μ są funkcjami miejsca, mogą jednakże w przedziałach o wielkości porównywalnej z długością fal być uważane jako stałe. Faza, występująca w funkcjach perjodycznych, którymi pole elektromagnetyczne opisujemy, ma być funkcją linową czasu t i ciągłą i różniczkowalną funkcją miejsca. Co zaś do pochodnych cząstkowych $\partial \mathbf{E}, \partial \mathbf{B}$, czyzmy ważne, pod względem fizycznym jasne, że jeżeli któryktoś niech nie równa się zeru, to różnie co do wartości bezwzględnej nieograniczonych z nieograniczenia rosnącej częstości. Co do zależności pochodnych $\partial \mathbf{E}, \partial \mathbf{B}$ od miejsca, to stosują się te same założenia, co przytoczone dla amplitudy.

Opierając się na tych założeniach, znajdziemy w przypadku ośrodka niejednorodnego — gdzie całkowanie równa Maxwella, nawet w przypadku bardzo prostej postaci funkcji s, natrafi na trudności — pewne ogólne zwiąki. W ogólnej teorii względności, gdzie z powodu pola grawitacyjnego fale elektromagnetyczne płaskie i kuliste w ogólnym przypadku istnieć nie mogą, możliwe jest dotychczas przybliżone rozwiązanie jedynie przy danych wyżej założeniach.

Pomimo to, że równania Maxwella stanowią wątpliwą podstawę dla badania fal krótkich w ośrodku niejednorodnym, uwzględniają one jednakże podobieństwa i różnice, zachodzące pomiędzy przypadkiem ośrodka materiał-
nego w szczególnej teorii względności a przypadkiem próżni w ogólnej teorii względności.

Zastosujmy więc równania Maxwell'a do układu, w którym dany ośrodek spoczyna:

\[
\frac{1}{c} \frac{\partial E}{\partial t} = \text{curl } H \quad (19a)
\]

\[
- \frac{1}{c} \frac{\partial H}{\partial t} = \text{curl } E \quad (19b)
\]

\[
\text{div } (e E) = 0 \quad (20a)
\]

\[
\text{div } (\mu H) = 0. \quad (20b)
\]

Niechaj wektory \(E \) i \(H \), charakteryzujące pole elektromagnetyczne, będą funkcjami następującego kształtu:

\[
E = E_0 \ e^{\omega t} \quad (21)
\]

\[
H = H_0 \ e^{\omega t} \quad (22)
\]

gdzie \(e \) to amplituda \(E \), \(H \) oraz fazy \(\varphi \) stosują się poprzednio wymienione założenia.

Celem znalezienia warunków, którym muszą czynić zadość (21) oraz (22), aby stanowiły rozwiązanie równań Maxwell'a, podstawiemy funkcje te do powyższych równań.

Przechodzące do wartości rzeczywistych, otrzymujemy:

\[
V (\text{grad } \varphi, H_0) \sin \varphi - \cos \varphi. \text{curl } H_0 = \frac{e \varphi}{c \mu} E_0 \sin \varphi \quad (23a)
\]

\[
V (\text{grad } \varphi, E_0) \sin \varphi - \cos \varphi. \text{curl } E_0 = -\frac{e \varphi}{c \varepsilon} H_0 \sin \varphi \quad (23b)
\]

\[
S (\text{grad } \varphi, \mu H_0) \sin \varphi - \cos \varphi. \text{div } (\mu H_0) = 0 \quad (24a)
\]

\[
S (\text{grad } \varphi, E_0) \sin \varphi - \cos \varphi. \text{div } \mu E_0 = 0. \quad (24b)
\]

Opierając się na poczynionych na wstępne założeniach, że bezwzględne wartości pochodnych wektorów \(E \), \(H \) są bardzo małe w stosunku do bezwzględnych wartości pochodnych \(\frac{\partial \varphi}{\partial x}, \frac{\partial \varphi}{\partial y}, \frac{\partial \varphi}{\partial z}, \frac{\partial \varphi}{\partial x}, \frac{\partial \varphi}{\partial y}, \frac{\partial \varphi}{\partial z} \), które rosną nieograniczona wraz z częstotliwością, możemy dla dostatecznie krótkich fal \(\text{curl } E_0 \), \(\text{curl } H_0 \) w równaniach (23a) i (23b) oraz \(\text{div } E_0 \) i \(\text{div } \mu H_0 \) w równaniach (24a) i (24b) zaniedbać. Z przybliżenia tego wynika układ równań
Dopóki więc ograniczamy w ten sposób założenia, znajdujemy się w dziedzinie ważności Optyki geometrycznej. Zasady Optyki geometrycznej są ścisłe spełnione jedynie dla nieskończoności wielkiej częstotliwości lub też przy padaniu, gdy amplitudy oraz {} and {} są małe, a więc w przypadku fali płaskiej w ośrodku jednorodnym.

Jedzieli założymy, że równanie (29) jest spełnione i zbadamy podwyznaczniki płaskiego rzędu wyznacznika {} przekonamy się, że wszystkie są identycznie małe, a więc równanie (25) i (26) oraz równania (25a) i (25b) to w rzeczywistości równania dla wektorów, których składowe są określone przez równania (25) i (26).

Przybliżone równania (25a) i (25b) wyrażają, że wektory {}, {}, {} są do siebie prostopadłe. Promieni światłowy posiada według podanej definicji (4) kierunek zgodny z wektorem Poyntinga.

Podnosząc obydwie strony równań (25a) i (25b) do kwadratu, otrzymujemy: {} = 0, a także kładąc, jak zawsze w Optyce, n = 1 mamy {} = 0.1)

Ażeby wykazać, że związki są ważne i dla szczególnej teorii względności, musimy im nadać niezmienną wobec przekształcenia Lorentza.

Równania zasadnicze Maxwella są niezmienne wobec przekształcenia Lorentza. Ujawnia się to w postaci, jaką im nadamy, stosując symbolikę wektorową, uzgodnioną dla czterowymiarowego kontynum pseudo-euklidesowego.

W miejscu wektorów {}, {}, {}, {} wprowadzamy tensor skośnosymetryczne stopnia drugiego (t. zw. wektorowo-skalarowy) {} M, oraz tensory uzupełniające {} M, których składowe zdefiniowane są przez następujące związki:

\[
F_{\mu} = F_{\mu} - i D_{\mu}; \quad F_{\mu} = F_{\mu} - i D_{\mu} ; \quad F_{\mu} = F_{\mu} - i D_{\mu}; \\
F_{\mu} = F_{\mu} = 0; \quad F_{\mu} = F_{\mu} = 0; \\
M_{\mu} = M_{\mu} - i E_{\mu}; \quad M_{\mu} = M_{\mu} - i E_{\mu} ; \quad M_{\mu} = M_{\mu} - i E_{\mu} \\
M_{\mu} = M_{\mu} = 0; \quad M_{\mu} = M_{\mu} = 0; \\
M_{\mu} = M_{\mu} = 0; \quad M_{\mu} = M_{\mu} = 0;
\]

(30)

Pomimo to, wektor M zachodzą wówczas na podstawie równań, z którymi są zdefiniowane, zawsze następujące związki:

\[
[\omega F] = \epsilon [\omega M] \quad \text{(34a)} \\
[\omega M'] = \nu [\omega F'] \quad \text{(34b)}
\]

gdzie: \(\epsilon = \epsilon_1 + \epsilon_2 + \epsilon_3\).

