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EXAMPLES OF APPLICATIONS

CHAPTER 1

FREDHOLM ALTERNATIVE

§ 1. Compactness of integral operators in the space C(Q).

ExAMPLE 1.1. Let 2, and £, be compact sets in an n.-dimensional
Fueclidean space.- Let 7'(t, s) be a continuous function defined on the
product £, X 2;, and let » be a finite measure defined on the set £2;. Let
us consider the operator T:

Te=y, y)= [T(,s)zs)d(s),
[

defined on the space C(£2;). We shall prove that T is a compact operator
which maps the space C(2,) into the space C(£,). Indeed, let & be an
arbitrary positive number. Since the function T'(Z, s) is uniformly con-
tinuous, there exists a number 8 > 0 such that if [t—#| < 4, then |T (¢, 8)—
—T(t,, )] < g/v(£2y) for all s eL;. Hence

1.1 ly®O—yw)I < [ 1T, =Tk, $)l ()| dr(s) < eliall -
&
Thus y = T e ((2,). Moreover,
(1.2) Iyl < sup [T'(Z, &)l ol v (&) -
t . tef,5€

Hence T' e B(0(2,)—C(2,)).

Since formula (1.1) implies the equicontinnity of all funetions

v < Twe O(@): loll <1}

and formula (1.2) implies the uniform boundedness of those functions,
Arzeld’s theorem (Theorem 2.5, B IV) implies that the iraage of the umnit
ball is a precompact set. Hence the operator T is :compa,ct., .

ExiMprE 1.2. Let us suppose that Q is a closed bounded domain
in the n-dimensional Euclidean space and that » is the Tiebesgue measure.
Let an integral operator T have a kernel of the form "

o Iy 8) = To(ty ) (E—8) 5+ o
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320 D. I. Fredholm Alternative

where the function Ty(t, s) is continuous over the produet 2x 2 and k(u)
is a function defined and continuous for # # 0, non-negative, integrable
in the ball K, with radius o equal to the diameter of the domain 2 (since
the function % is continuous, this condition is equivalent to the condition
of integrability in a neighbourhood of 0). Moreover, let the function %(«)
be even: k(—u) = k(u). Let us remark that under these assumptions
the function

E(@t)= [ k(i—s)ds
2

is a continuous function of the variable i. Indeed, let ¢ be an arbitrary
positive number. Since the function % () is integrable, there exists a num-
ber m such that [ [%(w)—kn(u)]du < te, where

| uj<r
() k(u) for u satisfying the inequality k(u) < m,
%) =
" m for w satisfying the inequality k(u) > m .

It is easily verified that the function %,(w) is continuous. Let us
remark that the funection

Bon(u) = (1) — Ep(u)

is non-negative. Hence we have for all #;,%,¢Q

| [ enlti— 8)— hnlts— 5)1d5| < [ hn(ti—8)ds + [ Tin(t—5)ds
a2 o Q

< [ [t 8)] + 1k (ta—5)]1ds
o

Stetie=1e.

On the other hand, since kn(u) is a continuous function, there exists
a number é >0 such that if f,—1,) < §, then

{em(ty— 8)— Em(fa— )| < 3—[837] ,

where [2]| is the measure of the set 2. Hence
J ettt 10 < 101 = g
Thus we have for [t,—t,| < 6
E ()~ E ()] < [ [k(t,—5)— k(ts—s5)|ds
el
< [ [em(i— 8)— Fonlta— 8] + (s — $)— hn(to— )]s < & ,
Q

and this proves the continuity of the function K (®).
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We shall show that 7' e B(C(2)) and that T is a compact operator.
Let us write &= [ k(u)du. First, we prove that y = Twe C(Q). Let ¢
K,

be an arbitrary pogitive number. The function Ty(t, s) is uniformly con-
tinuous. Hence there exists a number & > 0 such that the inequality
[ty—1Bs] < & implies |To(ty, 8)— Tolts, 8)| < & for all s € 2. As we have shown
before the function K (f) = f k(t—s)ds is continuous; consequently, there

Q
exists a number &, > 0 such that if [t,—1,| < 8, then [K(&)—K{)| <e.
Let 6 = min(dy, 6,). If [{,—1,| < 4, then

Iy )~y (1) = | [ [Zelta, 9)To(te—5)— Tolta, 8)(ta— s)](s)d|
< Nl [ 1oty )1 1o (t—8)— o(t—s)] ds +
Q
+ [ 1Tolts, )= Tolta, 8)] |k (ta— 5)| ds]

< folll max Tyft, 5)] +K]e -
Since & is arbitrary, this implies that the function y(t) is continuous on
the set Q. Moreover,
]l = max |y(8)] = max| [ Ty(t, s)b(i—s)a(s)ds |
teQ el ‘g

< max |Tot, 8)| max | fk(t—s)ds‘-max l(8)]
1,8€Q teQ@ g 202

= k-max | Lot 8)] - Il -
3 8!
Thus, T e B(G (2)). As in the previous exa.mple,.it follows from tht_a a,bovi
inequalities also that the image of a unit ball in the space C (!,2) is a se
of equicontinuous and uniformly bounded functions. By Arzelaf s theorem
(Theorem 2.5, B IV), it is a precompact set. Thus the operator T is compact.
BxAMPLE 1.2.a. Let us take, in Example 1.2, k(u)= 1/lu|*, where

1 . ,
a < n. The integral operator with kernel To(t, 8)= = is called a weakly

singular integral operator. ) )
Exawpre 1.3. Let Q be a finite union of k- dimensional differentiable
manifolds 9y, ..., On: Q= Lﬂj 0, in an n-dimensional Euclidean space

i=1

(k < n). We shall prove the compactness of the integral operator
i ) 1 .

To= [ T(t,s)a(s)ds with kernel T'(¢, 8) = Ty(t, 8)- e < k, is com-

pact, gvhere integration with respect to ds means integratipn with respfaet

to a k-dimensional surface-measure and Ty(t, s) is a continuous function

on the product £ x£2.

Equations in linear spaces

21
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322 D. I. Fredholm Alternative

We may suppose without loss of generality that the partition of
the set @ in sets Q¢ is such that @; is differentiably homeomorphic to
a certain domain D; of the k-dimensional Euclidean space. This means
that the Jacobian of the respective transformation, 4:(s, o) = 1<d'§1; m(as,/aap) y

o€ Dy, is a continuous function different from zero at every point.
Let us consider an operator T; (i = 1,2, .., m) of the form

Tig— faw, §) —~_a(s)ds
o T e

which maps the spaee C(£;) into itself. Applying the same change of
variables with respect to ¢ and § we obtain:

1

Ty = mf Ti,5(0) 4, 0) = alo (o)) do
Let :
) 3 [e— U‘(u+k)]2
Ti(t, 0) = To(t(7), 8(0)) du(s, o) s

It is easily verified that the function Té(r, o) is continuous. Hence the
operator

%= fTo(-r o) ———~———](¢+k)12 ( (a'))dd
is compact by Example 1.2. a.
We denote by T an operator of the form

Tix = f To(t, s)
2\
which maps the space U(£2;) into the space ¢ ().
Sinee ?e(y, the kernel of the operator T iz continuous.
Example 1.1 the operator T is compact.
Hence the operator T';= T;+T; with values in the direct sum

02 @C(\R) = 0(Q)

is a compact operator. Hence the operator 7 = T +Ts+...+ Ty defined
on the direct sum €'(92,) B C(2) ®... 0 (2m) = O(R) is a compact operator
which maps the space C(Q) into itself.

w(s

By

§ 2. Fredholm Alternative and an application of the first theorem on
the reduction of functionals. Suppose we are given a compact integral oper-
ator T which maps the space C(Q) into itself:

To= [ T(t,8)m(s)dn(s) .

icm
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Examples of such operators were given in the previous section.
In order to formulate the Fredholm Alternative for the equation
(I+T)w= =z, it is necessary to determine the conjugate operator T in
the space OH(Q)=rcaf, i.e. in the space of all absolutely conftinuous
meagures on the set Q2 (see Example 2.1, O I). Let u ¢ rca. By Fubini’s
theorem,

f[f’_l’(t 8) m(s)dv(s)]d,u = [fm s)dy(t]m(s)dv(s

Hence the conjugate operator T+ transforms the measure u into
a measure z defined by the following formula:

B@) = [[[ T 9)auwm]ivs) .
E Q2

Hence, applying the Riesz theory of compact operators and the fact
that every continuous operator with a finite d-characteristic is a @-oper-
ator, we are able to formulate the so-called Fredholm Alternative:

THEOREM 2.1. (i) The number of linearly independent solutions of
equations

(2.1) +4+Tx= x(t)+ fT(t, )z(s)dv(s) =0, =(s)eC(Q),

(22)  +T@B=p@E+ [[[T0,9)d@]d )
E 0
=0 for oll sets B CQ and for uercal
is the same.
(i) The equation w-+Tx=my (u+T p= py, respectively) has a so-
lution if and only if for every solution u of equation (2.2) (for every solution
@ of equation (2.1), respectively) we have

f @ty du(t) = 0 j @ (s) dug(s) = 0 , respectively) .

