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une suite déeroissante {u;} & termes positifs tendant vers zéro, telle que

fes] 1

DH{[umroa) <w =12 fheE)

=41 0

Pour >0 et M > 0, désignons par R{u, M) 'ensemble des suites
{p:(H)TeF telles que

mes E[

pour toute fonction f(t) ¢ H non nulle.
L’ensemble ¥ étant supposé compact, il ¢’ensuit que B (u, M) est
un ensemble ouvert ou vide. Puisqu’on a

A |
R(—, M),
r

00
=1 M=1

n 1
D) [fOed) <, n=1,2,..] <p
g=1 0

B =

Pensemble R est un &;. Enfin, en tenant compte de ya définition ef en
56 gervant des lemmes 5 et 6, on conclut que c'est un ensemble partout
de seconde catégorie.

Supposons maintenant gue ensemble ¥ goit semi-compact, ¢’est-
d-dire que ¥ = > E; ot les ensembles E; sont compacts. Soit R; I’ensemble
des suites {g;(1)} eF remplissant (64) presque partont pour chaque fonction
fiHyeE; non nulle {(j =1, 2, ...). Tout &, est done un @, partout de geconde

o
catégorie. L’ensemble R = } R; jouit done de la méme propriété.
j=1
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On measures in independent fields*

Edited by 8. Hartman

Among the papers left by Banach was found the incomplete Polish manuseript
of this paper, written in 1940. § 1 is almost lterally translated from the manuseript.
The details of farther reasonings were elaborated by S. Hartman, who also gupplied
the paper with Appendices and adapted it for print, with some help of Henry
Helgon.

§ 1. Let I be an arbitrary space. A family ® of fields (1) of subsets
of T is said to be a family of independent fields if any finite number of
non-empty sets, belonging to different fields of %, has a non-empty
intersection. That is, & iz an independent family if the conditions
0 % Hied;e® and A; = A; for 4 #4 (4, ==1,...,m) always imply

J] Hy=o.
i=1

The family R is called a family of denumerably independent fields
if- any sequence of non-empty sets, belonging to different fields of R,
has a non-empty intersection; ie. if 0 = Hied;e® and A; + A; for

i #j (4,7 =1,2,...) always imply ] H; +£ 0.
=1

The concept of independence of fields of sets was introdunced by
Marczewski (2), who algo proved the following fheorem (9):

* Commenté sur p. 363.

(*) The class A of subseis of a space 7’ is called a field if A contains with any
set its complement and with any finfte number of sets their sum. The field 4 is a Borel
Jfield if the sum of any denumerable number of sets of A belongs to A.

(*) Cf. E. Marczewski, Indépendance d’ensembles ef prolongement de mesures
{(Résultats et problémes), Colloguium Mathematicum 1(1948), p. 122-132, especially
p. 125-127.

(*) Thidem, Théordme II, p. 126-127. For the proof of this theorem ses Mar-
ozewski [6].
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Let R be a family of independent fields with a measure (*) p defined in
each field Ae®R, and let U(R) be the smallest field containing all the fields
of ®. Then a measure p* can be defined in U(R) with the following pro-
perties:

(I) 4" (H) = p(H) if HedeR,
" n
(A1) g ([JHy) = J] w*(Hy) if HicdieR, A, 5 Ay for 7 %5 and n
=1 i=1
a natural number not greater than the power of K (which can be finite)(?),

Marczewski has asked whether the following theorem is true(?):

TeRoREM 1. Let R be a family of denumerably independent Borel
fields with a denumerably additive measure u defined in cach field AeK;
then a denumerably additive measure p* can be defined in the smallest Borel
Field containing all the fields of R, such that:

(1) W) = p(H) if HedeSR,
(2) ,u*(nH{) =[]t (Hy i Hie Aic®, and A; # A; for i ]
=1 =1

((L:j =1, 21"-)'

The object of this paper is to amswer the question affirmatively.

Theorem 1 was proved by Marezewski in the special case that every
field A8 containsg just four sets (*), viz. a set H, its complement, the
empty set, and 7. Then evidently every 4R is a Borel field and any
meagure u defined in A is denumerably additive. The theorem wag enun-
ciated by P. Lévy in another special case, namely when R consists of
two fields and the measures have a special form (°).

