Über homogene Polynome in (L^2)

publié dans Studia Math. 7 (1938), p. 36-44.

§ 1. Wir bezeichnen mit E, E' zwei vektorielle, normierte und vollständige Räume. Eine für beliebige $x_1, ..., x_n$ aus E erklärte Operation $u(x_1, ..., x_n)$, deren Werte dem Raume E' angehören, nennen wir eine *n-lineare Operation*, falls sie stetig und additiv in bezug auf jede der Veränderlichen $x_1, ..., x_n$ ist. Es ist bequem eine derartige Operation mit

$$(1) ax_1, \dots, x_n$$

zu bezeichnen.

Eine *n*-lineare Operation (n > 1) heisse *symmetrisch*, wenn sich ihr Wert bei beliebigen Permutationen der Variablen nicht ändert. Werden in einer symmetrischen *n*-linearen Operation r_1 Variablen gleich z_1 , weitere r_2 Variablen gleich z_2 ,..., schliesslich die letzten r_k Variablen gleich z_k gesetzt $(r_1 + ... + r_k = n)$, so bezeichnen wir die so entstandene Operation mit

$$az_1^{r_1}\dots z_k^{r_k}$$
.

Insbesondere ist

$$az^n = az \dots z$$
.

Die Operation azⁿ nennen wir ein homogenes Polynom n-ten Grades. Wie leicht zu sehen, enstehen aus verschiedenen symmetrischen n-linearen Operationen stets verschiedene homogene Polynome n-ten Grades.

Als Norm einer n-linearen Operation $ax_1 \dots x_n$ erklären wir die Zahl

$$||a|| = \underset{||x_1|| \le 1,...,||x_n|| \le 1}{\text{ob. Gr.}} ||ax_1...x_n||;$$

es ist also

$$||ax_1 \dots x_n|| \leq ||a|| \cdot ||x_1|| \dots ||x_n||,$$

insbesondere

$$||ax^n|| \leq ||a|| \cdot ||x||^n (1).$$

Ist E der m-dimensionale euklidische Raum, E' eine Zahlenmenge, so fallen die oben erklärten Operationen mit den gewöhnlichen n-linearen Formen, bzw. den homogenen Formen n-ten Grades zusammen. Bezeichnen ξ_j^i bzw. ξ_j $(j=1,\ldots,m)$ die Koordinaten des Vektors x_j bzw. x, so hat man

$$ax_{1} \dots x_{n} = \sum_{j_{1} \dots j_{n}=1}^{m} a_{j_{1} \dots j_{n}} \xi_{j_{1}}^{1} \dots \xi_{j_{n}}^{n},$$

$$ax^{n} = \sum_{j_{1} \dots j_{n}=1}^{m} a_{j_{1} \dots j_{n}} \xi_{j_{1}} \dots \xi_{j_{n}},$$

$$\|a\| = \max |ax_{1} \dots x_{n}| \quad \text{für} \quad \sum_{j=1}^{m} (\xi_{j}^{i})^{2} \leq 1 \ (i = 1, \dots, n).$$

Wir nehmen jetzt an, dass E der Raum (L^2) sei und dass E' in (L^2) enthalten sei und bezeichnen mit $ax_1 \dots x_n$ eine symmetrische n-lineare Operation. Jetzt bedeutet also x_i eine in (0,1) quadratisch integrierbare Funktion $x_i(t)$, ebenso ist $ax_1 \dots x_n$ eine derartige Funktion. Ist x_{n+1} ein weiteres Element aus (L^2) , so ist

(2)
$$\int_{0}^{1} (ax_{1} \dots x_{n}) x_{n+1} dt$$

offenbar ein (n+1)-lineares Funktional (2).