Let Q be a domain in an n-dimensional Euclidean space (01‘ in
a differentiable manifold) and let »(s) be the Lebesgue measure (or the
corresponding surface-measure). In the clagsical formulation of the Fred-
holm Alternative one considers not the space rca® of all continuous
functionals but a subspace of that space madeup of functionals of the form

floy= [ f(s)a(s)ds,
2
where f(s) is a continuous funetion on the set 2. This space can be identi-

fied with the space ((R). Let us note that if the kernel 7'(t, s) of the
operator T is a continuous function, then T+(rcaf)C C(Q). Indeed,

[2dT = f[f.'z'(t, s)dy(t)]w(s)ds,
Eel 2 o

21*


Yakuza


324 D. I. Fredholm Alternative

where the funection f(s) = f T(t, s)du(t) is continuous. Hence, applying
Q

the first theorem on the reduction of functionals (Theorem 5.1, A ITI)

one can formulate the following

THEOREM 2.2. Let 2 be a closed domain in an n-dimensional Buclidean
space, or let it be a finite union of k-dimensional differentiable manifolds
(k <mn). Let f #(s)ds denote integration with respect to the Lebesque measure

Q

or, respectively, a k- dimensional surjace-measure. Let T(t, s) be a continuous
function defined on the product X 2. Then
(i) the equations

(2.8) z(f)+ fT(t, a(@)ds =0, x(s)e C(Q),

and ?

(2.4) YO+ [T, 9)y()ds =0,  y(s) e 0(Q),
2

where T¥(t, ) = T(s, t), have the same finite number of linearly independent
solutions;

(ii) if xo(t), wolt) € C(2), then the equation

(2.5) s(t)+ [ T(t,s)m(s)ds = 1)

or i

(2.6) v+ [T, 9)y(s)ds = yoft)
2

has a solution if and only if [z y (B)dt = 0 for every solution y(t) of equa-
2
tion (2.4) or [@(&)y,(t)dt =0 for every solution «(t) of equation (2.3).
2

In particular, if equations (2.3) and (2.4) have zero solutions only,
then equations (2.6) and (2.5) have solutions for any function on the right-
hand side which belongs to C(Q).

Let us remark that if the kernel T (¢, s) of the operator T is infinitely
differentiable, then the operators 7' and 7+ map the space O(2) into
the space C%(Q) of functions infinitely differentiable on the set Q. By
Theorem 5.1, A ITI, we infer the following

THEOREM 2.3. If the set Q and the measure ds satisfy the conditions
of Theorem 2.2 and, if the kernel T(t, s) 28 an infinitely differentiable function
on the product Qx Q, then one can replace the condition of belonging to the
space C(L2) by the condition of belonging to the space C°(Q) both in equa-
tions (2.3)-(2.6) and in Theorem 2.2.

In a similar manner one can obtain

icm
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THEOREM 2.4. If the set Q and the measure ds satisfy the conditions
of Theorem 2.2 and if the kernel T(i,s) satisfies the Hélder condition:

[T (b 81)—T (B )| < e[t~ to}* + |8,— S (0<ugly,

then the condition of belonging to the space C(2) can be replaced by the con-
dition of belonging to the space H* both in equations (2.3)-(2.6) and in
Theorem 2.2.

§ 3. Weakly singular integral equations. Much more subtle is the
application of the first theorem on the reduction of functionals to weakly
singular integral equations. Further considerations will be based on the
following lemmas:

Lemma 3.1. Let 2 be a closed domain in the Buclidean space B™ and
let &, 1, € 2, where ¢ # 1,. If two real numbers a and B satisfy the inequalities
0 <a,f<mn, then

(3.1) f

Q

_0__
< ltl_tla+ﬁ_"
Ciloglt,—t|+Cy  if

s if at+pf>n,
t— 8|°[t,— s
ji— il s] ctpen,
where C, Oy, C, are positive constants independent of t,t,.

Proof. First, we prove inequality (3.1) for == 1. Substituting
§=1-(h—*)u and taking Q= [a, b] we obtain

b—t
-1

f ds . 1 J du

§ l—slf—sf  jH—1P7 Y, wid—w)’
)

and inequality (3.1) follows immediately.

In order to prove inequality (3.1) in the case of n > 1 we consider
an n-dimensional ball K,(t, ) with centre at the point ¢ and with radius
r = 2 [t—1t,]. Let us write the integral on the left-hand side of inequality (3.1)
in the following manner:

ds
(3.2) Qf [t— s|lt— slﬂ -

We now apply to the first integral at the right-hand side of this
equality a homotopy-substitution reducing the ball Ku(f,r) to the ball
Ku(t,1) with radins 1. Then

ds as
f a Y] + N a [
Eatm [0 81 Th—s] NEatery 1E— 8 Tb— ]

ds’'

ds 1 f
= —: a+f— riapgr ng?
[t—sl"le—sl? 2P M— gy L E— sl — s

(3.3)
Ean(tyr)

because ds = 2"|t—1,|"ds’. Since [i—1#;| = }, the integral obtained above
is bounded.

N
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326 D. I. Fredholm Alternative

In order to estimate the second term on the right-hand side of
equality (3.2) we note that for every point s e Kyn(t, ) we have the in-
equality
[t—s]

1 <2
3 < [t—s]
Hence
(3.4) ds o7 ds
. < P
aEater 08 Tl—s aEan 181

L
o8 " 'do
<FOn | s
2r v
where wa = 2(=)"¥I'(n/2) is the area of the surface of the sphere H,(t, 1)
and L is the diameter of the domain Q. If a + 8 > n, formulae (3.3) and (3.4)
immediately imply inequality (3.1). In the case of a+ f = n, integral (3.3)
is bounded and the integral on the right-hand side of inequality (3.4)
is increasing with the order of growth of log|i—t] as |t—t]—0. Hence
inequality (3.1) holds also in this case. m
Let us also remark that if a8 < 'n, then integral (3.1) is obviously
bounded as ji—2;]—0.
Let us consider the weakly singular kernel

T(t, )= Tyt 8) ——, a<m,

1
[t—si*’

where Tl, 8) is a continuous functions for ¢, s € Q.
It is easily verified that the square of the integral operator T is an
integral operator with kernel T,(f,s) defined in the following manner:

Ty(t, 8) = fT(t, o) T (o, 8)da
. Q

But, by Lemma 3.1,

|5, s)‘_InfT(t, a)T(a,s)do‘l—lnfTo(t,d) [t—a]“T“(o’ 8) [cr—sl“d“
2 ¢
< ﬁ?ﬂx |Tol2, 8)] l't__slaa—n ’

and the function T,(t,s) is continuous for ¢ # s.

