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Moreover, let
6.1) Ag,=T=,,

where z, # 0. Let us suppose that the element z, is linearly dependent
on the elements @, ...,%,_;, ie. ,= a2, +...+a,_,2,_,. Applying the
operator 4,I—T to both sides of this equality, we obtain by (6.1),

a,(A,— i)y + ..t a, y(A,— 24, )@, = 0.

Hence there exists an element x,, u < v, linearly dependent on the
elements 2, ..., z,_,. Repeating these arguments we finally obtain #, = 0,
contradieting the assumption @, #* 0. Hence the elements z,, ..., s, are
linearly independent. We denote by X, the linear space spanned by these
elements. By Theorem 1.11, the spaces X, are closed and Euclidean.
Since )

X, #X,,, XCXC..CXCX, C..,

we conclude from Theorem 1.10 that there exists a y, such that
(6.2) Y,eX, Uy, 9,¢X,,+T,.

Here U, is & neighbourhood of zero transformed by the operator T in
a precompact set. Since y, ¢ X,, formula (6.1) and the definition of the
space X, imply

}"ryv ¢ (;‘ryeryr+Tyﬂ+2'1 UO) 3
ie. Ty, ¢(Ty,+2,U,). By Theorem 1.9, there exists a neighbourhood
of zero V such that V CAU,. Hence Ty, ¢ (Ty,+V). On the other hand,

formula (6.2) implies Ty, ¢ TU,. Applying Theorem 1.3 we conclude
that the sequence {4} is finite. ®
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Part C

LINEAR OPERATORS IN BANACH SPACES

In Chapter I, Part A, we have shown a deep connection between
the theory of linear equations in linear spaces and the properties of quasi-
Fredholm ideals and Fredholm ideals in paraalgebras of operators. In § 5,
B IV, we proved that the ideal T(X = X) of compact operators is a Fred-
holm ideal in the paraalgebra B(X = ¥) of continnous operators. In this
part we shall investigate quasi-Fredholm and semi-Fredholm ideals in
paraalgebras of operators over Banach spaces. We shall also deal with
perturbations with a small norm.

Chapter I is of an auxiliary character: notions and theorems given
here will be necessary in further considerations.

In Chapter IT we shall investigate ideals of operators over Banach
spaces. In particular, we shall deal with classes of operators which are
proved in Chapter V to be semi-Fredholm ideals (positive or negative).

Chapter IIT contains the theory of perturbations with a small norm.

In Chapter IV we give elements of the spectral theory, in particular
the theorem on the continuity of projections of a spectral decomposition.

Chapter V contains the general theory of perturbations of operators
over Banach spaces. All the results of this chapter may be transferred
without changes to the case of locally bounded spaces with a total family
of functionals (see paper [6] by the present authors).

Equations in linear spaces 14
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CHAPTER I
BANACH SPACES

§ 1. Definition of a Banach space. We say that a linear metric space X
is & normed space if it is locally bounded and locally convex, i.e. if there
exists a neighbourhood of zero ¥ which is bounded and convex. One may
suppose without loss of generality that V is a balanced neighbourhood,
ie. aV CV for |a| <1 (see Theorem 2.1, B I).

‘We write

i]w]}:inf{t> 0: i:sv}

for an arbitrary # ¢ X. Since the neighbourhood ¥ is convex and balanced,
I | is & pseudonorm. In § 9, B I, we have shown that this pseudonorm
is & norm determining the topology. Hence one can say that the metrie
in normed spaces may be given by means of the norm ¢(z, y) = |lz—y||
(see § 2, BI) possessing the following properties:

(1) llazll = lal-loll  (homogeneity),

(@) llz+yi < loll+lyll  (riangle inequality),

(iii) o]l = 0 4} and only if = = 0.

On the other hand, if the metric in a space X is given by means of
a norm satisfying conditions (i)-(iii), then the set

Vo={reX: |la] <1}

is open, bounded, convex and balanced.

A complete normed space is called a Banach space. Hence a space X
is a Banach space if and only if it is a locally bounded B,-space.

A elosed linear subset of a Banach space is a Banach space. Such
linear subsets will be called subspaces of a Banach space.

The following spaces are Banach spaces:

0@Q), 0@Q2), IPQ,Z,p) 1<p< +0), M(Q, Z, p), H*Q)
(see §3 and § 6, BI).

To prove this it is sufficient to remark that the norms appearing in

the definitions of the above spaces are homogeneous norms (i.e. satisty
condition (i)).
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The following theorem is & special case of Theorem 5.4, B I:

THEOREM 1.1. 4 normed space X is complete if and only if Y ||
n=1

oo
< oo, @n € X, implies the convergence of the series >'zs to an element ©
ri=1
of that space.
§ 2. Continuous operators and continuous fimctionals in Banach spaces.
Since the norm in a Banach space is homogeneous, an operator
A e Ly(X—Y) is continuous if and only i

(21) 4] = supida]| < +oo
<1
(see Corollary 1.2, B II).

The space of all linear continuous operators which map a Banach
space X into a Banach space ¥ provided with bounded convergence will
be denoted by B(X—Y), as before (see § 1, B II). Let us remark that
in the spaces B(X—Y) the topology of bounded convergence and the
topology of convergence in the norm of the operator are equivalent
(see § 1, B II). Evidently, B(X —Y) is a normed space and the norm of
an opetrator is defined by means of formula (2.1).

THEOREM 2.1. If X and Y are Banach spaces, then B(X —Y) s a Ba-
nach space.

Proof. It is sufficient to prove the space B(X—Y) to be complete.
Let {4,} be a fundamental sequence in B(X—XY), i.e. suppose that for
every positive number ¢ there exists a natural number N such that
lAx— 44l < & for n > N. Hence [[Ans—Aaz|< ¢lw] for every zeX.
But Y is a complete space. Thus the limit im 4,2 = Az exists for every
z¢X. Obviously,

(2.2) f1Ana— Az|| < ljo]] .
If 2,y e X, then '
A@+y)—Az— Ay = A(z+y)— Ax(z+y) + Ays -+ Anvy— Ao— Ay .
Hence 7
Az +y)— Az— Ayl < elllo+yll+ Tl + i) -
Sinee ¢ is an arbitrary positive number, the additivity of the operator 4
follows.
If t is a scalar, we have
A(w)—t({Az) = A(tw)— An(to) +iAxs—t Az .
Applying formula (2.2) we conclude that
‘ A (tz)— tAa|| << s(iféar]] -+ [i] le]]) -
The number ¢ > 0 being arbitrary, 4 is a homogeneous operator.
14*
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Applying formula (2.1) we get
Mol < elizll+ ldval < (e + [4nll) o]l

Hence the operator 4 is bounded. Consequently, it is continuous. Moreover,
formula (2.2) implies

[d—Auf < [A— AN+ | Ay— 4]l <2 for n>N.

Since ¢ is an arbitrary positive number, this proves that the sequence {4,}
is convergent to the operator 4 in the norm.

If Y is a one-dimensional space of complex or real numbers (depending
on the field of scalars in the space X), we shall write briefly X* = B(X —»¥).
The elements of the space Xt are called continuous linear functionals,
and the space X* itself is called the conjugate space or the adjoint space.

It follows from Theorem 2.1 that X* is a Banach space. The norm
of a continuous linear functional f is defined according to formula (2.1)

(23) lIfl = sup |f(=)] .
llzli<1

In case of Banach spaces the Hahn-Banach theorem (Theorem 8.1,
B I) can be formulated in the following manner:

THEOREM 2.2. (Hahn, Banach.) If X, is a subspace of a Banach
space X and f, e X, then there exists a functional fe X* such that f(z)
= fo(z) for ¢ X, and

=1l -

) CoroLLARY 2.3. If X is a Banach space, then to every x e X there
ewists a functional fe X+ such that |[f| = 1 and f(z) = ||,

This corollary implies
CoRoLLARY 2.4. If X s a Banach space, then

leelt = sup [f ()] .
lIfl<1
feXx*
Every operator A4 ¢ B(X—Y) induces a conjugate operator A%
{see § 1, AIIT) which maps the space ¥+ into the space X+.
THEOREM 2.5. If X and ¥ are Banach spaces and A « B(X—7Y),
dhen A* e B(Y+~>X*) and |A*|| = |lA].
Proof. We have
47%] = sup | A*f|| = sup sup [(fA)]|
i}isﬂ;&_ lfn‘;:%}_ llzit<t

= sup sup |f(4x)| = sup |As]=[4]|. m
W<t Inst i<y
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We say that an operator A ¢ B(X>Y) is an embedding of a space X
in a space Y if it is one-to-one and continuous together with its inverse.
In other words, an operator A is an embedding if there exists a positive
number ¢ such that |4z > ¢|jz]|. An operator 4 ¢ B(X—Y) is called an
epimorphism if it maps the space X onto the whole space Y.

We denote the space (X*)* conjugate to X* by X*+*. Evidently,
every element & ¢ X can be treated as a functional f, on the space X*:
fo(&) = £(x), and we have

lfzll = sup |§(@)] < =] .
e Xt <1

On the other hand, by the Hahn-Banach theorem, there exists
a functional & e X*, ||&] = 1, such that £,(z) = |=}]. Hence

ol = &) < sup |£(@)} = |ifall -
Bet<t

The last inequality shows that the space X is embedded in the
space X+*. This embedding is called the natural embedding. We denote
it by ». If x is an epimorphism, the space X is called a reflevive space.
Hence a space X is reflexive if »X = X*+. Identifying elements f; and «
we may write X** = X in case of a reflexive space. Since the space X
is complete, the image »X is closed.

Evidently, a space conjugate to a reflexive space is also reflexive.
Indeed, we have

(X+)++ = Xttt = (X+-’r)+ = Xt .

A subspace of a reflexive space is reflexive, since the isomorphism x
between spaces X and X** is also an isomorphism on every subspace
of X.

If X, is a subspace of a reflexive space X, then the guotient space
[X]= XX, is also reflexive. Indeed, the conjugate space [X]T is the
space of all functionals £ such that £(z)}= 0 for » ¢ X,. It follows from
the reflexivity of the space X that for every functional f e X*+ there
exists an element x; such that f{&) = &(z;). I feXf* and

J(6)= &) and  f(§)=&@)) for Ee XV,

then &(z,— z7) = 0. Hence the functional f is determined by the cosets
from X/X,.

THEOREM 2.6. An operator A ¢ B(X—TY) is an embedding if and only
if the operator A* ¢ B(Y*—X7) is an epimorphism.

Proof. Necessity. Let us suppose that thé operator 4 is an em-
bedding, and let &e X*. Let neEit and = §(4™"). By the Hahn-
Banach theorem, the functional  can be extendend to the whole space.
Hence (A+n)a = 7(4x) = £(A™ 4z) = £(x). Thus AT is an epimorphism.
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Sufficiency. Let A be an epimorphism, and let # € X. There exists
a functional & € X*7, |if]| = 1, such that &(z) = ||zl But the operator 4+
is an epimorphism. Hence there exists a functional 5 e X~ satisfying
the conditions &= A*(y) and

llell = £(2) = n(d) < Inllll el < |47 4a). =

TEEOREM 2.7. An operator A e B(X—>X) is an epimorphism if and
only if the operator A¥ ¢ B(Y*—+X7) is an embedding.

Proof. Necessity. Let us suppose that 4 is an epimorphism. A in-
duces an operator [4] which is a one-to-one map of the quotient space
X|Z4 onto the space ¥. By Banach’s theorem, the operator [A] has an
inverse. Hence ||[z]f| < I[4]17Y|l], where [2] is the coset induced by the
element #, and ]]{a:]l[=i?zf lle+yl.- Thus to every number m > [|[A]7Y

YV€Za
there exists an element z such that

dg=y and || <miyf.

Let e ¥+ and &= A*(y). Then
Il = In{dz)] = i&(@)] < &zl < 1€l ly)) -
Hence
llnll = sup In(y)] < m|&) .
<1

Sufficiency. Theorem 2.6 implies that the operator A++ ¢ B (XFT+ Y+
is an embedding. Hence its restriction to the subspace X is also an em-
bedding.

By the standard method of decomposition into & direct sum we obtain
the following generalization of Theorem 2.6 and 2.7:

THEOREM 2.6°. An operator A e B(X—Y) is a D, -operator if and
only if the operator A* e B(¥*—>X*) is a D_-operator.

TEEOREM 2.7". An operaior A< B(X-Y) is a D_-operator if and
only if the operator A* ¢ B(¥+—>X*) is a D, -operator.

We now give examples of general forms of continuous linear functionals
over some Banach spaces. The proofs require powerful methods of the
measure theory and can be found in Dunford and Schwartz [1], Chapter IV.

Exawreie 2.1. I Q is a compact set, there exists a one-to-one cor-
respondence between the conjugate space [C()" of the space C(Q)
and the space rcaQ. This correspondence is given by the formula

f@) = [w(t)ay .
2
Moreover, we have {ff] = ||l
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Examrie 2.2. f 1<p < oo and 1fp+1fg=1, then the spaces
[L7(2, Z, p)]* and I4Q, X, p) are isometrically isomorphic. This iso-
morphism is given by the equality

st (@) = [y(a)dp,
where @ ¢ L*(Q, Z, i), y «I4Q, T, ), o+ < [IPQ, Z, p)]* .
ExavpiE 2.3. If g4 is a finitely additive positive measure, then the

spaces [Ly(Q, X, )] and M(Q, Z, u) are isometrically isomorphic. This
isomorphism is given by the equality

ot (@) = [y dp

where @ < Iy(2, T, @), ¥ « M(Q, I, p), o* < [T(@, I, )] -

We quote without proof the following important theorem:

TrEoREM 2.8. To every space M(Q, X, u) there exisis a comp‘act
Hausdorff space Qy such that the spaces M(2, X, u) and C(Q,) are iso-
morphic.

The reader can find the proof of this theorem in the monograph by .
Dunford and Schwartz [1], Theorem V. 8.11.

§ 3. Weak convergence and weak topology. Let X be a 7 Banach
space. The X -convergence and X -topology in X ‘(§ 10, BI) are ca.llefi
weak convergence and weak topology in X, respectively. A sequence 18
called weakly fundamensal if it is X*-fundamental.

We denote by 8(X) the closed unit ball in the space X:

8(X) = {weX: ol <1}.

THeEoREM 3.1. (Goldstine [1]) If X is a Banach space, then the sel
#8(X) is dense in the ball 8(X**) in the X+ -topology (a,s+liefore, » means
the natural embedding of the space X in the space X*7). .

Proof. We denote by §; the XT-closure of the set ;;S(X). Since
S(X+*) is a X*-closed set, we have 8, CR(X*+H). M.ore'over, the set S8
is convex. We ghall prove 8, = S(X* ., I t‘here_ emfsts an el_emem;
o+ ¢ §(X ) such that a** ¢ 8y, Corollary 8.4, BT, uil}_)hes the existence
of an X+ -continuous linear functional f defined on X aaig of two con-
stants ¢ and s > 0 such that ref(y) < ¢ for ye 8y, rgf(a? )= e+te. ]?y
Theorem 10.1, B I, there exists an element o+ ¢ X * satlsfylpg tEe equal;ty
Flat+) = @t (@t if o7 e X1, Sinee »8(X) C 8;, we haverew (a;l < ¢ for
z e §(X). But if # € §(X) and |a] = 1, then azt € S(_;'{). Hence |@ (a;)l <e
for @ e §(X). Hence |zt < ¢ and |o* Tt el ‘LQ ¢ coilzradlletmg
the inequality rez* *(#1) > ¢+ . Thus every element ¥t € §(X ) belongs
to 8;. M
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CorOLLARY 38.2. If % is the natural embedding of a Bamach space X
tn the space X**, then the set »X is dense in X+ in the X+-topology.

Proof. The X*-closure of the set »X is a subspace of the space X++,
By Theorem 3.1, it contains the ball § (X *++). Hence it immediately follows
that the X*-closure of X contains every point of the space X*+. m

TerorEM 3.3. (Alaoglu [1].) I X is a Banach space, then the ball
S(X*) is compact in the X -topology of the space X*.

Proof. By definition, §(X*)= {feXt: |f(z)] < [z]}. By Theo-
rem 10.3, BT, it follows that S(X*) is compact in the X -topology. m

Let X and ¥ be Banach spaces. An operator 4 € L(X —+Y) is called
weakly continuous if the inverse image of an open set in the Y*-topology
is & set open in the X+-topology.

If the space X is conjugate to a Banach space X_, then the X_-con-
vergence and X_ -topology in X are called the weak convergence of functionals
and the weak topology of functionals, respectively. If a sequence of func-
tionals is X_-fundamental, it is called a weakly fundamental sequence
of functionals.

A set B C X is called weakly compact if it is compact in the X -to-
pology. EC X is called conditionally weakly compact if its closure in the
weak topology is weakly compact. Finally, a set B C X is called weakly
precompact if it is precompact in the weak topology (see § 1, BIV).

TEEOREM 3.4. (Eberlein [1].) 4 Banach space X is reflexive if and
only if the unit ball S(X) is weakly compact.

Proof. Let X be a reflexive Banach space and let » be the natural
embedding of the space X inthe space X*+. Then » and x—*are isometries.
Moreover, » maps the ball §(X) onto the ball § (X*%). By the definition
of topology, x is a homeomorphism of the ball § (X) with its X*-topology
onto the ball §(X*+) with its X*-topology. By Theorem 3.3, the ball 8(X)
1s weakly compact.

OQnVersely, let the ball §(X) be weakly compact. Bince x iy a homeo-
morphism between §(X) and »8(X ) in therespective X*-topology defined
on the sets §(X) and »8 (X), the set »S(X) is compact. Since the set
#8(X) iz closed in its X*-topology and »8(X) is dense in the ball § (X*)
{by Theorem 3.1), we have »8(X)— § (X*¥). Consequently, »(X) = X++
Le. the space X is reflexive. m ’

CoBOLILARY 3.4. A Banach space X is re lexive if and :
bounded, weakly closed set ECIpis weakly oo{npact. ! oy eveny

The following theorem is a simple consequence of Theorem 101, B 1.

THEOREM 3.5. If X and Y are Banach spaces and A € B(X-Y), then

(1) the operator A is weakly continuous,

(2) 4 tramsforms X t- convergent sequences in ¥+ - convergent sequences,
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(3) the operator AT e B(X*->X%) is continuous if we provide ¥+ with
the Y -topology, and X+ with the X -topology,

(4) the operaior A% transforms Y -convergent sequences in X - convergent
sequences.

THEOREM 3.6. If the sequence {r,} is weakly convergent or if it is
a weakly convergent sequence of functionals, then it is bounded.

Proof. First, let us consider the second case, i.e. let x, be functionals
over a Banach space X_. By the Banach—Steinhaus Theorem (Theo-
rems 2.1, B II, and 2.2, B IIL), all functionals z, are equicontinuous. Hence
the sequence {z} is bounded. The first case is reduced to the second one
if we consider «, to be functionals over the space X*. m

In order to investigate weak convergence effectively, the following
theorem is of importance:

THEOREM 3.7. A sequence {xy} is weakly fundamental (or is a weakly
Ffundamental sequence of functionals) if and only if it is bounded and E-con-
vergent, where 5 is a dense subset of the space X~ (X _, respectively).

Proof. Necessily. Theorem 3.6 implies that the sequence {@.} is
bounded. Since the sequence {z»} is convergent in the space X¥ (and X _,
respectively), it is Z-convergent.

Sujficiency. Let us write sup|ms]| = M. Let ¢ be an arbitrary positive
number, and let f e X (f e X_, respectively). Since Z is a dense subset,
there exists a functional f, € £ satisfying the inequality |[f—foll < /6.

Since the sequence {z,} is Z-convergent, there exists a number N such
that
[fol@n)—fol@m)|< 3¢ for 2,m>N.

Thus
[F{(n)— f(@m)| < 1F(@n)— Fo(@n)l -+ olon)—Fol@m)] + | fo(@m)— f (@m)]
& L & 19 .i =
QQM“W-S-ET-"M g =% ®

We now give without proofs the following important theorems:

THEOREM 3.8. (Eberlein [1], Smulian [1].) If B is a subsei of a Banach
space X, then the following three conditions are equivalent:

(i) every sequence {z,} C E coniains a subsequence {zxn} weakly con-
vergent to an element x, € X;

(ii) for every sequence {wn}CE there evists an element @y e X such
that every neighbourhood U of the element x, contains elements of the se-
quence {zn}; '

(iii) the set B is conditionally weakly compact.
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The reader can find the proof of this theorem in the monograph
by Dunford and Schwartz [1], Theorem V. 6.1,

TeroREM 3.9. (Krein, Smulian {1].) Let X be a Banach space. A conves
set BC Xt 48 X-closed if and only if for every natwral number n the set
B ~u8(X*) is X - closed, 8 (X*) denoting the dlosed unit ball in the space X+

The proof of this theorem is given in the monograph by Dunford
and Schwartz [1], V.5.7.

Further considerations will require a characteristic of weakly compact
sets in the space rcaf = [((2)]*. We quote it without proof (for the
proof see Dunford and Schwartz [1], IV.9.12):

THEOREM 3.10. A set ECreaQ=[C(Q)]* is conditionally weakly
compact if and only if there evisis a non-negative measure u such that

lim 2(F)=0
#(F)y>0

for all measures 1 e B
uniformly.

I a set E is conditionally weakly compact, then every sequence
{#} C B is conditionally weakly compact. If every sequence {us} C B
is conditionally weakly compact, one can choose 3 weakly compact sub-
sequence. By the Eberlein~Smulian theorem 3.8, the set B is conditionally
weakly compact. Hence the following theorem is a consequence of Theo-
rem 3.10:

TemorEM 3.11. A set B CreaQ = [C(Q)]* is conditionally weakly
compact if and only if for every sequence of measures {a} C E there emists

a non-negative measure u such that all measures Ha are equicontinuous with
respect to the measure u, i.e.

Hm pn(F) =0 for

n=1,2..
#(F)>0

§ 4. Bases in Banach spaces. Let us remember that a basis of a com-

plete linear metric space X is a sequence of elements e, ¢ X such that
every element # ¢ X can be written uniquely as the sum of a series

= Zt,,e,. (tn are scalars).
n=1

The fundamental properties of bases in linear metric spaces are
given in § 5, B IT. Here we give further properties of bases in the case
when X is a Banach space.