Wir sagen, das homogene Polynom n-ten Grades ax^n sei symmetrisch, falls das entsprechende Funktional (2) symmetrisch ist. Insbesondere heisst die lineare Operation ax symmetrisch, falls

$$\int_{0}^{1} (ax_{1}) x_{2} dt = \int_{0}^{1} (ax_{2}) x_{1} dt$$

gilt. In diesem Falle stimmt also unser Symmetriebegriff mit dem von Herrn D. Hilbert in der Theorie der Integralgleichungen eingeführten überein.

Ein Beispiel eines symmetrischen homogenen Polynoms n-ten Grades in (L^2) ist

$$ax^{n} = \int_{0}^{1} \dots \int_{0}^{1} K(t_{1}, \dots, t_{n}, t) x(t_{1}) \dots x(t_{n}) dt_{1} \dots dt_{n},$$

wo K eine symmetrische Funktion der Variablen $t_1, ..., t_n, t$ bedeutet, von der Eigenschaft, dass die rechte Seite stets dem Raume (L^2) angehört. Dies ist z.B. der Fall, wenn K in den Veränderlichen $t_1, ..., t_n, t$ quadratisch integrierbar ist.

In dieser Arbeit beweisen wir die Sätze:

SATZ I [§ 5]. Ist $ax_1 \dots x_n$ eine symmetrische n-lineare Operation in (L^2) ,

⁽¹⁾ Vgl. S. Mazur und W. Orlicz, Grundlegende Eigenschaften der polynomischen Operationen, Studia Mathematica 5 (1935), S. 50-68, 179-189.

⁽²⁾ Ein Funktional ist eine Operation, deren Wertmenge aus Zahlen besteht.

so gilt

$$\underset{\|x_1\| \leq 1, \dots, \|x_n\| \leq 1}{\text{ob. Gr.}} \|ax_1 \dots x_n\| = \underset{\|x\| \leq 1}{\text{ob. Gr. }} \|ax^n\| (^3).$$

SATZ II [§ 6]. Ist ax^n ein symmetrisches homogenes Polynom n-ten Grades in (L²), so gibt es eine Folge $\{x_i\}$ und eine Zahl $\lambda(||x_i|| = 1 \text{ für } i = 1, 2, ...;$ $|\lambda| = 1/||a||$), derart dass

$$\lim_{i\to\infty}\|x_i-\lambda ax_i^n\|=0.$$

SATZ III [§ 6]. Ist ax^n ein vollstetiges symmetrisches homogenes Polynom n-ten Grades in (L^2) , so gibt es ein Element x und eine Zahl λ (||x|| = 1, $|\lambda| = 1/||a||$), so dass

$$x-\lambda ax^n=0$$
.

In den Sätzen II, III ist der Satz über Existenz von Eigenlösungen einer linearen Integralgleichung mit symmetrischem Kern als Sonderfall enthalten.

§ 2. Seien $x, y (x+y \neq 0)$ zwei Einheitsvektoren des euklidischen Raumes R_m , welche den Winkel α ($0 \leq \alpha < \pi$) einschliessen. Wir bezeichnen mit $\varphi_n(x, y)$ den im Bereiche des Winkels α gelegenen Einheitsvektor, welcher mit y den Winkel α/n bildet, wobei n irgendeine natürliche Zahl bedeutet. Offenbar ist

$$x + \varphi_n(x, y) \neq 0, \quad y + \varphi_n(x, y) \neq 0 \quad (n = 1, 2, ...),$$

$$\varphi_2(x, y) = \frac{x + y}{\|x + y\|}.$$

Setzt man

$$x_1 = x$$
, $x_2 = y$, $x_k = \varphi_n(x_{k-2}, x_{k-1})$ $(k = 3, 4, ...)$

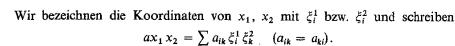
so ergibt sich leicht

$$\lim_{k\to\infty} x_k = \varphi_{n+1}(x, y).$$

§ 3. HILFSSATZ 1. Sei $az_1 \dots z_n$ eine symmetrische n-lineare Form der Vektoren z_1, \dots, z_n in R_m mit ||a|| = 1. Falls für zwei Einheitsvektoren x_1, x_2 die Beziehungen $x_1 + x_2 \neq 0$, $ax_1 x_2^{n-1} = 1$ stattfinden und $x = \varphi_n(x_1, x_2)$ gesetzt wird, so ist $ax^n = 1$.