Generally, it can be seen that the integral kernel corresponding
to the operator T* is

Tyt 8)= [ [... [T, 0)T(0,, 03)... T(04_y, 8)doy do, .. Ao,
209 Q

k—1 times
(k=2,3,..);

§ 3. Weakly singular integral equations 327

which is continuous for ¢ # s and unbounded in the following manner:

M

| Ta(t, 8)]< [i—g G

Let p be the least natural number satisfying the inequality
p(n—1)—pa>0.
do
[t— of*jo—sI”
variables ¢ and s for a4 § < n, it follows that the kernel T'(?, s) cor-

responding to the integral operator T? is a continuous function. Hence,
applying the considerations of the proof of Theorem 2.2, we obtain

Since the integral f is a continuous function of the

T?(reaf) C C(Q).

We now apply the first theorem on the reduction of functionals
(Theorem 5.1, A IIT) p times. We obtain -
{:T__ lngx-:z': = ﬁ?ﬁ’_r:
where
gy = 0(Q)+T¥rcal), but &= C0(Q).

A similar argument as in the case of & closed domain in a space can
be applied in the case where 2is a union of a finite number of k- dimensional
differentiable manifolds in an Euclidean space E® (k < ). One has only
to apply the considerations of Example 1.3. Thus we have

THEOREM 3.2. Theorem 2.2 remains true if the kernel of the integral
operator is weakly singular, i.e. if

B N 1 .
T(t,S)zTO(t’s)[t———s—{u’ a<n,‘

where Ty(t, 8) 18 a continuous funmction for 1,8 e Q.

§ 4. Integral equations with an integrable kernel. An application of
the theorem on simultaneous approximation. If the kernel of an integral
operator T ig of the form T (t, s) = Ty, 8)%(t— s), where the function %(x)
is non-negative, even, continuous for # # 0 and integrable in a neigh-
bourhood of the point u = 0, then in the general case it is not possible
to apply the first theorem on the reduction of functionals. Namely, there
is no analogy of Lemma 3.1, which makes it possible to prove that one
of the powers of the operator 7' is an integral operator with a continuous
kernel. In order to prove the Fredhelm Alternative in this case, we apply
the fact that every continuous furction defined on a. product 2x 2 of
compact sets can be appoximated uniformly by polynomials in variables
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328 D. I. Fredholm Alternative
biyeostng 81y.ey8n, Where T= (f;,...,%), §==(81,...,8) (Weierstrass
theorem). Hence the kernel of the form Tp(t,s)= To(t, 8)km(t, 8) can
be approximated uniformly by polynomials in variables ¢, ..., ta, 81, ..., 8z,
where

kau) if uw<m,

Fem(u) = . (m=1,2,..)
m if uw>m

(see Hxample 1.2). We denote by T, the integral operator corresponding
to the kernel T(¢, s)km(1, 5). Since the kernel T\m(t, s) can be approximated
uniformly, the operator Iy, is a limit in the norm of a sequence of operators
of finite dimensions.
On the other hand, it is easily verified that ||Tp— T|j—0. Indeed,
we have Iim [kn(ti—s)ds = 0 uniformly for ¢ e, where huy(u) = &(u)—
m+o o

— Fm(u). But
T~ T)ol = [ oty &) hnti—5)a(s) ds]
2

< llollmax [ Ty(t, 8)|- max [ hm(t—s)ds .
i,3€Q teQ o
Hence
1T — Tl < max | Ty(t, )| -mox Df Tim(t— $)ds—0 .

Thus the operator T is approximated in the norm by means of oper-
ators of finite dimensions.

Let us denote by & the space of functionals C(Q), i.e. functionals f
of the form

fo)= [o@a(ar,

where ¢(t) ¢ C(2). Since the kernel of the conjugate operator 7+ is of
the same form as the kernel T'(¢,s) of the operator T and the norm of
a function ¢ in the space O'(R) is consistent with the corresponding norm
of a functional, the theorem on simultaneous approximation (Theorem 7.1,
O IIT) yields

THEOREM 4.1. If 2 is a closed domain in an n-dimensional Buclidean
space, then Theorem 2.2 holds also for imtegral operators with kernels of
the form T(t, s) = Ty(t, s)k(t—s), where To(t, s) is a continuous function
on the set QX Q and the even non-negative function k{u) is continuous for
% # 0 and integrable in a neighbourhood of the point w= 0.

§ 5. ‘An application of the Leray-Williamson theorem. Integral equations
on the straight line. Theorem 2.3 could also be obtained if we proved
that T is a compaot operator which maps the space C®(Q) into itself.

icm
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However, the above argument, applying the first theorem on reduction
and the theory of compact operators in Banach spaces, seems to be
simpler than a direct application of the Leray-Williamson theorem
(Theorem 5.6, B IV).

However, in some cases the method proposed above gives no result
and one must apply the Learay-Williamson theorem. We shall consider
one of such cases. ‘

o©
Suppose we are given a space Cy(£2), where Q = | JQ; and 4 are
i=1
either closed domains or %-dimensional differentiable manifolds con-
tained in the n-dimensional Euclidean space (see Example 3.7, B I).
In Cy(R2) we shall consider an integral operator 7' determined by a con-
tinuous kernel T'(¢,s) for which there exists an index 4, such that

T(t,8)=0 for

‘We prove that the operator T is compact. Let Uz = {# € C(2): |lall;, < 1}.
We show in a manner analogous to that applied in Example 1.1 that the
operator

Tiw=To= [T s)a@s)ds= [T(,s)z(s)ds (j=1,2,..),
2 04,

s ¢‘Q‘n‘

considered as a map of the space Cy(2) into the space C(£2;), is & compact
operator. Thus the operator T is compact in the space Cyf2), because
it is compact in each pseudonorm. .

The conjugate space [Cy(2)]T consists of all absolutely continuous
measures with compact support (see Example 2.1, C I, and Gorollzujy 9.6,
B I), Since T(t,s)= 0 for s¢%,, the operator Tt ma,ps.the conjugate
space into the space of continuous functions vanishing outside the set £2y,.
Hence we have the following

THEOREM 5.1. If = Gﬂi, where Q; are either bounded closed do-
=1

mains or k-dimensional compact differentiable manifolds in the space E"
(k < m), and if for a given function T(t,s) continuous on the product QX 2
there ewists an index iy such that T (i, 8) =0 for s ¢ Dy, then

(i) the equations

(5.1) a+To=o(t)+ [T, s)o(s)ds=0, B(t) € CyQ)
2

(6.2) y+Try=yt)+ [T, 8)y(5)ds =0,
’ THt,8)=T(s,1), y(t)eO(),

have the same finite number of linearly independent solutions,
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(ii) the equation

2+To =1, BeCR), or y+TTy=1y,, y,¢0(Q),
has a solution if and only if

f By (Ydt=0 f w(Hz@)dt=0, resp;:cti'uely)

for all solutions y (1) of equation (5.2) (for all solutions (1) of equation (5.1)
respectively). ’

CHAPTER II

SINGULAR INTEGRAL EQUATIONS

§ 1. Cauchy’s singular integral and its fundamental properties. A regular

open arc on the complex plane is a set of points of the form
L={z=201),a<ti<fp},

where

1. the function z(f) is one-to-one and has a continuous derivative
different from zero at each point e (a, 8),

2. h'm 2'(t) # 0 and ]im 2'(t) # 0,

3. the exten.swn of the fu.uctlon 2(t) to the closed interval [a, ]
remains a one-to-one map.

A regular closed arc on the complex plane is a set of points of the
form

={zz=12(), a<I<P, 2(a) = #(8)},

where

1. the function z(f) is one-to-one for { # a, 8 and has a continuous
derivative different from zero at each pomﬁ te(a,p),

2. lim #(t) = lim () #0.

If L 15 a regular arc, then there exists a positive constant y such that
x<118 t2|<1 fora.]ltl,tzeL
12

where s, , denotes the length of the arc L ,, which is a segment of the arec L
contained between the points # and ?,.