Evidently, if a Banach space X has a basis, X is separable. However,
it is not known whether every separable Banach space has a basis (see
Banach [2], p. 111). Only the following result is known:

THEOREM 4.1. (Banach [31, p. 206.) BEvery infinitely dimensional
Banach space X coniains an infinitely dimensional subspace X, with o basis.
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Proof. Let {sx} be an arbitrary sequence of positive numbers such

that }'en < +oco. We construct a sequence {e,} by induction in such
n=1
a manner that

(41) ”tl 21 T +tn—1en—1“ < (1 + en) “tlel F e +tngn”

for arbitrary scalars ty, ..., t,.

As e; we may take an arbitrary element different from zero. Let
us suppose that the elements ey, ..., e,_, are already defined. Let X,_, be
the space spanned by these elements. Since a ball in the eonj_ugate
space X}_, is precompact, there exists a finite system of functionals
fuy ooy fry Ifill = 1, satisfying the inequality

]l = sup 17 (@)] < (1+2a) sup |[ful2)} -
1 fll=1 1<i<k

Let us extend the functionals f; to the whole space, leaving their
norms unchanged. Let e, be an arbitrary element different from zero
and satisfying the conditions fi(ex) = 0 for 1= 1,2, ...,k Then

byt 16 yll < (L 2,) 8UD [Fi{ly €+ oo Tn 160l
1<i<k
= (1+én) 8up |filti€1 + ... +lnen)]
1<i<k

< (1 4zn) [l + o Fneal) -
Hence we conclude that the sequence {e,} satisfies condition 4.1. Thus
00
= Ylye, implies
n=1

[z}l < Clizlf, where C =E(1 +é&n) .

By Corollary 4.6, B I, it follows that the sequence {e.} is a basis of the
space X, spanned by {e.}. W ) ) )
P We osay that a sequence {fn} is sirongly linearly independent if
jl' ¢1m{fl7 *ecy f{«l? f’H—l’ "‘}‘

THEOREM 4.2. (Krein, Milman, Rutman [1].) Let X be ‘a Ba/nua-ch
space with a basis {ex}, llenll = 1. If a sequence {fa} of strongly linearly in-
dependent elements of X satisfies the condition

C= Yllfr—eall < +o0,
n=1
then {fa} is a basis of the space X, = lin{f,} equivalent to the basis {ex} ‘i‘n X,
Proof. Let K be the norm of the basis {es}. Since f; are strongly
lineaily independent. elements, one can omit in the proof a finite number


Yakuza


220 C. I. Banach spaces

of elements f» and e,. Hence we may suppose that ¢/ — 1/2K without
loss of generality. Thus

l%

i

=1

Y tiey— Mitdlf—edi < Y ltefl <[ Y e+ 2 Il lfs—edl

ks

%Hé? £} 8¢H < sup” =': tifi” < (K4 %)J

n g

Stue|

Hence the elements f, constitute a basis of the space X, of elements of

o0
the form }'tnfa, equivalent to the basis {ex}. B

=1

§ 5. Unconditional convergence and unconditional bases. A series fw,.
n=1
of elements of a Banach space X is said to be unconditionally convergent

if the series 3 2., is convergent for every bounded sequence {i,}.

n=1

o0
If a series Dl is unconditionally convergent, then there exists a con-
n=1

stant € sueh that
5 ! \
(5.1) 1D Il < Csup|ia) .
Indeed, let us suppose that such g constant ¢ does not exist. We

choose a sequence of indices {,} and bounded sequences {A¥}, 14% < 1
satisfying the inequalities

| 2 Hof >kt X,
=] i=1

by induetion. It is easily verified that if A=Ak for ny, < i< ey, then
%] <1 and the series Y A is divergent.

i=1

TEEOREM 5.1. (Orliez [1].) If a series Y'w, of elements Tn € I2[0, 1]

n=1
is unconditionally convergent, then the series Dlleall ds also convergent.
fn=1
Pr::of. Let there be given a sequence {w,} C I*0, 1] such that the
series Y'zy(?) is unconditionally convergent. Let 75(z) be the Rademacher

n=1

system on the interval [0,1], ie. the system of functions

7(t) = sgnsin2xjz .

icm

§ 5. Unconditional convergence and unconditional bases 221
Evidently, ‘
1
f ri{T)ri(r)dr = 64, .
0
Hence
1 2
G2 \Z‘mn(t)rﬂ(z) v
0 n=1 — .
1 o0 e oo
=[] X atyra@][ 3 antyra(m)] dz = 3 lzact)p -
0 n=l n=1 n=1

N o
On the other hand, since the series Y #4(f) is unconditionally con-

n=1

vergent, we have

f l Z”w"(t)r”(z)rdtz C< +oco for every 7.
o

n=1

Hence, by formula (5.2),

fnmnn*: 200 [lear= [ 3 la(t)at

n=1 n=10 n=1

e f f l i’xn(t)rn(r)rdrdt <C. m
00 =m=1

A Dbasis {es} of a Banach space X is called an unconditional basis if
the expansion of every element # e X is unconditionally Fom‘ergent.

We say that an unconditional basis {ea}, lleall= 1, is homogeneous
if every subbasis {es,} is equivalent to {ea}. )

An unconditional basis {es}, lleall = 1 is called block homogeneous if
every sequence {zn} of elements of the form

Datt

Ty = Z fieg,

i=patl

fonll =1,

W]:I.EI:G {p:} is an increasing sequence, is a basis equivalent to the bAasig {en}.
Standard bases in I? and ¢, are block homogeneous. M Zippin [1]
showed that the existence of a block homogeneous bg.ms in a space X
implies that X is isomorphic either to the space I7 or to the space 6.
A series g'm,, of elements of a Banach space X is called weakly un-

n=1 o
conditionally convergent if the series Y #*(w,) is unconditionally convergent

n=1

for every functional at e X*, ie. if 3 |#t(za)| is convergent for every

=l
xt e Xt
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Evidently, if a series g‘ @, is weakly unconditionally convergent,
then the sequence {z,} is b?ulnded (see Theorem 4.6).

THEOREM 5.2. (Bessaga and Pelezyniski [1].) Let there be given a Ba-
nach space X and a weakly unconditionally convergent series 2 o of elements
of this space. Let {&ws} constitute a basis of the space spanned b Y those elements,
and let infz,|| > 0. Then the basis {@n} is equivalent to the standard basis
in the sp':ws Gy

Proof. Let

Zi= ot e X*: 5‘ lo*(2a)] < B}

n=1

The sets Z, are closed and since the series ) @ is weakly conditionally
n=1

convergent, it follows that X+ = U Zy. By Baire’s theorem on categories,
P}
one of the sets Z, contains a ball K with centre s7 and radius r. Let

lo*] < r; then

oo

Ylotan < 3 et i)zl + | 2% (20)

n=1 n:l

<k+0,

where (, = f g ()]
n=1

Let 0=

have

(k+Cy)jr and let lz*] < 1. Then g‘lm*(w,,)] < C. Thus we
n=1

| 3 -

a:* < Osu
2 mﬁwﬂl 2 tnwn)l < Osup [ta]
for an arbitrary sequence {ta} convergent to zero.
Hence the series 2 n®y is convergent for an arbitrary sequence {ta}

eonvergent to zero. On the other hand, the inequality mf{lw,.” > 0 implies
that if the series Zt,w,. is convergent, then t,—0. m

THEOREM 5.3. (Pelezyriski, Singer [1]) Let X be a Banach space
with an unconditional basis {en}, |lea]| = 1 Let us suppose that the spaces X

and X* have the following property: if 2 Yn 18 an unoondwtwnally aom:ergent

=1
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series of elements of any of the spaces X and X+, then 3 |ynlff < +oco. Thus
n=1

the space X 1is isomorphic to the space 2.
Proof. Let {¢;} C X be a sequence of basis functionals: 6} (e,,) = 8,

Let
oo
o= Zt,,e,,, w*:Za,‘e,‘f y

n=1 n=1
and let 2= {i,} be any bounded sequence of numbers. If we write
= >l t.6,, formula (5.1) implies
n=1

sl < Csup Anta] < C(sup Jial) ( X lml?) ",

where C is a positive constant dependent only on the basis {en}.
Thus we obtain

(5.2) a*(z,) = «f(x), where

o
of = D' i,a,6.
=L
o0
Hence formula (5.2) and the convergence of the series Y a,¢} in the

n=1
usual sense imply its unconditional convergence. But the basis functionals
are nniformly bounded. Hence we have

D lanl < Clla*|e,

by hypothesis.
00 o
Consequently, for every series Zt,.eg such that th,.]2 < 1 we have:

“Ztmgﬂ—— Sup m*(gtis) <0 sup at (Zt;e;)

zt(z)==1
<c 2 ltd? -

= §up Zam

Zlaf*<t g i=k

Hence the series Z't,e,, is convergent. Thus the basis {e,} iz equivalent

to the standard ba.sm of the space I

§ 6. Linear dimension. We say that 2 space X has a linear Mwim
not greater than the linear dimension of a space ¥, dimX < dim; ¥, lf Y
contains a subspace isomorphie to the space X. The linear dimension
of a space X is equal to the linear dimension of aspace Y, dim; X = dlm; Y,
if
dim; X < d.l.m;Y and A Y < dm.nX
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The linear dimension of a space X is smaller than the linear dimension
of a space Y if dimyX < dim; Y and the inequality dim;¥ < dim; X
does not hold.

TEEOREM 6.1. (Banach [2].) If there ewmists a block homogeneous
basis {eq} in a Banach space X, then dim;X = dim; X, for every infinite-
dimensional subspace X, of the space X.

Proof. By definition, we have dim; X, <

let {wa}C Xn, sl = 1, @ = Z ties, be a sequence satisfying the con-
dition hmt” = 0. By Theorem 5 a 8 B 1T, such a sequence exists, because X,

dim; X¥. On the other hand,

is an mfm;te-dlmensmnal space. Applying Theorem 5.7, BII, we find
a subsequence {n} of the sequence {#,} and an increasing sequence of
indices {pz} satisfying the inequalities

Prsa

2 t¥e; .

i=pr+1

llon,—@n,l < 1/2%,  where ap=
Since the basis {en} is block homogeneous, the bases {ex} and {wn,} are
equivalent. By Theorem 5.2, bases {#,,} and {¢,} are equivalent. Hence
the space X, spanned by the elements {z, } and the space X are isomorphic
(Theorem 5.2, B IT). But X; C X,. Hence dim;X < dim; X,. m

Let us remark that the following result can be deduced from the
proof of Theorem 6.1: If X, C X is any subspace of a space X with a bloek
homogeneous basis {e.} and if {x,} is any sequence which is not compact,
llwnll = 1, then there exists a subsequence {wn,} which constitutes a basis
of the space X, spanned by {,}, and this basis is equivalent to the
basis {ex}.

THEOREM 6.2. (Banach [2].) dim,?” < dim;I7[0, 1].

Proof. Let e,(t) = 2™ gy on1onny(t). If @(2) = Ya,e,(t), then
n=1

[lePat=>la.

Hence the space X, C L7[0, 1] spanned by the elements e, and the space I
are isomorphic. B

THEOREM 6.3. dim1* < dimZ7[0, 1], 1 < p < +oo.

The proof of this theorem is based on two lemmas.

Lemuma 6.1. If xeL?[0,1], then z e LP[0,1] and [l <
' <p.

Proof. It follows from Hjlder’s inequality that

1 1 1
=/ ]x(t)l”dig[ [ (|m(t)fﬂ')m’dz]"’”-[ i 1?1@-v’>dt]"’""”” < ol .

ey for
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LuvumA 6.2. (the Khintchine inequality,
the Rademacher system, 1 < p < + o0, then

IZ arf, <Vip+l

225

Khintchine [1].) If {r;} s

Z“f

=1

for an arbitrary sequenoe of real numbers ay, ..., ay.

Proof. Let g = Z a;j73, and let m denote a natural number such that

=1

(6.1) 2m—2<p<2

But
ﬂ:{l if ¢is an even number,
" ra if ¢ is an odd number.

We expand the power ¢*" in Newton’s polynomial formuls, and integrate in
the interval [0, 1]. We obtain

" ; _ (2m)!
(lgllam)™™ = Df lg(t)l“dt—z (2m,)t (Zmay!.

where the summation is extended over all sequences of non-negative
integers my, My, ..., My such that m = m, +my+... +my. Since

2amg

-az™...qEmm

2my
—a An, 2

— (2m)!

(2my)!1 (2m)! ... (2ma)! ™ mylmgl !
and
2 m! omy_2ma 21:»,__(2_!_2_,_ L g2ym
W—,%az vy T = (@it az ... ta,)",
we obtain
(6.2) 19l < V-Vl + Fa.

Inequality (6.1) implies {lglly < llglm and m < }p 1. This, together with
inequality (6.2), gives the Khintchine inequality.

Proof of Theorem 6.3. The following Paley—Zygmund inequal-
ity [1] (see also Orlicz [2]) is an immediate consequence of the Khintchine
inequality:

If {r;} is the Rademacher system and a, are real, and Ya? < +oo,
fn=1

=)
Sa.
1 n=1

then

ﬂganrnaw <Vip+i

n=1

Equations in linear spaces 15


Yakuza


226 C. I. Banach spaces

On the other hand, if f(2) = Yaxr(t) in the norm in the space L7,
f==)

then for every n

Sa- f i@ Zam dt<112a,,r4Lnfn,, <Vig+1)/ Y iy,

k=l
where 1fp+1fg=1. Substmutmg q=p/(p—1) in the last inequality,
dividing both sides by Zak and taking the limits ag n—oco, we obtain the
so-called Kacemarz mequahty (Kaczmarz and Steinhaus [1]):

Y 2a<y/ B3

This completes the proof in the case of real-valued functions Let I7[0, 1]
be the space of complex-valued functions. It is easily verified that the
space of functions of the form a(t)+ib(¢), where a(t) and b(f) belong
to the space of real-valued functions spanned by the Rademacher system,
is isomorphic to the space I? of sequences of complex numbers. B

§ 7. Projections in Banach spaces. A subspace Y of a Banach space X
is called a projection of the space X if there exists a continuous projection
operator onto the subspace ¥, i.e. a continuous operator P such that
P*=P and Pr=o if and only if 2 ¢ Y (see §1, B II).

If an operator P is a projection operator, then the conjugate oper-
ator P* is also a projection operator.

If a subspace ¥ is a projection of the space X, ¥ = {w ¢ X: Pz = a},
then every direct sum of the subspace ¥ and a finite-dimensional subspace
is @ projection of the space X.

Let us write

A ={wveX: Pr=0}.

The set ¥, , is a complete subspace of the space X; it is called the
direction of the projection. Evidently, the space X can be writben as
a direct sum

X=Y®Y,

A Banach space X is called subprojective (Whitley [1]) if every infinite-
dimensional subspace X, of X contains an infinite-dimensional subspace X;
which is a projection of the space X. Evidently, every subspace of a sub-
projective space is also subprojective (Whitley [1]).

A Banach space X is called superprojective if to every subspace N
of an infinite codimension there exists a subspace M of an infinite co-
dimension which is a projection of X and contains the subspace N,
{Whitley [1].)
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We define the distance of two subspaces ¥ and Z of a space X as
8(Y,Z)= inf inf |ly—z]

It is easily verified that if 6(Y, Z) > 0, then 6(Z, ¥) > 0.

If the distance of two subspaces Y and Z of & space X, 8(Y, Z) > 0,
then their direct sum is a closed space. In other words, ¥ and Z are pro-
jections of X. The distance between the direction of the projection and
the projection space itself is positive:

Y, X,)>0

Indeed, let ¢ =y—=z, |lyll=1, where ye ¥, 2¢¥Y,. Then Pz=y,
whence || > 1/|P|| and 6(Y, ¥ ) > I/||P].

_ If a space Y is a projection of a space X, then every operator 4
defined on Y can easily be extended to an operator A defined on the

- whole space X. It is sufficient to take A = AP.

TeEoREM 7.1. (Bessaga and Pelezynski [1].) Let there be given a Ba-
nach space X and its subspace Y with a basis {en}. Let {fa} be a sequence
of linearly independent elemenis of X such that C = Y |[fa—€sl| < +oo.

fa=1
If the space Y is a projection of the space X, then the space Y, spanned by
the elements fy, fa, ... i also a projection of the space X.
Proof. Let us write
HY, Yo} = sup inf [z—yj.
ye¥o ze¥
HAl=1

Let Z be an arbitrary subspace of the space X.If8(Z, X¥) > #(Y, X,),
then 6(Z, ¥,) > 0. Indeed, let us suppose that 8(Z,y,) = 0, i.e. that
to every positive number e there exist an element z € Z, |o] = 1, and an
element y, € ¥, such that ljz—,] < & We may assume without loss of
generality that [yol|= 1. But the definition of the number #(¥, ¥,)
implies the existence of an element ¥ ¢ Y satisfying the inequality [ly— voll
<Y, Y,). Hence

fe— 3l < le—yoll + lo— ¥l < #(X, Fo) +5.
Thus 8(%Z, ¥) < # Y, ¥,)+¢ for an arbitrary £>0. This contradicts
the assumption 8Z,Y) >z9(Y X,).

‘Let y= Ztm, o= 2‘ tie;. Then |z—y|| < KC ||, where K is the
norm of the ba.sxs {fn}- Hence k
$(Y, Y < K-C.

Let P be a projection of a space X onto a space Y. Then ¥, = {=:
Pz = 0}. Let Y. denote the space spanned by the elements f, .., fnig; ---
15*
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We choose an index # in such a manner that
1
Gi= D)Mol < F8(Fs, ¥
i=n+1
Let Y, denote the space spanned by the elements €y, 6,45, .- Then
MY, Y )< KO, <d(¥Y,, 7).
But
MY, D)< d(¥, Y,
whence
8Ty, ¥,) >N, ¥,) .
Thus

8(¥,,T)>0.

Hence the subspace Y, is a projection of the direct sum ¥, @ Y,.
But this direct sum differs from the whole space by a finite-dimensional
space only. The subspace Y’ differs from the subspace also by a finite-
dimensional space. Thus ¥, is & projection of the space X. B

THEOREM 7.2. (Whitley [1].) Bvery Banach space X with a block
homogeneous basis {e.} is subprojective.

o0
Proof. By Theorem 5.7, B II, there exist a sequence {z,} = { ¥ i%e;},
=1

llZall = 1, and an increasing sequence of numbers {p,} such that
Pnt1
i — y,.|1<;”, where ¥, = 2 tre;.
i=pp+1
Let us denote by X, the subspace spanned by the sequence {y}.
Let fn be a functional satisfying the conditions fu(ya/ll¥sl) =1, |fall < K
(where X is the norm of the basis), and fn(e1) = 0 for i < p, and 7 > p, ;.

The operator Px — Z fa(®) Yn/llyxl is & well-defined projection operator.

Indeed, the block homogenelty of the basis implies the unconditional
convergence of the series

2 Uin”yn/ ﬂ?/n”: Where én. = [w]p,ﬂ.l“‘ [m]pn .

n=1 .
However, |fa(#)| < K|#|l; hence the series defining the operator Pw is
convergent. Moreover, P is a continuous operator. Hence the space X
is a projection of the space X. By Theorem 7.1, the space X, is a pro-
jection of the space X. m

TeroREM 7.3. (Kadec and Pelezyniski [1].) Let X = L7[0,1], » > 1.

Let {ea(t)}, llenlls = 1, be a sequence of functions with pairwise disjoint supports

Ap={t: (1) # 0}, AnnAn=0 for n#m.
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If X, is a subspace of the space I[0, 1] spanned by the clements enl(t),
then X, is a projection of the space X.

Proof. Let Pr= 3 fu(z)es, where
=1

1

fa(@) = f (1) jen(t) [P 1o PorBealD gy |

]

Ag it follows from the Holder inequality,

(7.1) @)l < [la@Pdt  and  falem) =
An

Hence P is a projection operator. Moreover,

I1PalP < Dlia@r < D [le@Pdt<jor. =

fn=1 da

Let 87(z) = {: l2(})| <elof}. Let M7= {w<I®0,1}: |§Ys)| < e},
where |E| is the Lebesgue measure of the set E. Evidently, & < &, implies
M2 D MY, UM%’:LP[O,I} and if x e M? then, there exists a set 4 of

>0

Y

measure less than ¢ such that

alt)
/

>1—c.

flxl

THEOREM 7.4. (Kadec and Pelezynski [1].) Let {z.} be a sequence
in the space LF[0, 1], p > 1, such that for every £ > O there exisis an index n,
such that ¢4, ¢ M?. There exists o sequence {z,,}, where @, = (b < ks < ...),
satisfying the conditions

(1) the sequence {&,/||z},} is a basis equivalent to the basis {e,} = {{5,.:}}
in the space 17,

(2) the space [#,] spanned by the elements @, is a projection of the space
17[0, 1].

Proof. If zeL”[0,1], then the set function &(4) =lﬂm(t)]"dt is

absolutely continuous. Hence applying the assumptions and the prop-
erties of sets M? we may define a subsequence {z}} of the sequence {z,}
and 2 sequence {A,} of sets by induction, satisfying the conditions

BEAULS
fleenll

(7.3) fz

(7.2) J d>1—4™7 1,9, ),

il

mi(t)r A< 4P (21,9, ).
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We write 45, = 4,\ U 4,

i=n+1
s fld) for ted,

0 for 14 Yu=2afllall (n=1,2,...).

(1) = ‘
Evidently, 4, ~ A, = 0 for n # m. Hence the following inequalities
hold for every n:

Bn {2a(t) [P
< [ il
0,1\ 45
aa(t) [P xn(t) P
< [ |ggfer [l
CRINDIL At
bsd Ly (1) [P
- &l "
< g=tp Z A}f A at
i=n+1
< 4—(1+n)1)+ 2 4—1'17 < 4—7»:7’
f=n+1
n(t) [P
1>1LGlf"=f%,-l)[ a
A5 "
an(t) P 3 24 (t) P
= | dt— ol dt
4[ Teal ;% ﬁ[ ]

>1— 4—(u+1)p_ 2 4—(1'-{-1)13 >1— 47"
f=n+1

It follows from these inequalities that

T

h -l <

AT lyall (L lleall) < 2-47".

Eﬁgﬂ ~%H + [len— 9n]]

Thus

@n
Huwnu ””ﬂ
?Dhef)rem 7.3 implies that the space X, spanned by elements y, is a pro-
jection of the space I7[0, 1]. Hence, according to Theorem 4.1, the space X
spanned by the elements #, is a projection of the space L?(0,1]. m
THEOREM 7.5. (Kadec and Pelezyviski [1].) Let X, be a subspace
of the space IP[0,1], p > 2. If there emists a positive number ¢ such that
X,CM?, then X, is a projection of the space LF[D,1]. ’
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Proof. If # « M2, then |8%(x)| > = and

el = ( [ lePar)™ > ( | lw@pa)”
¢ )

> (SllPISI@)" > £l -

On the other hand, we have |jz}} > |lz|l, for # ¢ Z[0, 1] (see Lemma 6.1).

