The Lebesgue integral in abstract spaces*

Introduction

In this note we intend to establish some general theorems concerning
the Lebesgue integral in abstract spaces. This subject has been discussed
by several authors (for the references see this volume, pp. 4, 88, 118, 146
and 157). Our congiderations differ from those of other writers in that
they are not based on the notion of measure.

Let us fix a set of arbitrary elements I as an abstract space. We shall
dencte real functions (i.e. functions which admit real values) defined
in H by «(f), y{t), 2(¢), ... where t«H, or simply by 2, 9,7, .... A set £
of real functions defined in H will be called linear if any linear combina-
tion, with constant coefficients, of two elements of £, also belongs to €.

Let £ be a linear set of functions defined in H. A functional F defined
in £ is termed additive if for any pair of elements «, ¥ of € and any real
number o, we have Flx+y) = F(2)+F(z) and Flaw) = «-F(z). The
Tunctional # is non-negative if ¥ (z) = 0 for any non-negative function we L.

We zay that a functional F defined in £ is a Lebesgue integral {S-in-
tegral) in 2 if the following conditions are satisfied:

A) The set ¥ is linear; '

B) the functional F is additive and non-negative;

0) if 1° {2,} = £ and MeQ, 202, (8} << M(t) for m=1,2,... and
teH, and 3° lims,{t) = &(f) for tc M, then se H and lim F(z,) = F(2);

n k]

D) itz2¢&, P(z) = ¢and |y (1) < 2(t) for te H, then y € and F(y) = 0;
B) it 1° {2a) = 8, 2n(t) < 2o1(2) for 0o =1,2,..., 2° lime, () = 2(1)
n
for teH, and 3° LmF(z,) < +oo, then #efL and lim#{z,) = F(2).
3 n

The Lebesgue integrals considered in this note will moreover satisty
the condition:
R) If 2 £, then |z L.

* Commenté sur p. 356.
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In Part I, a condition is established under which an additive and
non-negative functional defined in a linear set of funetions €, may be
extended to an £-integral on a certain set € containing €. The L-integral
and the set € will be explicitly defined.

In Part IT we admit that H iz a mefrical and compact space. We
congider an L-integral defined in sets coutaining all fumetions which
are bounded and measurable in the Borel sense, It is shown that each
L-integral of this kind is determined by the values which it admits
for continuous functions. Conversely, any additive and non-negative
functional defined for all continuouns functions may be extended as an
L-integral to the class of functions measurable (B). We thus obtain the
most general L-integral defined for all functions bounded and meagur-
able (B).

In Part I1I we deal with an analegous problem supposing that H
is the unit sphere of the Hilbert space. In particular, the integral of a con-
tinnous funetion ig expressed by explicit formulae.

I. Abstract sets

§ 1. We shall employ the following notation:

1. ozy if z(t) =y(t) for every t<H; in particular z = 0 means
that x{f) =0 for 1¢H;

2. |&| = l&(t)] is the modulus of x{#) in the ordinary sense;

8. wmax(wz, y) = {a+y+le—yl), min{z, y) = $@+y— [2—vi);

4. lima, =« means that lima, () = x(f) for t<H; the relations

1 ki’
limsupx, = @, liminfs, = x are defined similarly;
n i N

5. 2 = }(»-+|z]), » = Fa—[2]) (ef. Chap. T, p. 13).

§ 2. For the rest of Part I of this note we ghall fix a set € of real
functions defined in H, and a functional f(») defined for x<€, subject
to the following condifions:

(i;) The set € is linear;

(i,) if zeC, then [z<C;

(ii,) the functional f iz additive;

(ii,) the functional f iz non-negative;

(ify) if 10 {x,} = € and MeG, 20 [m,| < ¥ for » =1,2,..., and
3¢ limm, = 0, then limf(x,) = 0.

k3 w

Tt follows immediately from the conditions (i) that for any pair of

elements 2 and y of €, max(w, y), min(z, y), @ and @ also belong to &,
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It follows further that the condition (ii;) is equivalent to the following
condition:
(ify) It 1° {x,} =« € and mE, 2° &, =m for n =1,2,
liminf @, = 0, then liminf f(x,) = 0.
L2 i

oo, and 3°

& 3. We shall establish the following

THEOREM 1. If the set € and the functional f satisfy the conditions (i)
and (ii), then there evists an T-integral F, defined in o set £ containing G,
sueh that F(m) = f(x) whenever z¢€; moreover, this integral satisfies the
condition R).