Beweis. Wir betrachten zunächst den Fall n = 2. Nach Voraussetzung ist

$$||x_1|| = 1$$
, $||x_2|| = 1$, $x_1 + x_2 \neq 0$, $ax_1x_2 = 1$, $||a|| = 1$.



Dann ist

$$\sum_{k} \xi_{k}^{2} \sum_{i} a_{ik} \xi_{i}^{1} = \sum_{i} \xi_{i}^{1} \sum_{k} a_{ik} \xi_{k}^{2} = 1$$

und wegen ||a|| = 1

$$\sum_{k} \left(\sum_{i} a_{ik} \xi_{i}^{1} \right)^{2} \leqslant 1, \quad \sum_{i} \left(\sum_{k} a_{ik} \xi_{k}^{2} \right)^{2} \leqslant 1.$$

Aus diesen Beziehungen folgt

$$\sum_{i} a_{ik} \xi_{k}^{1} = \xi_{k}^{2} (k = 1, ..., m), \qquad \sum_{k} a_{ik} \xi_{i}^{2} = \xi_{i}^{1} (i = 1, ..., m)$$

und hieraus, mit Rücksicht auf $a_{ik} = a_{ki}$,

$$\sum_{k} a_{ik} (\xi_k^1 + \xi_k^2) = \xi_i^1 + \xi_i^2 \quad (i = 1, ..., m),$$

also

$$\sum_{ik} a_{ik} (\xi_i^1 + \xi_i^2) (\xi_k^1 + \xi_k^2) = \sum_i (\xi_i^1 + \xi_i^2)^2,$$

d.h.

$$a(x_1+x)^2 = ||x_1+x_2||^2.$$

Setzt man nun $x = \varphi_2(x_1, x_2) = \frac{x_1 + x_2}{\|x_1 + x_2\|}$, so ergibt sich wie behauptet $ax^2 = 1$.

Wir nehmen jetzt unseren Hilfssatz für n-1 als richtig an; nach Voraussetzung ist

$$||x_1|| = 1$$
, $||x_2|| = 1$, $x_1 + x_2 \neq 0$, $ax_1 x_2^{n-1} = 1$, $||a|| = 1$.

Wir setzen

$$\tilde{a}z_1\ldots z_{n-1}=ax_2\,z_1\ldots z_{n-1};$$

dieser Ausdruck ist offenbar eine (n-1)-lineare symmetrische Form mit $\|\bar{a}\| \le \|a\| = 1$. Wegen $\bar{a}x_1x_2^{n-2} = ax_1x_2^{n-1} = 1$ ist $\|\bar{a}\| = 1$. Da die Form \bar{a} die Voraussetzungen unseres Satzes für n-1 erfüllt, gilt $\bar{a}x_3^{n-1} = 1$, oder

$$ax_2 x_3^{n-1} = 1$$
, wo $x_3 = \varphi_{n-1}(x_1, x_2), x_2 + x_3 \neq 0$

und ebenso

$$ax_3 x_4^{n-1} = 1$$
, wo $x_4 = \varphi_{n-1}(x_2, x_3)$, $x_3 + x_4 \neq 0$
 $ax_{k-1} x_k^{n-1} = 1$, wo $x_k = \varphi_{n-1}(x_{k-2}, x_{k-1})$, $x_{k-1} + x_k \neq 0$.