Let (z) be a function defined and integrable on the arc L. The Cauchy
integral of the function z(r) is defined as the expression

(1.1) : B(2) = f ii(-%d"
L

This integral is well-defined for all points z ¢ L. Moreover, if 2 ¢ L, the
function @(z) is analytic and it is easily verified that

(1.2) &'(e) = f = a(z e

—Z
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332 D. II. Singular integral equations

This definition can easily be extended to the case where I is a union
of & finite number of pairwise disjoint ares I, and # ¢ | J L, (if open arcs L,
are pairwise disjoint, this is not necessarily true for the sets L,).

Evidently, the set I = | J L, cuts the plane into a finite number of
connected domains. In each of these domains the function & (2) is analytic.
Moreover, we see from formula (1.1) that &(z) = O(1/jz]) as 2—>0.

If z ¢ I, then the Cauchy integral does not exist in general. Therefore
it is convenient to make use of another notion. The principal value of
the Cauchy integral is defined as the limit

im ff”(ildrzv.P. fmdr,
ML\LE — P T—1
where
L,={e: |o—tj<e}nL.

Evidently, if the function # (z) is integrable, then the integral f Md,
—
) IN\L,
always .emsts. However, the principal value of this integral does not
necessarily exist even in the case when the function #(z) is continuous.

However, if V.P. f iLT)tdr exists, then the following formula holds:
;=

13 P, [0 g _ v, [2R—20) - b—1t
3 Vijr—t‘h ‘-P-Lf - Ftalmita)log—,

}Nhere a= z(‘f) and b = z(B) denote the two ends of the arc L. In particular,
if the are L is closed, then the last term in formula (1.3) vanishes.

In the sequal we shall write briefly f f—(%dr in place of V.P. f m(f)t dr
L LT

and we shall call this integral the singular integral of the function x(z)
on the arc L.

From formula (1.3) it follows immediately that a singular integral
of a function satisfying Holder’s condition always exists. Indeed, let
us suppose that the function (v) satisfies Holder's condition with an
exponent u, i.e. that

le(t)—ao(t)]| < Cli—t)*  for t,heL, where O0<pu<1;
then
2(7)—
@=2®) _, 1
T—t [e—*
But 512 <£. Hence the integral f M dr exists as a usual
|t1“‘t2] x L —1
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Riemann integral, and consequently, also as a singular integral. Thus
there exists a singular integral

2(t) . [ z(r)—a(7) . b—1t
Lfmdr _Lder+w(t)wz+m(t) logm.

Let us remark that the singular integral f i?dr is a function of
L T—

the variable {. Hence the map
Sw:i. ole)
T J T—1
A
is a linear operator. Our further considerations will be based on the
following important theorem:
TreorREM 1.1. (Plemelj [1], Privalov [1]) If L is a finile system of
pairwise disjoint reqular closed arcs, then

BEAL) if O0<p<1,
¢ B(H{L)—~>H'"%(L)), where 0<e<1 is an arbitrary number .

We shall not give the proof of this theorem here; the reader can find
it in Pogorzelski’s monograph [1], § 1, Chapter XV. The formualation of
the theorem given there is not the same as the above one; however, the
theorem given above is an immediate consequence of the fact that the
constant ¢ appearing in Pogorzelski’s formulation depends on the line L
only.

y'1‘11e following relation holds between the boundary values of the
function @(z) defined by formula (1.1) and the funetion z(z).
TeeorEM 1.2. (Plemelj [1].) If a funciion «(i) satisfies Holder’s
condition on a regular arc L, then the function
1 z(z
o) = 5 [ 2D
L
can be ewtended continuously on both sides of the are L. If we denote the
respective limit values by DF(t) and (1), we oblain

ot (1) =%m(t)+% ff——(_r—)tdr )
(1.4) -

()= — %m(t)—{— 515 f%’(_—’)idr
L

The proof of this theorem can be found in Pogorzelski’s monograph
[1], § 3, Chapter XV.

Since the function @ (2) is analytic for z ¢ L, Plemelj’s formulae (1.4)
hold ‘also for finite unions of pairwise disjoint arcs.
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Formulae (1.4) make it possible to represent every function which
satisfies Holder’s condition on a regular closed arc L as a difference of
two functions:

z(t) = OHH)—P7(1),

where @*(t) is the limit value of a certain holomorphic function in a domain
with boundary L, and &7(1) is the limit value of & certain holomorphic
function defined outside the domain with boundary L and lg’rgdi‘(t) = 0.

It will be seen that Liouville’'s theorem implies the uniqueness of this
decomposition. It is easily verified (Cauchy’s integral formula) that

SO*(1) =0*(t) and SO (1) =—OD (1),
where § denotes the operator Sw:i. f@dr, as before.
A T—1

TaeoREM 1.3. If a regular arc L is closed, then the operator S defined
on the space H¥(L), 0 < pu <1, is an involution:

82=1I.

Let there be given a finite system of pairwise disjoint closed regular
arcs Iy, ...,Ls. These arcs eut the plane into componenets 9, ..., 2,.
We associate the sign — with the component £, containing the point oo,
and the sign -+ with components which have a common boundary with 2.
Further, we associate the sign — with components which have a common
boundary with components with sign +, but not with Q,, ete. We give
an orientation on the arcs in such a manner that on the left-hand side
of each of the ares lies a domain with the sign +, and on the right-hand
side, a domain with the sign —. Such a system is called an oriented
system. (See Fig 13.)

" ©
Gle

Fig. 13. The oriented system
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Integral (1.1) induces a function @(2) analytic in domains
Dy, 24y .0y 820 We denote the limit values of this analytic function in
passing from a domain with the sign + by @%(f), and in passing from
a domain with the sign — by @7(¢). Then Plemelj’s formulae (1.4) hold
for systems of ares L. Arguing as in the case of one are, we obtain

CoROLLARY, 1.4. If a system L is oriented, then the operator 8 defined
on the space HH(L), 0 < p< 1, is an involution: 82 = I.

§ 2. Involutional cases of singular integral equations. Let there be
given an oriented system L. We consider the singular integral equation

1 (E@ns(),
We suppose that the function K (¢,7) saitsfies Holder’s condition

with an exponent ux on the set L:
Kty v)— K (b, 7o)l < O(t—t)" + r—m}")..

Similarly, we suppose that the function Ay(#) e H*(L). The assumptions
regarding the function f will be formulated later.
We transform equation (2.1) in the following manner:

Ao(t)w(t)+%:t—)ff—~(_1—)t-dr+ fT(t,r)w(-r)dr.—_f(t), ‘
L L

where
E(,7)—K(t,1) 1

and p— =

Ay() = K (¢, 1) T,z =

The agsumption that the function K (¢, ) satisties Holder’s condition
with an exponent u implies immediately that

T, 7)< T
i.e. that the function T'(¢, ) is a weakly singular kernel.

It follows from Thecrem 1.1 that a singular integral on a closed are
preserves the space H#(L) for all p < 1. If the funetion K(i,7) satisfies
Holder’s condition with an exponent u, then the function 4,(7) satisfies
Holder’s condition with the same exponent. In order to find out in wh}'ch
spaces equation (2.1) should be considered, we shall apply the following
theorems: . ’ :

THEOREM 2.1. If o funciion M (1) satisfies Holder’s condition with an
emponent p on the set L and if the operator M is defined by means of the
equality

(Mz)(t)= MM)2(t) (tel),

then M ¢ B(HY(L)) for all a < p.
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Proof. Evidently, the function M (f) satisfies Holder’s condition

with an exponent a < u, ie. |[M(H)—M ()] < Ot—#|% Thus, if =(7)
e HYI), then
M Qo) =M (2] _ |y BO=2@] o 0= ()]
=" [t—#° [t—2*

< (O+max (M ()]

Hence
1 Ma| < (0-+2max | M (1)) o] m
The operator M is called the operator of multiplication by the function
M (t).
THEOREM 2.2. (Pogorzelski [1].) If the function K(i,t) satisfies
Holder’s condition with an emponent x with respect to the variable t,veL
and if the integral operator T 43 defined by means of the kernel

T(t, T) = K(t, Ti:f(t7 i)’
then
T ¢B(O(L)>HYL) for a<ip.