§ 2. The smallest (finitely additive) field containing all the fields
of ® will be denoted, as above, by U{R). To prove Theorem 1 it is enough

(1) A measwre pin a field A is a real function w(H) > 0 defined for every set
HeA, such that p(T) =1 and p(H,-+H,) = p(H)4-p(H,) for any disjoint Hy,
o0

e
H,eA. The measure is denumerably additive if u( 3 Hi) = 3 u(H;) for disjoint
i=1 Tl

H,,H,, ...cA.

{%) Fields A; for which condition (IT) holds are said to be siochastically inde-
pendent with respect to the measure u*,

(*} loco ¢it.?, Théoréme II,,, especially p. 127.

(#) Ct. B. Marczewski (8zpilrajn), Fusembles indépendants ef mesures non
géparables, Comptes rendus de PAcad. des Sc. Paris 207 (1938), p. 768-770, especially
Théoréme II, p. 769, and E. Marczewski, Ensembles indépendants et leurs applica-
tioms & la théorie de lo mesure, Fundamenta Mathematicne 35 (1948), p. 13-28, especially
II Théordme fondamental, p. 25.

(%) See the book of P. Lévy, Théorie de Paddition des variables aléatoives, Paris
1937, p. 126 and 132.
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to define a measure u* in U(R) satisfying (1), (2) and the following con-
dition
. o
(3) If Hie UR) (1 =1,2,...) are disjoint and if DI HU(R), then
=1

)= 3.

f=1

) ‘For then it is known that 4#* can be extended 6o a denumerably addi-
tive measure on the smallest Borel field over U{(8R), i.e. the smallest Borel
field containing all the fields of R,

Moreover, (3) can be replaced by the equivalent condition:
(4) If H;UR), Hi> Hyy (1=1,2,..) and lim u*(H;) >0, then
]

ﬁﬂi # 0.
=1

Let F[U(R)] be the family of all real functions defined for tel,
agguming only & linite number of values, each value being assumed on
a set belonging to U(R). Every function % «FJU(R)] can be writter in
the following form (see Appendix I):

() y(t) = Zakll,_kmnzjkj(t)-

Here the #;(¢) are the characteristic functions of non-empty sets
Zjx, which belong to different fields 4;¢ R for different j, and which are
digjoing in % for any field j. That is:

(#) Zp =0,
(B) Zpedjel, A5t A; for 4 4,
("{) Z,-;.:-Z,-I:O, for ksél&ndjzl,.?,...,m.'

The coefficients az ; are real numbers, and the summation is
extended over all systems k, ... k,, which satisfy the conditions 1 < ky <y
(G =1,...,m). -

§ 3. Uniformization. Let y, and y, be two (not necessarily different)
functions from F[U(RK)]. They are said to be unifermized when they
are written

(6) ni(t) = Db w [ [ 5,0,
(7) , alt) = 3 ok, [ [, (0),
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where the ;. (f) are the characteristic funetions of sets Z; which satisfy
conditions {e)-{v). The summations in (6) and (7} are extended over the
same gystems of indices %y... ks (1 = k& < ;). Thus the right sides of
(6) and (7) can differ only in the coefficients Uiy, gy

Refinement. Let 4 be a function given in the form (5), and let
B,,B,,...,B, (p=m) be distinet fields of R, among which occur
the A4;. For each j suppose s; non-empty disjoint sets UyeB; are
given such that if B; is idenfical wifh some 4;, then every Zp is the
gsaum of some of the Uy, and if B; iz ditferent from all the A4;, the sum
of the Uy is T.

Then (5) can be trangformed. (see Appendix IT, 1°) into the following:

D) i H )

111

(8) y(t) = (1<t <8,

where w,;(t) is the characteristic function of Uy, We call {8) a refinement
of (b} by the sets Uﬁ.

Tor two functions (not necessarily different) from F{U(R)] given
in the form (5), there always exists (see Appendix III) a system of gets
U;i by which both funcfions can be refined. Such a common refinement
uniformizes the functions. Hence any {wo functions of F[U(R)] can be
untformized.

Denumerable uniformization. If ¥, is a sequence of funetions
belonging to FP[U(R)], in general no uniformization is possible for all
9, in the sense defined above.