⁽³⁾ Die Werte der Operation $ax_1 \dots x_n$ brauchen nicht zu (L^2) angehören,

Über homogene Polynome in (L^2)

Da nach § 2 $\lim_{n\to\infty} x_k = \varphi_n(x_1, x_2)$ ist, ergibt sich durch Grenzübergang

$$ax^n = 1$$
 für $x = \varphi_n(x_1, x_2)$.

H_{ILFSSATZ} 2. Ist $az_1 \dots z_n$ eine symmetrische n-lineare Form der Vektoren z_1, \dots, z_m in R_m mit ||a|| = 1, so gibt es einen Einheitsvektor x, für welchen $ax^n = \pm 1$ ist.

Beweis. Ist zunächst n=2, so gibt es wegen ||a||=1 zwei Einheitsvektoren x_1, x_2 für welche $ax_1x_2=1$ ist. Falls $x_1+x_2=0$ ist, so genügt es $x=x_1$ zu setzen, anderenfalls besitzt nach Hilfssatz 1 der Vektor $x=\varphi_2(x_1,x_2)$ die verlangte Eigenschaft.

Wir setzen jetzt die Richtigkeit unseres Satzes für n-1 voraus. Wegen ||a|| = 1 existieren n Einheitsvektoren x_1, \ldots, x_n , für welche $ax_1 \ldots x_n = 1$ ist. Wir setzen

$$\bar{a}z_1 \dots z_{n-1} = az_1 \dots z_{n-1} x_n$$

Dann ist $\|\bar{a}\| \le \|a\| = 1$, also wegen $\bar{a}x_1 \dots x_{n-1} = 1$ auch $\|\bar{a}\| = 1$.

Nach unserer Annahme gibt es einen Einheitsvektor x_0 , für welchen $\bar{a}x_0^{n-1}=\pm 1$, d.h. $ax_0^{n-1}x_n=\pm 1$ ist. Im Falle $x_0+x_n=0$ besitzt also wieder $x=x_0$, anderenfalls aber $x=\varphi_n(x_n,x_0)$ die verlangte Eigenschaft.

§ 4. $H_{ILFSSATZ}$ 3. Ist $ax_1 ... x_n$ ein symmetrisches n-lineares Funktional in (L^2) , so gilt

$$||a|| = \underset{||x|| \leq 1}{\text{ob.Gr.}} |ax^n|.$$

Beweis. Wir nehmen ohne Beschränkung der Allgemeinheit ||a|| = 1 an. Ist $z = (\xi_1, ..., \xi_m)$ ein Vektor des *m*-dimensionalen Raumes R_m , so bezeichnen wir mit \bar{z} das Element $(\xi_1, ..., \xi_m, 0, 0, ...)$ aus (L^2) . Wir setzen

$$(1) a_m z_1 \dots z_n = a \overline{z}_1 \dots \overline{z}_n;$$

dann ist a_m eine in R_m erklärte symmetrische *n*-lineare Form und $||a_m|| \le 1$. Nach Hilfssatz 2 gibt es in R_m einen Einheitsvektor x_m , für welchen $a_m x_m^n = \pm ||a_m||$ stattfindet. Daher ist

(2)
$$a\bar{x}_m^n = \pm ||a_m||, \quad ||\bar{x}_m|| = 1.$$

Wir beweisen jetzt, dass $\lim_{m\to\infty} ||a_m|| = 1$ ist.

Wegen ||a|| = 1 gibt es zu einem beliebigen $\varepsilon > 0$ n Einheitsvektoren y_1, \ldots, y_n aus (L^2) von der Eigenschaft, dass

$$|ay_1 \dots y_n| > 1 - \varepsilon$$

ist. Wir setzen

$$y^{k} = (\eta_{1}^{k}, \eta_{2}^{k}, ...), y_{k}^{m} = (\eta_{1}^{k}, ..., \eta_{m}^{k}), \overline{y}_{k}^{m} = (\eta_{1}^{k}, ..., \eta_{m}^{k}, 0, 0, ...);$$
 (k = 1, ..., n)

dann ist $\lim_{m\to\infty} \overline{y}_k^m = y_k$ (k = 1, ..., n), also nach (1), (3)

$$\lim_{m\to\infty}|a_m\,y_1^m\,\ldots\,y_n^m|=\lim_{m\to\infty}|a\overline{y}_1^m\,\ldots\,\overline{y}_n^m|=|ay_1\,\ldots\,y_n|>1-\varepsilon.$$