Hence the norms || {l; and || || are equivalent.
Let {e4(?)} be an orthogonal system in the subspace X,. The operator
o 1
Pr= E( f z(7) e,,(r)d-c) en(t)
n=1 0

is a projection operator well-defined on the whole space. Moreover,

| Pa|| < [1Palls < lloll < fiol] -

Hence the operator P is continuous. m

COROLLARY 7.6. (Whitley [1]) Spaces IP, p > 2, are subprojective.

Proof. If X, is an infinitely dimensional subspace of the space
I7[0,1], then either X,C M? for some &> 0 or for every &> 0 there
exists an element #, ¢ X, such that @, ¢ M?. In the first case, the sub-
space X, is a projection, by Theorem 7.5. In the second case, by Theo-
rem 7.4, X, contains a subspace, and this subspace is & projection space. B

Remark 7.1. It follows from the equivalence of the norms Il
and || Il in the subspace X, C M7 that this subspace is isomorphic with
the space 12, but also conversely, since it X, is isomorphic with 2, then
there exists a positive number & such that X, C M7. TIndeed, let us suppose
that X, ¢ M?, p > 2. By Theorem 5.4, the space X, then contains the
space 17, which iy impossible.

TawoREM 7.7. (Whitley [1].) Let X be a superprojective space. Let N
be an infinite-dimensional X -closed subspace of the space X*. There emisis
an infinite-dimensional subspace M which is contained in the subspace N
and is o projection of the space X*.

Proof. Let

LN = {5 e X: a*(z) =0 for a* < N}.

Evidently, codim +N = dim N = - oco. Since X is a superprojective space,
there exists a subspace M D 1 which is a projection of the space X. Let

ML= {gt e X+: at(z) =0 for we M}.

Since the space M is a projection, the space M* is also a projection. Evi-
dently, M+ C N and codim M* = dim M= foo. W
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CoroLrAry 7.8. (Whitley [1].) If & Banach space X is reflexive, then
it 48 superprojective (subprojective) if and only if the conjugate space X+
is subprojective (superprojective).

CoroLLARY 7.9. (Whitley [1].) Spaces with block-homogeneous bases
and spaces LP[0,1] for 1 < p < 2 are superprojective.

§ 8. Universality of the space C[0,1]. In § 6 we have investigated
the properties of the linear dimension. The following question arises:
does there exist a separable Banach space X such that dim; ¥ < dim; X
for every separable Banach space Y? Such a space X will be called
a untversal space.

TeEOREM 8.1. (Banach and Mazur [11.) The space C[0, 1] is universal
for all separable Banach spaces. Moreover, every separable Banach space
18 isomeirically isomorphic to a subspace of the space C[0,1].

The proof of this theorem is based on the following lemma:

LemwMa 8.1. Every dosed set N contained in the set

No={2e(s): 2= (01, @y i, B, ...), lB| <1 (4=1,2,..)}

8 a continuous image of a closed subset P of the interval [0, 1].

Proof. Lebt # = (@) be an arbitrary point of the set N. If the coordi-
nate #; of the point » is non-negative, then we write it by means of its
binary expansion

0, bybs-..
where by are either 0 or 1. However, if a coordinate z; is negative, we
write ©y = —1 4 y;; where y; is a non-negative number. Hence the number oy

can be written symbolically in the form
T, 0405.ne 4

where ¢ are the digits of the binary expansion of the number yi. Hence
every coordinate x; of the point # is of the form

8= 0y, 0n05..., Where ;=0 or g =1.
We now associate the number y [0, 1] of the triadic expansion
(8.1) Y= 0, Gy Gy Gy g By gy .

with the point # (all digits of the triadic expansion of the number y being
equal either to 0 or to 1). Conversely, with every number y e [0, 1] with
a triadic expansion of the form (8.1), i.e. containing only digits 0 and 1,
Wwe asgociate a point @ (s) with coordinates #; as follows:

(8.2) By= Gy, Gy ply... (1=1,2,..).

We consider the set P of numbers y « [0, 1] which have tradic ex-
Pansions consisting only of digits 0 and 1 and which eorres ipond to points
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x ¢ N of the space (s). Moreover, if y € P is triadic, we take the triadic
expansion of y whose all digits are equal to zero with the exception of a
finite number of digits. Then every number y € P has exactly one triadic
expansion of the form (8.1). Hence the correspondence

s=@(), @eN,yeP

is a one-to-one map of P onto N, .

We shall prove that the transformation z = @(y) is continuous.
Let y,—y, where all digits in the triadic expansions of numbers ¥, and ¥
are equal either to 0 or to 1. The number of identical digits in the triadic
expansions of y, and y increases to co as n—>co. Let

Tn=g(yn) and z=¢y).

The construction of points #, and # implies that the number of first
identical digits in the coordinates #{ of points z, and the corresponding
coordinates »; of the point ® increases to co. Hence #{—z; a8 n—>oo
for +=1,2,... By the definition of convergence in the space (s), this
implies #,—». This proves the continuity of the transformation g.

Tt remains to prove that P is a closed set. Leb a sequence {y,} C P be
convergent to a number y. All numbers ¥, and the limit y have triadic
expansions which consist of digits 0 and 1 only. Sinee the operator ¢ is
continuous, we have &, -z, where &, = ¢{¥s), & = @(¥y). But y, ¢ P implies
2y € N, by definition. Since the set ¥ is closed, we have z# € . Consequently,
y € P, and the lemma is proved. m

Proof of Theorem 8.1. Let X be a separable Banach space; by
the eonvergence in the ball §(X*) we shall understand weak convergence
of functionals. By Theorem 3.2, the ball S(X™*) is compact. Let a;, ay, ...
weey @y, ... be the elements of a countable set dense in the ball §(X). In
order to prove the weak convergence of a sequence of functionals {f®}
CS(X*) to a functional f e §(X7) it is sufficient to show that

F®(ap)—>F(an) 85 k—oo  for n=1,2,..

Consequently, if we associate the element {f(as)} of the space (s)
with the functional f ¢ §(X), the convergence of a sequence of functionals
to a limit belonging to the ball §(X*) is equivalent to the convergence
of the sequence of the respective elements to the limit element in the
space (s). But

[fledl < Ifllllaslt < 1.

Hence the elements of the space (s) whieh eorresponfi to the functionals
feS(XT) constitute a set N satisfying the assumptions of Lemma 8.1,
because the compactness of the ball §(X*) implies that the set N is closed.
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Hence the set N, and consequently, also the ball §(X*) are continuous
images of a closed subset P of the interval [0, 1]. Thus to every number
t € P there corresponds a functional f; € §(X'), the set of all functionals f,
is identical with the ball 8(X*), and {f;,} tends to f; weakly if ¢, —t.

Let # be an arbitrary element of the space X. It follows from the
definition of weak convergence of functionals that

fa(@) —~flz)  as  f—>t.

Hence, if the element » is fixed, the function fi(z) is a continuous
function of the wariable t ¢ P. This function will be denoted by

fdz) = g{0) -

We extend the function g,(t) defined on the set P to the component
intervals of the set [0, 1]\P as a continuous function linear in each of
these intervals. We obtain a continuous function g,(¢) defined on [0, 1],
i.e. belonging to the space C[0,1]. By the definition of the norm in the
space C[0,1], we have

192lle = sup lg,(2)] .
tef0,1]

Since the function g.(f) is linear in each of the component intervals
of the set [0, 1\P, the maximum of the function ¢,(f) on the interval [0, 1]
is equal to the maximum of g,(f) on the set P. Hence

ng”a = max [ga:(t)l .
ieP
On the other hand, if ¢ € P, the definition of the funetion g, implies

s 1900 = I )] < Il -Tlovlx < follx -

(8.3) max lg,(0)] < [y -
teP

Let an element © < X be given. There exists a functional g of norm

equal to 1 for which g(x) = |ji5. Since g ¢ §(X't), there exists a number £,
such that f, = g. Hence

fal@)l=lollx, ie. gl =llx.
Consequently,
(8.4) max |g(t)] > |lwllx.
teP

Inequalities (8.3) and (8.4) imply
(8.5) llgzllc = Htlffiyz(t)l = [lz|lx.

=1
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It easily follows from the construction of the function g,t) that
if the functions g,(f) and g,(f) correspond to elements z ¢ X and y ¢ X,
respectively, then the function ga(t)+gy(f) corresponds to the element
z -+, and the function ag,(t), to the element ax. Hence the function g, is
a linear operator which maps the space X onto a part of the space C[0, 1],
isomorphically. We obtain from formula (8.5)

le—yllx = lg.— gl -
Hence g, is not only an isomorphism but also an isometry. m

CoROLLARY 8.2. Lel {wx} be a weakly comvergeni sequence of elements
of a Banach space X such that infmel] > & > 0. There exists a subsequence
k

{zx,} which is a basis of the space spanned by {ux,}.

Proof. By Theorem 8.1, the space X can be treated as a subspace
of the space C[0; 1]. The space C[0, 1] has a basis (e,) (Example 6.2, BII).

The weak convergence of the sequence {z;}= {3 iPe,} implies
n=1

limP=0 dfor n=1,2,..
koo
Hence, according to Theorem 5.7, BII and Theorem 5.2, one may
extract a sequence (%3,} which is a basis of the space spanned by this
sequence. B

The following theorem is another consequence of Theorem 8.1

THEEOREM 8.3. (Sobezyk [1].) If X is a separable Banach space which
contains a subspace X isomorphic to ihe space ¢, then X, is a projection
of the space X and the norm of this projection operator is not greater
than 2. .

Proof. By Theorem 8.1, the space X can be considered as a subspace
of the space C[0,1]. If there exists a projection of the whole space C[0,1]
onto the subspace X, with a norm not greater than 2, there exists also
a projection operator of the space X onfo the space X, with a norm not
greater than 2. :

Let Y be a subspace of the space C[0,1] isometrically isomorphic
with the space ¢,. Let this isomorphism transform the fanctions fs
(n=1,2,...) into unit vectors in the space ¢. Since lifall = 1, there exist
points £, such that fa(ts) = 1 (n =1, 2, ...). et Z be the set of all cluster
points of the sequence {t:}. Evidently, Z is a closed subset of the in-
terval [0, 1]. An obvious property of unit vectors in the space ¢ yields
Wakfmll=1 (B # m; n,m=1,2,...). Hence

0 if #n#Em,
1 i n=m.

Fullm) =]
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If teZ, then fu(?)= limfa(tm,) =0 (n=1,2,..). Finally, applying
&

the fact that {f»} is a bas—{: of the space ¥ we find that te Z implies
y(t) = 0 for every y ¢ Y. Let Cz= C([0,1]\Z), i.e. let Cz be the subspace
of the space C[0,1] made of all functions which vanish at each poins
of the set Z. Let us write

To= ffv(tn)[sgnﬂt;)]fn for weCy.
n=1

Since # € Cz, we have lim#(f,) = 0. It follows from the definition of the

n->00
functions f» that T is & well-defined linear operator which maps the space Cz
onto the space ¥. Since ¥ C Oz and the sequence {f,} is a basis of the
subspace ¥ and T(fa) = fa, we conclude that T is a projection operator
of the space Cz onto the space ¥. Moreover,

Il = Sup I1T2] = sup |z (i) =1 .

In order to complete the proof it is sufficient to show that the space Oz
is a projection operator of the space C[0,1] with a norm not greater
than 2. We extend the functions from the space Oz to the set [0,1INZ
linearly in the same manner as in the proof of Theorem 8.1. Let us remark
that if we associate the function

z(t) for teZ,
linear on each of the component intervals of the set [0,1N\Z

Qz) =

with the function @ ¢ C[0, 1], this correspondence is & projection operator
with a norm not greater than 2. m

§ 9. Separable Bamach space as a continuous image of the space I.
In view of Theorem 2.6, the next theorem can be congidered to be dual
to the theorem on the universal space.

THEOREM 9.1. (Banach and Magzur [1].) Every separable Banach
space X is a continuous image of the space 1.

Proof. Let {z,} be a sequence dense in the ball § (X).Let A ¢ B(1—>X)
be an operator of the form

A({ta) = D tazn .
n=1
Since the sequence {my} is bounded, it is easily verified that the
operator 4 is continuous. It remains to prove that 4 is an epimorphism.
Let z ¢ 8(X). By hypothesis the sequence {x,} is dense. Hence one can
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choose a subsequence {v,} and a sequence of numbers {fz} such that
il < 1/2% and
- 1
{]Z teton,— ]| < >
k=1
Hence A ({t,}) = #, whére
y ] for n # ng,
n t, for n=m. M
Remark 9.1. The above theorem remains frue without any changes

also in the case of non-separable spaces. Only the space I is replaged by
the space (), where Q is a set of the same power as a dense set in the

space X.
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CHAPTER II
PARAALGEBRAS OF OPERATORS OVER BANACH SPACES

§ 1. Fundamental properties of Banach algebras and paraalgebras. A Ba-
nach algebra is an algebra which is a Banach space such that multipli-
cation of elements is continuous with respect to each variable separately.

Every Banach algebra X without unity can be extended to a Banach
algebra with unity if we add the unity to X formally. N amely, we consider
the algebra of all formal sums of the form ae+ @, where a is an arbitrary
scalar, # is an arbitrary element of the algebra ¥, and ¢ denotes the unity
(see Theorem 0.1). The norm of the element ae+« is defined as follows:

lae+ 2l = |a| + |iz|| .

Hence we may limit ourselves to the comsideration of Banach algebras
with a unity. In the sequel we shall assume that a Banach algebra has
2 unity.

The algebra B(X) of all continuous operators which map the space X
into itself is an example of a Banach algebra. The norm in the algebra B(X)
is defined as the norm of operators. Let us remark that

IAB] < [14][1B] -
Indeed,
Il4Bl| = sup | 4Ba]| = sup i) < |A]|B] .
<1 ledi<iiBY

Evidently, the unity of the algebra B(X) is the identity operator I.

. A Banach paraalgebra will be called a paraalgebra P = |4, g: .A.g),
where 4,, 4,, 8, 8, are Banach spaces and the multiplication of elements
is continuous with respect to each variable separately.

The norm in a Banach paraalgebra P is defined as & function defined
on the set of that paraalgebra and such that

lozl} = lal sl  for an arbitrary scalar a,
e+l < llell+lwll 4 the operation w+y 4s performable,

lell=10 " if and only if z =0 in one of the spaces A, A,, 8, 8;.
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Evidently, norms in spaces Ay, 4;, 8, 8, define a norm in the para-
algebra and, conversely, a norm in the paraalgebra induees norms in
spaces Ay, 4y, 8y, 8s. .

Two norms | |, | | in a Banach paraalgebra P are called eqa-twalmt
if the corresponding norms induced in spaces 4,, Aq, S;, 8, are equivalent.

Arguing as in the case of Banach algebras, one may prove that every

'Ba,na.ch paraalgebra can be embedded in a Banach paraalgebra with

umities e; (¢ =1, 2). Therefore in the sequel we shall consider Banach
paraalgebras with unities only.

The parasalgebra of operators B(X = ¥} is an example of a Banach
paraalgebra.

S, .
TEEOREM 1.1. In every Banach paraalgebra P = (Al /S: A,) with

unities eie A; there is a norm | || equivalent to the given norm | | and
such that )
loyll < lelilyll, ledl=1 (=1,2).

Proof. By Theorem 10.1, AT, every paraalgebra P can be repre-
sented as a paraalgebra of operators P(X = Y), where X = A; X 8y,
Y = A, % 8,; with every element » we associate an operator A,.

We define the following norms in spaces X and XY:

llwllo=mﬂx(|%|,|8|)y z=(u,8), wueds, sehf,
Il = ma'X(luI) lsl) ; y = (u,8), hed;, 8e 8.

By the continuity of multiplication it is easily verified that the
operators A, are continuous. We define the norm of the operator A4,
as follows:

{14l = sup eyl -
Hplle<<1

But, by the definition of the norm, oyl = ma;x(lzfm], Josh), where w e A,
8e8; (i=1 or 2) depending on the space to which = belongs. )

Tet us remark that A4.(yz) = x(yz)= (ay)z = (4,y)z. But if the
operator A satisfies the equalify (Ay)z = A(yz), then

Ay = Alesy) =y,

) ite Aes= i i h that the operation e;y is
here we write Ae; = @, ¢; being a unity suc)
;)Verform&ble. In other words, the operator A generates an operator of
multiplication by the element , i.e. AeP(X=Y)
Using this fact we now show thati the paraalgebra

8(X~Y) Y))

PXaX)= (-Al(x) S(XT)
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is complete with respect to the norm || ||, i.e. that all four spaces A,(X),
Ay(Y), 8(X~Y), 8(X—~T) are complete with respect to the norm Il
Indeed, let a sequence of operators {4,} CP(X < X) be convergent to
an operator 4 in the norm. Then

Azy) = ggAn(wy) = lm(4,2)y = (da)y

for every z and y. Hence A ¢ P(X = ¥) and the paraalgebra P(X < Y)
is complete with respect to the norm .
Let us remark that if ¢; is a unity such that #-e;= =, then

e || _ el
@l = T
{ llmII“ llesllo

Hence the transformation of the paraalgebra P(X = Y) onto the
paraalgebra P is continuous in the sense that the transformation A~z
of ea.eh of the spaces 4,(X), A(Y), 8(X-T), S8y(¥Y—~X) onto the re-
spective spaces 4, 4,, §;, 8, is continuous. Since the spaces A, Ay, 8y, 8,
are complete, Theorem 3.2, B II, implies that the inverse map is also
continuous. ‘

Thus, taking |jo]| = |4,], we obtain a norm satisfying the theorem. m

THEOREM 1.2. If Be B(X) and 1Bl < 1, then the element I— B is
invertible.

Proof. We shall show that
(1.1) (I—B)'= Z'B".
1=0

Indeed, the series on the right-hand side of (1.1) is convergent.
Moreover, .

Al = sup lyoll >
RS

n
(I—B) ) B =I-B"'5T a5 nooo.
i=0
Hencfe formula (1.1) is an immediate consequence of the continuity of
multiplication. m
) %BEOR;'}MZ 1.b3'. I; J is a proper left ideal (right ideal, two-sided ideal)
"M a banach algebra X, then the closure J of J is also a proper left ideal right
ideal, two-sided ideal). prepertef ideat (v
P'ro of: We prove the theorem for left ideads; the proof in the case
of.a right ideal or a two-sided idea] is analogous. Let 4 ¢J; then there
f:‘xlsts a sequence yp—y, yeJ. If we X, then Yn €d and xy,—>zy; con-
sequepﬂy, zy e.J . B}lt J is a proper ideal. By Theorem 1.2, J does not
contain a cerfain neighbourhood of the element e, Hence the ideal J also

does not contain a certain neighbourhood of the element e. Thus J is
a proper ideal. m
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TarOREM 1.4, Every maximal left ideal (right ideal, two-sided ideal)
in o Banach paraalgebra with unities is closed.

Proof. Evidently, J CJ. By Theorem 1.2, ¢; ¢ J (i=1,2). Hence J
is a proper ideal. Since J is maximal, we have J = J.

| ]

THEOREM 1.5. A radical in a Banach paraalgebra P =(.A1 g: Ag)
is closed.

Proof. Let the element @ belong to the closure R of a radical R.
Tet a and b be two elements of the paraalgebra such that azbe Ay
(¢ =1 or 2). Since x eﬁ, there exists an element @, ¢ R such that [z— ]
< 1/jal||Bl. By Theorem 1.2, the element ei+a{r— )b is invertible.
Since #, ¢ R, the element g

ei-+axh = e;+amyb -+ a(z—20) b
— {ei+a(0—z0) b} {er +[ec+al@—ze) bl amb}  (E=1,2)

is invertible. Hence 2 ¢ B. B
Let a Banach algebra X be given. According to the definition of an

" apalytic function with values in a linear metric space (see § 11, BI) we

say that a function #(1) defined in a domain @ of the complex plane and
having values in an algebra X is analytic if for every 4, ¢ & the function @ (1)

can be expanded in a power series
o

a(d)= D (—lo)'or  (@ie %)
i=0
in a neighbourhood of the point 4. 3
Evidently, if the function @(1) is analytic, then for every i ¢ G
a derivative of the function () exists at the point i:

B)—
. k-0
If a linear continuous functional f(z) is defined on an a,lge_bra, X,
then the function F () — f(x(4)} is an analytic function of the variable 1.

Indeed, the function F'(1) possesses a derivative:
FO+R—F(3) fle(d+h)—fe)
F'(3) = lim ( % = lim ( I)z
70 B0
LRY— (A ,
= f(umﬂl_”r_’%ﬂ)z fle ).
>0 .
Since the set of all linear continmous functionals deﬁ.u_ed on the
algebra X is total, the analyticity of F(4) implies the following
TamorEM 1.6. If e is the unily of a Bamach algebra X, then for every
% e X there ewists o number A such that the element ©— le is not invertible.

Equations in linear spaces . 16
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Proof. Let us suppose that such a A does not exist, i.e. that the
element #— Ae is invertible for every number A. Let us remark that the
function (z—1¢)™" is analytic, because

lim @—G+h) e];— (w—2e)?

= (w—1e)%.
[

Let f be an arbitrary linear continuous funetional defined on the algebra X.
Then the function F (1) = f[(#— Ae)™"] is analytic. Moreover,

0= et [ o

Hence the function ¥(1) is bounded. By the Liouville theorem, F'(1) is
constant. But th F(4) =0, whence F(i)=0, ie. f(z~!)= F(0)=0.
Since the functional f is arbitrary, it follows that o~ = 0, which is im-
possible. m

If every element & 5 0 of a ring ¥ is invertible, then the ring is called
a field. A Banach algebra which is a field is called a normed field.

CovoLrARY 1.7. (Gelfand [1], Mazur [11.) A normed field over the
field of complew numbers is the field of complex numbers.

Proof. Let us suppose that there exists a normed field X different
from the field of complex numbers. Then there exists an element eX

such thab o— e is invertible for every number 1. This is impossible by
Theorem 1.6. m

§2. Compact operators. As we have seen in §2, BIV, the set
T(X = ¥) of compact operators is a two-sided proper ideal in the para-
algebra B(X = ¥). Example 3.1, Chapter 1V, shows that in the general
case this ideal is not necessarily closed. As a consequence of Theorem 3.2,
BIV, we obtain the following

THEOREM 2.1. If X and ¥ are Banach spaces, then the ideal T(X = Y)
s closed.