However, the following representation can always be reached (see
Appendix IV): ‘

)
(9) Yn(t) = Zﬂg? k Hz};ﬁ?(t) for
e

where 2% is the characteristic function of a non-empty set Zje B, R,
with the gequence {B;} {generally infinite) containing no field more than
once. The numbering of the B; is determined simultaneously for all #.
TFurther, as wusual, Z3.-Z; =0 for r # s, and the summation in (9) is
taken over all systems %, ... k,_ such that 1 <k <™. In general, the
gequence m, is unbounded as » mcreases The sequence ¥,, given in the
form (9}, is said to be denumerably uniformized.

n=1,2...,

§4. Levma 1. Let two uniformized funciions y, and y, of FIU(RK)]
be given:

vl = D'l Hzﬂcj Yalt) = >'aff) mnzﬂc ().
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If for every t we have y,(t) = y,(t) or ¥, () = Ys(l), then for every sel

of indices we have of) 4 = a?) ; or af) . > affmkm respectively.
Proof. If we set a“’ k —a‘l Jop = Oz %, then

= 0, rerp., for all £.

m
Za'kl...kmnszj(t) = 0 or
=1

From conditions («) and (p) and from the mdependence of the fields
of R if follows that for every system of indices oy, ..., o,, there is a te T

for which n 2, (1) = 1.

§=1
From (

So for thig ¢,

szk (t) = 0 for the same ¢ and any other system &, ... k..

i=1

Z Oy, By H Ziteg (B} = Gy

and a; . = 0 or = 0, according as y,(#) = y,(¢) or ¥,(f) = v.(?) for all &
Since the set o, ... o was arbifrary, the lemma is proved.

Remark. Only the finite independence of the fields of & was used
in the proof; their denumerable independence will be used later.

Levma 2. If y(§) 2 0, or = 0, or <0 for all t, then for every sysiem
of indices, ay, x, =0, or =0, or <0 respectively.
This is an immediate consequence of Lemma 1.

§ 5. We now introduce three operations on the funetions y < FLU(R)],
called integration, contraection and separation.

Integration. If y is given by (5), write formally

D) W, [ [ 2.
i=1

We ghow that the integral does not depend on the particular repre-
sentation of ¥ (always, of course, of the same type as (5)). Indeed, suppose

Zbkl X H”ﬂa,(i)f

where the v;.(t) are the characteristic fu_nctions of sets V. Let Uy be
a system of gety which refines both representations, yielding

g
= e H wig(t),  wlt = el [ [t

[ywa =
T

(10 y(t) =
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respectively, where u,;, is the characteristic funetion of Uy. By Lemma 1,
cS}I) By = o) x k, for every set of indices; by Appendix I1, 2° (1) the integral
is not changed by refinement. That is,

a
=) Gill’...ckg g #(Ussy)
4 Ky
= D H w(Up) = X ba i !J (Vi)

which establishes the invariance of the definition.
Let v, and v, be functions from F[U(R)], with uniformized repre-
gentations

e

2 @kl...kmn w{Zs;)
Fo1

= . kmnﬂﬂc, t), Yali)

It iz immediate tha,t

ki
= 2 ﬂgl)...km H Uze; (£)
‘ id

1) [aOtnm)E = [noat [vod,
r r iy
(12) . fa,y(t)dt =@ fy(t)dt
. T Tm
for any number a. By Lemma 2,
(13) fy(t)dt >0 if (@) =0 for all £
T

Denote by F{4) the subset of #[U(K)] composed of all functions
which assume each of their values in a set belonging to AR, and let
y(t)eF(A). The representation (5) becomes then

t) = Zﬂkzk(t);
=1

m R
and the eorresponding integral is Ya,u(Zy); this integral is identical
k=1

with that in customary sense engendered by the measure u. Hence follows
(14) [1at = u() =1,

r
the function () = ¢ being contained in all sets F(4).

(*) Only finite additivity of the measure g is assumed there. Denumerable
additivity will be required later.
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From (11) and {13) it follows that

(15) if 91(1) > 9,(t) for all ¢, then [y, (f)dt
’ T

> [ys(a
T

Finally suppose Ue AeR, Ve BeR, and let %, v be the characteristic
funetions of U, V resp. By the definition of the integral,

(16) [ -v@dt = p(0)-u (V).
T
Contraction. Given y(t) == Zakl___km ﬁzjkj(t), define:
j=1
(17) Wiy, 6y = Y an ko O [ [ 02y, i m>2,
‘ i-2
(18) Wiy, ) =g(t) i m=1.

