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Les surfaces de la seconde classe ont les invariants

_p(p—1)

Dy P 9 —2D, p(l) = (4}7 - 5) (p ——2)7

=)
-2
donc on a

n—2p e =—E=BE=_y,

c'est 4 dire un nombre négatif.

6. Nous avons dit dans le n® 1. que la limite inférieure de p® est at-
teinte dans le cas des courbes canoniques hyperelliptiques. Plus générale-
ment, si la série caractéristique du systéme canonique est telle que tous ses
groupes passant par un point de la courbe passent par k—1 autres points,

on a I'inégalité
PO = k(py— 243+ 1,

&, désignant encore le défaut de la série caractéristique du systéme canonique
linéaire. Mais dans le cas général, oit tous les groupes contenant un point
1ie contiennent pas nécéssairement d'autres points, on a d’aprés M. Castel-
nuovo™® 1'inégalité

(10) PV = 3(py— 2+ %)

Nous avons alors :
3p,—6=12p,-+13 —4(p, —p.—3),

donc on a I'inégalité

16 31
(11) pyé‘?—pu—{—“f- »

Remarquons que si le défaut &, est égal & p,—p., on a
19 31
P = T P= + 10°

mais on a supposé P, = 2 (p.+ 2). Donc la série caractéristique du systime
canonique linéaire ne peut pas dans ce cas avoir le défaut maximum.

*) ‘M. Castelnuovo a bien voulu nous signaler cette inégalité importante de son
Mémoire: ,,Osservazioni intorno alla geometria sopra una superficie. Nota II“. Rendiconti
del Reale Istituto Lombardo Ser. Il Vol, XXIV. 1891. Qu’il nous soit permis de lui expri-
mer ici nos plus vifs remerciments.

G. A. MILLER.

Gauss’s Lemma and some related group theory.

(Lemmat Gaussa i niektére twierdzenia dotyczace teoryi grup).

According to Gauss’s Lemma any number m, which is not divisible
by the prime number p, is a quadratic residue or a quadratic non-residue of
P accordnig as the series

m, 2m, ...., p~2—17]l (A)

includes an even or an odd number of numbers whose least absolute residues
(mod p) are negative. We shall give a proof of this lemma, which is explicitly
based upon well known properties of abelian groups and will suggest various
more general statements. The main objects of this note are to exhibit, in an
elementary manner, the setting of this lemma in the theory of abelian groups
and to show how readily its proof may be deduced from this theory.

Let G be any abelian group of order g, and let

L N
be the operators of . Consider the set of operators
sln) S'_’.”) ) S; (B)

and let d be the highest common factor of g and n. Since d divides g it
results that G involves a subgroup of order d, and that the total number of
operators of ¢ whose orders divide d constitute a group H of order k. As
the order of a subgroup divides the order of the group it results that g==Fkn,
k= 1. The subgroup H is composed of all the operators of G which reduce
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to the identity in (B). Hence all the operators of (¢ may be divided into g/h
sets which satisfy the condition that all the operators of each set have the
same 7nth power, while any two operators belonging te two different sets have
different n** powers. All the operators of such a set may be obtained by
multiplying any operator of the set by all the operators of H, and the distinct
operators of (B) constitute a subgroup of index % under G.

A set of operators of a group will be called a complete set for the
n** powers if the nt* powers of these operators give all the different n'*
powers of the operators of the group and if no two operators of the set have
the same n** power. Suppose that the operators

tlr t2, ..... , 0 )~=g/h

represent a complete set for the nt* power of the abelian group G. One
and only one such operator corresponds to each operator of the quotient
group G'/H, and hence such a set can be selected in »* different ways. A ne-
cessary and sufficient condition that a complete set for the n** powers of G
can be so selected that the operators of the set constitute a group is that X
and n are relatively prime,

Since there is a (1, 1) correspondence between ¢, &, ..
operators of @/ H it results that the products

., & and the

bite, totay oo, bl

constitute a complete set for the n* powers of G whenever ¢, is any opera-
tor of G- Thatis, the products obtained by multiplying all the
operators of a complete set for the n-th powers of an abelian
group by any operator of the group constitute a complete set
for the n'* powers. The I sets obtained by letting #, represent successi-
vely all the operators of H are called complementary sets. These
complementary sets involve every operator of G once and only once, and
every complete set for n* powers contains one and only one of the & ope-
rators % H for every value of « from 1 to ).

The continued product of the operators in every possible complete set
for the n** powers of G corresponds to the same operator in G/ H since
the continued product of all the operators of an abelian group is its operator

of order two if the abelian group has only one such operator, and this conti- -

nued product is the identity in all other casesV. Infact the operators in exactly

) Zsigmondy, Monatshefte fiir Mathematik und Physik, vol. (1896), p. 219.
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B! of the complete sets for n-th powers of G have the same continued
product. Since

tte tols. ... Blu=tt,.... h.1s

it results that the complete set for the n-th powers which is obtained by mul-
tiplying each operator of such a set by #, has the same continued product as
the original set whenever #:=1, and only then.