The proof is given in Pogorzelski’s monograph [1], § 2, Chapter XVII,
Volume III.

TamOREM 2.3. If the assumptions of Theorem 2.2 are satisfied, them
T « BHYL)), a < }u, and T is compact.

Proof. Tf follows from Arzeld’s theorem (Theorem 2.5, B IV) that
the ball in the space H*(L) is compact in the topology of the space C(L).
To obtain our theorem it is sufficient to apply Theorem 3.1, BIV. m
As a corollary to Theorem 2.3 we obtain the following

THEOREM 2.4. If 8 is a singular integral operator

% (1) ar

T—1

Sp=—
rzL
and M is the operaior of multiplication by a function M (t) satisfying Holder's
condition with an exponent p for t € L, then the commutator M — M8 belongs
to B(HYL)), a< %p, and SM— M8 is compact.

It follows from Theorem 2.4 that equation (2.1) should be considered
in the space HYL), a < }u. Hence a natural assumption regarding the
function f(¢) is f(f) e HYL). Let us also note that Theorem 1.3 implies
that the operator 8is an involution. Hence one may apply to equation (2.1)

the method of regularization given in the theory of algebraic and almost
algebraic operators (§ 4-6, A II).
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TuEOREM 2.5. Let L be an oriented sysiem. Let the fumctions A3)
and K (t,t) satisfy Holder’s condition with an emponent pu for t,ve L,

_E@,n—E@,19) 1 B
T, 7) = )= =, Tm_i{T(t,vl:)rm(r)dr
and A(8)= Ao+ 4,8, where Ay and A; are operators of multiplication

by functions Aty and A,(t) = K(3,1), respectively. Finally, let

- [

If AXt)— A%2) # 0 for t € L, then the operator A(8)+T € B{HY(L)), a < 4
and the operator B, = (Aj— A3 HA— A,8) is. a simple regularizer of
the operator A (S)+T to the ideal T(H*L)) of compact operaiors.

This theorem is an immediate consequence of Theorem 2.4 and
Corollary 4.5, AIL.

COBOLLARY 2.6. If the assumptions of Theorem 2.5 are satisfied, then
the operator A(S)+T has a finite d-characteristic and s, ;7= %4g)-

Proof. By Corollary 5.8, BIV, the ideal T(H*L) of compact
operators is a Fredholm ideal in the algebra B(H%L)). Thus, by Theo-
rem 6.1, AT, the operator A(S)+7T has a finite d-characteristic. By
Theorem 6.2, A I, its index does not depend on the compact operator T'. B

§ 3. Conjugate operators to singular integral operators. In the preceding
section we have shown that the operator A(S)= A4,+4A4;8, where 4,
and A4, arve operators of multiplication by functions satisfying Holder’s
condition with an exponent u and

Sz = w(-r) d

(the system L being oriented) ,
mL i
has a finite d-characteristic. However, usually we do not investigate
the codimension of the image of that operator in the space H*L), but
the nullity of the conjugate operator defined on the space &, of all fune-
tionals & of the form

= [&mod, where &(t) e HYL).
i ,
This space will be identified with the space H*L), and the space

of funetionals of the form
= [&@a(t)dt, where the function &(f) is continuous,
L o

‘Equations in linear spaces 22
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will be identified with the space of all continuous functions C(L). Let
us remark that, under this notation, we have A(S) ¢ L{H*(L), &)
= LH%L), HYL)). On the other hand, if

BypA8)y=I+T,, A®)Byg=1I1+T,,

then the integral operators T, and T, are weakly singular and can be
extended to operators 7, and ', defined on the whole space C(L). The
operators I+%, and I+, belong to L,C(L), C(L)). Moreover, they
are Pg;,-operators, as follows from Theorem 2.2, I. Hence, Theorem 5.2,
ATIT, implies that the operator 4(S) is a Doy, -operator. This means
that the dimension of the space of zeros of the conjugate operator is equal
to the codimension of the image; moreover, functionals which are zeros
of the conjugate operator deseribe this image.

We shall now determine the operator conjugate to the operator S.
We calculate the integral

£(Bz) = [ &(t)(Sw)(t)d .
But i
E(1) = £ ()— £7(1)

where the functions £7(8), £(¢), a™(¢), #~(¢) are limit values of analytic
functions (see Theorem 1.1). Thus, if I is an oriented system, the fact
that all eomponent arcs are closed yields

and  =z(t) = 2t (t)—2 (%),

JEWatmat=o, [E@awar=o.
Hence i *
£(8x) = f £(8)(Sz)(t)dt
L

(e ) — ) 8o () —o (D) at
(

-J
L
= [[ErO— @)t +o@)d
Lz
L= [(Emeo—@otm)a
L
— [EO+E @)t —om @)

L

=—(88)=.

But the operator conjugate to an operator of multiplication by
a function is equal to the same operator of multiplication. Hence the
operator conjugate to A(8)= A,+4,8 is A'(8) = A,— S8A,. Thus we
obtain the following

It

)
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THEOREM 3.1. Let L be an oriented system and let the following equa-
tions be given:

(8.1) Ao(t)w(t)+‘¥ ff(f—%dr= i,
L

1 (4EyE,
RL l‘r—i d‘”'—y(t))

(3.2) Aty (0)—

where the functions Ay(t) and Ay(t) satisfy Holder’'s condition with an ex-
ponent p, A3— A2 £ 0, and f,ge H{L), a < }u. Then

(i) both homogeneous equations (i.e. if f = 0 and g = 0) have a finite
(but not necessarily the same) number of linearly independent solutions im
the class of functions savisfying Hélder’s condition, and all those solutions
belong to the space H%L);

(ii) a necessary and sufficient condition for equation (3.1) (equation
(3.2)) to have a solution is that

C[imymdt=0  ([g@a@)di=0, respectively)
A

L

for every solution y(t) of the homogeneous equations (3.2) (for every solution
x(t) of the homogeneous equation (3.1), respectively).
Let us remark (basing ourselves on Theorem 3.2, I) that the operator T
conjugate to an operator T, where Tz = [T(t,7)w(v)dr, has the form:
L

Te= [T'(t,7)6(@)dr, where T'(t,7)=1T(z,1).
L

Thus )
(Ao+ 4,8 +TV2 = (Ay— 84, +T1")x

= At)a(t) +% [—il(t’) £, ti:f \Z T)]!v(‘r)dr
L

= Aytym(t)+ % ——fgtit—)m(r)dr
L

and one can formulate Theorem 3.1 in a more general way:
THEOREM 3.2. Theorem 3.1 is true if we replace equations (3.1) and (3.2)
by the equations

(3.3) Atz (t) + % f li—(i’{lw(r),dr =1,
L

(3.4)

Aoy = [EEDymar= g,
L

22%
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where the functions Aq(t), K (t, 7) satisfy Holder’s condition with exponent u,
Aj(t)— A3(t) # 0, where A\(t) = K(i,1), and f, g e H(L), a < Lp.

§ 4. Index of a singvlar mtegral operator. Let L be an oriented system.
Let X be the space H¥L), a <} Let us denote by W the set of all operators
of theform 4 = A4,+4,8 +T where A,, 4, are operators of multiplication
by functions Ay(¢) and A4y(¢) e H(L), s > 20, A2— A% # 0, and the oper-
ator T is compact. The set W has the followmg properties:
(1) If A= 4,4+4,8+T4¢W, B=By+B,8+Tze W, then AB ¢ W.
Indeed,
AB = (A¢+4,8 +T4)(By+B; 8 +T5)
= A,By+4,8By+4,B,8+4,8B, +
+TA(B0 +BIS +TB) + (-A-o +-A~IS +TA) TB
= (AoBy+4,B;) + (4, B, +4,B,)8+1, ?

where the operator

Ty= Tu(By+B:8+T5) +(do+A4,84T4) Tp+4,(8By— By)

is compact (Theorem 2.4). Moreover, since 42— A2 # 0, B:—B2 + 0, we
have
(Ao By+A; Byfi— (4, B, + 4, B, = ALBE+ APB:— AZB:— A2B:
= (43— AD(Bi—B) # 0.
Hence ABe¢W.