Pomimo to, wektor M zachodzą wówczas na podstawie równań, z którymi są zdefiniowane, zawsze następujące związki:

\[
[\omega F] = \epsilon [\omega M] \quad \text{(34a)} \\
[\omega M'] = \nu [\omega F'] \quad \text{(34b)}
\]

gdzie: \(\epsilon = \epsilon_1 + \epsilon_2 + \epsilon_3\).

Pomimo to, wektor M zachodzą wówczas na podstawie równań, z którymi są zdefiniowane, zawsze następujące związki:

\[
[\omega F] = \epsilon [\omega M] \quad \text{(34a)} \\
[\omega M'] = \nu [\omega F'] \quad \text{(34b)}
\]

gdzie: \(\epsilon = \epsilon_1 + \epsilon_2 + \epsilon_3\).

Jednakże, dla jedynego miejsca znanego do porządku, gdy {} = 0, z równań (34a) i (34b) teoretyczne wynikają:

\[
\Delta A_{35} = A_{35} + A_{35} + A_{35} + A_{35} = A_{35} \quad \text{(35)}
\]

\(\Delta A_{35}\) i (34b) dają nam jedynie sześć związków niezależnych od siebie, ponieważ ostatnich związek zarówno w (34a) jak i w (34b) możemy otrzymać z trzech pierwszych. Widoczne jest, że w przypadku, gdy {} = 0, (34a) i (34b) biorąc te równania nieskończoność:

(11) Funkcje spełnione we teorii względności, 43
D = E; \quad B = \psi H.

Załóżmy teraz, że \(M \) i \(F \) są funkcjami przekształceniisableself machen przestojaż, to są w jakimś punkcie świata załamania, to są w danym punkcie
nieograniczenie oraz nieograniczenie roszczena częstotliwości

\[M_a = M_0 a^t, \]
\[F_a = F_0 a^t, \]
(36)
(37)

gdzie amplitudy oraz fazy są następujące załamania. Jeżeli \(\frac{\varphi}{\psi_0}, \frac{\varphi}{\psi_1}, \frac{\varphi}{\psi_2}, \) nie są w jakimś punkcie świata załamania, to są w danym punkcie
nieograniczenie oraz nieograniczenie roszczena częstotliwości

\[\frac{\varphi}{\psi_0}, \frac{\varphi}{\psi_1}, \frac{\varphi}{\psi_2}, \]

nie są w jakimś punkcie świata załamania, to są w danym punkcie
nieograniczenie oraz nieograniczenie roszczena częstotliwości

\[\psi^2 \left| \frac{1 - 1}{\varphi^2} \right| = \psi^2 \left| \frac{1 - 1}{\varphi^2} \right| \]

jest warunkiem koniecznym i wystarczającym, by równania (39a, 39b) i (40a, 40b) posiadały rozwiązanie.

\section*{Rozdział drugi.}

\ § 1. Wstęp.

Zmiana zasadniczych pojęć fizycznych, dokonana przez ogólną teorię względności, spowodowała zmienną formy matematycznej praw fizycznych. Warunki, jakim prawa te w ogólnej teorii względności muszą zadość uczynić, są następujące:

Wielkości fizyczne są skalarami, wektorami, tensorami czterowymiarowej rozmaistości Riemanna, a wszelkie prawa fizyczne są związkami pośrednio temi wielkościami niezmiennymi ze względu na dowolne przekształcania, będące funkcje wyrażające zmianę układu były ciągłe, skończone, jednoznaczne, ich wyznacznik funkcjowy różny od zera, a wszystkie rozważane układy były układami właściwymi.

Przez wybór układu rozumimy fakt dowolnego podporządkowania punktom świata czterech liczby rzeczywiste \(x_1, x_2, x_3, x_4 \) przy zachowaniu warunków jedno-jednoznaczności i ciągłości.

Oznaczmy formę metryczną czterowymiarowej rozmaistości Riemanna przez

\[ds^2 = \sum_{a=1}^{4} g_{aa} \, dx^a \, dx^a \quad (g_{aa} = g_a). \]

(Wskaźniki własne oznaczają wielkości przeciwnieznane (contravariant) a dolne współrzędne (covariant)). Funkcje \(g_{aa} \) obok warunku ciągłości, różniczkowalności, oraz założenia, że wyznacznik \(\det g_a = g \) jest różny od zera, muszą spełniać następujące warunki charakteryzujące układ właściwy:

\[\begin{align*}
 g_{11} &< 0, & g_{21}, g_{22} &> 0, & g_{31}, g_{32}, g_{33} &< 0, & g_{41}, g_{42}, g_{43} &> 0.
\end{align*} \]

Warunki te, będące konsekwencją zasady przyczynowości, wyróżniają spolaryzowany czas x_0, i wyrażają, że odcinek czasowy (dla którego $d\Delta x^2 > 0$) nie może przez zmianę układu stać się przestrzennym, (dla którego $d\Delta x^2 < 0$).

Istota teorii względności ogólnej tkwi w zależności pola metrycznego scharakteryzowanego przez dziesięć składowych $g_{\alpha \beta}$ od tensora energii-impulsu. Zasadnicze równania różniczkowe pozwolą na wybór odpowiedniego układu wymyślić dziesięć składowych $g_{\alpha \beta}$, posiadających znaczenie potencjałów grawitacyjnych, jeżeli jest danych dziesięć składowych tensora energii-impulsu $T_{\alpha \beta}$.

Zasadnicze równania te posiadają postać:

$$R_{\alpha \beta} - \frac{1}{2} g_{\alpha \beta} R = \chi T_{\alpha \beta}, \quad h_{\alpha \beta} = 1, 2, 3, 4,$$

gdzie:

$$R_{\alpha \beta} = \sum_{\alpha, \beta} \left(\frac{\partial}{\partial x^\gamma} \left(\frac{\partial}{\partial x^\gamma} \right) \right) R_{\alpha \beta}^\gamma$$

$$= \sum_{\alpha, \beta} \left(\frac{\partial}{\partial x^\gamma} \left(\frac{\partial}{\partial x^\gamma} \right) \right) g_{\alpha \beta} - \frac{1}{2} g_{\alpha \beta} R = \sum_{\alpha, \beta} g_{\alpha \beta} R_{\alpha \beta}$$

$$= \frac{1}{4} \sum_{\alpha, \beta} g_{\alpha \beta} A_{\alpha \beta} = R_{\alpha \beta}$$

ta ostatnia równość jest skalenem krzywiny, zaś

$$A_{\alpha \beta} = \frac{1}{4} \sum_{\alpha, \beta} g_{\alpha \beta} A_{\alpha \beta} = \frac{1}{4} \sum_{\alpha, \beta} g_{\alpha \beta} A_{\alpha \beta}$$

są tzw. symbołami Christoffela, a χ jest stałą, której wartość jest związana z wartością stałą grawitacyjną.

Jest to w następujących rozwiązaniach pomijamy czynnik kosmologicznego, wyrażający cylindryczność świata czterowymiarowego lub skończoność i nieograniczość przestrzeni trójwymiarowej.

Wyznaczanie składowych $T_{\alpha \beta}$ jako funkcji mierzalnej wielkości fizycznej stanowi istotną trudność. Zagadnieniu to jest łatwo rozwiązalne w następujących szczególnych przypadkach:

W przestrzeniach wolnych od materii i pola elektromagnetycznego są wszystkie składowe tensora $T_{\alpha \beta}$ równe zeru.