Before going further with these general developments it may be conve-
nient to apply some of these results in a proof of Gauss’s Lemma. In this
special case we consider the cyclic group G of order p —1 which is genera-
ted by the numbers

1, 2,...., p—1,

when they are combined by multiplication (mod. p). If we let n =2 it fol-

lows that d=2 and h==2. The subgroup H is composed of 1 and p—1=—T1,

and the operators of &'/ H are the quadratic residues of p. These operators
: 21

are the squares of any one of the 2 2 complete sets for squares of G. Two

such complementary sets are evidently as follows:

9, ..., Pl

The products obtained by multiplying (mod p) all the operators of a set
by any one o of the numbers 1, 2,..., p —1 must be either in the set orin
its complement. As the continued product of the numbers in the new set is
equal to the continued product of the numbers in the original set multiplied
by ar—!, it results that this continued product is the same for both of the sets,
when o is a quadratic residue of p and only then. As the numbers of a set
and its complement differ only with respect to sign, these continued product
will also be the same or different as an even or an odd number of the given
products are in the complementary set. This completes a proof of the theorem:
If all the numbers in any given complete set for squares
(mod p) of the numbers 1, 2,..., p —1 are multiplied by any one
a of the latter set, then a is a quadratic residue or a quadra-
tic non-residue of p as an even or an odd number of these
products are found in the set which is complementary to the
given set for squares.
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: —1
If we select for the complete set for squares the numbers 1, 2,..., 19_2_,

the preceding theorem furnishes a proof of Gauss's Lemma. If we select

for this set the numbers ﬂ;ﬂ, vivey p—2, p—1, and if we let a=2, the
given products are composed of the odd numbers in the series 1, 2,..., p—1.

Hence 2 is a quadratic residue or a quadratic non-residue of p according as
the number of odd numbers which are less than p/2 is even or odd; that is,
according as p is of the form 8% 41 or of the form 87n == 3.

The quadratic character of o as regards a prime modulus may also be
determined as follows: Since an operator and its inverse are of the same or-
der and have the same properties as regards powers, it results that 2 and

. 1
—ETQ’_‘.I have the same quadratic character (mod p). If we multiply % by
the even numbers of the set
p—1
1, 2,..., 5

we evidently obtain numbers of this set (mod p), while we obtain only num-

bers of the complementary set if we multiply Z’.’%‘l by the odd numbers of

the given set. In fact

ey p_1_p L
2k—1) 3 _hp+7c—-~2——§_—2—|—k

5 (mod p).

As 2k —1<? "2“1, it results that (2—1) pg‘l is in the set which

p_2—1 and hence Z)——_Ql_—l is a quadratic resi-

due or a quadratic non-residue of p -as [L}_—l] is even or odd.

A necessary and sufficient condition that an operator of a cyclic group
is a non-square is that its order is divisible by the highest power of 2 which
divides the order of the cyclic group. Hence it results that the index of 2
(mod p) is divisible by 4 whenever p is of the form 8n—3, and this index
is always divisible by 2 when p is of the form 8n 3. In particular:
2 is a primitive root of all primes of the form 4¢--1, ¢ being any odd prime;
and it is also a primitive root of all primes of the form 2¢9--1 whenever ¢ is
of the form 4n-1. When ¢ is of the form 4n—1 it is clear that —2
is a primitive root of every prime of the form 2¢--1, since 2 is a
quadratic residue and —1 is a quadratic non-residue of each of these pri-

is complementary to 1, 2, ...,

.-

e ©
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mes. Hence the known theorem: 2 is a primitive root of all primes

which are of the form 4941, ¢ being an odd prime, and also
of all primes of the form 2q+1 when ¢ is an odd prime of the
form 4.n—|-1; when ¢ is an odd prime of the form 47 —1 and
2941 is a prime, then —2 is a primitive root of this prime.
If a prime is of the form 6¢+1 and the number of odd integers <3¢
is odd, then 2 is a non-residue of 6¢--1 and hence it belongs either tgex-
ponent 2¢ or to exponent 6¢. Inthe latter case (2) is a primitive root and in
the for.mer case 2= —1 (mod 6¢-}-1). Hence it results that when 6g4-1
is a prime of the form 8n -3 it has 2 for a primitive root unless 2° = —1
(mod 6g4-1). In a similar manner we see that when 691 is a prime
of the form 8n—1 it has —2 for a primitive root unless 2° =1 (mod

g+1).
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