(2) If AW, then A+T e W for every compact operator T.

This follows immediately from the definition of the set W.

(8) For every A < W, there emists a simple regularizer RAe W to the
ideal of compact operators.

This follows from Theorem 2.5.

Let us remark that the representation 4 = Ay+A4,84T is unique
for every operator A e W. Indeed, supposing there are two different
representations 4,+4,8+7T4 and By+B, 8 +Tp, the operator (4o— B,)+
+(4,—B,)8 is compact. Hence the operator

[(4o— Bo) + (41— B)1P; + [(Ao— Bo)— (4,— B,)] P,
where Py =%(I+48), P,=3}(I—18),

is compact. Let X,= P, X, and X,= P,X. Since (Ao— By) £ (4,—
are operators of multiplication by functions in spaces X, and .Xz, Te-
spectively, they can be compact if and only if they are both zero oper-
ators. Thus we must have 4,= B, and A, =

‘We now define a function », in the set W m the following manner:
with every operator 4 ¢ W we associate an increment of the argument
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of the function (4,+4,)/(4,—4,) on the oriented system L, d1v1de<1
by 2n. We shall write it as follows:

rim e faf

Evidently, the function v4 is integer-valued. Moreover,
ap— f d; (a.rg Ao(t)Bo(t)+A1(t)Bl(t)+A1(t)Bo(t)+An(i)Bl(t))
27 Ao(t) Bo(t) +41(1) By(t)— 44(2) Bo(t)— Ao(2) Bi(?)

_1 o) F44(0) Bolt) +-By()
== jd‘(“ A= 24,00) Buft)— Bl(t)

2l f (a,rg %) + == f i (arg

7418 & continuous function defined on the set W. Indeed,if A™ = A+
+AM8—~>A = A,+4,8, then the functions A{(t) and A1) tend
uniformly to functions Ay(f) and A4(t), respectively. Hence we have for
sufficiently large indices n

Aglt) + A (1)
M A () — Ay Al(t))

B(t) +By(1) '
m)—w)) =74t7s.

1 Aé"’(t)+A§”’(t))_ 1 ( Aqft) +Ay(t)
o ) % (MgAS"’m—Aﬁ"’(t) "mf a argAc.(t)—Al(t))'

Moreover, by definition, we have v, 5 = v, for every compact operator _’[’.
Hence, by Remark 6.2, C III, we have S

V4= Px4.

It remains to show that p= 1. Let 1 be an arbitrary point lying
in a domain with a sign ¢+ (see the definition of an oriented system).
Let A be the operator of multiplication by the function (i~ 1). Evidently,
we have AP, +P, e W. The increment of the argument of the function
(t—1) on the oriented system L is equal to 2w. Hence v,p . p, = 1. On
the other hand, P, X = X, (P,X = X,, respectively) is a set of functions
which belong to the space H*L) and are limit values of analytic functions
defined in domains marked by “-F” (“—”, respectively). The operator A
considered on the space X; is of index 1. Hence the operator AP, -+P,
ig of index 1. Thus x,p 5, = ¥,p 4p,» a0d this proves that p = 1.

Taking all the above facts together we can formulate the following

TerOREM 4.1. If L is an oriented system of ares L; and

A(8)z = Aglt)z(t)+ Al”f Jai,
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where funciions Ay(t) and Ay(t) satisfy Holder’s condition with an exponent u
and AXt)— A¥8) # 0 for t e L, then

5= J e

§ 5. Systems of singular integral equations. Let I denote as before
an oriented system. We consider the following system of singular integral
equations:

Ao(f)— Ay t))

= € Lt T 4,0

(5.1) som+ = [EeDoma =10,
L

where Ayt) = (A%(t)) and K(t,7)= (K%(t,v)) are square matrices
with # rows and n columns. All functions A¥(t) and K%(t,7) satisfy
Holder’s condition with an exponent g, f(f) is an #-dimensional vector-
valued function with coordinates belonging to a space HXL), a << }u.

We denote by HZ%(L) the vector space made of #-dimensional vectors
whose coordinates are elements of the space H%IL).

Arguing as in the one-dimensional case, we write equation (5.1) in
the following form:

1 (K(,7)—K(t, t)

+;@:L T—1

Ay(8) [=() _
Ayt @)+ - r:[;:_t 2(r)dr = f(f),
where the matrix A.(t)= K(t,1) = (K*/(,1)). Let us remark that the
last integral is weakly singular. We consider the matrix

S0 ..0
08 ..0
Bwm=1....0 .. ’
00 .. 8/
where
g=2 (204
7 J T—1

and the operator § maps the space H*(L) into itself. It is easily verified
that
8y =TI, where I, = (8,I).

(The unique matrix I, is an identity operator in the space HZ(L)).
Moreover, the commutator Bpd,—A 18wy is a compact operator. Hence
we can again apply the method of algebraic operators (Chapter IT, Part A)
and obtain:
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THEOREM 5.1. If the matric A%(t)— A%t) is invertible for t L, then
the operator

A(Sa+To = Ao+ 4y S+ To= Agio(+ 5 [EED
L

— " (r)ds

has a simple regularizer of the form
B asprr = (45— AN (Ae— 4, 8)

to the ideal of compact operators T(H(L)), a < }p.
CoroLLARY 5.2. The operator A(8,)+T has a finite d-characteristic
and
Z A+ = % A(S )

Let us remark that by arguing as in the case of one equation it is
eagily proved that

THEOREM 5.3. The operator A(8,) is a Dyay,-operator.

As a corollary we obtain

THEOREM 5.4. Suppose that L is an ortented system and we are given
the equations

(5:1) Aa()+ = f LG, ’)wmd—z—f(t),

(5.2) A0+ = f e, )y<z)dr~ ®,
where the elements of the square matrices Ay(t) and K(t, t) satisfy Holder’s
condition with an exponent u, the matric A3(t)— A3(t) is invertible, f (t) € Hy(L),
g(t) e HA(L), a< }p, and Aj(t) and E*(t,v) denote matrices adjoint io
Ayt) and K(t,7), respectively. Then

(i) both homogeneous equations (i.e. f(f) = g (t) = 0) have a finite (but not
necessarily the same) number of linearly independent solutions in the class
of functions satisfying Holder's condition, and those solutions belong to
the space HZ(L),

(ii) equation (5.1) (equation (5.2)) has a solution if and only if

[1wymac=o fg (1)@t =
L

for every solution y(t) of the homogeneous equation (5.2) (x(f) of the homo-
geneous equation (5.1), respectively).
We now give a formula for the index of the operator 4 (8§):
THEOREM b5.5. Let L be an oriented system and let

0, respectively)

A(8)s = A,.(t)m(t)—{-A‘(t) f 2(2) ) ax
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where the elements of the square matrices Aft) and A(2) satisfy Holder's
condition with an ewponeni u. If the matrices A(t)— A (f) and Aqt) + 4,(2)
are both invertible, then

' oft) + 4y(1)
%.4(8) =2—1;;_ fdg(anD(t)) , whe?re D(t) = %ﬁ%'
z

Proof. Let W denote the set of all operators of the form 4 = A4,+
+A4;8-+T, where 4, and 4, are operators of multiplication by matrices
whose elements are functions satisfying Holder’s condition with an ex-
ponent x and the operator I™is compact. Moreover, we suppose that the
operators 4,— A4, and A,+A; are invertible. As in the one-dimensional
case, it is easily verified that the set W has the following properties:

1.if A, Be W, then ABeW,

2.if AW, then A+T ¢ W for every compact operator T,

3. if A'c W, then -there exists a simple regularizer Bye W to the
ideal of compact operators (see Theorem 5.1).