Wegen $|y_k^m| \le 1$ ist $|a_m y_1^m \dots y_n^m| \le ||a_m||$, also, da $||a_m|| \le 1$ und ε beliebig ist, $\lim_{m \to \infty} ||a_m|| = 1$.

Aus (2) ergibt sich jetzt $\lim_{m\to\infty} |a\bar{x}_m| = 1$; da $||\bar{x}_m|| = 1$ (m = 1, 2, ...), so ist

ob.Gr.
$$|ax^n| = 1 = ||a||$$
.

§ 5. SATZ I. Ist $ax_1 \dots x_n$ eine symmetrische n-lineare Operation in (L^2) , so gilt

$$\underset{\|x_1\| \leq 1, \dots, \|x_n\| \leq 1}{\text{ob.Gr.}} \|ax_1 \dots x_n\| = \underset{\|x\| \leq 1}{\text{ob.Gr.}} \|ax^n\|$$

Beweis. Wir nehmen ||a|| = 1 an und bezeichnen mit ε eine positive Zahl. Es gibt n Elemente $\bar{x}_1, \dots, \bar{x}_n$, so dass

$$\|a\bar{x}_1...\bar{x}_n\| > 1-\varepsilon, \quad \|\bar{x}_1\| = 1,...,\|\bar{x}_n\| = 1.$$

Setzt man

$$y = ax_1, ..., x_n,$$

$$\bar{y} = a\bar{x}_1, ..., \bar{x}_n,$$

so ist $\|\overline{y}\| > 1 - \varepsilon$.

Sei Y ein lineares Funktional, welches für alle y, d.h. in der Wertmenge der Operation a erklärt ist und der Bedingung

$$||Y|| = 1, \quad Y(\overline{y}) = ||\overline{y}||$$

genügt. Dann ist

$$\bar{a}x_1 \dots x_n = Y(ax_1 \dots x_n)$$

ein symmetrisches n-lineares Funktional in (L^2) . Man hat ferner

$$\overline{a}\overline{x}_1 \dots \overline{x}_n = Y(a\overline{x}_1 \dots \overline{x}_n) = Y(\overline{y}) = \|\overline{y}\| > 1 - \varepsilon$$

also $\|\bar{a}\| > 1 - \varepsilon$. Nach Hilfssatz 3 gibt es daher in (L^2) ein \bar{x} , für welches

$$|\bar{a}\bar{x}^{n}| > 1 - \varepsilon, \quad ||\bar{x}|| = 1$$

gilt. Wegen

$$|\bar{a}\bar{x}^n| = |Y(a\bar{x}^n)| \leqslant ||Y|| \cdot ||ax^n||$$

ist nach (1), (2) $\|a\bar{a}^n\| > 1 - \varepsilon$. Da $\|\bar{x}\| = 1$ und ε beliebig ist, folgt

ob.Gr.
$$||ax^n|| = 1 = ||a||$$
.

§ 6. SATZ II. Ist ax^n ein symmetrisches homogenes Polynom n-ten Grades in (L^2) , so gibt es eine Folge $\{x_i\}$ und eine Zahl λ ($\|x_i\| = 1$ für i = 1, 2, ...;

 $|\lambda| = 1/||a||$), derart dass

$$\lim_{i\to\infty}\|x_i-\lambda ax_i^n\|=0.$$

Beweis. Setzt man

(1)
$$\bar{a}x_1 \dots x_n x_{n+1} = \int_0^1 (ax_1 \dots x_n) x_{n+1} dt$$
,

so ist

$$\|\bar{a}\| \leq \|a\| \cdot \|x_1\| \dots \|x_n\| \cdot \|x_{n+1}\|,$$

also $\|\bar{a}\| \leq \|a\|$.