THEOREM 2.2. If X and Y are Banach spaces and the operator
TeB(X—Y) is compact, then the operator Tt ¢ B(¥+—=X7¥) is compact.

Proof. Let 8(X)={meX: || < 1}. In order to show that T is
compact it is sufficient to prove the compactness of the set T+8 (X,
where 8(X) = {o* ¢ X*: |lo*]| < 1}. The set T8(X) is compact by hypoth-
esis. Hence there exists a finite system of points y,= Tw, e TS (X)
(n=1,2,..., %) which is an &3-net. Moreover, since the set §(X) is
bounded, there exists a system of functionals #f (i=1,2,.., k') such that
for every s « §(X*) we have

inf wp |o*(y,)— 2} (y,)] < $e.
1L <n<k
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Hence for every y e TS(X),
&+ (y)— = (@)
< @) — 2 W)l + ot (Un) — oF (W) + |2 (4,)— 21 ()]
<%etistie=c.

This means that for every z* ¢ §(X*) there exists an index 4 such that

1T+ (2" — @ )| = sup |T* (2" —aof)a|

zeS(X)
= sup |[(#* —a}) Tz| = sup (=" —af)yll<e.
z€S(X) yeTS(X)

Thus the points Tz} form an s-net in the set T+8(X™*). Since the
number & is arbitrary, the set T+8(X™) is compact. Henee the operator T+
is compact. ®

CoroLLARY 2.3. If X and Y are Banach spaces, T e B(X—~Y) and
the operator T+ ¢ B(XY+—X") is compact, then the operator T is compact.

Proof. By Theorem 2.2, the operator TH+ e BHXT+t->¥*7) ig
compact. But the operator T is a restriction of the operator T+* to the
space »X (see § 1, I). Hence T is compact. &

The following theorem holds for algebras B(X) over Banach spaces
with a block-homogeneous basis:

THEOREM 2.4. (Gochberg, Markus, Feldman [1].) If a block-homo-
geneous basis exists in a Banach space X, then the only proper closed two-
sided ideal contained in the algebra B(X) of linear continuous operators s the
ideal T(X) of compact operators.

Proof. Let us suppose that a linear continuous operator T is not
compact. By Theorem 5.8, B II, there exists a number >0 and a se-
quence {z,}, |[@|| =1, of the form

#™e;, where lm#® =0,

700

&, =

s

i

1

such that ||Tzs)f > 7. ]
By Theorem 5.7, B IT, there exist a subsequence {2} and an in-

creasing sequence of indices {p,} such that

Pnt1

(o 2 ti"‘)e;ﬂ< 2"11171’"'

i=pa+1

Let,

D1

=D t™e;.

i=pp+1
16*
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N o0
Tt is easily verified that [|Tayl > 7/2. Let y, = Ty, If y, = > nMe;, the
=1
definition of the elements zj implies the equality

lm7y{® =0 .

k~>00 .

Hence there exist a subsequence {yz;} and a sequence of indices {p;}
satisfying the inequality

L Dit1 1
@) o~ ) e <%

i=py+1

It follows from the block-homogeneity of the basis that the operator A
satisfying the equalities

o=, (j=1,2,..)

is linear and continuous. Hence 4 ¢ B(X). v
Let us denote by ¥, the space spanned by the elements {1} By
Theorem 5.2, I, the basis {y,} is equivalent to the basis {g/;,}, where

DI .
Y= > #e,. Applying block-homogeneity we find that {Us,} is equi-
i=<p+1

va,lem?z‘go the basis {e;}. Hence the operator B defined on Y, by the equal-
ities
Byky:ef (1=1,2,..)

is linear and continuous. Arguing as in the proof of Theorem 7.2, I, we
can show that the space Y spanned by the elements {y}q} is a projection
of the space X. According to Theorem 7.1, I, the space Y, is also a pro-
jection of the space X. Hence the operator B can be extended to the
whole space, B e B(X). Consequently, we have

BTAe;=¢; (j=1,2,..), ie. BTA=I.

Thus the operator T' cannot belong to any non-trivial ideal. m
Bemark 2.1. In the above proof we did not make use of the fact
that the ideal T(X) is closed. Hence the result ecan be formulated as
follows:
TEEOREM 2.4". Let X be a Banach space with a block-homogeneous

basis. If an operator T e B(X) is not compact and belongs to a certain two-
sided ideal J C B(X), then J = B(X).

§ 3. The ideal of compact operators over Banach spaces containing %,
In the last section we proved that if there is a block-homogeneous basis
in & Banach space X, then the algébra B(X) possesses only one closed
two-sided proper ideal, namely the ideal T(X) of compact operators.
‘The following question arises: supposing B(X) contains only one closed
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two-sided proper ideal: does there exist a block-homogeneous basis in
the space X? A complete answer is not known. However, there exist
some partial results which we shall quote here.

Let 1 <p < +oo. We denote by I* the space ¢,. Although this is
not conventional, it will enable us to conduct the proofs in a uniform

o oo
manner. The formula ¢ 3'|as|® < +o0o” or the sentence ‘“the series > lanl™
ne=1 =1

is convergent” will mean %an =0.

Let X be a Banach space with a basis {es}. We denote by I the
set of operators satisfying the condition: an operator 4 < B(X) belongs
to I, if for an arbitrary sequence obtained from the basis by a linear
transformation B ¢ B(X),

Yn = Bes
and for an arbitrary sequence {i,} of coefficients of expansion of any
) o o
element # in terms of the basis, ® = > ines, the series J'|ita Aynll” is con-
n=1 n=1
vergent.
LEMMA 3.1. The set I, is a two-sided ideal in ‘the algebra B(X).

Proof. We show that .
(i) if A eB(X), Telp, then AT eIy and TA ely,

(i) 4f Ty, ToeIp, then Ty+Tpelp.

In order to prove (i) we show that the series

n=1

Dl ATysp  and 3t TAyal?
=1

are convergent. The first series is convergent because Ais a continuqus
operator. The convergence of the second one follows from the equality

lt TAyalP = > lltn Tonl? ,

n=1

n

where 2, = Ay, = ABen, because the serieg D litn A2n|PP is convergent.
n=1

In order to prove (ii) we must show that the series

[\48

Il
P

Dt Ta 4 T 9l

n=1

is convergent. However, ‘we have

5] o Ty + T yallP < G(Zﬁ ltn Tagall? + 3 litn Tatall”}

n=1 n=1 n=1
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where C =!zl gla]% Ija;—i-y]p, and the series on the right-hand side of this
W
inequality are convergent, by the definition of the set I, =

The closure I, of the ideal I, is also an ideal.
We now prove the following ;

00
LEMMA 3.2. If there ewists an element x = Dtnen such that the series

n=1
D litnenll” is divergent to infinity, then I ¢ I,
n=1

Proof. Let us suppose that the identity I belongs to I,. Then there
exists an operator 4 eI, such that

T—4f<1.

Hence the operator A = I—(I— 4) is invertible. Let us write Yn = A %e,,
Evidently,

D)l Agalp = Z” e enlf® ,

n=1 n=1
el
and the series ZﬂtnA_yn[]P is divergent, in contradiction to the assumption
n=1
Ael, Thus I¢1,. m
.I;‘?t us denote by K, the set of operators satistying the following
condition: an operator 4 « B(X) belongs to the set K, if for every se-
quence {f,} such that the series Dltal? is convergent and for every se-

. R . n=1
quence {yn} which is the image of the basis by means of a linear transforma-
tion B e B(X): y» = Bey,, the series

S InAYn

. n=1
18 convergent.

Lemma 3.3. The set K, is a two-sided ideal,

Proof. We show that

(a) if A € B(X), T e Ky, then AT €Ky, T4 e K,

(b) if Ty, Ty € Ky, then T, +Tye K,
) The proof of condition (a) is identical with the proof of condition (i)
in Theorem 4.1. In order to prove (b) let us remark that the series

Ztn(Tx+T2)?/n = jtnTl’!/n-i‘ Zm:tnTg?ln
n=1

n=1 n=1

18 convergent, as the sum of two convergent geries. m

We denot; K . . _ .
el enote by K, the closure of the ideal K,. Bvidently, K, is an
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o0 [=-]
Lemua 3.4. If the series 3 [taP is convergent and the series Y tyen
n=1 n=1
i8 not convergent, then the identity I does not belong to Zﬂ.
Proof. Let us suppose that I e K,. Then there exists an operator

A e K, such that
H—A4]<1.

Hence A possesses the inverse A~'. Let us write #, = A 'ex. By the

[=4] oo
assumption of the lemma, the series Y’ f A%y = Y'tae, is not convergent,
n=1 n=1

contradicting the assumption 4 € K,. Hence I e K. B
Applying Lemmas 3.2 and 3.4 we prove the following

THEOREM 3.5. Let {es} be an unconditional basis of a space X, |le]l = 1,
and let X contain a subspace X, spanned by the elements of the basis and
such that empansions of elements belonging to X, constitue the space 17,
p=1. .

If the algebra B(X) contains only ome closed two-sided proper ideal,
then the coefficients of expansions with respect to the basis {en} form the
space 1P,

Proof. We show that the series > i is convergent if and only if
’ n=1

w
the series Y inen is convergent.
n=1

o
Let us suppose that the series > [i|? is convergent and the series
n=1

D'tnen is not convergent. By Lemma 3.4, I ¢ K,. Hence the ideal
—

K; # B(X). Applying the remark following Theorem 6.1, I, we find
that the space X, contains a subspace X; spanned by such vectors e,
of the basis that the coefficients of expansion of every element from the
space X, are summable with power p. The projection operator Px, of
the space X onto the space X; belongs to the ideal K, but obviously Px,
does not belong to the ideal of compact operators 7'(X). Hence it follows
that there exists a proper closed two-sided ideal in the algebra B(X),
different from the ideal 7'(X), which is a contradiction.

On the other hand, if we suppose that the series > Itaf? is divergent,
n=1
then the equality |es|] = 1 implies that the series

DlwealP = D ttal” .

n=1 n=1
is divergent. o
Lemms 3.2 implies I ¢ I,. Hence I, # B(X).
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) The operator Py, belongs to the ideal I, but Pg, ¢ K,. Hence there
exists a closed two-sided ideal in the algebra B(X), which is proper, a con-
tradiction. m

OOROLI:ARY 3.6. Let {en} be an unconditional basis of o space X, and
let X contain o subspace spanned by the elements of the basis and em-
pansions o;f. elements belonging to X constitue the space 1. The spaces X
and ¥ are isomorphic if and only if the sequences of coefficients {t,} form
the space IP. :

Proof. If the spaces X and I? are isomorphic, then there exists one
proper closed two-sided ideal in the algebra B(X) (Theorem 2.4). By

o
Theorem 3.5, the series > |in|? is convergent.

n=1
Let us now suppose that the series Y |ta|” is convergent. We define

) . n=1
2 new norm in the space X as follows:

ol = Il -+ lizilx -

The sequence {t}, considered as a sequence of linear functionals, is con-
vergent to the same element in the norms Izl and |z]x. By‘ the’Banaeh
theorem (Theorem 3.2, B II), the norm llel* is equivalent to either of
the norms |zl and |#]ly. Hence the norms Izl and [jz]lgx are equivalent
Consequently, the spaces X and I are isomorphic. m .

ExaMPLE 3.1. We denote by I#» (Pn—>p, Pn > 1) the space of all
sequences 2 = {£,} of real or complex numbers such that

e@) = D't < +oo.

n=1

We define a norm in this space. as follows:

lall = inf{o(wfe) < 1}.
It is easily verified that the standard basis in 177 i
. a8is in IP» is an unconditi i
Let us consider a sequence {n;} such that nditional basis.
1
lpnk—p] << ?‘ .

The spaces [P+ (spanmed by elements {eny}
: ngy) and 1#
Corollary 3.6 we find that the spaces l”"k and ?

if the series ) |&,]? is convergent.

are isomorphic. Applying
are isomorphic if and only

n=1
In the special case I = I the a i
= SSTLI;
weakened, namely: ptions of Theorem 3.5 can be

ol iHIEORELt{a ?.7 . Let a Banach space X with an moonditiml basis {es},
1 contain a subspace Y as a projection, and let the spaces . Y and PP
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be isomorphic. If ihere exists only one closed two-sided proper ideal in the
algebra B(X), then the coefficients of expansions with respect to the basis {en}
form the space I*.

Proof. Let us denote by Jy(X) the set of operators 4 such that the

=
series > [[Awa|f is convergent for every unconditionally eonvergent series
n=1

o0
Y. As in case of the ideal I,, we prove J4(X) to be an ideal.

n=1

o0
It there exists an unconditionally convergent series @, such that
. n=1

@
D il = o0, then we prove I ¢J,(X) as in Lemma 3.2. By Theorem 5.1, 1,
n=1 '

the projection operator P onto the space Y belongs to the ideal Jy(X).
Evidently, P is not a compact operator. .
Let us consider the conjugate space X*. Let J, denote the set of
operators for which the conjugate operators belong to the ideal J5(X ).
Evidently, J, is a closed two-sided ideal. If there exists an unconditionally

convergent series f &, in the conjugate space X such that g’ [|Enlft = o0,
then I ¢ Jo(X*). Hence I ¢J,. On the other hand, we ha::;lP edy. Thus
T(X) #dJ, # B(X).

Hence, if there exists only one closed two-sided proper ideal in the

Lol
algebra, B(X), then the series 2 llmal® is convergent for every uncondition-

n=1
0

o
ally convérgent series ) @,. Moreover, the geries Y |4 is convergent
1

n=1 n=

for every unconditionally convergent series Y&, in the conjugate space X+,
n=1

Hence, by Theorem 5.3, I, the spaces X and I* are isomorphic. Moreover,

the sequences of coefficients with respect to the basis belong to the

space 2. m

§ 4. Weakly compact operators. Let X and Y De Banach spaces
and let §(X) denote the unit ball in the space X. An operator T € B(X—+Y)
is called weakly compact if the weak closure of the set T8(X) is a compact
set in the weak topology of the space Y.

Since a weakly compact operator T e B(X—>Y) may be treated as
a compact operator in the space B(X—>Y,), where ¥, is the space Y
provided with a weak topology, a linear combinaition of weakly compact
operators is a weakly compact operator. Moreover, by Theorem 10.4 B I,
every continuous operator is weakly continnous; hence the superposition
of two operators AB sach that one of the operators is continuous and the
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other one is weakly compact is a weakly compact operator. Hence it
follows ?:hat i_:he sei_; W(X < Y) of weakly compact operators constitutes
a twp-s1ded ideal in the paraalgebra B(X = ¥). This ideal is not nec-
essarily a proper  one. If the spaces X and Y are reflexive, then every
operator belonging to the paraalgebra B(X = Y) is weakly compact
(see Corollary 4.2). :

, Tﬁf-ﬁ?ﬂ ;Ll. An operator T e B(X— Y) is weakly compact if and
only 1 C =Y, where x denotes the natural embeddin th
into the space Y++. : o7 e space

Proof. We write briefly § — 8(X)and 8%+ = §(X*+). Let us remark

that, _by Theorem 10.4, Chapter I, Part B, the operator T++ is continuous
both in fl}e X*-topology of the space X++ and in the Y*-topology of
space Y*T, But the operator T+* i3 and extension of the operator T.
Hence, denoting by &, the X+ -closure of the set xS, we obtain for closures
in the Y*-topology

(4.1)

TTH(81) C T+ (w8) = % (TR) C #(TH) .
If the operator T is weakly compact, then the set TS is compact in the

Y*-topology of the space Y. Hence the (TS) i
Y . he set »(7'8) is compact. Con-
sequently, it is also closed in the Y*-topology of the space ¥++. We

eonclude from formula (4.1) that if T is a weakly compact operator, then
T+(8,) C »(TR) .
But, by Theorem 3.1, T, we have §, — g++
y . —_ . H ++Q++
comsoent , I, A ence ITF8++ C »(T8), and
(4.2) THX++Cuy.
Conversely, let us Suppose that the o
 Co 5 perator T e B(X —~Y) satisfies
cond1]§10n (4'2.)' By Theorem 10.4, B I, the operator 7++ ig ct))ntinuous
both in ih+e X7 -topology of the space X++ and in the ¥**-topology of the
E)&ee Y+, and; the set 8%+ is compact in the space X** (Theorem 3.3 I)
ence .thc.a 8et THHS++ C ¥ iy Y+ -compact. Consequently, the Y+-hOI£1e0-
n;o;})hm 1mage #(T'S) of the set T4 is 3 subset of 3 ¥ +-compact subset
of Y. Hence it follows that the Y+-closure of the set %(T'8) is a compact

: .
sﬂbbeb of the set %I, and the Y ‘Glosme of the set 18 isa Y -Compa:eb
subset of the space Y n

COROLLARY 4.2. If either X or Y is a
ator T« B(X—Y) is weakly compact.

Proof. Let T € B(X>Y). If the space Y is reflexive, then
TH X C p+r — XY,
and if the space X is reflexive, then

THIH = T X = (TX CyY .

reflexive space, then every oper-
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Hence in both cases we conclude from Theorem 4.1 that the operator 7'
is weakly compact. m

CoROLLARY 4.3. The two-sided ideal W(X <= Y) of weakly compact
operators is closed in the paraalgebra B(X = ¥).

Proof. If T',—T in the space B(X—Y), then Theorem 2.1 implies
T+ —TH*||-0. If T,is weakly compact operator, theh T *z*+ ¢ x¥ for
every 27 ¢ Xt (Theorem 4.1), and since the set »Y is closed in the topo-
logy of the space Y™, we obtain T +z++ e x¥. Thus TH*X++ C«Y and
the Corollary follows from Theorem 4.1 and from the fact that the
set W(X = Y) is a two-sided ideal in the paraalgebra B(X = Y). m

We shall now investigate operators conjugate to weakly compact
operators.

LevMumA 4.4. An operator T ¢ B(X —~Y) is weakly compact if and only
if the conjugate operator T+ is continwous both in the X** -topology of the
space X+ and in the Y -topology of the space ¥+.

Proof. Necessity. Let us suppose that the operator T is weakly
compact. By Theorem 4.1, to every ™+ ¢ X+ there exists an element
y e ¥ such that

@Iy = (Tt )y = ),
Let U be the following neighbourhood of zero in the X**-topology
of the space X*:

U={ot e X" laf T (aT)|<e;,i=1,2,

y+EY+-

ey M}
Let
V={"eX¥": py")i<e, i=1,2,.., n},

where y; are elements satisfying the equality = *(Tty*) = y*(y,). It is
easily verified that 7+(V)C U, and since neighbourhoods of the form U
constitute a basis of neighbourhoods and V is a ¥-neighbourhood of
zero in the space ¥+, the necessity of the condition is proved.

Sufficiency Let #ft be an arbitrary element of the space X+*. We
show that the functional T**z}+ e ¥+* is continuous in the space ¥
provided with the Y-topology. Let ¢ be an arbitrary positive number
and let U be a neighbourhood of zero in the weak topology of the space X+,
of the form

U= {z* «X*: |ofH(aT) < &}.

By hypothesis, there exists a neighbouwrhood V' of zero in the Y -topology
of the space ¥+ such that T*V C U, i.e.

whence |[(THFaft)ytl<e.

lwFH(Ty*) < & for y* eV,

Since ¢ is arbitrary, this implies the continuity of the functioga,l ytt
= T*t*zF* in the ¥ -topology. By Theorem 10.1, B I, we have y Tt exX.
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X+ CxY.

By Theorem 4.1, the operator T is weakly compact. m

THEOREM 4.5. (Gantmacher [1].) An operator T conjugate to a weakly
compact operator T e B(X—Y) is weakly compact.

Proof. Sinee the closed unit ball S(¥*) in the space ¥+ is compact
in the Y-topology (Theorem 3.3, I), Lemma 4.4 implies that the set
T*8(Y*) is compact in the X+*-topology of the space X+. Thus the
operator T is weakly compact.

CoRoLLARY 4.6. (Gantmacher [11.) Lev T ¢ B(X—Y). If the operator
T+ e B{Y*—>X7) is weakly compact, then the operator T is weakly compact.

Proof. By Theorem 4.5 the operator T%% ¢ B(X*+ Y *t) is weakly
compact. Hence its restriction T to the space X is a weakly compach
operator. But the space Y*** contains more elements than the space Y.
Hence the weak topology in the space »¥ considered as a subset of the
space ¥*F is not coarser than the weak topology of the space Y. Since
the set T8(X) is compact in the ¥***-topology, it is compact also in
the Y+-topology. m

§ 5. Semicompact operators. An operator T eB(X —Y) is called
a Kato operator (Kato [1]) or a semicompact operator if the following con-
dition is satisfied: if the restriction of 7' to a certain subspace M CX
is & homeomorphism, then this subspace is of a finite dimension. In other
words, an operator T'e B(X->Y) is semicompact if the fact that there
exists a number y >0 such that [Tz > ylell for all ¢ M C X implies
that A is of a finite dimension. ) .

Every compact operator is semicompact. Evidently, the restriction
of a semicompact operator to a space X,C X is a gsemicompact operator
again.

TEROREM 5.1. Let X and Y be Banach spaces. An operator T ¢ B(X —~Y)
is semicompact if and only if to every infinite-dimensional subspace M C X
there ewists an infinite-dimensional subspace My C M such that the restriction
of the operaror T to the subspace M, 4s compact.

Proof. The sufficiency is.immediate, since the operator 7 cannot
be a homeomorphism on the subspace M, and, consequently, on the
subspace M either.

Necessity. Let M be an arbitrary infinite-dimensional subspace of
the space X. By Banach’s Theorem (see Theorem 2.1, I), M contains an
infinite-dimensional subspace M, with a basis {én}. Sinee T is a semi-
compact operator, there exists a divergent sequence of indices {pa} and

P+l
a sequence {m,} = {i D ties} such that floa] = 1 and |[Ta| < 1/2". We
=pn+ 1 )
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construct these sequences by induction. Let x; be an arbitrary element
such that oyl = 1, but Tz < 1/4. Evidently, there exists an index p,
such that :

i
1Tyl <1/2, where [2];= Etiet
i=1
(see Theorem 4.7, B II). Let #, = [#],,. Let us now suppose the numbers
Pyy -ory Ppyy @re chosen and the elements #,, ..., #, are already constructed.
The space MM, . spanned Dby the .elements , Erin? Epaias o= is infinite-
dimensional. Hence there exists an element #,,, ¢ M, . such that

ITal, .| < 147+,

+1!