W przestrzeniach zajętych przez materię, posiadającą pewną prędkość w obramnym układzie, przyjmujemy $T_{\alpha \beta} = \rho \frac{d\vec{\chi}}{ds} \Delta x_\alpha$, gdzie ρ oznacza gęstość materii w spoczywniku, podstawiając wyrażenie powyższe do równania (2), otrzymujemy po przekształceniu czysto matematycznych prawo: Linia

światu jakiekolwiek masy w polu metrycznym (pod działaniem grawitacji) jest linią geodetyczną czterowymiarowego kontinuum Riemanna.

Wreszcie potrafimy wyznaczyć składowe $T_{\alpha \beta}$ w przypadku pola elektromagnetycznego, którego własności w polu grawitacyjnym zbliżone są do właściwości elektromagnetycznej.

Próby wyjaśnia poza te zasadnicze przypadki nie doprowadziły do istotnego rezultatu.

Teoria Miega (być może ogólniśtej teorii Maxwella)\(^{10}\), której myślą zasadniczą jest zaniechanie pojęcia materii i elektronów, jako ciała obcych w etere, a traktuje je jako dziedziny szczególnych stanów fizycznych w etere, rozważa i uogólnioną przez Weyla, która miała zwrócić się kartezjusza o Fizyce geometrycznej — nie przyniosła dość doświadczalnych rezultatów, a sam Weyl pogłębił swoje do niej dotychczasowo częściowo zarzuca.

W jednych z ostatnich prac swoich szuka Einstein\(^{11}\) wyjścia poza daleko uszyte równania — daleko uszyte równania (3). Ale i ta droga napotyka na pewne trudności matematyczne, które dotychczas nie zostały usunięte.

Tak więc, chociaż daleką jest teoria względności od sprowadzenia wszystkich praw fizycznych do formy nieznanej wobec dowolnych przekształceń, jednakże doświadczalowy jej rozwój przyniósł już rozwiązanie zasadniczego problemu — problemu grawitacji.

Równania (3) posiadają tę własność, że wyznanając tylko sześć z pośród składowych $g_{\alpha \beta}$ pozostawiają zupełną dowolność co do wyboru czterech składowych zasadniczego tensora metrycznego. Fakt ten udowodnił ogólnie Hilbert,\(^{12}\) opierając się na tym, że równania (3) otrzyma można z zasady Hamiltona:

$$\delta \int H \cdot \gamma - \frac{d}{ds} \int a^2 \cdot ds = 0,$$

gdzie H jest funkcją nieznanej wobec dowolnych przekształceń, zdefiniowana

$$H = R + K.$$

K zaś jest funkcją zależną od $g_{\alpha \beta}$ oraz od wielkości fizycznych charakteryzujących układ q_1, q_2, \ldots, q_7 i ich pochodnych, nieznanej wobec dowolnej zmiany układu.

\(^1\) Zasadniczej formie metrycznej nadany został w ogólnej teorii względności znaż przeciwny, aniżeli w poprzednim rozdziale. Również i zmiana x_0 jest tutaj rzeczywistą.

\(^3\) Weyl: l. c., str. 209.

\(^{10}\) Mie. Annalen d. Physik 37, 39, 40, 1912—1913.

\(^{12}\) Hilbert L. e. Erste Mitteilung.
Niech równania przejścia z układu \((3) \) o spółrzednych świata \(x^1, \ldots, x^4 \) do układu \((1') \) o spółrzednych świata \(x^1, x^2, x^3, x^4 \), będą
\[
x^i = f_i \left(x^1, x^2, x^3, x^4 \right), \quad i = 1, 2, 3, 4.
\]
(5)

Zakładamy, że równania przekształcające (5) odpowiadają poprzednio wymienionym warunkom. Z tensorialnego charakteru składowych \(g_{ab} \) wynika, że spełniają one równania przekształcające
\[
g'_{ab} = \sum_{k=1}^{4} \frac{\partial x^k}{\partial x^a} \frac{\partial x^k}{\partial x^b} g_{ab}.
\]
(6)

Wystarczy czterem składowym z pośród \(g'_{ab} \), nadać dowolne wartości, aby określić funkcje \(f_1, f_2, f_3, f_4 \), zapomoczą odpowiednich równań różniczkowych. Równoważność więc wszystkich układów i dowolność w ich wyborze pociąga za sobą dowolność w wyborze czterech wielkości z pośród składowych \(g_{ab} \) w całej rozważanej dziedzinie.

Jeżeli orzeczenia i prawa fizyczne są niezmiennymi wobec dowolnych przekształceń, powinien być zasadniczo obejmy wybór układu, do którego się odnosią. Przykładem praw ważnych dla dowolnego układu jest prawo zachowania energii-impulsu, prawo, że linia świata punktu materijnego w polu metrycznym jest linią geodetyczną czterowymiarowej rozmiarci Riemanna, równania uogólnione Elektrodynamiki i inne. Nie stoi w sprzeczności z tym fakt, że do opisu zjawisk będziemy używali układów, dla których prawa te będą posiadały szczególnie postać postać. Wyborem układu kierowar może czynnik ekonomiczny np. tego rodzaju dostosowanie układu do specjalnego zagadnienia, by forma matematyczna otrzymanych praw była możliwie prosta. W wysłowieniu tych praw ogólnych jest więc wskazanie na układ niepotrzebne, w zastosowaniu ich do specjalnego zagadnienia konieczne jest użycie układu, o którego wyborze rozstrzygną w tej wymienionej względę. Nadto w przypadku szczególnym, gdy pole metryczne posiada pewne szczególne wartości (np. w przypadku statycznym lub kilko symetrycznym) ujawnia odpowiedni wybór układu charakterystyczne związki, cecha to właśnie przypadki szczególne.

W teorii względności występuje obok praw ważnych dla wszystkich układów prawa szczególne, dla których wysłowienia konieczne jest podanie układu odniesienia. szczególne te prawa wypowiadamy, gdy:
1) nie znamy praw ogólnych o formie niezmiennej wobec dowolnych przekształceń;
2) gdy stosujemy je do pewnego szczególnego układu;
3) gdy rozwiązane pole metryczne posiada pewne szczególne wartości.

Zajmijmy się obecnie własnościami pewnych specjalnych układów, ażeby móc w nich następnie badać własności pola elektromagnetycznego.

§ 2. O układach i dzieżdżnych, dla których ważna jest teoria względności szczególna.

Wartość symbolu Christoffela mierzy natężenie pola metrycznego. Wynika to z równania linii geodetycznej, jeżeli napiszemy je w formie:
\[
\gamma_{ab} = -\sum_{k=1}^{4} \frac{d}{ds} \frac{d}{ds} \left(\frac{d x^k}{d s} \right)
\]
(7)
a lewą stronę zgodnie z szczególną teorią względności zinterpretujemy jako siłę. W fakcie, że obydwie strony równości (7) możemy od czynnika \(\gamma_{ab} \) uwolnić, znajduje swój wyraz zasadnicze prawo fizyczne, tworzące fundament ogólniej teorii względności, stwierdzane kolejno z coraz to większą dokładnością przez Galileusza, Newtona, Eötvössa, stwierdzające równość massy ciężkiej i bezwładnej.