We call (17} the contraction of y with 'respect to the field 4,. The
regult of the operation evidently depends on the choice of 4,; however,
a proof emntirely analogous to that given for integration and in Appendix
I1 shows that W (y, 1) is not changed by refinement of y, and it follows
that the definition does not depend on the representation of y, once A4,
hag been fixed. Hxactly as for the integral one proves that contraction
by a given field is a linear operation, and that if () > 0 for all {, the same
ig true of Wiy, t). Hence

(19 it o, (1) = 9, (2) for all ¢, then Wy, ) = W(y,, ) for all g,

where contraction is performed with respect to the same field.

"
Heparation. Again suppose y(t):Zakl___kmnzjky.(t). For any
=1

t, eI define

(20) 8y, ;1) Zah x zucl(h)n 7y (1)

'We call this operation separation performed at {; with regpect to the
field A,. Again it iz easy to show that S(y, ¢,, ?) depends only on ¥,%,. ¢
and 4, and not on the representation of y once A; has been fixed. For
tixed t, and 4,, separation is a linear operation; and if y is non—negatwe,
so is S(y, t,1). Hence

(21) if 9, () = v, (2) for all , then 8y, t1, 1) = 8, by, 1) for all 4 ¢,

wherse separation is performed with respeet to the same field.
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LevMaA 3. If y is of the form (B), then

(8,0, 0d = Wiy, ) and [ Wiy, nd = [y{t)dr.
T m e

These relations are evident on writing out the infegrals explicitly.

§ 6. Measure. Let B belong to U(R), with characteristic funetion .
Define

(22) pim = [ywar

: 4

Ii follows from (11) and (13) that x* is a (finitely additive) meagure,
and by the definition of the integral we have u™(F) = u(H) for Fe 4 K.
By (16) the fields 4 e ® are stochastically independent with respect to [7AR
So u* satisfies the conditions of the theorem of Marezewski. Since only
the hypotheses of that theorem have been used, we have proved it on
the way to the main result.

§7. LEMmA 4. Let y be of form
points of 1" such that

Tl s ta) 37 D) . ’Cmn ity (1

Then there are sets H; e 4, (1 =1,...,

(5),_ a o real number, and ty, ..., ty,

m) for which

(23) tjeH:,-,
(24) _ y(t)=a for all  te HH,-.
i=1

Proof First assume that #¢ ZZM for each j; that ig, there aro indices

01y -y O TOT Which iy eZy, . LetH _Z o Evidently H;e 4;, so it remaing
to prove (24). Notice that & = o 1mp1ie5 4§ 2y, O 2, (L) =0, 80
L

Yty ..o tn) = gy .o, 3 hence G,...op,

= 6. Now if ¢ [T H;, we have also
g1
y{t) = By, o, = s
7
Now suppose t,-gkz Zy, for at least one j, say for j =g,...,8,
=1 )

m

,’!‘g-), 80O tha;tjl—ll 2’1[,;],(1:)
:th) =0 and & < 0. Set

8y and H; = 3Z, for other j. Then

fe=1

(1 < p <<m). For each such j, 2p{(t) = 0 (k = 1,...

== (} for any indices &, ..., &,

H,=1— de for j=s,,.

. Hence ¥ (t,, ...
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#y

teHe dy. If tekﬂl Hj, then t¢Zy, (b =1,...,r) for at least one § (since

TH

p 2 1), from which [[a;,(?)
f1

= 0 = &, and (24) holds.

= 0 for any choice of the %;. Hence y{f)

Levma 5. Let y,(1)

= S, 11
rably wniformized functions from I [U(ﬁ)] ; suppose there 8 o finite or
infindte sequence 1y, 1,, ... of elements of T, such that for each n

TT#2(t be o sequence of denume-

Taltyy ooy tm,) = a.

Then there is some Oel' for which y.(?) = a (n=1,2,...).
Proof, By Lemma 4, for each » there are gets Hied; (§ =1, ..., M)
with the properties:

Lhe HY for j=1,..., My,

My

Yy =2 a for tef|H}
1

For j >my, set HY =T and define W; = H H}. Bach W; is non
empty, since #e¢ W;; and because the 48 are Borel fields (the first
use of this hypothesis), Wye 4;. Now set H = H W,;. This intersection
iy non-empty, because the 4R are denumera.blyj?:ldependent (E{Jis ig the
cnly uge of the hypothesis in the proof!). But if ¥ <H, then. ﬂejglﬂ? and
YulD)

§ 8. Proof of Theorem 1. It only remains to prove that u* satisfies
condition (4). Suppose

== o for all ». So the lemma is proved.