+1
HI;-HH =1,

There is an index p,,, for which

T, 1Tl < L/2%F7

Let 2., = [z, +1lpnig- The element z, ., and the number p,,., satisfy the
induction hypotheses.

Let M, be the space spanuned by the elements %, (n=1,2,...). I
follows from Theorem 4.6, A II, that the sequence {z.} is a basis of the

épz‘uce M,. Let e My, z = ZVtm:g, then |[{t;}|| < K |lz|| (Theorem 4.6, B IT).
i=1

Hence 1i§’tfxtll < K27 for all z € My, |lz]l < 1, and the basis expansions .
i=7

are uniformly convergent. This implies that the restriction of the operator T
to the subspace M, is compact. B

COROLLARY 5.2. (Kato [1].) If X and Y are Banach spaces, then the
sum Ty+T, of two semicompact operators Ty, Ty e B(X—>Y) is a semi-
compact operator. .

Proof. Let M be an arbitrary infinite-dimensional subspace of the
space. X. It follows from the assumption that M contains an infinite-
dimensional subspace If; such that the restriction of the operator T to
the subspace M, is a compact operator. It follows from the assumption
concerning the operator 7T, that there exists an infinite-dimensional
subspace M,C M, such that the restriction of the operator I to the
subspace M, is a compact operator. Hence the restriction of the operator
T, -+T, to the subspace 3, is a compaet operator. This proves the operator
T,+T, to be semicompact. H o

TEEOREM 5.3. (Kato [1].) Let X,Y,Z be Banach spaces. Let
BeB(X—>Y), Ae¢B(Y->Z). If one of the operators A, B is semicompact,
then the superposition AB is a semicompact operator.

Proof. Let M be an arbitrary subspace of the space X. If ||ABaf||
> y|lw|| for x e M, then ||Baf| > y 4|l ] for @ ¢ M. Hence if B is a semi-
compact operator, then AB is also a semicompact operator.
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Let us remark that if I4Bz)| = y|@|] for e M, then |[4 Bz||
= 7|IB|7Y|Ba||. Hence if 4 is a semicompact operator, then the image
B(M) of the space M is of a finite dimension, But #¢ M and Br =0
imply #= 0. Thus dim ¥ = dim B(M) < +oo. m

We denote by §(X-¥) and S(X = Y) the set of semicompact
operators in the space B(X—Y) and in the Paraalgebra B(X <« ¥), re-
spectively.

COROLLARY 5.4. If X and Y are Banach spaces, then the set S(X = ¥)
of semicompact operators is an ideal in the paraalgebra B(X = Y,

We shall show that this ideal is closed.

THEOREM 5.5. If X and Y are.Banach spaces, then theideal 8(X = ¥)
of semicompact operators is closed in the paradlgebra B(X = Y).

Proof. Let there be given a sequence of operabors {IW} C8(X->T)
convergent to an operator T in the norm. Let M be an arbitrary subspuce
of the space X such that there is a number y > 0 satisfying the inequality

| T2l > y|z]. By hypothesis, there exists an index n, such that 1T, — T
< /2. Hence

1T 2l > |1 T2ll— (T—Th)a)l = ploff2  for wedf.

Thus the assumption Thye (X = ) implies that M is of & finite di-
mension. m

THEOREM 5.6. (Goldberg and Thorp [1].) If the Banach space X
(or Y) is reflexive, and the Banach space ¥ (or X, respectively) does mot
contain any veflexive infinite-dimensional subspace, then every operator
T e B(X-+Y) is semicompact.

Proof. If the operator 7 is not semicompact, then it is a one-to-one
map of some infinite-dimensional subspace M onto some infinite-di-
mensional subspace M,. But one of these spaces is reflexive, as a subspace
of a reflexive Space, and the other one is not reflexive by assumption,
which is a contradiction. m

Applying Theorem 5.6 one can give an example of a semicompact
operator such that the conjugate operator is not semicompact.

) ExaMrLE 5.1. (Goldberg and Thorp [1].) Let the operator T be an
eplmorphism of the space I onto the space I* (see Theorem 10.1, I). By
Theorem 5.6, the operator T is semicompact. By Theorem 2.6, I, the
operator T+ is an embedding of the space I* into the space m. Hence T+
cannot be semicompact,

The following example shows that the semicompactness of the con-
jugate operator T+ doeg not always imply the semicompactness of the
operator T.

ExaAMpLE 5.2, (Petezytiski [1].)

4 Let T be the operator of natural
embedding of 1[0, 1} into L[0, 1],

Le. T[a(t)] = z(t). It is eagily verified
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that the operator I* is the natural embedding of the space M [0,1] into

the space L*0,1]. The operator T is not semicompact, for it is an iso-

morphism to the space of functions spanned by the Rademacher system

(see Theorem 4.3, T). On the other hand, T+ is & semicompact operator.
Indeed, let X, be a subspace for which the norms

1
lel* = [ lo@Pdt  and  |all,= esssupo(#)]
0 0<I<L
are equivalent. If the space X, is infinite-dimensional, then it eontains
an orthonormal sequence {z.} (with respect to the scalar product (z, %)

1
= f x(t)y (t)dt). Evidently, the sequence {ws} tends to zero weakly. Let ¢
0

be an arbitrary positive number. By Luzin’s theorem, to every n th.ere
is a closed set F, of measure greater than 1— /2" such that the function

" @a(f) is continuous on the set F,. Hence all functions @, (i) are continuous

on the set F = ﬁ Fy. It is easily verified that the measure of the set 7'

n=1
ig greater than 1—e. But the sequence {z.} converges to zero weakly.
Hence the continuity of the functions ,(2) on the set F implies &n; La(t)=0

for t e F'. By Egorov’s theorem, there exists a set F, C F of measure greater
than 1—2¢ such that the sequence {,(?)} is uniformly convergent on.the
set Fy. The equivalence of norms || || and || | implies that the functions
Za(?) are uniformly bounded: |z (t)| < M. Let » be an index such that

lwa(t)] <& for el
implies
lelp = [

[0,11\Fg

this

[#a()Pdt+ [ |oalt)]dt < 2e M2 +c .
Fo

Since ¢ 1is arbitrary, contradicts the orthonormality of the
sequence {z,}. M _ }

However, by some additional assumptions, the semicompactness of
the operator 7" implies the semicompactness of the operator 7.

ToEOREM 5.7. (Whitley [1].) Let T € B(X > X), where X and Y are Bf-
nach spaces and Y is a subprojective space. If the operator T+ e B(Xt—>X+)
is semicompact, then the operator T i& also semicompact.

Proof. Let us suppose that the operator T is nob semicompaci.:.
There exists an infinite-dimensional subspace M C X mapped isomorphi-
cally onto the set 7M C Y by means of the opera.to'r. T. BTlt the space ¥
is subprojective; hence there exists an infinite-dimensional subspace
Y,CTM such that ¥ can be projected on this subspace by means of
an operator P. The operator T'7: is defined on the subspace Y, is con-
tinuous, and is a one-to-one map of ¥, onto a subspace X,C X. Let
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Y; = {f: }(z) = {(Pa)}. BEvidently, the space Y{ is infinite-dimensional.
If fe ¥, then
sup  [f(@)] = AP -

zeTo,lb=1
Hence . mn ‘
IT*fj= sup [f(Tz)l = sup [f(T%)|
ze X =1 e Xoifaf=1 il
1
> W z—" —=-
et O s

Consequently, the operator Tt is not semicompact, which is a contra-
diction. &

CorOLLARY 5.8. Let X and Y be Banach spaces, and let X be a re-
flexive space and X+ a subprojective space. If an operator T ¢ B(X—X)
is semicompact, then the operator T is semicompact.

Proof. Since X is a reflexive space, the operator 7% maps the '

space X into the canonical image of the space ¥ in the space ¥+*. Hence
the operator T+ = T is semicompact. Since X is a subprojective space,
Theorem 5.7 implies that the operator T is semicompact. m

CoROLLARY 5.9. Let X be a Hilbert space and let ¥ be @ Banach space.
If the operator T+ eB(Y*->X*) 45 semicompact, then the operator
T e B(X~>Y) 45 semicompact.

We have shown in § 3 that if a Banach space X with a basis {e.}
is such that there exists a subbasis {es} for which the spaces lin{es}
and 1?7 are isomorphie, then either X is the space I? or there are closed
ideals in the algebra B(X) different from the ideal T(X) of compact
operators. The problem arises whether in the last case we always have
T(X) # 8(X). The answer is negative, as follows from the next thecrem.

THEOREM 5.10. Let X be a Banach space with a basis having the
following property: from every weakly convergent sequence {m,} ome can
choose a subsequence {2} such that the space spanned by that subsequence
18 isomorphic to a space Z with a block homogensous basis {en}. Then every
semicompact operator T € B(X) is cdmpa.ot.

Proof. Let us suppose that the operator 7T is semicompact but not
compact. Hence there exists a sequence {@n}, |lza]] = 1, weakly convergent
to zero and such that the sequence {yn} = {4x,} does not tend to zero.
By Theorem 4.5, I, the sequence {y,} weakly tends o zero. The assumption
imposed on the space X implies that one can choose subseqiences {#n,}
and {yn} in such a manner that the sets

lin{wn,}  and, In{ys}

are spaces isomorphic to the space Z. Since Z has a block homogeneouns
bagis, one can- choose sequencés {6} = {#ny,} and {6} = {ynz,} in such
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a manner that {e;} and {¢j} are bases equivalent to the basis {¢;} in the
space Z (see also Theorem 6.1, I). Hence it follows that the operator T
is & one-to-one map of the space X, = lin {¢;} onto the space X, = lin{e}’}
continuous in both directions. Hence T is not a semicompact operator,
which is a contradiction. m

An example of a space satisfying the assumptions of Theorem 3.10
yields the space i, where p, = 2+1/In(lnn) (n=1,2,...) (see § 4).

§ 6. Co-semicompact operators. Theorem 5.7 is true only if ¥ is
assumed to be a subprojective space. In order to investigate conjugate
operators one can proceed also in another way, defining a class of operators
in a certain sense dual to the class of semicompact operators. First, we
give another definition of a semicompact operator:

An operator T ¢« B(X—»Y) is semicompact in the case of the non
existence of any infinite-dimensional Banach space F and any em-
beddings ix and iy of the space ¥ into Banach spaces X and Y, respec-
tively, such that the diagram

T

BN 7
(6.1) \ /
L

is commutative, ie. Tix=iy.
Let us change the direction of maps in this diagram, and let us replace
embeddings by continuous epimorphisms kx and hr:

S
(6.2) I\ J
N,

We shall say that an operator T e B(X>Y) is co-semicompact (Pel-
czynski [1]) in the case of the non-existence of amy infinite-dimensional
Banach space F and continuous epimorphisms khx and hy such that
diagram (6.2) is commutative, i.e. hyT = hx.

In other words, an operator 7T is co-semicompact if for every subspace
Y,C Y such that TX4Y,= ¥, the subspace Y, is of a finite defect.

Hence it follows immediately that the restriction of a co-semicompact
operator to a subspace X,C X is a co-semicompact operator. Indeed,
if TX,+Y,= Y, then TX +Y,= Y. Hence the subspace ¥, is of a finite
defect.

Equations in linear spaces 17
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We denote by ¢8(X->Y) the set of co-sémicompact operators be-
longing to the space B(X->Y). Evidently, every compact operator is
co-gemicompact. -

A theorem given below is dual to Theorem 5.1.

THEoREM 6.1. (Viadimirski [1].) An operaior T ¢ B(X—>Y) is co-
semicompact if and only if for every subspace M C XY of an infinite co-
dimension there exvisis a subspace M, of an infinite codimension coniaining
the subspace M and such that the superposition of transformations Dy, T is
a compact operaior, the transformation Dy being the map of the space ¥
into the quotient space Y[M, which associaies with every clement y € X the
coset to which y belongs:

Ouy = lyl =y +M,.
The proof of this theorem is based on the following lemmas:
LEMMA 6.2. (Viadimirski [1].) Let T e B(X—-YX). If Tt e B(Y"—»XT")
is not a @, -operator, then there is an infinite-dimensional Y-closed sub-
space Z C Y+ such that the restriciion of the operator T to the space Z is
a compact operator. . ‘

Proof. We shall construct by induction two sequences, {y»}C Y
and {y}}C ¥+, such that

i) =0n, lWEl=1, lwl<2* |THyill<27.

The existence of the elements y,, y7 follows trivially from the fact
that the operator T is not an embedding. Let us suppose that we have
already defined the elements 4, ..., ¥z, Y7y ey Ui~ Lot Zy = {Uy, ooes Yp}*
(see § 1, A TIT). Since T is not a @, - operator, the restriction of T+ to Z,
is not an embedding into X*. And there exists a functional g3, such

that il =1 and [Ty, )l < 273+, Tet g, ¢ ¥ be an element such

that

lgpall <2  and  yia(ge)=1.

Let
k
Yer1= Jx41— 2(’/?(91;-;—1)%‘ -
=1 .

Obviously yf(y,) = d;; for i,j=1, 2, ..., k+1. Moreover,

% X

Bsall < Noaeall (L + 3 I -l < 2(1+ 3 281) < 22 — g,
H=1 i=1

Let us consider an operator A ¢ B(¥Y*-—>X%) defined in the following
manner:

Ayt = D'yt Tt .

k=1

icm
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The inequalities [Ty} < 27% and |yl = 2%~ imply that the oper-
ator A is compact. The operator A is conjugate to an operator B e B(X ~Y)
of the form

Bo= ) T*yi(0)y,.
k=1

Hence the operator T+— A = (T'— B)* is continuous both in the ¥ -to-
pology and in the X -topology. This implies that the set Z = Zp._ 4 is
closed in the Y -topology. The operators Tt and A restricted to the set Z
are identical, and thus the operator I restricted to the set Z is compact.
The space Z is infinite-dimensional, because yf ¢ Z for k=1,2,... B

Levma 6.3. (Viadimirski [1].) If the operator T e B(X—Y) is not
a D_-operator, then there ewists a subspace M C Y with infinite codimension
such that the operator Oyl is compact.

Proof. Theorem 2.7°, I, implies that the operator T+ is not a @, - oper-
ator. As follows from Lemma 6.2, there exists an infinite-dimensional
¥ -closed subspace ML such that the restriction of the operator I to
the space ML is a compact operator. Let

M={{ye¥: y*(y)=0, y* « M'}.

Since the subspace M is of the infinite codimension, the operator @y T
is compact (see Corollary 2.3). ®

Proof of Theorem 6.1. Sufficiency. Let us suppose that the
operator T e B(X->Y) satisfies the assumptions of the theorem and
that we are given a commutative diagram :

T

X

NS
th\ ., /hy

where hy and hy are continuous epimorphisms. Let

+Y

N:Z;,,Yz{er: hyg: 0}

Tf the space B is of an infinite dimension, then of course codimN
= dimE = + co. By hypothesis, there exists a subspace M of the space ¥
of an infinite codimension containing the set N and such that the operator
@ T is compact. But the operator ®x 7 maps the space X onto the quotient
space BB, where the subspace B,= {y ¢ E: h7'(y) € M} is of infinite
codimension. This -contradicts the assumption of the compactness of the
operator O 7T. m ;

17*
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Necessity. Let TeB(X—Y) be a compact operator. Let MCY
be an arbitrary subspace of infinite codimension. This implies that the
operator ®yT is not a &_-operator. Hence (Lemma 6.2) there exists
a subspace M,D I of infinite codimension such that the operator &, T
is compact. m

COROLLARY 6.4. (Vladimirski [1].) The set ¢S(X—X) of all co-semi-
compact operators contained in the algebra B(X—Y) is linear.

Proof. A co-semicompact operator multiplied by a scalar is again
a co-semicompact operator. We have to show that the sum 7,4 T, of
two co-semicompact operators Ty and T, is a co-semicompact operator.
Let M C Y be an arbitrary subspace of infinite codimension. Theorem 6.1
implies that there exists a subspace M;D M of finite codimension such
that the operator @ T, is compact. Using Theorem 6.1 once more we
find that there exists a subspace M,D M, D M of infinite codimension
such that the operator @u,T is compact. Obviously @, T, is a compact
operator, and thus the operator P,(T;+T,) is also compact. The fact
that the subspace M is arbitrary implies by Theorem 6.1 the compactness
of the operator 7,+7,. m

TeEOREM 6.5. (Pelezyniski [1].) Let X, Y, Z be Banach spaces. Let
4 € B(X—+Y) and B ¢ B(Y~Z). If one of those operators is co-semicompact,
then the superposition BA is also a co-semicompact operator.

Proof. Let us suppose that the superposition BA is not a co-
semicompact operator. Then there exist an infinite-dimensional Banach
space B and continuous epimorphisms hy and ki, such that the following
diagram is commutative:

x—2,vyv 2,7

If we write hy = hzB, then by is a continuous epimorphism and the
following diagram is commutative:

x A B

> Y

> 7

NP

B

Thus neither 4 nor B can be a co-semicomoact operator. m

icm
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THEOREM 6.6. (Pelezynski [1].) If X and Y are Banach spaces, then
the set ¢S (X —X) of co-semicompact operators is closed in the space B(X —+Y).
Proof. Let T ¢eS8(X—Y). By hypothesis, there exist continuous
epimorphisms hx and hy and an infinite-dimensional space & such that
the following diagram is commutative:

X ___T_._.q_) Y
AN
R hy
18
But the operator hx = hy T is an epimorphism if and only if there
exists a number & >0 such that .

inthy T (Kx) D eKg,
where
Ex={reX: |lofl<1}, Kr={zek: [of<1}.
Let 6= g/2|jhy]]. Let ||[T— Tyl < 8. Evidently, sup |hx(T— To)ail < 3e.
=1

li]
On the other hand, hy{T,Kx)@®hy[(T— To)Kx] De Kg, whence hy(Tokx)
D }¢Kg. Thus T, ¢ ¢S§(X—>Y) and the complement of the set eS(X—X)
is an open set. M

COROLLARY 6.7. If X and Y are Banach spaces, then the set ¢S(X = Y)
of all co-semicompact operators is a closed two-sided proper ideal in the
paraalgebra B(X < Y).

THROREM 6.8. (Petezynski [11) Let X and Y be Banach spaces. Let
T e B(X—Y). If the operator T™ e B(Y"—>X*) is semicompact (co-semi-
compact), then the operator T is co-semicompact (semicompact, respectively).

Proof. This is an immediate consequence of the fact that an operator
conjugate to an embedding (epimorphism) is an epimorphism (embedding)
(Theorems 2.6 and 2.7, Chapter I). Thus, if 7'¢8(X->Y) (¢8(X~¥),
respectively), then Tt ¢ e8(¥+—X*) (8(¥*>X?*), respectively). m

COROLIARY 6.9. Let X and ¥ be Banach spaces, and let X be reflewive.
If an operator T e B(X—Y) is semicompact (co-semicompact), then the
operator T+ is co-semicompact (semicompact, respectively).

Proof. Since the space X is reflexive, we have I%% = T. Thus
Corollary 6.9 is an immediate consequence of Theorem 6.8.

The examples given by Pelezyfski [1] show that Corollary 6.9 is
not true if the space X is not reflexive, i.e. there exist semicompact (co-
semicompact) operators such that the conjugate operators are not co-
semicompact (semicompact).

The following theorem is a generalization of Corollary 6.9:

TeEoREM 6.10. (Pelozynski [11) If X and Y are Banach spaces
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and if the operator T e eS(X—Y) is weakly compact, then the conjugate
operator T is semicompact.

Proof. Let us suppose that the operator T+ is not semicompact.
Then there exist an infinite-dimensional Banach space B and embeddings
igs and ip+ such that the following diagram is commutative:

Y+ cal x+
AN e

.;\ // é
E

The operator T+ is weakly compact, since it is conjugate to a weakly
compact operator (Theorem 4.5). Henee it follows that the embedding
igs= T¥ip. is a weakly compact operator. Thus the closure of the unit
ball in the space X% is a weakly compact set. By Eberlein’s theorem
(Theorem 3.4, I), the space Ht7 is reflexive. Let us write hxis = 154,
hyre = i5+. The operators hg++ and hy. are epimorphisms (Theorem 2.6,
Chapter I) which map the spaces X*+ and ¥*+ into the space I, re-
spectively. Let hy be the restriction of the operator hy+ to the space X,
and let hy be the restriction of the operator hy++ to the space Y. Since
the space E isreflexive, we have b} = ix:, b} = ip+. Thus, by Theorem 2.6,
I, hx 4nd hy are epimorphisms and the following diagram is commutative:

T

X —

> Y
X 4
E/

But the operator T is eo-semicompact. Hence the space E is of a finite
dimension, which is a contradiction. m

THEOREM 6.11. Let T ¢ B(X~Y), where X and Y are Banach spaces
and X s a superprojective space. If the operator T+ e B(¥Y+ X"} is co-
semicompact, then the operator T is also co-semicompact.

Proof. Let us suppose that the operator T is not co-semicompact.
Then there exist an infinite-dimensional space E and continuous epi-
morphisms hx and hy of the spaces X and Y onto the space H, respectively,
such that the following diagram-is commutative:

x_____T—.__) Y

/

/
hx / hy
B
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Since the space X iy superprojective, there exists a subspace M of the
space’ ¥ of infinite codimension which contains the set Znz = {zeX:
hx(m) = 0} and is a projection of the space X. Let P be the projection
operator onto the subspace M. Let us investigate the conjugate diagram

Xt e—% 3+

h /
| A\w/iw

Let us remark that the operator Ptiz, maps the set B™ onto the seb
E, = (X/M)*. Hence the operator P*T* maps the space Y+ onto the
set B,. Thus we obtain the following commutative diagram:

X+ < Tyt

N /
hk\ El/h’” |

where hyge = P* and hy. = P*T*. Consequently, the operator T'* is not
co-semicompact, which is a contradiction. m

§ 7. Spaces with the Dunford-Pettis property. A Banach space X is
said to have the Dunjford-Pettis property if for every sequence {#z.} CX
weakly convergent to zero and for every sequence {#;3} CX* weakly
convergent to zero (in the X*7-convergence) we have

lim g}(z,) = 0.
n—oo

TerorEM 7.1. If the space X+ conjugate to a Banach space X has
the Dunford-Pettis property, then the space X also has the Dunford-Pettis
property.