The proof will result frorm several lemmas.

§ 4. We denote by £F the set of all functionaly =(f) defined in H
for each of which there exist two sequences {w,} « €, {y,} = & such
that

(1) liminfz, = 2 = Hmsupy,.
n n

It is easily seen that the set £* is linear and that G < 2%

Given 2 function z¢L*, we shall term upper C-integral of z the lower
bound of all (finite or infinite} nnmbers ¢ for esch of which there exist
a function m <€ and a gequence of functions {m,} belonging to € such
that «, = m for n = 1,2, ..., liminf 2, > # and ¢ = liminf f(x,).

u k)

The definifion of the lower L-integral is analogous to that of the upper
L-integral. The upper and lower L-integrals of a function z<2* will be
denoted by p (2) and ¢{2) respectively. We obviously have ¢(2) = —p(—2).

§ 5. The sequence {f(w,)} in the above definition of the upper L-in-
tegral, may obviously be supposed convergent (to a finite limit or +eo).
Further, if {8} < € me€, 220, z,>m for n=1,2,... and
liminte, > 2, then lim @, = 0 and consequently, by the condition (ii,),

n w
§2, limf(s,) = 0. Hence, if 2¢L%, 220 and p(a) <P < +oo, there
k0

always evists a sequence of non-negative functions {x,} belonging to € such
that ¥minfe, =z and fla,) < P for w=1,2,...
%

Iwvima 1. For any function xe€ we have p(n) = f(x).
Proof, Writing #, = » and m = =, we have

{1) liminfz, 2z 2  and
I

oy e for  mo==1,32,...

whenee p(z) < f(x). On the other hand, if ,,@,,..., and m are any
fanctions: -which belong to € and satisfy the relations (1), then
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ot

It follows from
(iig), § 2, that Himinf f(z,—z) > 0, i.e. iminf f(2,) > f(x). Thus p(x) = f(=),
n HY

and finally p(x) = f(&).

LeMMA 2. If 5, ¢ €%, 2, 2% ond if, moreover, p(z) < +oo, p(2) < oo,
then p(#y+2.) <pla)+pl2,).

Preof. Lebt P, and P, be arbifrary numbers such that p(z,) < P,
and p(2,) < P,. There exist two sequences {zl'}, {z} of functions

belonging to € and two funetions m, ¢ & and m, & such that iminfa] > 2
n

and limf (&) < P; for j = 1,2 and such that o > m; for j = 1,2 and
n

Hminf{z,—2) <0 and xy—rzm—a for n =1,2,...
n

Therefore, writing @, = af) +a and m = m;+m,, we
I, =m for wo=1,2, ... Consequently

n=12,...
have liminfe, =2, +2, and

7

ple . < lmfiz,) = hmf(mgal))‘i“ﬁlnf(wﬁ)) < Py+4-P,, whence p(2-1-2,)
I b n

< pla)+p (%)

Luwya 3. For eny function z< L%, we have p(2) = ¢(3).

Proof. Since g(2) = —p(—2) (cf. §4), the ineqmality p(z) = q(#)
ig obvious if one of the numbers p (2) or p{—2) i -}-oo; while, if p(z) < 40
and p(—=2) < +oo, it follows immediately from Lemma 2.

LEmMA 4, If 268, pl2) << too, then also p(:%) < -foo and plz)
=p()+p ().

Proof. Given an arbitrary finite number P > p(z), there exist a func-
tion me® and a sequence {m,} of functions belonging to € suech that
#y = m for m=1,2,..., liminfa, >z and Hmf(x,) < P. Note that

R’ ki3

@y = M, and congequently f(a?ﬂ) < fl@)—f(m), for n=1,2,..., whence
=]

P (3) < iminf f(@,) < ~+occ. Again
n
P> Tim f(z,) > limint f(&,) +Yimint f(z,) > p(2)+p (),
% 3 1

and therefore p(z) 219(;)-}—;0(%); whenee, in virtne of Lemma 2, 9(2)
=p(E)+p(2-

Finally, we niention two propositions which are directly cobvious:

LEMMA 5. If 2, ¢ Q% 2,6 SF and 2, < 2, then p(a;) < p(#)) in parli-
oular, if z<€* and 2z = 0, then p(z) = 0.