HyeU(K), Hp=Hapry p YHy z2a>0, n=12..
Let v, be the characteristic function of H,. Then y,eF[U(K}],
f Yu(0)dt =, and for all ¢
(25) Yalt) 2 Ynpa(®)  (n=1,2,...).

We take the #, denumerably uniformized:

W,

\ (n
’!fn 201,({; kmnn 3k)(t)
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Then
(26) Wipg1 2= Moy

By (19), for all ¢

(n=1,2...).

(27) Wiy 1) = W(yn-(-ly t) (m=1,2,...),
and by Lemma 3
(28) [ Wi @l =0 (n=1,2,..).

i

Now every W(y,, t) belongs to F'(4,). But u* iz in 4, a denumerably
additive measure (this is the first use of the hypothesis), and the integral
of y,(t) over T (in the sense given p. 279) iz an infegral generated by px*
in the Lebesgue sense. Hence, applying (28),

(29) [ lm Wy, )dt =Hm [ W{y,, i)dt > a.
T e o

By (27) and (29) there is an element 1, for which
(30) Wity 2za (n=12,...).

Now set yn. (1) = §(Yn, t;, ?). These functions are already denume-
rably uniformized. By (21}, #n1(8) = ¥n.r.(f) for all & by (30) and
Lemma 3

[t za  (n=1,2,..).
n

So the y., are like the y,, and there is a ¢, for which
W(yn,lstz) Z 0 (ﬂ=1125---)5

where contraction is performed with respect to A,. Setting vy .(¢)
= 8(Un,z1; b2y )y We have 9,,(1) = yn,1,(¢) for all ¢ and

Sttt =0 (n=1,2,..).
i

This procedure can be repeated indefinitely hy sething
y'n.,fa.p-l(z) == S(yn,k: Tiy1y i}
It my =1 for some # (or several, or infinitely many n), say for =
such that p <n <7, we have for these n affer the (1--1) step

-1

(31) Yaza(8) = Maf) o200 [T o8t

=1
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The funections y,; , with p <« <r each belongs to #(d;). Con-
traction with respect to 4, leaves by (18) the y,, , invariant. Having
fixed I, the W{y,;_,,?) I3 a non-increaving sequence in the index u,
and for every #

[ W gy, )8t = a.
T

It follows that there is a t; such that
Wi, ) =a (rn=1,2,...)

and in parbicular |
(32) Yng1(h) =a  for

For these values of n, however, the left gide of (32) is by (31), on
one hand, the funetion y,;() = 8(¥nz_1, f, ), which iz a constant, and,
on the other hand, identical with ¥u{ty, ..., %m,).

In case m, =1 for all n = p, the process is finished; otherwise con-
tinue with fhose y,;(?) for which m, > I, in ofher words, for which = > ».
Finally, a (possibly finite) sequence of elements 4, 3, ... is at hand, which
with the y, satisfy the hypothesis of Lemma 5.

So there is a #¢J for which #,(?) =a (n =1,2,...}. Since a > 0
and the w, are characteristic functions, w.{#) =1, so that JeI,
(n=1,2,...).

o0
Hence [] H, = 0, (4) is shown, and Theorem 1 is proved.
N=1

APPENDIX 1

Representation of functions

Tet H, (v =1,...,p) be sets belonging to U(R). Tor every »

.
Wy,

(1) 7= > []ey,

i=1 f=1

where each set @ belongs to @ field AL «R, with A% #+ A, if r #s.
Renumber the fields 45 in simple order: A,,..., 4,,, where distinct
indices belong to distinet fields. In each intersection of (1) write the
factors & in the order of the indices of the fields to which they beleng,
supplying a T as the »™ factor if no % belongs to A, (v =1,..., m). By
the independence of the fields, no set except 0 and T can belong to more
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than one field, so this rearrangement can be carried oub without ambi-
guity. By renoming the reordered factors we have a Tepresentation

T om
(2) m, = 3 [] 8,
i=1 7=1

where Hije A;eR (A4, + A, for » = g),

Now for each j put the sets Hj; in a simple series Hy; (k = 1oy 8
Hyy # Hy for & 1), For each j and every system o, ... Ts; composed
of zeros and omes, form the product

Sg'

H ( _1)%H9'k:

k=1

where —H,; means T—Hy,.