Proof. Let {&,} CX and {z7} C X* be sequences weakly convergent
to zero. The sequence {z,} remains weakly convergent if we consider 2
as elements of the space X**. Thus Eﬂwx(m") =0.0

We do not know whether the converse theorem ig true.

TEEOREM 7.2. (Grothendieck [4].) Let X and Y be Banach spaces,
and let the space X have the Dunford-Pettis property. Hvery weakly compact
operator T ¢ B(X—~Y) maps sequences weakly convergent to zero onto
sequences convergent to- zero in the norm.

Proof. Let T ¢ B(X—Y) be a weakly compact operator, and let {zn}
be an arbitrary sequence of elements of the space X weakly convergent
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to zero and satisfying the inequality limsup||Tw.]=3J > 0. We take

a sequence of functionals {y;'}, |y}l = 1, satisfying the equality ;5 (T,)
= |T=,]] (n=1,2,..). Let &} = Try}. Since T is a weakly compact
operator, the operator T+ is also weakly compact. Hence we may assume
without loss of generality that {«} }is a weakly convergent Cauchy sequence
(for otherwise we could consider a suitable subsequence of that sequence).
Then

Limsupa(2,) = Lmsup(T+y; o, = limsupy; (Tx,)=lmsup | To,] = 5 .
" n n n

On the other hand, if {#}} is a weakly convergent Cauehy sequence
and {z,} is a sequence weakly convergent to zero, then limu(m;,)= 0.
n—00

Indeed, let limsup |} (z,)] = 8. Let {n,} be a sequence of indices such
that l]ﬂl;lilglﬂr‘:b(mu)] = ¢, and let {n;} be a subsequence of the sequence {n,}

satisfying the inequalities Im;;(wm;)l < 8/2. Such a subsequence exists
because the sequence {z,} is weakly convergent to zero. We can write:

i A+ +
B (@pg) = (B7 — By} Bt + T (@1)

Theorem 7.1 and the fact that the sequence { :;2_“";:;} is weakly con-
vergent to zero imply ’

N + . + :
8 = limlo(e,0)| < 1im (@ — it yg] + Hm sup o (0,0)] < 8]2 .

Thus 6 = 0, a contradiction. m

CororLARY 7.3. If a Banach space X has the Dunford-Pettis property,
.then every weakly compact operator transforms Cauchy sequences with respect
to weak convergence in Cauchy sequences with respect to the norm.

Proof. If {w,} is a weak Cauchy sequence, then the double sequence
{#n—2m} weakly tends to zero. Thus the double sequence {Tw,— Twp}
tends to zero in the norm. m

Theorem 7.2 can be reversed even in a stronger form. Namely, an
arbitrary space ¥ can be replaced by the space ¢,.

THEOREM 7.4. (Pelezyiski [2].) If every operator T € B(X—¢,) trans-
)forms sequences weakly comvergent to zero inlo sequences convergent to zero
in the norm, the Banach space X has the Dunford-Peitis property.

Proof. Let {m;}’} be an arbitrary sequence of elements weakly con-
vergent to zero in the space X*. Let us consider the linear operator
T & (X~»0,) defined by means of the formula, Tz — {&} ()} for every @ ¢ X.
We shall show that the operator T is weakly compact. Indeed, we have
T*ef = a}, where ¢} denotes the nth element of the basis of the space
{¢)* = 1, and the operator T+ is conjugate to T. The operator T+ is weakly
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compact. Indeed, let {y,} = {3 a, e} | be ax arbitrary sequence of elements
i=1

of the space I such that |lya| < 1. Applying the diagonal method, one

can extract a subsequence {ys} from this sequence in such a manner

that lima,, ;= a; for i=1,2, .. It is easily verified that the element
ko0 i -

Y= faiei belongs to the space I and its norm is not greater than 1. Let
i=1

[-~]
us consider the sequence {T*y,}={>a,, %7} We show this sequence
i=1

=
to be weakly convergent. Let f be an arbitrary funectional from the
space X** and let & be an arbitrary positive number. Si‘uce the se-
quence {z} is weakly convergent, there exists an index 4, such that
[f@)] < &3 for i > 4. Tiet %, be an index such that

|G i— sl < &f38p)\ TN} for k> ko, t<14y-

Then

S T = | X i af o)

i=1

< i adlfllof I+ Y, lamal F@DI+ D, laillf (@)

=1 =l i=1

& . 8 &
<§ml|ﬂ|%+§+§—3-

Hence, by Theorem 3.8, I, the operator T+ is weakly compact. Applying
Gantmacher’s theorem (Corollary 4.6) we conclude thf%t the operator T
is weakly compact. Thus it follows from the assumptions that

lim || T, = limsup |} (@,)] = 0
M0 m n

for every sequence {w.} weakly comvergent to zero. This impiies the
equality h_:glnm: () =.1

TIIE(;REM 7.5. (Dunford and Pettis [1], Grothendieck [4].) The
space C(Q) possesses the Dunford-Pettis property. .

Proof. If the sequence of functions {wa{t)}C C(Q) is v.veakly con-
vergent to zero, Theorem 4.7, I, implies that this sequence 18 bounded :
|€a(8)] < M; moreover, @(f)—>0 for every 1. If the sequence of measures {y,.}
in the conjngate space is weakly convergent to Z8r0, then t]‘lere exists
a measure » such that all measures vn are equiconm.nuous with respect
to the measure #, i.e. for every number ¢ > 0 there exists a number & > 0
such that »(H) < & implies »s(B) < & (see Theorem 3.10, I). Without loss
of generality we may suppose that m(Q) < »(2).
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Since the sequence {z,(f)} is convergent to zero almost everywhere,
by applying Egorov’s theorem we conclude that there exists a set E,
of measure ¢ such that the sequence {wa(t)} is uniformly convergent on
the set O\F,. Hence there exists an index #, such that

sup |za(t)] <e for

N> N .
1€\ Ep )
Thus
”s,,(t)dvnlg [loat)ldvat [ lont)din<e-M+29(Q). m

Q2 By A\Eo

COROLLARY 7.6. (Dunford and Pettis [1], Grothendieck [4].) The
space X = L(R, X, u) has the Dunford-Peitis property.

Proof. By Theorem 3.4, Chapter I, the space X't conjugate to the
space L(2, X, p) is a space of the form (). Hence the space X1 hasg

the Dunford-Pettis property. By Theorem 7.1, the space X also has
the Dunford-Pettis property. ® ‘

THEOREM 7.7. (Whitley [1], Pelezyriski [1].) Let X and Y be Banach
spaces and let T e B(X—Y) be a weakly compact operator. If the space X
has the Dunford-Pettis property, then T is a semicompact operator. If the

space Y has the Dunford-Peltis Droperty, then T is a co-semicompact
operator. :

Proof. Let us suppose that the space X has the Dunford-Pettis
property. Let the restriction of the operator T to a subspace M map
the subspace M onto the space TM isomorphically. Since the operator T
is weakly compact, a ball in the space TM is weakly compact. Hence
a ball in the space M is also weakly compact. But the space X has the
Dunford-Pettis property, whenece a ball in the space T'M is conditionally
compact. Thus the spaces M and 7'M are of finite dimensions (Theorem 1.12
Chapter IV, Part B). m i

Let us now suppose that the

space Y has the Dunford-Pettis property.
Let us investigate the diagram

N
RX\E//

where hy and hy are epimorphisms. Since the epimorphism hx = Thy
is weakly compact. Eberlein’s theorem (Theorem 4.4, Chapter I) proves
the space F to be reflexive. Hemce the epimorphism hy is weakly compact.
But. the space ¥ has the Dunford-Pettis property. Hence the operator
kx = Thyis compact. Consequently, the space His of a finite dimension. m

icm
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§ 8. Semicompact and co-semicompact operators in the space C(Q).
In this section a characterization of semicompact and co-semicompact
operators with domain C(2) is given. All the results of this and of the
next section belong to A. Pelezyiski [1], [3].

In our further considerations we shall need the properties of the so-
called unconditionally converging operators. An operator T is called
wnconditionally converging if it transforms weakly uneonditionally con-
vergent series into unconditionally convergent series.

TeEOREM 8.1. Let X be a Banach space. Let the conjugate space X+
have the following property: every set B C X+ such that

lim sup (@) = 0

n—o0 zteE
for every weakly wnconditionally convergent series »'wn, is conditionally
%=1
weakly compact. Then every unconditionally converging operator T ¢« B(X —+Y)
is weakly compact.

00
Proof. Let B CY™* be a bounded set. Let Y @, be an arbitrary weakly
n=1
unconditionally convergent series. The assumption regarding the operator T

implies that the series Y T, is unconditionally convergent. Hence Tz, -0,
B n=1
and we obtain

lim sup y*(Tzn) = Hm sup (TtyHa,=0.

n—ro yreE n—oo yteE

Hence the assumed property implies that the weak closure of the set TE
is a weakly compact set. Thus the operator T* is Wea.kly‘ compact.
By Gantmacher’s theorem (Corollary 4.6), the operator 7' is weakly
compact. B

THEOREM 8.2. Every unconditionally converging operator which trans-
forms the space C(Q) into an arbitrary Banach space Y is weakly compact.

The proof of this theorem is based on the following lemmas:

LemmA 8.3. Let {un} be a bounded sequence of elemems. of the space
[C(2)TF = rcaQ satisfying the following condition: there ewist a mumber
8 > 0 and a sequence {Bn} of pairwise disjoint Borel sets such that pn(Hn) > 6
for n=1,2,... Then there ewist a subsequence {v,,}. of.the sequence {,Lf,.}
ond a sequence of pairwise disjoint open sels {Gn} satisfying the inequalities
w(Gn) > 62 (n=1,2,..).

Proof. We define open sets Gy, measures»- (r=0,1,2, 7..), gsequences
of Borel sets {E®} and sequences of a measures {3V} for r=1,2,..
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by induction in such a& manner that the following condifions are sat-

isfied:
(1,)  the sequence HI} is a subsequence of the sequence {plr—0y |

(2,) EDABD=0 for n+#£m (n,m=1,2,..),

G EBCA UG,
i=1 —
(4,) O(EBD)>6,, where o, = 0— D) oj2¢,

i=1

(51-) ’Jr(Gr)>6r>6/2 and Grﬁgi=0 f07'1:<1" (T=1’2)“')-
Let us write
vW=p; BO=E, for n=1,2,..and Gy=10, %=0.

Let us suppose that the sequences {30}, {B®}, G, and v, , are already
defined in such a manner that conditions (1,)-(4,) and (5,_,) are satisfied
for 1 <7<k Let N=[2%"2CJs]+1, where C = Sup [lusl|. Since the

measures »{¥ already defined are regular, condition (4,) implies the existence
of closed subsets F;C E® such that PI(T) > 6, for i=1,2, ..., N.

k—~1
Let Fo={J@,. Conditions (2,) and (8%) imply F,~F;=0 for i +j

r=1
(2,5 = ?,1, «.; N). Hence (see §1, BI) there exist open sets O such
that O;DF; and 0;n 0;=0 for 4#j (i,j= 0,1,..,N). Since the
measures #¥ are regular, one can choose open sets O; in such a manner
that 0;20;D F fori=0,1, ..., N and var »® < 8/2% 2 fori=1,2, ..., N.

ONF
Let
di={n > N: vars® < gjok+2}
O;

Sinee the sets O; are pairwise disjoint, we obtain
N
v
D v < P < e
=1 O

Hence every index n > N belongs to at least one. of the sets A4;. Thus
there exists an index 4, such that the set 4, isinfinite. Let us take @, = 0,
v = ¥; (W1} is 4 subsequence of the sequence {s*} made up of elements
whose indices belong to the set A, Also {B¥*} ig a subsequence of the

k
sequence {B{? ~ (2\ |J G,)} made up of elements whose indices belong

r=1

to the set 4, . Evidently, the sequences P}, {BEHDY defined above,

.
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G, and v, satisty conditions (1;,,)— (3;,,). Since BR ~ G, =0 (r=1,2, ...
..., k—1), we have

k —
D BE)| = [ By ~ (Q\ 791 &)l

n
k
k) k; k) (k) Vel
> DB — D 10, (BE, ~ G,)]
=1

= 2
= 06— lv‘,’(‘%,(EE’{l) NGl = 5k_%a”§‘](2) > 6,— 025 = 80,
&

where j(n) is an index belonging to the set 4, and depending on #. Hence
condition (4,,,) is satisfied. Moreover,

Gl = 1(0.)] = PEF - yar W > 8— 025 = 8y,
AU ’

and
GnG,CO0,n0,=0 for i<k.

Thus condition (5;) is also satisfied.
Evidently, the sequences {»,} and {&,} satisfy Lemma 8.2. m
Proof of Theorem 8.2. By Theorem 3.1, [C(2)]T is the space
rca(R). We show that if a set of functionals E C[C(Q)]* is not wea:k.l-y
compact, then there exists a weakly unconditionally convergent series

D aa(t) such that
=1
limsup| [ ea(t)dul >0,

n  ueE g
where lim means the lower limit. .
We now apply the theorem on the form of conditionally weakly
compact sets in the space [C(2)]" (Theorem ii.lO., I). We find tha._t there
exists a sequence of measures {u,}C E satisfying the assumptions of

Lemma 8.3. We choose sequences {»;} and {G.} as in ‘.Pemma, 8.3. Since
the set @, is open and va(Gy) > §/2, there exists a function f» ¢ C(£2) such

that |[fa]l = 1, fa(s) = 0 for s ¢ G and [fa(s)drn > /2 (n= 1,2, ...). Since
2 .

the sets G, are pairwise disjoint, the functions f» vanish cutside the sets Ga
oo

and fffal=1 (n=1,2,..), we conclude that the series Z’lf,, ‘is wealkly
o e

unconditionally convergent. Evidently,

limsup ffn(s)du(s) >462>0. m
n pel g
THEOREM 8.4. If X and Y are Banach spaces, then every semicompact
operator T ¢ B(X—>Y) is unconditionally converging.
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This Theorem can be formulated in a little stronger form:

TuroreM 8.4°. If X and Y are Banach spaces and an operator
T e B(X—X) is not unconditionally convering, then there exists a subspace
X, C X isomorphic to the space ¢, and such that the operator T is a one-to-one
map of X, continuous in both directions.

Proof. By hypothesis, there exists a weakly unconditionally con-

oo oo
vergent series 3w, such that the series ) T, is not unconditionally con-

n=1 n=1
vergent. Hence one can choose sequences of indices {n;} and {p,} in such
PE+1 . o
& manner that |7/l > 6, where g, = } %,,. Evidently, the series Y g,
i=pE+1 k=1

and }'Tg, are weakly unconditionally convergent. Hence the sequence
k=1

{Tg,} weakly tends to zero. Hence one can extract from the sequence {Tg,}
& subsequence which is a basis of the space spanned by itself. Thus,
without loss of generality we may suppose at once that the sequence
{T'g;} has this property.

By Theorem 5.2, I, the basis {Tg,} is equivalent to the standard

basis in the space ¢,. But the series }'g; is also weakly unconditionally

k=1

convergent and [lg,ll > 6/||T|. Hence one can extract a subsequence {gn}
in such a manner that this subsequence is a basis of the space X, spanned
by itself, and this basis is equivalent to the standard basis of the space ¢,
as follows from Theorem 5.2, I. This shows that the operator T is a one-
to-one map of the space X, onto the space TX,, continuous in both
directions. m

TeEOREM 8.5. Let ¥ be a Banach space and let T € B(0(Q)-+X).
The following three conditions are equivalent:

(i) the operator T is semicompact,
(i) the restriction of the operator T to a subspace of the space CO(RQ)
isomorphic o the space ¢, does not possess a continuous inwerse,
(iii) the operator T is weakly compact.
Proof. (i)—(ii). Evidently, spaces isomorphic to the space ¢, are

infinite-dimensional. Hence the restriction of a semicompact operator
to such a subspace cannot be invertible by definition.

) (i.i)-—>(}ii). By Theorem 8.4’ and condition (ii), the operator T
is unconditionally converging. According to Theorem 8.2 it is weakly
compact.

{iii)—>(i). This implication immediately follows from Theorem 7.5
and 7.7. m

icm
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TEEOREM 8.6. Let Q and Q; be compact Hausdorff spaces and let the
space O be metrizable. If T € B(0(2)—~0(R2y)), the following three conditions
are equivalent:

(i) the operator T is co-semicompact,

(ii) there exists no contimuous epimorphism hy e B(C ()¢} such
that the operator hy=h,T e B(C(Q)—0) is a continuous epimorphism,

(iil) the operator T is weakly compact.

Proof. The implication (i)—(ii) is obvious. We show that (ii)—(iii).
Tet us suppose that T is not weakly compact. Then Theorem 8.5 implies
the existence of a subspace of the space E isomorphic to the space ¢, and
such that the restriction of the operator T to the space F is an isomorphism
of spaces B and TH. Hence there exists an isomorphism 4 betwee_n
spaces TH and ¢,. Since the space ©, is metrizable, the space C (.Ql? is
separable. Applying Sobezyk’s theorem 9.3, I, we find that there exists
a continuous linear operator p projecting the space C(£2,) onto its sub-
space TH isomorphic with the space ¢,. Let hy= ip € B(C(21)—>cg) .zmd
hy= hyT eB(O’ (.Q)—>c.,). It is easily seen that %, and h, are the required
epimorphisms.

The implication (iii)—(i) is an immediate consequence of Theorem 7.7
and of the fact that the space C(£) possesses the Dunford-Pettis prop-
erty. m i

Ag Pelezyniski [1] has shown, the assumption of metrizability of the
space 2, is essential. ‘

§ 9. Semicompact and co-semicompact operators in the space I{(Q, Z, u).
Theorems on Semicompact and co-semicompact operators in spaces
L(Q, Z, p) are in a certain sense dual to analogous theorems for spaces
C(2). They are based on the following lemma:

LevuA 9.1. If X is a Banach space and the operator T ¢ B(X —1)
is mot compact, then there ewists an operator V e B(l—1) such that the operator
VT ¢ B(X->1) is an epimorphism.

Proof. It follows from the assumption that there exists a number
0> 0 and a sequence of elements {#,}C X, sgp]lmnu < M, such that

”TwP_quu >9 for p#4¢ (p,4=1,2, )

By Theorem 1.3, B IV, on compact sets in spaces with a basi‘s,. one
can find a subsequence {z,} of the sequence {z,} such that 13}]‘.6 coefﬁ.clents
Ty, of expansion of elements Tw, with respect to the basis {e,} in the
space ! tend to zero:

lim Taj|, =0 for m=1,2,..
P>
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It follows from Theorem 4.7, B II, that one can extract a sub-
sequence {zy} of the sequence {z,} and an increasing sequence of in-
dices {g;} in such a manner that

Qi+1

1Ty —yill < 1/2%, where y,= T pem (E=1,2,..).

m=gi+1

We may show in the same manner as in the proof of Theorem 8.3, I, that
the space X, spanned by the elements y; is a projection of the whole
space I. By Theorem 8.1, I, the space X, spanned by the elements T}
is a projection of the space I. We denote this projection operator by P.

On the other hand, the space I is block homogeneous (§ 1, I), whence
the basis {y:} is equivalent to the standard basis in the space I. Hence
there exists an isomorphism R which maps the space X, onto the space 1.
The operator V = RP satisfies our lemma. m

Levma 9.2. If X and Y are Banach spaces, then the following con-
ditions are equivaleni for an arbitrary operator T e B(X>Y):

(i) there exist epimorphisms hx e B(X—l) and hy e B(Y 1) such

that the following diagram is commutative:

r—F sy

AN /
» “
NS

(ii) there exist subspaces X; and Y, of spaces X and ¥, respectively,
such that X, and Y, are isomorphic to the space | and the following diagram
18 commutative:

X —E—y

Pz

Py
¥ ¥
T
X, ——> 7

where px and py are continuous projection operators onto the subspaces X,
and Yy, respectively, and the restriction T, of the operator T to the subspace X,
has a continuous inverse;

(iii) there ewisis a subspace Y, of the space ¥ isomorphic to the space ¢
and such that the restriction of the operator T o the subspace Y7 has a con-
tinuous inverse.

) Proof. (i)—(il). From the assurmption that hx is an epimorphism
it follows that there exists a bounded sequence {£.} CX such that
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hx@s = en, Where {e,} is the standard basis of the space I. Since the dia-
gram given in (i) is commutative, we have hyys, = en, where yn = T'2,.
We obtain from the definition of the norm

el 3 ltal <[ 3wt < VT Y bl < Y20 3 ]

1
where M = sup |[@a].

n
Hence the spaces: X; spanned by the elements z, and Y, spanned
by the elements ¥, are isomorphic to the space I. Moreover, the restriction T,
of the operator T to the space X; maps X, onto the space Y, isomorphi-
cally.
We define the operators px and py in the following manner:

oo (=}
px(@) = Y hx@)sa  and  pry)= 3 kr)pya,
n=1 n=1
where 2|, means the nth coefficient of expansion of the element 2 ¢l with
respect to the basis {e,}. It is easily verified that px and py are projection
operators and the respective diagram is commutative.
(ii)— (iif). Let us consider the diagram conjugate to the diagram (9.1)s

Xe—= _y+

+ ' 4
pX p;

Tt !

X e——Xf

Hwvidently, projection operators are transformed into embeddings.
Since the spaces X; and ¥, are isomorphic to the space I, conjugate
spaces X7 and Y7 are isomorphic to the space . Since the diagram is
commutative, it follows that the space Y+ contains a subspace isomorphic
to the space m7and such that the restriction of the operator T+ to the
space Y7 is invertible. But the space m containg a subspace ¢,. Hence
there exists a subspace Y, isomorphic to the space ¢ and such that the
restriction of the operator T to the subspace ¥ is invertible.

(iii)=>(i). Let i, be the embedding of the spaee ¢ into the.spa,ce
T*: iy0,= Y. Let U, e B(¥->1) be the restriction of the con]ugz?,te
operator if ¢ B(Y+* 1) to the space Y. (We identify the space ¥ with
its canonical image in the space ¥*+.) But the restriction of the operator Ui
to the space Y is invertible. Hence the operator Tti, is not copact.
Consequently, the operator Uy="U,T e B(X—1) is not compaet, either.