LEMMA 6. If 2e2% then p(i2) = -p(2) for eny non-negetive num-
ber i
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§6. We ghall now denote by £ the seb of all funations z¢ €* for which
p(#) = ¢(2) # oco. The following proposition is an immediate consequence
of Lemmas 2 and 6:

LEMMA 7. If 2,8 and 2,6Q, then (2,4 2,2,)¢8 and p (i 123, 2,)
= Lp ()0 () for any pair offfmn‘e numbers A, and 2,.

Levma 8, If 28, then [2]eL.
Proof. Since |z = zo—g, it is enough to prove that ¢ and geQ.
To this end, let us remark that, in virtue of Lemma 4, p(%) << oo,
P(2) > —ooandp(s) = p(#) +p(2); by symmetry, 4(z) > —oo, g(&) < oo
and g(z) = g(%) —+¢(2). Since, by hypothesis, p(2) = ¢{z), it follows that
[P (&) —a@]+p ()
and p(2) = ¢(

—q(#)] =0, and so0 by Lemma 3, _p(g) = q(f-;) # oo
%) # oo,

LEMMA 9, If & i8 the limit of a non-decr easin § sequence {2, of functions
belonging to £ and hm;p(z,,) < +oo, then z¢L and p(3) = limp(z,).
n

Proof. We can clearly assume (by subtracting, if necessary, the
Ianction 2, from all funckions of the sequence {#x}) that 2; == 0. Writing
Wy = Zpy1—8, TOr 0 =1, 2, ..., we shall now follnw an argument similar
to that of Theorem 12.3, Lhap L. First, we have & > #, and p (=) = q(2,)
for every =, and so

(1) g(2) = h'mq(zn) = limp (2a) -

To esta,blmh the opposite inequality, let ¢ be an arbitrary positive
integer and let us agsociate (cf. the 1emark at the beginning of § 5) with
each function e, a sequence {z{* Miora.. of non-negative functions
belonging to € guch that

@) liminfeld > w, and (3) ) < p(awg)+ef2"

k
Let us write iy = Fz””). The functions y, clearly belong to & and,
Re=]
by (2), we have lminan = Mg = 2. On the other hand, in virtue of (3%,
2 &

13
we find flyn) < X plwy) te<p(on, ) +e<limple)te for & — 1,2, ...
n=1 4

Therefore, p{z) glimkinf flue) < h;np(zk)+e, and since ¢ iz an arbitrary

pogitive number, this combined with (1) 0 <ple) =q{z)

= lir?lp (k) < oo, which completes the proof.

gives
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Tenma 10. If Me & and {2,} is a sequence of funetions belonging to £
such that |z.| < M for n=1,2,..., then, putting g = liminf 2, and h
5

= limsupz,, we have gel, hel, and
n
pg) < Hminf p(z,) < limsup p(z,) < p(B).
n n

Consequently, if the sequence {2,} is comvergent and z = limaz,, then
k3

plz) = HTI;HP (2n).

Proof. The lemma corresponds to Theorem 12,11, Chap. I, and its
proof is analogous to that of the latter. Let us write, for each pair of
integers 4 and § > 4, g;; = min(z;, 2;,,, ..., 2;). The sequence {Fis}imiig,,
is non-increasing, and conseguently the sequence {M —gut_gi.; is
non-decreasing. Let g; = hmgw Since the function g clearly belong

to £, it follows from Lemma 9 that M—g;eQand p (M —g) = ]J.I]l_’p (M —gi),
ie. g6 £ and p(g;) = hmp(gm,) Hence, applying again- Lemma. 9 to the

non-decreasing sequence {g:} which converges to g, we obfain g€ and

plg) =limp(g) < liminfp (z;).

By symmetry we have the analogous result for  and the proof is
complete.