Składane natężenia pola grawitacyjnego znikają w punkcie świata \(P \), dla którego układ jest geodeetyczny, t. zn. dla którego zachodzi
\[
\gamma_{ab} = 0.
\]
(8)
Ponieważ możemy przez odpowiednie przekształcenie układu uzyskać, ażeby w punkcie \(P \) zachodziła równość (8), możemy więc temsamem w niekończenie małej dziedzinie, tworzącej sąsiedztwo tego punktu, znieść działanie pola grawitacyjnego. Fizycznie odpowiada jej operacji matematycznej nadanie układowi prędkości zmiennej, sprowadzający w otoczeniu punktu \(P \) do zera przyspieszenia, działaniem pola metrycznego wywołanym. Wybieramy nadto układ taki, ażeby składowe \(\gamma_{ab} \) były w punkcie \(P \) następujące wartości:
\[
\gamma_{11} = \gamma_{22} = \gamma_{33} = -1, \quad \gamma_{44} = +1
\]
(9)
\[
\gamma_{14} = \gamma_{24} = \gamma_{34} = \gamma_{41} = \gamma_{42} = \gamma_{43} = 0.
\]
(10)
Równość (10) wyraża, że cztery linie geodeetyczne, przechodzące przez punkt \(P \), których równania mają postać

Przez mat.-st., 1. XXXII.

\[x_1 = x_2 = x_3 = 0 \quad (11a) \]
\[x_1 = x_2 = x_3 = x_4 = 0 \quad (11b) \]
\[x_1 = x_2 = x_3 = 0 \quad (11c) \]
\[x_1 = x_3 = x_4 = 0 \quad (11d) \]

są do siebie w punkcie \(P \) prostopadłe. Równanie (9) wraz z równaniami (11) wskazują, że w sąsiedztwie punktu \(P \) oznaczamy spółrędne punktów świata z pomocą tych samych pomiarów przestrzenno-czasowych jak w teorii względności szczególnej. W układzie określonym w ten sposób ważną więc jest w niezależne mniej więcej zapisanie teorii względności jako \(P \) — szczególna teoria względności. Wskazuje to zarówno równanie ruchu punktu materialnego, które w rozwiązanej dwudźwięku przybiera postać:

\[d^2 x^2 \bigg|_{x^2} = 0, \quad (12) \]

jak i sposób oznaczenia spółrzednych danego układu. W rzeczywistości bęźmy mogliby dziedziczyć tę uwagę za tem większą, im mniejsze będzie zmienność składowych \(g_{\alpha} \).

Narzajmy układ, do którego tą drogą doszliśmy, układem lokalnym a weźmy pod uwagę dziedzinę ograniczoną warunkiem stosowności teorii względności szczególnej. W układzie tym posiada forma kwadratowa postać:

\[d^2 s = (dX_i)^2 - (dX_j)^2 - (dX_k)^2 \quad (13) \]

(spółrzedne w układzie lokalnym oznaczamy przez \(X^1, X^2, X^3, X^4 \), a \(d^2 s \) jest w znaczeniu szczególnej teorii względności mierzalną wielkością, tzn. za pomocą idealnego ciała szytego, gdy \(d^2 s > 0 \), za pomocą idealnego zegara, gdy \(d^2 s < 0 \). Pamiętajmy tutaj trudności związane z pojęciem i definicją idealnego ciała sztywnego i idealnego zegara w teorii względności, których omówienie wymaga obserwacji rozważa. Sądź jednakże, że z tej strony nie zagraża teorii względności sprzeczność.

Z układu lokalnego przechodziemy do wybranego dowolnego układu pierwotnego z pomocą przekształceń liniowych, jednorodnych:

\[dX^i = \sum_{a=1}^4 a^i_a \, dx^a \quad (14) \]

z czego wynika podstawienie do (13)

\[d^2 s = \sum_{a=1}^4 g_{\alpha} \, dx^a \, dx^a \]

\(g_{\alpha} = g_{\beta} = g_{\gamma} = 0 \). \quad (16) \]

\[d^2 s = g_{\alpha} \, (dx^i)^2 + \sum_{a=1}^4 g_{\alpha} \, dx^a \, dx^a = g_{\alpha} \, (dx^i)^2 - dx^i \]

\[(17) \]

Możemy więc zawsze do odpowiedniego układu i do odpowiednio ograniczonej dwudźwięk odnieść te wszystkie prawa, których znajomość daje nam szczególną teorję względności. Przykład ten wykazuje, jak w wyborze układu i ten cyrylum — znajomość jedynie praw szczególnych — rolę odegrać może.

Uogólnienie praw fizycznych, prowadzące od wartości ich dla pseudoeuklidesowego kontynuum czterowymiarowego do czterowymiarowego kontynuum Riemanna, napotka na liczne trudności zarówno logiczne, jak i formalne. Otrzymane prawa posiadają często zawsze strukturę matematyczną, ograniczającą znacznie możliwości dedukcji.

\[\S \; 3. \; O \; wektorach \; i \; tensorach \; przestrzennych. \]

Wyszczególnienia układu dokonujemy na podstawie wygłoszonego poprzednio twierdzenia, że czterem składającym z połowy \(g_{\alpha} \) możemy nadać dowolną wartość w całym rozważanym obszarze.

Niech równania, prowadzące z układu lokalnego do układu obranego, posiadają następujący kształt:

\[dX^i = \sum_{a=1}^4 a^i_a \, dX^a \quad i = 1, 2, 3 \]

\[dX^i = a^4_\alpha \, dX^4 \quad (15) \]

gdzie \(a^i_\alpha \) są funkcjami zmiennymi \(x^1, x^2, x^3, x^4 \). Otrzymujemy w ten sposób formę metryczną

\[d^2 s = \sum_{a=1}^4 g_{\alpha} \, dx^a \, dx^a \]

będzie charakteryzowała równość:

\[g_{\alpha} = g_{\beta} = g_{\gamma} = 0. \]

a więc

\[d^2 s = g_{\alpha} \, (dx^i)^2 + \sum_{a=1}^4 g_{\alpha} \, dx^a \, dx^a = g_{\alpha} \, (dx^i)^2 - dx^i, \]

gdzie \(d^2 s \) ma znaczenie odległości przestrzennej. Układ, dla którego spełniony jest warunek (16), posiada tę charakteryzującą go własność, że możemy jego formę metryczną przedstawić jako sumę dwóch składników, z których jeden — \(dx^i \) — nie zawiera \(d^2 s \) i jest niezmienny wobec dowolnych przekształceń zmiennych \(x^a, x^a, \) pod warunkiem, że zmienne \(x^a \) nie przekształcajmy, a równania przekształcające dla \(x^a, x^a, x^a \) są od \(x^a \) niezależne. Przekształcenia, posiadające powyżej własności, nazwijmy przekształceniami czysto przestrzennymi.

\footnote{Einstein: Die Grundlagen der allgemeinen Relativitatstheorie: Annalen d. Physik, Bd. 49. 1916.}
Przez przekształcenie czysto-czasowe rozumieć będziemy przekształcenie zmiennej x^i, kształtu $a^i = f(x^i)$.

Jasne jest, że zarówno przekształcenia czysto-przestrzenne, jak i przekształcenia czysto-czasowe nie naruszają związków (16).