Suppose 7; of these intersections are non-void. ; call them Zg (£ =1,
s 75). Evidently Zje d;, ZypZy =0 for k #1, and every Hy i the
sum of some of the sets Z;,..., Zy;. S0 there are numbers fi (each 0
or 1) such that

7'1'
>
Hi; = § BijpZx.
k=1

Sething this in (2) we obtain

')’L" "
o= 3 3 [Bes o iy [ ] 7]
B f=1

where the outer summation is taken over all systems &; ... by, (1 <% < ;).
T,

Setting af,.. ., equal to the smaller value of 1 and 3 Bl -.

-5
. ,B unicm 3
F=1

we get

ki

(3) H =3 I12w,
Feal

The intersections in (3) are disjoint.

Leti Zy, be the characteristic function of Z,y, and ¥, the characteristic
function of H,. Then

4 () = ) i, [ [ 2y 0).
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Now if yeF[U(R)] assumes its values o,,...,a, on the sets
D

Hy,..., Hy, respectively, (1) = Y a,3,(1), ie.

vl

y{t) = Zakl‘,.kmnszj(t);
=1

where the summation is taken over systems k;... %, (I <k <{#y), and

by
¥y
Wy Ty, = Z @i, Ky, -
- r=]

APPENDIX II

Refinement

1° Let the function % be given in the form

(1) y(0) = ) oy, | [ o, (00,

where each z;;, is the characteristic function of a non-empty set Zj-,-fs A;e R
1<k <), with 4, # A, for » 3 ¢; and ZjZ; = 0 for any j, when
VAEN R

Let By, By, ..., B, ..., B, be distinct fields of ®, such that B; .=.A@-
for i < m. Suppose further we are given sets Uy« B , non-empty, disjoint
in 4 for fized j§, and such that for j < m

i

(2) Zy = ) BuaUs  (each By being either 0 or 1),
=1

and for j >m
i
(3) T = D8uln (each fu=1).

fe=1

If wy is the characteristic function of Ug,

5
(4 D Banst) = zplt)  when  j<m,
=1
8:,‘
(8) ' Zﬁfu‘%ﬁ(t) =1 for all {, when j> m.
=
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Write unit factors in each product of (1) gso the index § rung from 1
to p, and then substitute formulas (4) and (5) for the functions &, and
for the unit factors respectively. Then we have

(6) y6 = > x| | D) i)

b
= Z ﬁkl...:.-mZﬁmlil’--- By, Huﬁj(t)’
i=1

where the inner summation is taken over all sets 4,...¢, such that

1 <4 <8 for each j, and the outer summation as before over sets

kyy ..y ky such that 1 < % < v;. Changing the order of summation and

Writing

(7) by, = Z Ok B Brieysy "« -+ " Bty 5
L

we have

11...1:13

2
y(t) = X' by [ [ ().
j=1

Thig representation is a refinement of (1) by the sets Uj;.
2° We show that '

H p

(8) D [ [ ) = Dlos s [ [l U3
f=1 K 7=1

Indeed, from (2)

8; .
(9) wllr) = 3 Byap(Tp)  for  j<m,
i=1
and from (3)
¥
(10) 1= DY fup(Up for §>m.
. =1

By the same algebraic procedure as hefore, i.e. by writing p—m
unit factors in each product on the leit side of (8), and by substituting
(9) and (10), we obtain

»
Dl iy D Brigs, - 'ﬂpkﬂiﬂgﬂ( Us;)s

where the snms are as in (6). By changing the order of summation and
using (7) the right side of (8) appears.
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APPENDIX Il

Common refinement

Let functions y; and y, of #[U(R)] be given, not necessarily distinet:

"y

{1) it) = a4, H A0,
=
Y

(2) valt) = D 1_7 .

Tere the zi7 are characteristic functions of sets Zg (v=1,2;
J=1 ., m; k=1,...,7%), such that Zj %0, ZpeAieR (4% = A’
for r s s), and Zj,-Zjs = 0 it » 5% 5. There may or may not be fields 4!
identical with fields Aj. But form a series B, ..., B, out of the 4! and
the A} which includes each field just once, and for each of the B;, re-
number in a series Zy (s =1, ..., g;) all the sets 2%, such that 4. = B;.
Az in Appendix I form all the intersestions

o
(3) [] (=12,

=1

where the ¢, assume the values 0,1; and number the non-void inter-
gections T, ..., Up,;. Evidently for each j, UpeB; and Uy Uy =0
if ¢ % k; each set Z belonging to B; is the sum of some of the U, and
for fixed j the sum of the Uy is 7. Thus the sets U, yield a common re-
finement of (1) and (2).