We shall conclude this § by mentioning the following lemma which
is an immediate consequence of Lemma 5:

Levwa 11, If 28,2 2 0 and p{2) = 0, then any function © such that
lw} < = belongs do £ and for any such function x we have p(x) = 0.

§ 7. Let F(z) = p(x) for L. The lemmas of the preceding sections
show that the set £ and the funetional F(z) satisfy the theorem stated
in §3. Theorem 1 Is thus proved.

It is easily seen that if an L-integral ¥, defined in a linear set 2, = €
satislies the condition f{x) = F (2) for 2¢G, then F(z) — F,(x) for all
w<®. Consequently the functional f determines completely an L-integral
in the set £.

II. Metrical compact sets

§ 8. Let now H be a complete and compact metrical space. We shall
specify € ag the set of funections continucus in H.

The set € satfisfies evidently the conditions (i), § 2. Tt may be shown

Oeuvres 17
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that any addifive and non-negafive functional f defined in € satisfies
the condition (iig) ().

Theorem 1 permits to define a Lebesgue integral F(z) for all functions
x belonging o a cerfain set £ o €, in such a manner that the condition
R), p. 252, is satistied and that F(z) = f(z) for zeE&.

Evidently, every funetion «(#) which is constant on H belongs to .
It follows by condition C), p. 252, that every bounded function measurable
in the gense of Borel belongs to E.

We have thus proved the following

TIEoREM 2. Bvery additive and non-negative functional, defined for
all funetions whick are conmtinuous in o complete compact space H, may
by extended to an S-integral defined in a certoin linear sei (containing all
bounded functions measurable in the sense of Borel) so that the condition R)
be satisfied.

The values of this L-integral for functions bounded and measurable
(B) are, of course, determined by the given funetional f. Hence the most
general L-integral defined for this clasgs of functions may be obtained
by choosing an arbitrary additive non-negative functional defined for
all functions which are continuous in H and by extending this functional
by means of the method described in Part I of this note.

Any linear functional f(x) defined in the set ¥ is the difference of
two additive non-negative functionals f;{@) and f,(x) (cf. Banach [I,
. 217]). Bxtending these funetionals by means of Theorem 1 over two
sets, £, and £, say, respectively, we see that it is possible to extend the
functional f(x) over the linear set € = £,-2,. This sef will contain all
bounded functions measurable (B). The extended additive functicnal
F(x) evidently satisfies the conditions C) and R), p. 252, and is non-
-negative.

III. The Hilbert space

§9. We ghall now understand by H the unit sphere of the Hilbert

space, i.e. the seb of all sequences {#;} for which 34} < 1. The distance
i=1

of two points § = {#;} and ¥ = {97} is defined, as usually, by the formula

ot 7y = | f‘ (0= 00",

With regard to this definition of distance the space ¥ is not compact
and therefore we cannot apply Theorem 2 directly.

(1} A funetional of this kind is necessarily linear. Every linear funetional defined
in € satisfies the condition (ii,). See Banach [38, p. 224].
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Let €, be the set of functions » = x(t) = x(#, ¥, ...} which are
continuous in H and whose values depend only on the first » coordinates
B, 80 that & (8, &, ...) = 2(d, Py, ..., B#,, 0, 0,...) for any § = {9;} <H.
Clearly €, = G,;.

It iy easily seen that the set € = '€, satisfies the conditions (i),
n=1

§ 2. Any functional f defined in € for which the conditions (ii) hold may
be extended to an L-infegral defined in a certain set € containing G.
LEMMA 12. The set £ containg all bounded functions mesurable (B)
defined in H.
Proof. Let # be a bounded continuous function defined in H. For
any point ¢ = (b, ¥y, ..., , ...} and any positive infeger », we write
Zp(t) = &Py, ..., Fy, 0,0, ...). BEvidently x,¢C and lima, = ». If M is

k3
the upper bound of |x(f)] for {<H, then |z, << M. Since the constant
fanction & = A certainly belongs to €, it follows from the condition (),
p. 252, that meL.

Consequently every bounded and continuouns function belongs to £
and by the condition C) the same iz true of any bounded function meas-
urable (B). )

LevMA 13. Bvery additive and non-negative functional f(x) defined
in C satisfies the condition (iiy), § 2.