From Lemmsa 9.1 follows the existence of an operator V e B(l—-1)

Equations in linear spaces 18
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such that the operator hx = VU, is an epimorphism of the space X onto
the space I. Let hy = V U,; then

hx=VU,=VU,T=hyT.
This means that diagram (9.1) is commutative. B

TEEOREM 9.3. (Pelozynski [3].) Let X be a Banach space and let the
space L(R, X, u) be arbitrary. The following conditions are equivalent for
every operator T ¢(BX—+L(Q, Z, B):

(i) the operator T 1is co-semicompact,

(ii) for amy two subspaces X, and X, of spaces X and L(RQ, X, u),
respectively, isomorphic to the space 1, the following diagram is mot com
muiative:

x —L—L@, Z,p

Pz Py
¥
T
Xl PR S yl

(Here, px and py denote projection operators on the spaces X, and ¥, re-
spectively, and the restriction Ty of the operator T to the space X, has a con-
tinuous inverse),

(iii) the operator T is weakly compact.

Moreover, if the space X has the Dunford-Pettis property, then each
of the above conmditions is equivalent to the following one:

(iv) the operator T is semicompact.

Proof. The implication (i)-(ii) follows directly from the definition
of a co-semicompact operator.

(ii)—(iii). Let us suppose that the operator T is not weakly compact.
By Gantmacher’s theorem (Corollary 4.6) the operator T+ is not weakly
compact. Since the space conjugate to the space L(2, X, ) is isomorphic
to some space C(£2;) (see Theorem 3.4, I), Theorem 8.5 implies that the
operator T satisfies condition (iii) of Lemma 9.2. Hence it follows from
condition (ii) of Lemma 9.2 that condition (ii) is not satisfied.

(iii)—(i). The space L(R, X, u) has the Dunford-Pettis property
(Corollary. 7.6). Thus, by Theorem 7.7, every weakly compact operator
is co-semicompact.

(iv). Bvidenfly, it follows from the definition of semicompactness
that condition (iv) always implies (ii).

If the space X satisfies the Dunford-Pettis property, condition (iii)
implieg condition (iv) by Theorem 7.7. @

icm

CHAPTER III

@-OPERATORS IN BANACH SPACES

§ 1. Application of Neumann’s series to the solution of equations.
Suppose we are given a Banach space X and an operator B e B(X—Y)
such that [B|| < 1. Let us recall that the operator I— B is invertible and

(I-B)'= fB"
n=0

(Theorem 1.2, I). This immediately implies the following theorem:

TrmorEM 1.1. Let X be a Banach space and let an operator T' be defined
as T = B+K, where B e B(X), |Bll <1, and the operaior K belongs to
the ideal K (X) of finite-dimensional operators. Then the operator 1 —l—‘T has
a simple regularizer (I+B)™" to the ideal K (X) and this regularizer is con-
tinuous.

Proof. Indeed,

I+T)(I+B) = I+B+E)(I+B) = I+E(I+B)™,

where the operator K(I+B)™ is obviously of a finite dimension. The
same is obtained by means of a left-regularization. m

Theorem 1.1 permits to solve effectively equations with operators
of the above form. If there exists a basis in the space X, then, of course,
every compact operator can be written in this form.

ExamprE 1.1. We shall solve the so-called Volierra integral equation
of the second kind, i.e. the following equation:

i
(1.1) o)+ [ K, 8)(s)ds = auft) -

We shall suppose that the function K(t,s) is continuous in the square
0<t, s<1, that
sup (K@, 8)|=k<1

o<t 81
and that the function @(f) is continuous in the interval 0 <t < 1. Then
the operator

1
By = f K (t, 8)w(s)ds
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satisfies the inequality
[Bz(t)] < sup |2(t)]- sup |E (1, s)|- | < K llell-|d] -

o<1 0<t,8<1
Hence

Bl = sup |Bx|= sup sup |Bu(f)]<k<1.
LS <1 0<it<1
Thus the operator I+B is invertible aud

#(t)= (I+B)~ woi)—Z(—l)"B"wo(t).

n=g
We define a sequence {,} in the following manner:
Ly = a(t), @,=x—Bx, , n=1,2,..).
It is easily verified that
k
@y, = 2 (—1)"B", (k=1,2,..).
n=0
But the series 2 (—1)"B"* is convergent in the norm. Gonsequently, the
series with partlal sums {z,} is uniformly and absolutely convergent and
2(t) = lim x,(t) .
>0
The sequence {,} is called a sequence of successive approzimations. Evi-

dently, the operators B* are defined by the so-called iterated kernels
Kalt, 8), i.e.

¢
Bro = f Kau(t, s)x(s)ds,
0

‘where

K, (t,8) = fK(t K, i(o,8)do  (n=2,3,..), K, s)=K({s).

Examere 1.2, We shall find out for which values of the parameter 1
the differential equa.tlon
: dx
{1.2 -~
(1.2) =MWt

with the initial condition
{1.3) st =2 (a<t<b)

‘has a soluj;ion expressed by means of the von Neumann series. We assume
the function f(¢) to be continmous in the interval a <& < b. We write

icm
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= sup 1f(t)]. As is known, the differential equation (1.2) with the

1n11;1a1 condltlon (1.3) is equivalent to the Volterra integral equation
(1.4) o(t) = @+ A f F(s)m(s)ds .
i .

t
The integral operator in this equation Bw = i[f(s)z(s)ds satisfies the
b
following inequality (obtained in the same manner as in the previous
example):
1Bl < [4}- [t—1o] sup If 0] sup |w(t)l < Al (b—a)ymliz] .

Hence [|Blj < 1 if only |A|m{b— a) < 1. Thus, if the parameter 1 satisfies
the inequality

1
M’[ < m(b__ a) b]
equation (1.2) has a unique solution which is the limit of the sequence
of successive ‘approximations:

@o(t) = Ty,
,,(t)_m0+sz z,_,(8)ds  (n=1,2,..).

ExAmrLE 1.3. Let us consuier the- equation
(1.5) @(t) + Az (— 1)+l 2olt) = @i(t)
where A is a parameter, and the given funections z, and z, are continuous

and bounded on the whole straight line. The point £, is a fixed point on
the straight line. We write

Bz = jz(—1), K= z{t)n(l).
Thus the operator K is one-dimensional. The space X of all functions
continuous and bounded on the whole straight line is a Banach space

with the norm
Izl = sup |o(l)] -

—00<i<+00

If jA| < 1, we have ||B]| <1 and

(I+B) u(t) = Z (—1Y*B*s(t) = 2 (-1)";":”[(—1)’%] ‘
k=0
2 (1) — Z J2EI,
k=0 k=0
1 A _z(h)—Im(=1)
== @O0 =" 1
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Hence
- 1
(I+B) Ko () = (I+B) s (toan(t) = 120 fay(1)— A — 1)

Thus, by Theorem 1.1, if jA] < 1, then equation (1.5) is equivalent to the
equation ’

(1.6) m(t)-f-lmit'}fg [o(t)— Ao —1)] = %(t)%lﬁ@

Since the last equation is of the form (I +X&,)& = x,, where the operator K,
is one-dimensional, arguing as in § 3, A T, we finally obtain the following
conclusions:

(1) i 2] <1 and [m(te)— Azy(— 15)]/(1— %) # 1, then equation (1.5)
has a unique solution given by the formula:

o(t) = ‘”1(“‘);——;?’?2(— B wl(tO)Ijz;lz(- fo) |

@olt)— Ao — 1)
1— 22— [w(ty)— Ao(— to)] !

(2)if A< 1 and [Bo(%0)— Azo(— 1,)]/(1— A?) = 1, then equation (1.5)
has a solution if and only if

@y (t)— ML(:_I'Q:
1—2

and this solution is of the form

o(t) = T — 2oy~ t)l—_ol[fo(z)— Jzo(— )] ’

0

?

where C is an arbitrary constant. If |4l > 1, we obtain an analogous
solution substituting f = —1, fy= +15,d @(f) = ao(—1), Ad,(F) = ay(F)
4=1/J in equation (1.5).

bl

§ 2. Continuity of solutions. If we are not able to solve the equation

(I+Ad)v=wm,, i.e. T = py— Az

directly, and if we want to determine an approximation of the solution
in such a manner that the error does not execeed given number, we
must know whether the solution of this equation is continuous with
respect to the operator 4, i.e., whether ¢“small” increments of the oper-
ator 4 cause ‘“small” increments of the solution. This question will be
answered by the folowing method, which, in many eases, is more con-
venient than von Neumann’s method. :

TEROREM 2.1. If X is a Banach space and if an operator A e B(X)

is a limit (in the norm) of a sequence of uniformly bounded operators,
{4} CB(X):

Iall<g<1,

icm

§ 2. Continuity of solutions 279

then the equation
(2.1)

has o unigue solution which is a limit of the sequence {w} of solutions of
approzimating equations:

(2.2)

= g— Az

(n=1,2,..).

Proof. Since g < 1, each of the equations (2.2) has a unique solutiox?.
Hence equation (2.1) also has a unique solution. Indeed, let & be an arbi-
trary positive number. Then

14l < A~ Aall+4all < g+

ci 1 i i btain |4]| < ¢ < 1. Sub-
for sufficiently large n. Since e is arbitrary, we o <4q ub-
tracting equation (2.2) from equation (2.1) we get the following inequality:

Ty = Go— Anln

lo— @]l = lAz— Anoal]
< (A —An) @]+ |4 (35— 2n)
< lA—Aa)- fall HI1AL - o —2nll
< |A—Aa - lzall + gliw—2all 5
i.e.

(2.3) flo— @]l < {Wj-“nq |A— Aql] -

Hence for an arbitrary number ¢ > 0 there exists a number N, such that

if n > N,, then [|4—4a|| < ﬁs implies [lo— @a]| < a ] i}
Applying inequality (2.3) we remark that the error in the nth approxi

mation is not greater than

=l ay

On 1,2,...).

ExAMPLE 2.1. We consider the integral equation

1/2
z(t)+ f

in the space C[0,1/2]. Since

2(8) ge—1
8

(2.4) Tt

N 1
k —_—
2 =T
k=0 . -
for |uj< 1, we take as A, the following operators of finite dimension:

n—1 12 n—-1 1/2

Aps = Zf t*skn(s)ds = Zt"fs"w(s)ds.

k=0 © k=0 ]
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Then

n—-1

Ml < D' sup 4 3
= oisip 2
1901
1 1—-4™" 1 4
RS N N S i O /R LS T ALY
244 2 1e 230 ) 30+

Hence the norms of all operators K, are uniformly bounded by the
number 2/3 and one may take g = 2/3. Moreover,

o

M—dali< D1 sup i £
Tmn 0<Ti<1/2

o«
_1y1l 11 1 11 1 21
244 24114 2 £ 34 3 1
Hence the error of the nth approximation is not greater than the number

1—g¢q 1—% 3 4 4"

According t i i
i g to §3, AT, we expect the solution of the nth approximating
I+An)zn=1, ie. Cp=1— Az, .

to have the form

n—1 i/2

@, (f) = 1— Z Cot®s where (,, = f sz, (s)ds .
Since = ’

1/2

f 8kds p— _*1__
(k+1)2"+1’

)

the constants C,, with a fixed » satisfy the following system of equations:

n—1

s 1 \ 1
Z(km+ Cop = (m=0,1,..,n—1).

& (m+k+1)2"+k+1/ M~(m+l)2m+1

The assumption ¢ < 1 implies that this system has a determinant

different from zero, and i
: , consequently, one solution only.
firgt and the second approximation: s e W computo the

Let 7 = 1; we then have one e i
uation: (1 = =
and so the first approximation isq e (81 = Honce Gu = b

() =130}
with an error 8, = 2-3/4=1%=033..
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Let n = 2; we then have a system of equations

1 1 1, 1 1 1
(1+2)020+m021—§: 2.40204'(1-{-3—@)021:2—_1.
Hence we obtain Cyp=2%, Cy=2Z. Thus the second approximation is
wt) = 1— 5 —2 1= 2(96—331)

with an error

2.2 sup |26—33t
o 0&!21[21 l 26 13 7

8y = ~ 0.07.

pe ~4-99 " 7108

§ 3. Normally resolvable operators.

TaEOREM 3.1. If X and Y are Banach spaces, if the operaior
A e B(X—Y) and if the set B4 is closed, then

By=Z5={g" e X*: if Aw=0, then z*(z)=0}.

Proof. Let the functional 2™ ¢ X* satisfy the following condition:
if Ax = 0, then o™ (2) = 0. We defipe a linear functional y7 (not necessarily
continuous) over the space B4 by means of the formula:

¥y (o) = o7 (2) .

The condition defining the functional z* implies that the functional y
is defined uniquely. Since the spaces X/Z, and E4 are isomorphic, we
conclude from Banach’s theorem (Theorem 3.2, B II) that there exists
asconstant € such that for every y « F4 there exists an element » satisfying
the conditions Jiz|| < Cllyl| and Az = y. Hence

Wi @)l < Ol

Tt follows from the Hahn-Banach theorem (Theorem 2.2, I) that the
functional g7 can be extended to a linear functional y* defined on the
whole space ¥ and such that A*y* = #™. We conclude from the definition
of the operator A* that every element of the set E .. of the values of this
operator satisfies the imposed conditions. m

LemmA 3.2, Let X and X be Banach spaces and let A e B(X—~Y).
If the operator A% is one-to-one and the set B 4 is closed, then H,= Y.

Proof. Let 0 # 5 ¢ ¥ and let

Y= {y"eX*: y*(y) = 0}.
The set YL is ¥-closed in the space Y.

Fitst, let us suppose that the set A* ¥ is closed in the X-topology
and different from the set A¥YT. Then there exists an element z e X
satisfying the conditions ’

(@) AT #£0, x@AT(T)=0,
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where » denotes the natural embedding of the space X into the space X*+.
This means that 4 0 and y*(4x) = 0 for every y* ¢ Y+. Hence Ax = ay,
where a is a certain scalar. Thus y € B4 and H4 = Y, as was to be proved.

It remsins to prove that the set A+ ¥ is closed in the X-topology,
but different from the set AT Y. Since y # 0, the set Y+ is a proper subset
of the space ¥+, and since the operator A+ is invertible, the set A+ YL
is a proper subset of the set B ;= A+ Y™*. Finally, in order to prove that
the set A+Y+ is closed in the X -topology it is sufficient to show (by The-
orem 3.8, I) that the set (A*X¥*) ~ §(X7) is closed, S(X*) denoting the
closed unit ball in the space X*. It follows from the continuity of the
operator (A*)~* that the set (A¥)~18(X*) is bounded. Hence (41)~18 (X+)
Cn8(Y*) for some natural number n, where §(¥*) is the closed unit
ball in the space ¥+, Theorem 3.2, I, implies that the set n8(¥*)is compact
in the Y -topology of the space ¥*. But, by Theorem 10.4, B I, the oper-
ator A* is a continuous transformation of the space ¥+ with its Y -topology
into the space X* with its X -topology. Hence the image of the compact
iit Y-Lt ~ n8(X") by means of this transformation is closed. Consequently,

e se
(AFX4) A §(XF) = 8(X+) n AT[YL A n8(XH)]

is X-closed. m

THEOREM 3.3. If X and ¥ are Banach spaces, A ¢ B(X—~Y) and the
set B i is closed, then the set B, is closed, and

Ea={ye¥:if Aty* =0, then y*(y) = 0}.

I:roof._Eet A, denote the map of the space X into the space
Z = E4= AX defined by means of the equality 4,# = Az. Since the
operator 4, has a dense set of values, the operator 4; is one-to-one. If
#* « X* belongs to the closure of the set 47 %%, we have * = lim 47 Z},

where 2} € Z*. If we denote by y; a continuous extension of the fuwggiional zr
to the whole space ¥+, we get 7 = lim A%y}, and since the set B, is
n—00

closed, we have #* = A*y* for some y* ¢ ¥. If 2* denotes the restriction

9f the functional y* to the space Z, we have ™ = A,z*. Hence the set B +
is also closed. “

It follows from Lemma 3.2 that B, — A, X = AX = B, i
Thus the set B4 is closed. m “ : A- 18 closed-

The following theorem, analogous to Theorem 7 .1, Chapter I, Part A,
holds for normally resolvable operators:

) TH:E:OM?M 3.4. If X and Y are Banach spaces, A ¢« B(X>Y) and E4
18 a projeciion of the space Y, then
A €D+(.X—>Y) and aq < ﬁA

AeD(X>Y) and  Bi< s if and only -if

A=S8+EK,
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where K is an operator of a finite dimension, and the operator S has a left
imverse (right inverse, respectively) 8; e B(Y —X).

The proof follows the same lines as that of Theorem 7.1, AT It is
sufficient to require that the functionals appearing in the definition of
the operator K be continuous. The continuity of the inverse operator is
a consequence of Banach’s theorem (Theorem 3.2, BII). m

CoROLLARY 3.5. If X and Y are Banach spaces, A ¢ B(X—~Y) and
x4 = 0, then A = 8-+K, where the operator K is of a finite dimension and
the operator S is imvertible.

Proof. By Theorem 3.4, we have 4 = §+XK, where the operator 8
is left-invertible, i.e. ag= 0. But x4 = xs. Hence we have also Bs=0.
Thus the operator § is also right-invertible. m

§ 4. Perturbations with a small norm. Theorem 2.1 can be formulated
also in the following manner:

If A = I+, where O « B(X) and [|C]| < 1, then for every number ¢ > 0
there exists a number 8 > 0 such that if B € B(X) and ||BJ| < J, then |x— 2'||< &
where z and ©' are solutions of equations (I + C)z = xy and (I+B + C)a'=2,,
respectively.

Tf the operator A has finite d-characteristic, it is of course impossible
to discuss the nearness of the solutions of the respective equations. There
can be infinitely many solutions. However, some analogies of Theorem 2.1
can be proved.

TarorEM 4.1. (Gohberg and Krein [1]) Let X and Y be Banach
spaces, and let A e B(X—~Y) be amy @-operator. There exisis a number
o >0 such that for all operators B e B(X—Y) satisfying the inequality
IBl < o, A+B is a D-operator and x415= T4-

In other words: for every @-operaior A which maps a Banach space X
into @ Banach space Y there exisis a positive number o such that all operators
with @ norm less than o are @ -perturbations of the operator A which do not
change the index.

Proof. We write the space X as a direct sum: Z,®C, where ©
is a closed subspace. To this decomposition there correspond two con-
tinuous projection operators

z for z¢C
1o for xeZs
We write D; = Dan €. Let 4, be the restriction of the operator A
to D,. Evident]y, 4,18 also a &-operator and its d - characteristic is (0’,ﬁ A). j
The operator 47> is closed, and since it ii defined on a closed set, it is
also continuwous (Theorem 1.4, B III). Let A;* be an arbitrary continuous
extension of the.operator A7 defined on the whole space Y. Such an

0 for zeC,
Py =

d
an x for zeZa4. -

Pz
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extension exists, because the d-characteristic is finite. Evidently,
A7Y(A,2) = for © € D,. Let us take

1
0= —=—7

AT

Let B be an arbitrary operator with a norm less than p which maps the

space X into the space Y. Let B, be the restriction of the operator B
to the set D,. Then

Al +B1 =(I —}—’Bl'A:‘l_l)Al .
) B}ﬂ; IBATY < olld7Y = 1. Hence the operator € =1 —i—BZ;l is
invertible, and so it is a @-operator and its index is equal to zero. Thus,
by Theorem 2.2, III, the operator 4,+B, is a @-operator and

%A 4B = Ao+ R4, = K= 4.

Hence it follows easily that x4imp, = fs— aq = x4. On the other hand,

A+B= A+BP;+BP,
flﬂd the operator BP, is of a finite dimension, i.e. it does not change the
index (Theorem 2.2, A T). Thus we have finally

XA+B = XA+BP, = %4 . n

THEOREM 4.2. (Gohberg and Krein [1].) Let X and Y be Banach
spaces. Ij an operator A e DHX-Y) is normally resolvable, then there
erists a number g, > 0 such that the conditions B e B(X-Y) and 1Bl < o,
vmply that the operator A +B is normally resolvable and aqrp < ay.

Proof. We write the space X as a direct sum X — Z,BC. Let 4
be the restriction of the operator 4 to the space @, i.e. '

Adyw=Axz for zeDsnE.

Evidentl)t, the operator 4, is normally resolvable and has a d - characteristic
(0, Ba). Bince as, = 0, there exists a number m > 0 such that )

izl > mlw] for = Dy=Dyn (.

Let BeB{X—+Y) be an operator satisfying
where g, = m/3. Then

(A1 +B)a|| = (m—|Bl) e > 4mfjz]]  for

It follows from this inequalit
resolvable and au4p=0.

Hence the operator A +B is also normally resolvable, as an extension
of the operator 4, +B to a space of a finite dimension (

the inequality |B] < g,
& e -DA1 .

y that the operator 4,+B is normally

a4-dimensional), and

CA+B S O4iB+As=04. MW

icm
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A theorem analogous to that on the nullity of an operator holds
also for the deficiency:

THEOREM 1.3. (Gohberg and Krein [1].) Let X and Y be Banach
spaces. If an operator A e D™(X—+Y) is normally resolvable, then there
ewists a number g, > 0 such that the conditions B e B(X—~Y) and || Bl < o,
imply that the operator A+B is normally resolvable and Parp < Ba.

Proof. First, let us suppose that the operator 4 is defined on the
whole space X: Dy= X, and f4= 0, ie. that the operator 4 is a con-
tinuous epimorphism of the space X onto the space Y. By Theorem 2.7, I,
the conjugate operator A* ¢ B(XY+—X") is an embedding. By Theorem 4.2,
there exists a number o' > 0 such that if |B]| = |B*|| < ¢, then the oper-
ator At--B* is an embedding. Hence, according to Theorem 2.6, the
operator A 4B is a continuous epimorphism. Consequently, it is a normally
resolvable operator, and 0 =f,, < f,=0.

We now proceed to the proof in the case of fa # 0. Let Y= HE &N
and let M be a certain f,-dimensional normed space. We denote by c
a linear operator which maps the space M onto the space ¥ (in particular,
one can take M = N and € = I). Let X; = X @M with a norm defined
by the formula:

lo+yll=lwll+lyl (@eX, yeN).

We denote by A the extension of the operator 4 to the space X
defined by the formula:

Aw+y)=Ax+0y (weDa, yeM).