Udowodnimy pewne proste związki, które oddają się wyłącznie do układów, dla których spełniona jest równość (16), a z których będziemy wkrótce korzystać. Napiszemy w tym celu równanie przekształcające dla wektorów i tensorów stopnia drugiego, prowadzące od układu (X) do układu (\bar{X}).

\[A^i = \sum_{\nu=1}^{4} \frac{\partial x^i}{\partial \bar{x}^{\nu}} A^\nu, \]
(18a) \[A_i = \sum_{\nu=1}^{4} \frac{\partial \bar{x}^i}{\partial x^\nu} A^\nu, \]
(18b)

\[A^{\alpha\nu} = \sum_{\rho=1}^{4} \frac{\partial x^{\alpha\nu}}{\partial \bar{x}^\rho} A^{\rho\nu}, \]
(19a) \[A_{\alpha\nu} = \sum_{\rho=1}^{4} \frac{\partial \bar{x}^{\alpha\nu}}{\partial x^\rho} A^{\rho\nu}, \]
(19b)

Ze względu na to, że $\frac{\partial x^i}{\partial \bar{x}^{\nu}}$ jest formą matryczną trójwymiarowej przestrzeni, możemy w układzie tym uważać a_1, a_2, a_3, jako składowe wektora przestrzennego, jeżeli

\[\sum_{i=1}^{3} a_i \frac{\partial x^i}{\partial \bar{x}^{\nu}} = - \sum_{i=1}^{3} a_i \frac{\partial x^i}{\partial \bar{x}^{\nu}} = - \sum_{i=1}^{3} a_i \frac{\partial x^i}{\partial \bar{x}^{\nu}} = \sum_{i=1}^{3} a_i \frac{\partial x^i}{\partial \bar{x}^{\nu}} \]
(20)

jest niezmiennikiem wobec dowolnych przekształceń czysto-przestrzennych.

Analogicznie definiujemy tensors przestrzenno czasowe $T^{i\nu}$, $k=1, 2, 3$ przy niezmienności wielkości:

\[\sum_{i=1}^{3} \frac{\partial ^2 x^i}{\partial x^\nu} d x_i \]
(21)

wobec dowolnych przekształceń czysto-przestrzennych.

Z łatwością stwierdzić możemy prawdziwość następujących twierdzeń, prawdziwych jedynie dla układu, dla którego spełnione są związki (16).

a) Jeżeli $A^i, A^\nu, A^{\alpha\nu}$ są składowymi wektora, to $A^i, A^\nu, A^{\alpha\nu}$ są składowymi wektora przestrzennego.

Przy przekształceniach czysto przestrzennych zachodzą bowiem, jak z (18 i 19) oraz z związku pomiędzy składowymi współosiennymi a przeciwnymi wynika, następujące związki:

\[A^i = A^i; \quad g_{\alpha\nu} = g_{\alpha\nu}; \quad g_{\alpha\nu} d x^\alpha = d x^\nu, \]
(22)

\[g_{\alpha\nu} A^\alpha_A A^\nu + \sum_{\nu=1}^{3} g_{\nu A} A^\nu d x_A = A^A d x_A + \sum_{i=1}^{3} A^A d x_i, \]

dowodzi ze względu na (22) prawdziwości twierdzenia

b) Jeżeli $T^{i\nu}$ są składowymi przeciwnymi tensora stopnia drugiego to:

1. $T^{i\nu}$ jest skalarem, związku bowiem

\[T^{i\nu} = T^{i\nu}. \]

wynikają ze wzorów przekształcających oraz ze związki pomiędzy tensorami przeciwnymi a przeciwnymi.

2. $T^{i\nu}, T^{i\nu}, T^{i\nu}$ są składowymi wektora przestrzennego.

Z równań (19a, b) wynika, że $T^{i\nu}, T^{i\nu}, T^{i\nu}$ przekształcają się, jak składowe wektora przestrzennego, gdyż

\[\frac{\partial x^\nu}{\partial \bar{x}^{\nu}} = 0 \quad i = 1, 2, 3, \quad \frac{\partial x^\nu}{\partial \bar{x}^{\nu}} = 1. \]

3. $T^{i\nu}, k=1, 2, 3$, są składowymi tensora przestrzennego.

Z równości

\[\sum_{\nu=1}^{3} T^{i\nu} d x_i d x_{\nu} = T^{i\nu} d x_i d x_{\nu} + \sum_{\nu=1}^{3} (T^{i\nu} d x_i + T^{i\nu} d x_i) d x_i + \sum_{\nu=1}^{3} T^{i\nu} d x_i d x_{\nu} \]

wynika, że względem udowodniony niezmienny charakter dwóch czynników pierwszych strony prawej, niezmienny charakter wyrażenia $\sum_{\nu=1}^{3} T^{i\nu} d x_i d x_{\nu}$.

Analogiczne twierdzenia udowodnione można dla tensorów przeciwnościowych i niezmiennych.

Do układu rozważanego dosłyszymy, nadając według (16) trzem z pośród $g_{\alpha\nu}$ określone wartości. Możemy jednak układ jeszcze bardziej wyczerpująco, podając, by prawdopodobnie (16) zachodzić równość $g_{\alpha\nu} = g_{\alpha\nu} = 1$, która wyraża, że sprowadzona czas wynika z tego samego zegaru, którym wynikamy czas własny t. zn. za pomocą zegara idealnego.

§ 4. Pole statyczne i kalisto-symetryczne.

 Ważnym przypadkiem rozważanym w ogólnej teorii względności, na którym opierają się wszystkie próby doświadczalnego jej sprawdzania, jest przypadek pola statycznego. Pole metryczne jest statyczne, jeżeli istnieje
układ przestrzenno-czasowy, dla którego \(g_{aa} \) są od \(x^{4} \) niezależne, t. zn. forma metryczna przyjmuje postać:
\[
d s^{2} = f^{2} d x^{2} - \sum_{i=1}^{3} \gamma_{aa} d x^{i} d x^{a} = 0
\] (23)
gdzie:
\[
\frac{2 f}{\partial x^{4}} = \sum_{a=1}^{3} \gamma_{aa} = \sum_{i=1}^{3} \gamma_{ii} = 0
\]

Układ, dla którego statyczne pole metryczne posiada postać (23), nazywamy układem statycznym. Układ pozostaje statycznym przy przekształceniach czysto-przestrzeniowych, oraz linijnych przekształceniach czysto-czasowych.

Jedynym przypadkiem szczególnym, pozwalającym dotychczas na ścisłe rozwiązanie t. zn. na wyznaczenie funkcji \(g_{aa} \) z równań różniczkowych (3), jest przypadek pola kulisto-symetrycznego. Pole jest kulisto symetryczne, jeżeli dla odpowiednio wybranego układu statycznego zarówno \(f \), jak i \(d s^{2} \) są niezmiennie wobec przekształceń linijnych ortogonalnych. Równania (3), rozwiązane dla tego szczególnego przypadku, dają nam w przestrzeniach wolnych od materii dla \(g_{aa} \) następujące wartości:
\[
\gamma_{i} = \frac{r - a}{r} \quad i = 1, 2, 3
\]
gdzie:
\[
\alpha = \delta i + 1 \omega j k
\] (24)
Forma kwadratowa przybiera postać
\[
d s^{2} = \frac{r - a}{r} d x^{2} - \sum_{i=1}^{3} d x^{i} d x^{i} - \frac{1}{r^{2}} + \sum_{i=1}^{3} \gamma_{ii} d x^{i} d x^{i} = 0
\]
a jest wielkością stałą, której wartość oblicza się na podstawie warunku, aby wyniki ogólnej teorii względności były w pierwszym przybliżeniu zgodne z prawem grawitacji Newtona.