. As in the one-dimensional ease, the representation of the form
Ay+A,8+T is unique. It is also eagily verified that the function

A (o deb[Agt) +4,(8)]
4= :o,TTLf d‘(*”rg dot[Ay(7)— Aﬁi)

Is continuous and that v4p = v4-+»s. Thus, by Remark 6.2, CIII, we
have v4 = px4. In order to prove p = 1 we consider the operator AP, +P,,
where the operator A is of the form

Az = A&y ooy B0) = [(t— Aay(), wal8), ..., walt)]

and where 4 belongs to a domain marked by ¢+. Asin the one-dimensional
case it is easily verified that v, =— x,. Hence p=1.m

§ 6. Almost involutionary cases of singular integral equations. As
before, let L be a given criented system. So far we have congidered singular
operators of the form

_1 (K
Sz *'niLf‘%.——,—tw(T)dr‘

However, in some cases it is more convenient to consider, instead of the
function r—*, the function A(z— 1), where h(u) i & continuous funetion,
h(u) = u+p(w), and the function h(w)/u satisfies Holder’s condition
with an exponent u. We write

: 1 ()
Sh.w -—Elj‘m dr.
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TmoBEM 6.1. If the funmction h{w) satisfies the above assumplions,
then the operator H = §,~ 8 belongs to B(C(L)~HYL)), a < $p, and 4s
compact in the space HY(L).

Proof. It follows from our assumptions that there exists g limit

lim h(u)= lim h(u)— R{0)
uso U Py U
Hence the function h(u)fu is continuous and different from zero also at
the point 0. Moreover, since infh(u)/u # 0, we may consider the number
N I
mp = [Anf |7 (u)ju]~2. We obtain
u
AT "
1 1 < % uj < klul < kfrln—;,”
Blu)  wf " [R)] e [R(u)ul T ful

"Hence it follows that the operator H is defined by means of a weakly
singular integral. Thus [HH2 oy <'const:- ooy, On the other hand,
since the function u/h(u) satisfies Holder’s condition with an exponent u
and

=h'(0)=1.

J;_l_lPa_q]
h(u) u  ul|h(u) ’
Theorem 2.2 implies H e B(C(L)~HYL)), a < }u

Finally, since the ball in the space H*(L) is compact in the topology
of the space C(L) (Theorem 2.5, B.IV), Theorem 3.1, B IV, implies that
the operator H is compact in the topology of the space HYL). m

CoROLLARY 6.2. The operator 8y belongs to B(H(L)) and is an almost
involution, i.e. satisfies the identity 8% = I+T, where T € B{HYL)) and T
s compact.

Proof. Since 8, = H+8, we have

. 8= (H+8)*= H>*+HS+SH+ 8.

But 82 = T and the operator H is compact by Theorem 6.1. Hence the
operator T = H*+ HS +SH is also compact. m

CoROLLARY 6.3. If B is the operator of multiplication by a function B(t)
satisfying Holder’s condition with an empoment u, then the commutator
BS;— 8,B belongs to B(H*(L)} and is compact.

Proof. Since
(61)  BS—8B=B(8§+H)—(8+H)B=BS—8B+BH—HRB,
and BS— 8B is compact by Theorem 2.4 and H is compact by Theorem 6.1,
the sum on the right-hand side of formula (6.1) is a compact operator. m

THEOREM 6.4. If L is an oriented system and

(,7)—K(t, 1)

1 K :
Tro =ELf —e—n — =) z(z)dr ,
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where the function K (t,7t) satisfies Holder’s condition with an exponent u
for t,v e L, then the operator Ty belongs to B(C(L)—~H%L)), ¢ < }u, and
18 compact in the space H°(L).

Proof. Let us write
K(t,7)— K

y(t) = ©: 9 42y ae

h(r—1)
K(t,r)—K(t, ) T—1
i, —1 he—p o

=%JT(t,r)}%w(r)dr.

The function u/h(u) is bounded and satisfies Holder’s condition. Thus
(O—y()] = | f[T(t 0

— Tt ) | a(x)de

() (tn)]

< xT(t,r)~T(t1,r)1dr-max}

L

ma.x | ()] +

h(u)

thl,

Since the function w/h(u) satisfies Holder’s condition with an ex-
ponent yu, Example 3.1, I, implies the existence of positive constants %
and k' such that

Iﬂl(t)—?l W < o i— 4" + ¥ [i— 0" H@leg, -
Henee [|T},%|gnyy < const {@llgy,, but this proves that T, eB(G(L)—>
—>H"(L)) We can now show the compactness of the operator T, in the
topology of the space H*L), as in the proof of Theorem 6.1. m
THEOREM 6.5. Let L be an oriented system and let the functions h(w)

and K (t,7) satisfy the assumptions of Theorem 6.5. If the function A1)
satisfies Holder’s condition, then the operator

1 (E@,7)
¢ k=1

T—1
hE—1)

T—h
hr—1t)

max
ti,rel

A= Ay(t)+ z(t)dr

has a simple regularizer of the ]‘orm

Rayo= Ayjo()— 222

PIUEpS

: A= % where
z

Aty = E(1,7) .

COROLLARY 6.6. If the assumptions of Theorem 6.5 are satisfied, then
the operator A, has a finite d-characteristic and

Hdn ™ Hdot diSp = FAgtdsS
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Indeed,
Ap= A+ A4: 8 +Th = Ay + A8+ H)+ Th= Ay+4, 8+ (A, H+T4) ,

but the operators T; and A,H are compact and so they do not change
the index.

From the last corollary it follows immediately that the index of the
operator Ay is defined by means of the formula given in § 4.

Investigating conjugate equations one obtains theorems folly
analogous to Theorem 3.1; one has to remark only that the funetion
k*(u) = h(—w) defining the kernel of the conjugate operator has the
same properties as the function h(u).

Evidently, considerations of this section may be extended without .
any important changes to systems of singular infegral equations whose
kernel is defined by the function k(u) (compare also § 5).

§ 7. Singular integral equations with a cotangent kernel. We shall
consider singular integral equations of the form

(7.1) flg).

2r

Ao(s)m(s)+2iﬂof (s, o)cot 75 a(0)do =
We suppose that . Ay(s) and K(s, o) are real-valued fumctions of
period 2n satisfying Holder’s condition with an exponent g. We are
looking for solutions of equation {7.1) in the class of real-valued periodic
functions. Moreover, we suppose that the function f(s) is periodic and
belongs to the space H0, 2x], a < }u.
We change the variables in equation (7.1) simultaneously:

. t=1¢"%, 1=¢".
Then we get

dr

=
Hence, if we write

1/. o—8
= —2—(1cot—§~—1)do'.

K(t,7) = K (Ll;l,]%) AN = 4,

=15, sn=2%),

and if L means the unit circle: I = {i: |t| = 1}, we obtain

A+ = fK(t %) o'(z)dx

(%)

— A(s)n(s)+ Z_wf K(s, o) [icoti‘g—s—l]a;(a)da .
0
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Hence the operator appearing in equation (7.1) differs from the
previously considered operators of the form

Aé(t)m’(t)-{—% f %ﬁ_th’)w'(T)dz
L

2
by the operator %c f K (s, 0)x(0)do, which is a continuous transformation

o
of the space C(L) into the space H*(L). Hence it tollows immediately that

TeeoREM 7.1. If a real-valued function K (s, o) is of period 2n and
satisfies Holder’s condition with an exponent p and if

2n
1 ~ S
T.& =§;Dj [K(s, 0)— (s, 5)] eotiz—sm(g)da,

then the operator T. belongs to B(HY(L)), a < %u, and T, is compact.

THEOREM 7.2. If real-valued periodic fumctions Ays) and K(s, o) of
period 2 satisfy Hélder's condition with an ezponent u, AY(s)+K3(s, 8) # 0,
and if

2n
c 1 _
Am:Ao(s)x(s)—}—%fK(s,a) cot =2 o (a)do
0

t.hen the operator A° eB(H“(L)), a<}u, has a simple regularizer to the
ideal T(HY(L)) of compact operators of the form

2

Racw = Ays)a(s)— %glf cot T2 0(0)do,
1]

where A(s)= K(s,s).