Zu einem beliebigen $\varepsilon > 0$ gibt es *n* Elemente $\bar{x}_1, ..., \bar{x}_n$ ($\|\bar{x}_1\| = 1, ..., \|\bar{x}_n\| = 1$) für welche

(2)
$$\|a\bar{x}_1 \dots \bar{x}_n\| > \|a\| - \varepsilon;$$

wir setzen

$$x_{n+1} = a\bar{x}_1 \dots \bar{x}_n, \quad \bar{x}_{n+1} = \frac{x_{n+1}}{\|x_{n+1}\|};$$

dann ist nach (1)

$$\bar{a}\bar{x}_1 \dots \bar{x}_{n+1} = \int_0^1 x_{n+1} \, \bar{x}_{n+1} \, dt = \|x_{n+1}\| = \|a\bar{x}_1 \dots \bar{x}_n\|,$$

also wegen (2)

$$\bar{a}\bar{x}_1\ldots\bar{x}_{n+1}>\|a\|-\varepsilon.$$

Hieraus folgt $\|\bar{a}\| \ge \|a\|$, also schliesslich

$$\|\bar{a}\| = \|a\|.$$

Nach Satz I gibt es nun ein \bar{x} , wofür

$$|\bar{a}\bar{x}^{n+1}| > \|\bar{a}\| - \varepsilon, \quad \|\bar{x}\| = 1,$$

d.h., mit Rücksicht auf (1), (3),

$$\left|\int\limits_{0}^{1}\left(a\overline{x}^{n}\right)\overline{x}dt\right|>\|a\|-\varepsilon$$

gilt. Setzt man

$$\eta = \operatorname{sign} \int_{0}^{1} (a\bar{x}^{n}) \bar{x} dt,$$

so ergibt sich

$$\int_{0}^{1} \left[\bar{x} - \frac{\eta}{\|a\|} a \bar{x}^{n} \right]^{2} dt = 1 + \frac{1}{\|a\|^{2}} \int_{0}^{1} (a \bar{x}^{n})^{2} dt - 2 \frac{1}{\|a\|} \left| \int_{0}^{1} (a \bar{x}^{n}) \bar{x} dt \right|$$

$$\leq 1 + 1 - 2 \left[1 - \frac{\varepsilon}{\|a\|} \right] = \frac{2\varepsilon}{\|a\|}.$$

Für $\lambda = \eta/\|a\|$ ist also

$$\int_{0}^{1} \left[\overline{x} - \lambda a \overline{x}^{n} \right]^{2} dt = \| \overline{x} - \lambda a \overline{x}^{n} \|^{2} < \frac{2\varepsilon}{\|a\|}.$$

SATZ III. Ist ax^n ein vollstetiges symmetrisches homogenes Polynom n-ten Grades in (L^2) , so gibt es ein Element x und eine Zahl λ ($||x|| = 1, |\lambda| = 1/||a||$), so dass

$$x - \lambda a x^n = 0$$

Beweis. Nach Satz II existiert eine Folge $\{x_i\}$, für welche

$$||x_i|| = 1$$
 $(i = 1, 2...), \lim_{i \to \infty} ||x_i - \lambda a x_i^n|| = 0$

ist. Da das Polynom a vollstetig ist, gibt es eine Teilfolge $\{x_{i_k}\}$, so dass die Folge $\{ax_{i_k}^n\}$ konvergiert. Für $x=\lim_{k\to\infty}ax_{i_k}^n$ ist offenbar

$$x = \lambda a x^n$$

(Reçu par la Rédaction le 10. 12. 1936)