Na podstawie założenia, że pole słońca jest kulisto-symetryczne, wytłumaczyła teoria względności w sposób naturalny odstępstwa pomiędzy obserwacją a wynikami klasycznej teorii w ruchu planety Merkurego, a wynik ten stanowi fakt, przemawiający bezsprzecznie za teorją względności.

§ 5. Pole elektro magnetyczne.

Równania Maxwell dla próżni posiadają w ogólnej teorii względności następującą postać niezmienną wobec dowolnych przekształceń:
\[
\frac{\partial F_{14}}{\partial x^{2}} + \frac{\partial F_{15}}{\partial x^{3}} + \frac{\partial F_{16}}{\partial x^{4}} = 0
\] (24 a)
\[
\frac{\partial F_{24}}{\partial x^{1}} + \frac{\partial F_{25}}{\partial x^{3}} + \frac{\partial F_{26}}{\partial x^{4}} = 0
\] (24 b)
Równania (24 a) dają nam związek:
\[
\text{curl } E = - \frac{1}{c} \frac{\partial H}{\partial t}
\]
\[
\text{div } H = 0
\]
jeżeli przez składowe spółdzielne \(F_{\alpha \beta} \) skośno-symetrycznego tensora rozumie będziemy, podobnie jak w szczególnej teorii względności,
\[
F_{14} = E_{x} \\
F_{15} = E_{y} \\
F_{16} = E_{z}
\]
\[
F_{24} = H_{x} \\
F_{25} = H_{y} \\
F_{26} = H_{z}
\]
a za \(x^{4} \) podstawimy c. t.

W równaniach (24 b) oznaczają \(F_{\alpha \beta} \) składowe przeciwszczemne, związane ze składowemi \(F_{\alpha \beta} \), za pomocą równości
\[
F_{\alpha \beta} = \sum_{\mu=1}^{4} g_{\alpha \mu} g_{\beta \mu} F_{\mu
u}.
\] (25)
Równania (24 b) przechodzą w przypadku, gdy
\[
g_{aa} = 0 \quad \text{dla } i = k
\]
\[
g_{14} = g_{24} = g_{34} = -1, \quad g_{44} = +1,
\]
w równaniu
\[
\text{rot } H = \frac{1}{c} \frac{\partial E}{\partial t}
\]
\[
\text{div } E = 0.
\]

1) We y l: Raum, Zeit, Materie. Str. 218. 4-te wydanie.
2) We y l: Raum, Zeit, Materie. Str. 229. Hilbert, i c. II. Mitteilung.
Z równań (24a, b) otrzymać możemy jak wykazał **Einstein** 1) następujące związki:

\[
\sum_{i=1}^{4} g_{ij} \left(T_{ij}^{\alpha} - \frac{d}{dt} g_{ij} \right) - \sum_{\alpha=1}^{4} \sum_{\beta=1}^{4} g_{\alpha\beta} V^\alpha - g \frac{d}{dt} g_{\alpha\beta} T_{\alpha\beta} = 0 .
\] (26)

a \(T_{ij}^{\alpha} \) są określone przez równości:

\[
T_{ij}^{\alpha} = - \sum_{\alpha=1}^{4} F_{\alpha i} F_{\alpha j} + \sum_{\alpha=1}^{4} \frac{\partial}{\partial \tau} F_{\alpha i} F_{\alpha j} .
\] (27)

\(T_{ij}^{\alpha} \) jest tensorem symetrycznym stopnia drugiego (t. zn. \(T_{ij}^{\alpha} = T_{ji}^{\alpha} \) oraz \(T_{ij}^{\alpha} = T_{ij}^{\alpha} \)) tym samym tensorem, który występuje w równaniach zasadniczych (3) w przypadku, gdy obok pola grawitacyjnego istnieje pole elektromagnetyczne. Wzór (26) przechodzi w przypadku szczególnej teorii względności, wyraczaając zasadę zachowania energii-impulsu w polu elektromagnetycznym. W tym przypadku oznaczają składowe \(T_{ij} \) (i, j = 1, 2, 3) cśnienia Maxwella, gdy i = 4 k = 1, 2, 3, wektor \(\text{Poynting'a} \), a wreszcie \(T_{ij} \) oznacza gęstość energii pola elektromagnetycznego.

Równania (24a) są spełnione, jeżeli przyjmiemy:

\[
F_{\alpha i} = \frac{\partial \phi}{\partial \tau} - \frac{\partial \psi}{\partial \tau} .
\] (28)

gdzie \(\phi, \psi \) są składowymi spółmiennymi cztero-potencjału wektorowego.

Metoda rozwiązywania równań (24b), która w przypadku szczególnej teorii względności prowadzi do równania łączy, prowadzi tu do zawilego pod względem matematycznym układu równań cząstkowych 2). Możemy jednak analogicznie, jak w szczególnej teorii względności w przypadku ośrodka nie-jednorodnego, zastosować i tu taką uogólniając zastosowanie wielkich częstotliwości i na tej podstawie wyrzucać pewne wnioski o zachodzących związkach.

Niech \(F_{\alpha i} \) będą określone przez równość:

\[
F_{\alpha i} = F_{\alpha i}^{\phi} e^{\psi};
\]

\[
F_{\alpha i} = F_{\alpha i}^{\phi} e^{\psi};
\]

\[
F_{\alpha i}^{\phi} = \sum_{j=1}^{4} F_{\alpha j} g^{ij} g^{\phi i}
\] (29)

Nawiasy bezwzględną wartość pochodnej cząstkowej \(\frac{\partial}{\partial \tau} \), która w ogólnym przypadku może być funkcją punktów świata, częstotliwości i uchylnym co do

1) **Einstein**, L. c.

\[\text{(25)}\] \text{Pole świetlne w teorii względności.} \[\text{57}\]

wielkości występujących w (29) następujące założenia: jeżeli \(\frac{\partial}{\partial \tau} \), \(\frac{\partial}{\partial \tau} \), \(\frac{\partial}{\partial \tau} \), \(\frac{\partial}{\partial \tau} \) nie są zem, to rosną w danym punkcie świata co do bezwzględnej wartości nieograniczenie wraz z nieograniczeniem rosnącą częstością. Funkcje \(F_{\alpha i}^{\phi} \), \(\frac{\partial}{\partial \tau} \), \(\frac{\partial}{\partial \tau} \), mogą być funkcjami punktów świata, pochodne ich są jednak co do wartości bezwzględna dla dostatecznie wielkich częstości bardzo małe w stosunku do pochodnych \(\frac{\partial}{\partial \tau} \).

Jeżeli podstawimy (29) do (24a, b) i jeżeli zgodnie z założeniami zaniedbamy dla bardzo wielkich częstości wyrażenia \(\frac{\partial}{\partial \tau} \), \(\frac{\partial}{\partial \tau} \), \(\frac{\partial}{\partial \tau} \), otrzymamy następujący układ równań:

\[
F_{\alpha i}^{\phi} \frac{\partial}{\partial \tau} + F_{\alpha i}^{\psi} \frac{\partial}{\partial \tau} + F_{\alpha i}^{\phi} \frac{\partial}{\partial \tau} = 0 ,
\] (30a)

\[
\sum_{i=1}^{4} F_{\alpha i}^{\phi} \frac{\partial}{\partial \tau} = 0 .
\] (30b)

Związki powyższe posiadają charakter niezmienny.