APPENDIX IV

Denumerable uniformization

Let a sequence of functions from F[U(R)] be given:

P,
L valt) = D0, [,
ful

where ufi}(t) is the characteristic function of a non-empty set

Uie A7eR®  for m=1,2,..;5=1,..,p,¢t=1,..,s".

It » 5= 5, A7 5 Ag and U5 Uf = 0. We shall transform (1) by induction
g0 a8 to obtain a representation of the following kind:

My

(2) valt) = Yol n, [0,

J=

Oeuvres 19
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where 20(t) is the characteristic function of a set Zj 50, ZjeB;eR
for m=1,2,...; § =1,...,m,; ==1,...,7; if r s, B, #B; and
7373 = 0. Here the sequence {B;} does not involve the index #.

Agsume that #,, ..., yu_s are already expressed in the form (2), with
the fields By, ..., B,  and the sets Zje B; determined (I=1,...,n—1;
=1,y gy =1, ., 28

1° If a field A} is identical with B, for some b < m,_q, set U, = Zjy,
and accordingly

wfd(t) = 21, s =3

2° If there ave fields A7 which are not among the By (i =1, ..., my,_,),

dencte them by By,  y1;...; Bm,, snd write correspondingly:
U;‘lk = :mﬂ_l+1k7 ---yzaﬂﬁﬂica
W) =2 el s eh{t) (1< < s,
s =l

3° If some B; (j < my,_q) does not ocour among the 47, set
Zh =T, &P@)=1 for all 4, and ¥{? =1.

By this procedure each product

P

(3) NI AU

a1
of (1} is transformed into a product

Ty,

(4) HE:ICE

=1

which differs from (3) only in the order of the facfors and the presence
of certain unit factors. Bearing in mind that #{™ =1 for the j congidered
in 3° each b&’l‘?__%n can be rewritten af) . , and y, has been reduneed to
form (2). "

Sur les suites d’ensembles
excluant Pexistence d’une mesure

Note posthume avec préface et commentaire de E. Marczewski

Préface. Bamach et Kuratowski(') ont résolu en 1920 Painsi
dit probléme généralisé de la mesure (en admettant I’hypothése du continu):
ils ont démontré que toute mesure dénombrablement additive, définie
dans le corps de tous les sous-ensembles d’un ensemble arbitraire X de
puissance du continu, 'annule identiguement lorsqu’elle s’annule sur
tous les engembles & un éldment. Tl ne s’agit iei, comme aussi dans la suite,
que des mesures finies.

Les mémes autenrs ont remarqué plus tard que leur démonstration
donne au fond un résultat plus précis (bien que non formulé explicitement),
& savoir: lexistence d’une suite {E,} de sous-ensembles de X qui admet
une infinité indénombrable d’atomes (%) (non vides) et telle que

(o) toube mesure dénombrablement additive, définie dans le plus
petit corps dénombrablement additif ayant les F, pour éléments, s’annule
identiquement lorsqu’elle g’annule sur chacun des atomes de la suite
{Ba}.

L’é¢tude des suifes d’ensembles pourvues de la propriété (o) n’est
pas facile. Banach se posaibt, par exemple, le probléme suivant qui —
autant que je sache — reste ouvert jusqu'a présent:

P 21. La somme de deux familles dénombrables dépourvues de la
propriété (o) peut-elle avoir cetbe propriétd ?

Dans la note qui va suivre, Banach caractérise les suites {#,} ayant
la propriété (o) & I'aide de denx notions: celle de fonction caractéristique

(*) 8. Banach et C. Kuratowski [24]; ef. aussi Colloquinm Mafhematicum
1(1948), p. 100 et 133. )

(*) Pour la définition de l’atome voir p.ex. E. Szpilrajn-Marczewski,
The characteristic function of a sequence of sets and some of its applications, Fundamenta
Mathematicae 31 (1938), p. 207-223, en parficulier p. 209 et 211. Cf. aussi la définition
donnée plus loin, p. 292,