Proof. We define in H a distance g,(f, %) of two points %
= {By, Doy ...}, ¥ = {F1, 52, ...} DY

1 |#—0
1 t, 1) = —_
(1) ou(t, 1) gl P —

‘We eagily verify that with regard to this distance the set H is com-
plete and compact.

Let € be the set of all functions defined in H which are continnous
according to the distance defined by the formula (1). Evidently € < &,

Let f be an addifive non-negative functional defined in €. Let
Zp(t) = €Dy, ..., O, 0,0,...) for 2¢€ and ¢ = (Hy, 9y,...)e H.

‘With regard to the distance (1), H is a complete and compact space,
and hence the function x(t}e€ is uniformly continuous. It follows that
the sequence {w,} uniformly converges to x. This imaplies the convergence
of the sequence {f(z,)} (). Let fo) = limf(w,).

n

{(*) Indeed, it e >0, there exists a positive integer ¥ such that —s < wn—xg < ¢
whenever p > N, g>N. Sinee the constant funetion z = 1 belongs to &, we have,
for & = f(1), the inequality —ke < f(wp)—f(#7) < ke which proves the convergenece
of {f(wn)}-
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If = >0, then x, > 0 for each n, and conseguently f (#) = 0. The
functional f(w) clearly additive, is therefore non-negative. The set H
being compact, it follows, by what has been established in Part II, that f
gatisfies in M the condition (ii,) (with € and f replaced by ¢ and f respecti-
vely). Since € < G and f(m) = f(@) for zeG, the functional f satisfies the
condition (ii;) in €

§ 10. Now consider an additive non-negative functional f{x) defined
in @. Let f,(x) denote the functional defined in €, by the formula

(2) ful®) :f(x) for ZUE@'M.‘
We obviously have
(3) Fal®) = fupa (@) for  ze@,.

Conversely, if we choose any sequence {f,(z)} of additive non-negative
fonctionals, the funetional f, being defined in €, (where n =1,2,...)
subject to the condition (3), then the formula (2) determines an a,ddltlve
non-negative functional f(«) in €. We thus obtain the most general addifive
non-negative functional f{x) defined in €, and by what has been estab-
lished in the preceding §, the most general Lebesgue integral for all
functions bounded and measurable (B).

The set &, may be interpreted as the set of all functions of » variables
H1, ..., B, which are defined and continuous in the sphere 47 +... 4+, < 1.
It is known that the most general additive and non-negative functional
defined in &,, may be represented by a Stieltjes integral.

These general considerations will now be illustrated by the following
example. Suppose that the functionals f, are given by the formula

(4) f [ ot Von(By, ooy Ba) Ay . A,

+”n€-1

P, 0,0, ..

for we@m where ¢, denotes a fixed non-negative function integrable
in the sphere #--...4+9% << 1. The condition (3} may be written in the
form

. wVimt-. 4],
Du(Bry ey Bo) = [ Pr(Bry -y By Pppr) A
' h'l/lhﬂ%—..."&n

To satisfy this condition, we may put, for instance, ¢, = 1/2 and
Py = Pnf2¥1—9i—...—0% for m > 1. We thus obtain
' 1
V19— =8,

(5) | Pn({Byy ...y Bn) = Enl/l——'ﬁ%...
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Let # be an arbitrary function bounded and continuous in H. We
write again o, = 2(d, r ¥y 0,0, ... If || < M, where M is a constant,
then limz, = 2, lmn] < J]I

- Now let # be an L-integral which for functions helonging to € coin-
cides with the functional f subject to (2). We then have F(z) = limF (u,)

= h’m Sal®s). If further f, is represented by the formula (4), then

) =lim f f {00y oery By 0,0, ) @ulBe,vn, D) By ... A,
RS
and, in particular, if ¢, is given by (5),
ady ... dd,
Fz)= lim f f P 050, "')2“1/1—ﬁi...3/1—ﬁ§—...—192 .

This formula defines explicitly a certain £-infegral for all functions
bounded and continuous in .

The above considerations may be extended to certain spaces of
the type (B) (ef. Banach [38, Chap. V]), eg. the spaces ¥, IL® with
p > 1.