Równania (30a) zostają natychmiast spełnione, jeżeli przyjmiemy na \(F_{\alpha i}^{\phi} \) wartości:

\[
F_{\alpha i}^{\phi} = \frac{\partial \phi}{\partial \tau} - \frac{\partial \psi}{\partial \tau} .
\] (31)

\(\phi, \psi \) niechaj natomiast spełniają warunek:

\[
\sum_{i=1}^{4} \frac{\partial \psi}{\partial \tau} = 0 .
\] (32a)

Zarówno (31) jak i (32a) otrzymujemy w przypadku wielkich częstości jako przybliżenie z równań:

\[
F_{\alpha i}^{\phi} \frac{\partial}{\partial \tau} + \frac{\partial \phi}{\partial \tau} \frac{\partial}{\partial \tau} = 0 ,
\] (33a)

\[
\sum_{i=1}^{4} \frac{\partial}{\partial \tau} \frac{\partial}{\partial \tau} = 0 .
\] (33b)

Zakładając bowiem, że:

\[
\phi_{\alpha} = \phi_{\alpha} e^{\psi} \quad \psi_{\alpha} = \psi_{\alpha} e^{\psi} \quad \phi_{\alpha} = \sum_{i=1}^{4} \psi_{\alpha} g^{\phi i}
\]
Możemy udowodnić, że z warunku (38) i (40) wynika, iż linia (39) jest linją geodetyczną zerową3) t. zn., że:

\[
\sum_{z=1}^{4} g^{\alpha \beta} d x_{\alpha} d x_{\beta} = 0,
\]

i

\[
\frac{d^2 x^i}{d \rho^2} + \sum_{\nu=1}^{4} \left[\psi_{\nu} \frac{d x^\nu}{d \rho} \right] d x^\nu = 0.
\]

Natychmiast stwierdzić możemy, że równanie (41) rzeczywiście zachodzi.

3) Por. Lane: _L.c._
Ze względu na zupełną dowolność w wyborze parametru \(p \), możemy przez odpowiednią jego zmianę uzyskać, \(\lambda = 1 \). Udowodnimy na razie w tym szczególnym przypadku, że (39) są liniami geodeytycznymi.

Oznaczmy \(\frac{2q}{a^2} = \xi \). Opatrzymy się na równości

\[
\sum_{k=1}^{4} \frac{2q}{a^2} \left(\lambda^k \Delta \lambda \right) = \sum_{k=1}^{4} \frac{2q}{a^2} \lambda^k \Delta \lambda = - \frac{4}{4} \sum_{k=1}^{4} \frac{2q}{a^2} \lambda^k \Delta \lambda = 0.
\]

Równość ta wynika z następującego przekształcenia:

\[
\sum_{n=1}^{4} \frac{2q}{a^2} \left(\lambda^k \Delta \lambda \right) = \sum_{n=1}^{4} \frac{2q}{a^2} \lambda^k \Delta \lambda = - \frac{2}{4} \sum_{k=1}^{4} \frac{2q}{a^2} \Delta \lambda = - \frac{2}{4} \sum_{k=1}^{4} \frac{2q}{a^2} \lambda^k
\]

zaś

\[
\sum_{n=1}^{4} \frac{2q}{a^2} \lambda^k \Delta \lambda = - \frac{4}{4 \Delta \lambda} \sum_{n=1}^{4} \frac{2q}{a^2} \lambda^k
\]

Dodajmy do (43) równości

\[
\sum_{n=1}^{4} \lambda^k \frac{2q}{a^2} = - \frac{4}{4 \Delta \lambda} \sum_{n=1}^{4} \frac{2q}{a^2} \lambda^k = 0
\]
a otrzymamy

\[
\sum_{n=1}^{4} \lambda^k \frac{2q}{a^2} = 0
\]

Po podstawieniu (40) dla \(\lambda = 1 \) do ostatniej równości, otrzymamy równości:

\[
d^2 x^i + \frac{4}{a} \sum_{n=1}^{4} \frac{2q}{a^2} \Delta \lambda \frac{dx^i}{dp} \Delta \lambda = 0,
\]

które jest równaniem linii geodeytycznej.

Do ogólnego przypadku, gdy \(\lambda \) jest funkcją punktów świata, przejść możemy przez zmianę parametru:

\[
p = f(p)
\]

gdzie \(f(p) \) spełnia równanie

\[
\frac{df}{dp} = \frac{1}{\lambda}
\]

Ponieważ zaś geodeytycznym liniom zerowym przysługuje własność, że postać równania (45) nie zależy od wyboru parametru, twierdzenie powyższe jest prawdziwe, gdy \(\lambda \) jest funkcją punktów świata.

Otrzymamy warunek rozwiązałości równań (38) zastąpimy do macierzy (35), a elementy jej przybierają wartość:

\[
a_{n} = - \sum_{p=1}^{4} \left(g^{p} \frac{2q}{a^2} \right) \left(g^{p} \frac{2q}{a^2} \right); \quad k = 1, 2, 3, 4.
\]

Przekonawymy się, że wszystkie wyznaczniki stopnia drugiego i trzeciego macierzy (35) są identycznie różne zera. Macierz (35) jest więc rząd pierwszego, tzn. układ równań (34) wyznacza jedną z pośród składowych \(\xi_k \), jeżeli trzy inne składowe są podane. Wnioski, otrzymane w przypadku szczególnej teorii względności, dają się uogólnić częściowo jedynie w specjalnym obszarze układzie lub w przypadku pola statycznego.

W układzie, dla którego spełniona jest równość (16), jest natętnie pola elektrycznego według udogodnionych twierdzeń wektorem przestrzennym, natętnie zaś pola magnetycznego wektorem przestrzennym. Tensor przenośny skośno-symetryczny przekształca się przy przekształceniach ortogonalnych liniowych, jak wektor. Ogólnie przekształcenia przestrzenne ujawiają jego charakter tensorowy. Ostatnie z równań (30a) wyraża w przypadku układu przestrzennoczasoweg, że wektory \(F \) (i = 1, 2, 3) \(\frac{2q}{a^2} \) (i = 1, 2, 3) są do siebie prostopadle, tzn., że wektor wyrażający natętnie pola elektrycznego jest prostopadły do przestrzennej normalnej do powierzchni równych laf, której kierunek uważać będziemy w przypadku tego układu za równoległy do kierunku przestrzennego promienia światelnego.

5. Pole elektromagnetyczne w polu statycznym.

Równanie (38) przybiera w przypadku pola statycznego następującą postać:

\[
\sum_{k=1}^{4} \left(\frac{2q}{a^2} \right) \left(\frac{2q}{a^2} \right) = \frac{2q}{a^2} \frac{1}{\lambda^2}
\]

gdzie zarówno \(q \) jak i \(f \) są jedynie funkcjami miejsca. W tym więc przypadku zachowuje się promień światelną, jak w ośrodku niejednorodnym, w którym posiada prędkość \(f \), i który wypełnia przestrzeń niezależną.