2

CororrAmyY 7.3. If the assumptions of Theorem 7.2 are satisfied, then
the operator A° has a finite d-characteristic and

A8)y=A,+4!8,
In the same manner as in § 3 we obtain

THEOREM 7.4. Let the assumptions of Theorem 7.2 be satisfied and let
the functions f(s) and g(s) belong to HY0, 2x], e << }u. If the following
equations are given:

where As) = K'(s, s) .

% g = xAI(S) N

(7.2) Ao(s)a;(s)+%-rf K(s, 0) cot " 2 a(o)do = f(s),
(7.3) Ao(s)g(s)+21—ﬂf E*(s; o) eotd;'gy(cr)da-:g(s),

K (o, s) = E*s, 0),
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then

(i) both homogeneous equations (i.e..if f(s)= g(s) = 0) have a finite
number of linearly independent solutions in the class of functions satisfying
Holder’s condition, and all those solutions belong to the space H0, 2r]
and are periodic,

(ii) equation (7.2) ((7.3), respectively) has a solution -if and only if

f F(8)y(s)ds =0, (f.g(s)a:(s)ds= 0, respectively)
o i)

for every solution y(s) of the homogeneous equaiion (7.3) (for every solution
z(s) of the homogeneous equation (7.2), respectively).

Arguing as in § 5, the above theorems can be extended to systems
of singular integral equations with a cotangent kernel.

Let us remark that if we write

Sc=?%tf cotggs
[\]

then we obtain I+ 8% = K, where the operator K is one-dimensional:

z({o)do ,

2
1
Ko=s Gf o(s)ds .

Hence the operator 8, is almost algebraic (compare Michlin [1], p. 143,
Przeworska-Rolewicz [6]).

As in case of singular integral equations with the kernel 1/(v—ft),
one can extend all the theorems of this section to the case of integral
operators of the form

2
1
As)o(s)+ o j K(s, o)h(o—s)e(0)do,
where the real-valued function h(u) is of the form h(u)= u-o(u), of

period 2w, and the function h(w)cotiu satisfies Holder’s condition with
an exponent u. '
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CHAPTER III

OPERATOR EQUATIONS WITH>THE FOURIER
TRANSFORM AND SIMILAR TRANSFORMS

§ 1. Operator equations with the Fourier transform. ILet there be
given a function f (¢) defined in the whole #n- dimensional Euclidean space E™.
If the integral

g(s) = (2m)™ [ eI (t)dt
En

where (f,s) denotes the scalar product, (¢, $)= 1,8;+...+txss, exists
for almost every s € H", then the function g (s) is called the Fouprier transform
of the funciion f(1), and the operator transforming the function f(¢) in the
function g(s) is called the Fourier transform and is denoted by g = Ff.

In order to investigate operator equations with the Fourier transform
it is important to distinguish linear spaces X with the property FX C X.
In the classical theory two such examples are usually given. One of these
examples gives the space S(E™) of all infinitely differentiable functions
which tend to zero faster than any polynomial together with all their
derivatives (see Example 3.9, B I). Another example is furnished by the
space L*(E™).

If a function f(t) is square integrable, it does not necessarily have
the Fourier transform. However, one can prove the existence of the limit
(in the norm of the space I2(E™))

g(s) = lim(2m) ™ [ e~ *9f(1)dt, where

r—>00

<>

i= (2+..+ )

The function g(s) will be called the Fourier transform. Since there is no
danger of confusion, we shall denote this Fourier transform formally by
means of an integral:

gls) = (2m)™" [~ E9f(t)dt .
E"

As in the previous case, we call the operator F: g = Ff the Fourier
transform. If X is one of the above-mentioned two spaces 8(E™), L2(E"),
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then the Fourier transform maps the space X into itself and the inverse
transform is given by the formula

100) = F7g(s) = (2m) ™" [ eXolg(s)ds .
En
Let us remark that we have
[a(—s)ds = [g(s)ds
En En
for an arbitrary function g(s). Hence
Fig(s) = 2m) ™" [ 69 (s)ds = (am)~"" [ =g (— 5)ds = Fg(—s).
En En

Thus
f() = P [Ff ()] = F g (s) = Fg(—s) = F[FH—1)] = F*[f (—)].

Hence follows F* = I. Consequently, the Fourier transform is an
involution of order 4 (see A II).

Thus we can apply the methods of algebraie operators (see § 7, A II)
to Fourier transforms. We obtain

THEROREM 1.1. Let X be one of the spaces S(E™), L*(E"). Let
A(F) = Ay +4,F 4, +A4, 5 H

where the operators Ay, A;, A,, A, are commutative one with another and
commutative with the Fourier transform F. If the operators

By= A)+ A+ 4,44
B, = Ay— A, 4+-4,— 4y

By = Ay +14,— 4,—id;
By = Ay—14,— A, +i4,

are invertible, then the operator A(F) has an inverse given by the formula

[4 ()] = 2 B;'P,,
where =
Py= I+F+F+F Py=I—iF—F*4iF%
Py=I1-F+F—F Py=I1+il—F2—iF%.
Theorem 1.1 can be applied to differential equations with constant

coefficients. We shall also give another simple example of an operator
commutative with the Fourier transform.

Exawpre 1.1, Let X = 8§(B"). Let D, be the operator of differentia-
tion with respect to the wvariable t,, and let M, denote the operator of
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multiplication by the funetion M,(t) = t;. Then the following relations
are well-known for transforms:

FM,f= D, Ff and FD,f=—M.Ff,

Hence

where feS(B").

FMif=DiFf and FDif= MLFf.

It is easily verified that analogous equalities hold for an arbitrary positive
integer m:
FM"f = DFf

and FDi™ = fMFf (m=1,2,..).

Thus we have the equalities

F(ME 4+ D™ = (M2 +DF™F  (k=1,2,.., n; m=1,2,..).

Hence the operators

Nim=M+D7 (k=1,2,..,n,m=1,2,..)

are commutative with the Fourier transform.

§ 2. Integral tramsforms with a sinus kernel, a cosinus kernel and
a Hanke] kernel. It immediately follows from the formula F2[f($)] = f(—1)
that the Fourier transform is an involution, i.e. that F2 = I on the space
of all even functions belonging to X, where X is one of the spaces S(E®),
IXE™), as before. It is also possible to prove that it f(f) = f(r), where
r= (+...+ )2, the Fourier transform is also an involution. A simple
change of variables shows that the transformation

Hf = [ 1OV )t

where V(1) = J ()/t* (J; being the Bessel function of the first kind and
of order k), called the Hankel transformation and defined on the space Hy of
all measnrable functions f(f) defined for ¢ > 0 and satisfying the condition

JHeEE < oo,

is an involution. This makes possible the application of methods of algebraic
operators to the Hankel operator H.

TaEOREM 2.1. If A and B are operators commutative with the Hankel
operator and if the operators A— A, and Ay+A, are invertible, then the
inwerse of the operator A(H)= A,+A4,H is the operator

[AE)]" = (45— 4D (4— 4, H) .
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Other examples of algebraie transformations are given by the cosinus
and sinus transformations defined as follows:

Tw = (2r)~"2 fw(s)cos(s, t)ds ,
Bn

To = (2r)"™2 fw(s)sin(s, t)ds ,
B

considered on spaces $(E®) and IA(E™). Let us remark that

P+F! F_F?
To=—%—; T

=

Hence

To—T, = }(F +F -+ 3F 4 3F ) — }(F+F)
= J(4F +4FY)— }(F+F-Y) = 0.

Analogously one can prove that Ti— T, = 0, Thus we obtain the following
THEOREM 2.2. Let the operators Ay, A, A, be commutative one with
another and commutative with the transformation T, (with the transforma-
tion Ty, respectively). If the operators A,, Ag+A,+A,, Ag—A;+A, are
invertible, then the operator
A=Ay+A,T+A,T,
s invertible and its inverse is of the form

A7V = ATP, 4 (Ay+ A, +A) P+ (Ag— A, +4,)'P,

where T =T, (T = T, respectively)

where

Pof=§{f(t)—f(=1), P=3I-T), Py=3}I+T).

Equations in linear spaces ‘ 23
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