Jedynie w przypadku układu statycznego ma pojęcie prędkości światła pełne określenie znaczenie. Jest nią spółczynnik \(f \), gdyż

\[
f = \frac{da}{dx}, \quad (\text{gdzie } da = 0),
\]

a dorównavo przekształcenia czysto-przestrzenne nie zmieniają wartości spółczynnika \(f \), wprowadzenie zaś nowej zmiennej \(\xi^* \), która może być związana
żej wypisane równości oparte na definicji składowych tensorów spółmiennych i przeciwmiennych, stwierdzają, że wektory przestrzenne \(T_i \), oraz wektory \(T_{ii} \), \(i = 1, 2, 3 \) posiadają ten sam kierunek:

\[
T_i = \frac{1}{\beta} T_i', \quad T_{ii} = \frac{1}{\beta} T_{ii}',
\]

\[
\sum_{k=1}^{3} c_k T_k = T_0; \quad \sum_{k=1}^{3} c_k T_{kii} = T_{0ii}
\]

oznaczmy:

\[
V_T S = \sqrt{-g} T_i = f V_T T_i,
\]

\[
V_T W = \sqrt{-g} T_{i} = f V_T T_{i},
\]

a otrzymamy z (47):

\[
\sum_{v=1}^{3} \frac{\partial V_T S}{\partial x^v} = - \frac{\partial V_T W}{\partial x^v},
\]

Wzór ten jest nieznienienny wobec dowolnych przekształceń przestrzennych. \(S \) zachowują się więc jak składowe wektora przestrzennego, a \(W \) jak skalar. Z równości (49) wynika, że w przypadku pola oraz układu statycznego \(S \) ma znaczenie wektora \(P o y t i n g \), a \(W \) gęstości energii.

Powracając do dawnych równań dla fal krótkich (29), otrzymujemy po rozwinieniu (27) dla \(v = 4 \), \(s = 1, 2, 3 \), i zastosowaniu równań (48):

\[
S_1 = \{P_{3s}P_{3s} - P_{1s}P_{1s}\}; \quad S_2 = \{P_{3s}P_{3s} - P_{1s}P_{2s}\}; \quad S_3 = \{P_{3s}P_{3s} - P_{1s}P_{1s}\}
\]

gdzie \(I \) jest funkcją punktów światła.

Jeżeli uwzględnimy ostatnie z równań (30a) oraz ostatnie z równań (30b):

\[
F_{3s} \frac{\partial T}{\partial x^3} + F_{3s} \frac{\partial T}{\partial x^3} + F_{3s} \frac{\partial T}{\partial x^3} = 0,
\]

\[
F_{3s} \frac{\partial T}{\partial x^3} + F_{3s} \frac{\partial T}{\partial x^3} + F_{3s} \frac{\partial T}{\partial x^3} = 0,
\]

przekonamy się, że wynika z nich bezpośrednio:

\[
F_{3s} \frac{\partial T}{\partial x^3} = \frac{\partial T}{\partial x^3}.
\]

Równości (50) i (51) wskazują, że w granicy dla \(a \) o wielkiej częstotliwości otrzymujemy przepływy energii po torach, które są rzutami geodezycznych linii zerowych rozmaitości czterowymiarowej na naszą przestrzeń.
§ 7. O promieniach świetlnych w polu kuliсто-symetrycznym 1).

W § 4-ym przytoczyliśmy formę metryczną dla pola kuliсто-symetrycznego. Wykonajmy następujące przekształcenie czysto przestrzennie
\[x^1 = r \cos \phi; \quad x^2 = r \sin \phi \cos \varphi; \quad x^3 = r \sin \phi \sin \varphi, \]
a otrzymamy, opierając się na formie metrycznej (52):
\[ds^2 = \frac{r-a}{r} dr^2 - \frac{r-a}{r} d\varphi^2 - r^2 \sin^2 \phi d\varphi^2. \tag{52} \]

Dla \(r \) dostatecznie wielkiego w stosunku do \(a \) (co w naszym układzie planetarnym, w przestrzeniach wolnych od materii zachodzi), forma ta różni się bardzo mało od formy kwaradatowej w pseudo-euklidesowym kontynum. Spójrzmy przy \(ds^2 \) wskazuje, że prędkość światła jest w obrannych jednostkach mało różna od jedności.

Stosujemy twierdzenie, że linia świata promieni światłowego są geode tycznymi liniami zerowymi, t. zn. spełniają warunki:
\[\frac{d^2 x_i}{d\tau^2} + \sum_{j=1}^4 \xi^j \frac{d x_j}{d\tau} \frac{d x_i}{d\tau} = 0, \]

lub też:
\[\sum_{i=1}^4 \frac{d}{d\tau} \left(\xi^i \frac{d x_i}{d\tau} \right) - \sum_{i=1}^4 \xi^i \frac{d^2 x_i}{d\tau^2} = 0, \tag{53} \]
oraz
\[\sum_{i=1}^4 \xi^i \frac{d x_i}{d\tau} \frac{d x_i}{d\tau} = 0, \]
gdzie podstawiamy:
\[x^1 = r; \quad x^2 = \varphi; \quad x^3 = \varphi; \quad x^4 = x^4. \]
Dla \(i=4 \) mamy:
\[\frac{d}{d\tau} \left(\frac{r-a}{r} \frac{d x^4}{d\tau} \right) = 0, \quad \frac{r-a}{r} \frac{d x^4}{d\tau} \quad \text{const} = A. \tag{54} \]

Dla \(i=3 \):
\[\frac{d}{d\tau} \left(r^2 \sin^2 \phi \frac{d x^i}{d\tau} \right) = 0, \quad r^2 \sin^2 \phi \frac{d x^i}{d\tau} \quad \text{const} = B. \tag{55} \]

Równania (54) przedstawiają analogię do całki energii, a (55) do zasady pół w Mechanice klasycznej.

Dzielniki (61) przez (60), a jako rozwiązanie otrzymanego równania wynika:

\[r_s = \frac{3}{2} a, \]

a następnie:

\[d\varphi = \frac{2}{a \sqrt{b^2 + \frac{3}{b} \varphi^2}}, \quad b_n = \frac{3\sqrt{3}}{2}. \]

Przybliżone rozwiązanie ważne dla bardzo wielkich odległości znajduje-
ny, zaniedbując \(p^2 \). Otrzymujemy wówczas z (69):

\[\int_0^\varphi d\varphi = \int_0^\varphi \frac{b\varphi}{\sqrt{1 - \frac{3}{b^2} \varphi^2}}. \]

a stąd:

\[\varphi = \arcsin\left(b \varphi', \right) \]

czyli:

\[r \sin \varphi = b. \]

Jeżeli zinterpretujemy \(r, \varphi, b \) jak w przestrzeni euklidesowej (co nam dla bardzo wielkich odległości uczyni wołno), widzimy, że \(b \) ma znaczenie odległości promienia świetlnego od prostej równoległej do kierunku promie-
nia świetlnego, a przechodzącej przez środek układu, co też pozostaje w zgo-
dzie ze znaczeniem, jakie wielkości \(b \) nadaje równanie (58). Promień świetl-
ny, pozostający pod wpływem pola kuśta symetrycznego, biegnie w bardzo

dzielności wynika, po liniach prostej. Np. dla \(b_n = \frac{3\sqrt{3}}{2} \) Promień świetlny biegnie wewnątrz odległościach po prostej, a osiągnąwszy odległość \(r_s = \frac{3}{2} a \), biegnie po kółce.

Mogąmy jednakże przybliżenie w rozwiązaniu równania (59) posuwać o krok dalej.

Wykonajmy bowiem w wyrażeniu:

\[\int_0^\varphi d\varphi = \int_0^\varphi \frac{b\varphi}{\sqrt{1 - \frac{3}{b^2} \varphi^2}}. \]

zmianę zmiennej za pośrednictwem następujących przybliżonych związó-

w założeniem, że \(p \) jest dostatecznie małe:

\[\varphi' = b \varphi' \left(1 - a \varphi', \right) \]

\[b dp = a \left(1 + \frac{a}{b} \right). \]