Tt is easily seen that the operator A is normally resolvable and

Bi=0, az=o04-
Hence we may apply the first part of the theorem which we have already
proved to the operator A. Thus there exists a number g >9 such that
for all operators B ¢ B(X—~Y), Dp= X, satisfying the inequality Bl < e,
the operator A +B is normally Tesolvable and
Biyp=10, 0i4B3=01;

where B is the extension of the operator B to the space X, defined by
menas of the formula BM = 0. . ‘

Let us remark that the operator A +B is an extension of the operator
A +B to the space X,. Hence the operator A +B is normally resolvable
and

Basrn<Ba-

Tet us now consider the inost general ease. We deﬁne‘a new porm

in the set Dg: |jolla = [l [l Al (see § 1, B II). The set D4 with norm || {4
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is a Banach space which we shall denote by X4. The operator A induces
in the space X4 a bounded operator 4 with the same set of values as the
operator 4. Hence the operator A4 is normally resolvable and g, = § (-
We apply part of theorem which is already proved to the operator A.
Z.E[ence for all operators B, Dy = X, for which |B|| < o, the operator 4 +B
is normally resolvable and

(4.1) ﬁA-I—B = ﬁA .

In particular, the inequality ||B| < ¢, holds for all operators
B eB(X—ﬂt), Dy = X, satisfying the conditions |B|| < o1, 1Bl < |IB].
Henoje.m this case the operator 4 +B is normally resolvable and satisfies
condition (4.1). Consequently, the operator A-+B is normally resolvablc
and )
Basp=Purn<bs=84. W

It follows from Theorems 4.2 and 4.3 that if we consider the set
R(X—-Y) of continuous normally resolvable operators, then
Nt R(X—->¥) D [DHX YY) u DT (X ->Y)]n B(X~Y).

As follows from a paper by M. A. Goldman [1], thesign of inclusion ean be
replaced by the sign of equality, i.e.
IntR(X—¥) = [DHX>Y) u D™ (X—-Y)]~n B(X>Y).
Let us remark that the positive constant 0, i5 the same in Theorems 4.2
and 4.3. .
Theorems 4.2 and 4.3 show that for & +- and &_-operators there
hold theorems analogous to the first part of Theorem 4.1. In order to

prove that [|B]j < o, implies » 4+ = %4 We define the notion of the gap
of two spaces.

We denote by o(z, M) the distance between the point z in a Banach
space X and a subspace: M CX, i.e. the number
z, M)=1i — -
o(z, M) ;?f{ll-’v yil,

and by O(M, N), the gap of subspaces M and N of thi i
— s P an of this space, i.e. the

O(M,N)=max { sup o(z, N
MMM:I@( , ),wﬁﬁﬂe(y, M)} .
Evidently, we always have
0<O(M,N)=0(N, M)<1
and
6(M,N)= o(M,N).

) Le? us remark tha,t‘ the_gap of spaces does not satisfy the triangle
Inequality. Hence sometime it ig more convenient to use another notion,
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such called the distance of spaces introduced by Gohberg and Markus [1].
The distance of subspaces M and N is given by the formula:

&(M, N)= max{ sup ofw, S(N)); sup ofy, S(M))}
zeS(M) veS(N)

where S(M) and S(¥) denote the unit spheres in the spaces M and N
respectively.

Let us recall that a system of points @y, ..., @, ... is called an e-net
of the set E if iIilf |le— 4] < & for every point ze B (§ 1, B IV).

Let M be an infinite-dimensional subspace. If any number &, 0 < & < 1,
is given, the £-net of the unit sphere.S(M) must be infinite. Indeed, let
us suppose that this net is finite and consists of points @, ..., 2a. Let
L =ln{w,, ..., zs}. There exists a coset [z] of norm &< {[z]]| < 1 in the
quotient space M/L. Hence there exists a point « e [#] such that {jr|] <1
but g(»,L) > e Thus the system {@,, ..., #s} is not an s-net.

If the space N is of a finite dimension, the "unit sphere S(N) is pre-
compact. Hence for every &> 0 there exists a finite ¢-net in this ball
(see § 1, BIV).

THEOREM 4.4. (Krein, Krasnosielski and Milman [1].) If (M, N)< 1
and if the subspace M is infinite-dimensional, then the subspace N is infinite-
dimensional.

Proof. Let us suppose that the subspace N is of a finite dimension.
Let us form a finite ¢-net @y, ..., %, in N, where e<1—6(M,N). It
immediately follows from the definition of the number @(M, N) that
the system ,..,%, i§ an ¢-net, where g =&+6O(M,N) in the
sphere §(M). But this is impossible because there can exist no finite
&,-net in the sphere §(M). Hence the subspace N is infinite-dimensional. m

Krein, Krasnosielski and Milman [1] show more in their paper:
namely, that in the case of infinite-dimensional spaces the minimal power
of an e-net, 0 < &£ < 1, of the ball §(M) in a Banach space M is equal
to the minimal power of a dense set. They formulate Theorem 4.4 as
follows: if O(M, N)< 1 (in the original paper, < 1/2), then the minimal
powers of sets dense in subspaces M and N are equal.

We now give a few more facts in connection with the gap of spaces,
which are necessary in our further considerations.

Let M be a subspace of a Banach space X. We write

Mt = (gt e X+: ot(w) =0 for z¢ M}.

TEEOREM 4.5. (Krein, Krasnosielski and Milman [1].) If M end ¥
are subspaces of a Banach space X, then

O(ML, NL)= O(H,N).
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Proof. It follows from the Hahn-Banach theorem (Theorem 2.2, I)
that
e(y,Z)= max |z¥(y)
zteZ*+wH=1

for an arbitrary y e X. Hence one can write
O(M, N) = sup{ly*(#)], la*(y)]},

where the supremum is taken over all z e M, y ¢ N, o™ ¢ ML, y+ eNL,
such that lle]} = |lyll = [l¥}} = |ly*]| = 1. Let us remark that if the subspace
MFCX* is snch that for an arbitrary functional o ¢ M*, o} ¢ X, there
exists an element @, ¢ X for which 27 (z,) # 0 and #*(2,) = 0 for all + « M+ s
then for every functional @ ¢ M+ and for an arbitrary number &> 0
there exists an element @, e X, |l = 1, satisfying the conditions
lod @)l = o(ag, M¥)—s, ot (w) =0 for all a+eM+.
Evidently, we always have |of(zo)| < o(ad, M*).
Since the set ML has the above property, we have
o(e®, M) = sup |a*(a)|.
z€ M lizl=1
Thus
O (M, N') = sup{ly*(a)], la*(y)} = O(M, V),
where the supremum is taken over all m € M, y eN, st e M-, yt e N1,
such that gl = [ly] = |z = [y*| =1. m
TEROREM 4.6. If the assumptions of Theorem 4.2 are satisfied and
Ba= +oo, then Bawp= +oo. ‘
Proof. Keeping the notation of Theorem 4.2 unchanged let us note
that we have for an arbitrary element z €Dy,
(4:+B)o— A2l < 3|4, 2]
and
; 3Bl 3Bl _1
— (4 i nid | =
Moo= (Bl < Grlia By (S < ).
These inequalities enable us to estimate the number O(M,N), where
M=Ey 5 N=1H,:
9(E4,+B: E)<4%.
This inequality and Theorem 4.5 imply
@(Ej1+3 s Eﬁl) < 3. _
Hence, by Theorem 4.4, we have Baysn= +oo, for g, ,= B4y = +o0.

Let us now remark that the operator A-+B is an extension of the
operator A to the as-dimensional space. Consequently, -

Barp=Pas=+c0. m
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TEEOREM 4.7. If the assumptions of Theorem 4.3 are satisfied and
aqs= +oo, then agep= +oco.

Proof. To begin with let us suppose that the operator A is defined
and continuous on the whole space X and that f4 = 0. Then the operator 4
is a continuous epimorphism. By Theorem 2.7, I, the operator
At e B(Y*—>X*) is an embedding. Applying the estimation given in
Theorem 4.2 we find that

OB prypry Bav) < % -

But Theorem 3.1 implies Byrypr=12,,5 and Bu=Z,. Hence we
conclude from Theorem 4.5 that

@(ZA-(-By ZA) < % .

By Theorem 4.4, we have aswp= +oo, because ay= +oco.

If B4 > 0, we argue as in the proof of Theorem 4.3 considering oper-
ators A and B defined on the product X x €, where € is a f.4-dimensional
space and the operator 4 is a continuous epimorphism. Hence 7, 3= oo,
and consequently f ,pz= +co. B

The theorems on perturbations given so far involve one inconvenience:
namely, the perturbation B of the operator A is required to be at least
A -continuous, and this implies that the operator B must be defined in
the domain of the operator A. This inconvenience can be removed by
applying the distance of the graphs of closed operators.

We call the set

W‘A.;{(a;’y): y:Aa},weDA}CXXY

the graph of the operator A C L(X~Y)(see § 1, AX). The distance ¢(4, B)
of two closed operators A, BC L(X~Y) is defined as the distance of their
graphs, i.e. -

o(4,B)= 0 (W4, Wg).

A similar metric was considered by J. D. Newburgh [1]. As has been
proved by E. Beikson [1], it is equivalent to the metric ¢(4, B).

The following theorem holds for the metric o(4, B):

THEOREM 4.8. (Paraska [1].) Let X and Y be Banach spaces. For
every ®-operator A e L(X->Y) there ewists a number 8 > 0 such that every
closed operator B e L(X —Y) satisfying the inequality

, e(4,B) <
8 also a -operator. Moreover,

®B = %4 and 0B < G4 .
19
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Proof. First, we consider the case aq= 0. We set

by R
S =g inf
3ky+6’ zeD =1
Let y € Dp, |ly|| = 1. There exists an element @ ¢ Dy such that
lle—yl|+ lAz— Byl| < 6 (1 + ||Byll) .
Hence it follows that

where k4= 14| .

l#l] = 1—8(1 +|1Byl) ,
(A +ka)llwll < (1+6)(L+ 1Byl .
The last two inequalities give

Ba— Ski—25  %ha
WYl > 55 1ok — 35 Fa

Hence the operator B is normally resolvable, and ag= 0.
We may show analogously that for an arbitrary element Az e By,
|l4@|] = 1, there exists an element By e Ep such that

lde— Byl < %,

and we infer from inequality (4.1) that for an arbitrary element By’ ¢ Eg,
[[By'll = 1, there is an element Az’ e B, satisfying the inequality

(4.3) 42— By'|<e< }.

It follows from inequalities (4.2) and (4.3) that O(H,, Fp) <}.
Hence fp = f4, and this completes the proof in our case.

Let us now suppose a4 5 0. We may limit ourselves to the case
of a4 << fa, because the case of~a4> B4 can be reduced to the former
one by considering the space ¥ = Y ®XN in place of ¥, where N is
& certain (as— fB4)-dimensional space not contained in the space Y.

Evidently, there exists an operator K of a finite dimension such that

(4.2)

dimFPrg= 04 and a4=0, -where A, =A+K.
Let B;= B+XK and let
e i ka4
2(1+IKR) 8ka+6°
It is easily found that
e(4s, B) <201+ |Elfe(d, B) < gt

Hence the operators 4; and B, satisfy the conditions of the first
case. Thus the operator B; is normally resolvable,

ap, =0 and

B, = B4,
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Hence it follows that the operator B = B,— K is a @-operator, and
xp==xp, and also fp = f4 = fasx= %4. Since ap =10, we obtain
xR == XA,
Finally, we show that az < as. For an arbitrary y e Zz we have
B,y = Ky. Hence
B\(Zg) = K(Zg),

and since Bz = 0 and dimEx = a4, we get
og= dimZp = dim By(Zg) = dim K (Zg) < ax . n

In an analogous manner we obtain

TaEOREM 4.9. (Paraska [1].) Let X and Y be Banach spaces and let
A e L(X—~>Y) be a D, -operator (P_-operator). There exists a number & >0
such that every closed operator B e L(X—~Y) satisfying the inequality

o{d,B)< ¢
8 a D ~operator (P_-operator) and
ap<Las (< PBa),
Br=fa (ap=a4).

§ 5. Improved estimations of the norms of small perturbations.
From Theorem 4.2 and 4.3 immediately follows the first part of Theo-
rem 4.1; namely, that for operators B e B(X—Y) such that ||B| < o
A 4B is a @-operator. However, the constant g, obtained in this manner
is smaller than the constant ¢ given in Theorem 4.1.

The following question arises: is it possible to prove theorems analogous
to Theorems 4.2 and 4.3 with the same constant ¢ which appears in Theo-
rem 4.1. The answer is positive and is based upon the notion of the
gap of two spaces. The proof of the fundamental property of the gap
given in Theorem 5.1 makes use of a difficult topological theorem of
Borsuk and therefore can be omitted at the first reading.

THEOREM 5.1. (Krein, Krasnosielski and Milman [1].) If M and N
are subspaces of a Bamach space X and O(M,N)= a <1, and if one of
the numbers dim M or dim N is finite, then

dim M = dim N .

Proof. We shall prove that if dim M =m, dim N >m, then
O(M, N)=1. It will be sufficient to show that there exists in the sub-
space N an element y “orthogonal” to the space M, i.e. satisfying the
equalities
=1 and oly, M)=1.

Without loss of generality we may suppose that dim N = n = m+1. We

denote by X, the linear span of spaces M and N. Let us suppose that

19%
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the unit sphere in the space X; does not contain any segment. Then for
every 2 X, there exists only one element @ ¢ M for which the number
o(z, M) will be assumed. It is easily seen that the mapping # = Pz (2 € X,)
is continuous and satisfies the equality:

P(z)=—Pz.
The *‘‘orhogonality” of the element z to the subspace M means that
e(z, M) = [le— Pz|| = [l ,
ie. Pz=0.
Let us now suppose
Py #£0
Since the space N is compact, the mapping Py = Py/||Py|| is continuous
in this space. P; maps the n-dimensional sphere S,= {y ¢ N: |y = 1}
in the (n—1)-dimensional sphere 8, = {# ¢ M: ||z = 1} in such a manner
that symmetric points are associated with symmetric points:
Py(—y)=—Piy),
but this is impossible, by Borsuk’s theorem [1].
Thus the theorem is proved in the case where the unit sphere in
the space M does not contain any segment, i.e. is strictly convex.
In the general case, choosing an arbitrary number >0 one can
congtruct a new norm J¢|, in the space X; in such a manner that

(8.1) el < llelb < (1 +&)llell  for all ze X,

and that the new unit sphere |iz]l, = 1 be strictly convex, i.e. that, for arbi-
trary vectors #, 2, ¢ X; in different directions,

(5.2)

for yeN, lyl=1.

fles +2alls < lleallo + lizallo -
Indeed, inequality (5.1) implies the following one:
O M, N)< (1+5)0(M,N),
where O M, N) is the gap between spaces M and N corresponding to
the norm |jz},.

By condition (5.2), we have @M, N)= 1. Since the number & is
arbitrary, we conelude that

OM,N)=1.

We now give a construction of the norm || fj,. Let || [|; be an arbitrary
norm in the space X, such that the unit sphere ||z, = 1 is strictly convex.
For example, one may take

lell = s+ Exeyll = VE+ - + 8,
where {e;, ..., ex} is a Dbasis of the space Xj.
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We write D = lzllzﬁz llelly, then {ef; < Dife|.
Since the norm ]}, satisfies condition (5.2), this condition is satisfied
also by the norm
lello = llel] + 8 [lelly

for an arbitrary ¢ > 0. Condition (4.1) will be satistied by the norm |jzfl,
it we take ¢= DJ. Since the number § > 0 is arbitrary, the norm |,
has the required properties. m

THEOREM 5.2. (Gohberg and Krein [1].) By ithe assumptions of
Theorem 4.1, we have aq4p < aa and Barp < fa.

Proof. The operator A generates in a natural way an operator [4]
with domain D,/Z, and range By ,= B, in the quotient space X/Z,.
The operator [A] has a bounded inverse [A]™'. Let us take

e= 414~ .

Let B be an arbitrary bounded operator with a norm less than ¢ which
maps the space X into the space Y. If » is an arbitrary element of the
space Z 4+ and [#] is the corresponding coset in the quotient space X/Z4,
then

1
min lz—yl = [l = [[A]7(42)] < 2 llAai .

On the other hand, if # € Z n, then Az = — Bz and

| Az| = || Bl < ellll
for z # 0. Hence

min |jg—y|| < || for @eZup,x#0.
veZa

By Theorem 5.1 on the gap of a space, it follows that dim Z4.p<< dim Z4, i.e.
QA+B' K Od -

But x415= 4. Consequently, Bap < fa. M

Theorem 5.2 can be generalized in the following manner:

Let A e L(X—~Y) be a @-operator. Instead of assuming the oper-
ator B to be continuous, we suppose that the operator B is 4 -continuous
(see § 1, B II). But then B e B(X4—Y). Hence, by Theorem 5.1, there
exigts a number o >0 such that if ||Bz|| < e(||A2||+ ||=]l), then A 4B is
a @-operator and has the same index: »4+3 = %4. Moreover, Theorem 4.3
implies ag1p < a4.

§ 6. Characterization of the index. Let X be a Banach space, as
before. We shall denote by Dp(X) the set of all @-operators belonging
to B(X). :


Yakuza


294 C. III. &-operators in Banach spaces
It follows from our previous considerations (Theorems 2.1, AT;
6.11, A X, and 4.1, I) that the index of an operator is a functional defined
on the set Dp(X) satisfying the following conditions:

(1) the values of the functional x4 are integers,

(2) the functional x4 is continuous over the set Dp(X),

(3) i/ A, B e Dp(X), then

xap== xo-+%g,
(4) if the operator A e B(X) has an inverse A7* ¢ B(X), then
%g=0.

We now, show that every functional defined on the set Dp(X) and
satisfying conditions (1)-(4)
a constant integer coefficient. Namely, we have the following:

THEOREM 6.1. (Gohberg [2].) If X i¢ a Banach space, then for every
functional v(A) defined on the set Dp(X) and satisfying conditions (1)-(4)
there ewists an integer p such that

v(A) = pr4.

Proof. First, we show that properties (1) and (2) of the functional »(4)
imply the following condition: for an arbitrary operator A ¢ Dp(X) and
for am arbitrary operator K of a finite dimension we have the equality

(A +K)=1v(4).

It follows from Theorem 3.2, AT, that we have A+ 1K ¢ Dp(X) for
all complex numbers A. Hence the function »(1) = »(A+1K) defined
on the whole complex plane is continuous and integer-valued. Con-
sequently, the function »(1) is constant. This implies in particular that
it assumes the same values at A=10 and A=1, ie. v(4A+EK)=»(4).

If v(A)= 0 for invertible operators, then x4==0 implies »(4)= 0.
Indeed, if x4 == 0, then Corollary 3.5 implies A = S +K, where the oper-
ator S is invertible and the operator K is of finite dimension. Hence

y(d)=»(8+EK)=1»(8)=0.

Thus, Theorem 6.11, AT, immediately implies our theorem. m

Bemark 6.2. It follows from Remark 6.12, A I, that it is not necessary
to define the functional » on the whole set Dp(X). It is sufficient that »
be defined on a set W having the following properties:

(Q)if A,BeW, then ABe W,
(2) if AeW, then A+T e W for every .compact operator T,

(3) if A W, then there exists a simple regularizer Dse W of the
operator 4 to the ideal of compact operators.

is an index of operators if we disregard .
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In this case one cannot require p to be an integer. The number p
may be a fraction of the form Fk/q, where g=inf{w: x>0, x= x4,
AeW}

Condition (4) can be replaced by a condition stating that the set of
all invertible operators is connected.

If X(X) is the algebra of all continuous operators over a Hilbert
space X, then set Dy(X) is connected in the norm topology (see Gohberg,
Markus, Feldman [1]; Kuiper [1]). For the case of spaces I? and ¢, this
theorem was proved by G. Neubauer [2] (see also Arlt [1]), who extended
these results to some more general classes of spaces (Neubauer [3]). Ho-
wever, Douady [1] showed that there are Banach spaces for which this
theorem is not true.

If we investigate the set of closed operators, and not the set of bounded
operators, then the characterization of the index is the same as in case
of bounded operators with the only difference that in place of the con-
tinuity of funetionals with respect to the norm we require their con-
tinuity with respect to the graph metric ¢(4, B) (see §4 and Theo-
rem 4.8).

If we consider the set of all closed operators over a separable Banach
space X, then the set of all invertible operators is connected in the graph
metric (G. Neubauer [1]). This is a generalization of the results of H. O. Cor-
des and J. P. Labrousse [1] obtained for Hilbert spaces.

§ 7. Operators preserving the conjugate space. Let X be a Banach
space and let A e Ly(X). Let 5 be a total family of linear functionals
defined over the space X. As we know (§ 1,.A TLI), the conjugate operator A’
defined by means of the equality

At=EA (£eE)

does not always map the space £ into itself. However, if ZA CE, we
say that the operator A preserves the conjugate space E. The set of
all linear operators preserving the space & has been denoted by
L(X, B).

We have denoted by KX, E the ideal of operators of a finite
dimension contained in the algebra Ly(X, &). If K € K\(X, 5), then the
operator I+K is a @ -operator of index 0 (see § 2, A III).

Let X and £ be Banach spaces. One can define the following new
norm in the algebra By(X, &) = By(X) n Ly(X, &):

41" = max {|4lix; 141} -

If the topology in the space Sis equivalent to the topology determined
by the norm of the funetmna.l then of course the morms || ||* and || lix
are equivalent.
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We denote by Ky(X,E) the closure of the ideal K(X,Z) in the
norm || {*. Evidently, KX, 5) is also a two-sided ideal.

THEOREM 7.1. (ON SIMULTANEOUS APPROXIMATION.) If X is ¢ Banach
space and an operator A e ByX , E) has a left regularizer (vight regularizer)
to the ideal KX, Z), then it has a left regularizer (right regularizer) to the
ideal KX, E).

Proof. We perform the proof for a left regularizer; obviously, the
proof for a right regularizer is the same. According to our assumption, the
operator A possesses a left :regularizer R4 to the ideal K (X, &), ie.

RiA=14T, where TeKyX,5).

But the definition of the ideal K\(X, Z) implies existence of an operator
K e KX, E) such that
IT—-E|*<1.

We write B= T— K. Since the spaces X and = are complete, the operator
I+B is invertible and (I+B)™ e By(X, 5). Let

By = (I+B)"R,.
Then
BRYA = (I+B)7 R A = (I+B)Y(I+T)
=I+B)(I+B+EK)=I+(I+B)'K.

But we have (I+B)™' K ¢ K(X, E). Hence E!, is a left regularizer of the
operatdr 4 to the ideal Ky(X, 5). m

CorOLIARY 7.2. If an operator A ¢ By(X,E) has a simple regularizer
to the ideal KX, ), in particular, if 4 — I+T, where T ¢ Ko(X, 5),
then A is o ®c-operator.

CoROLLARY 7.8. The ideal KX ,5) is a E-Fredholm ideal.

Proof. By Corollary 7.2, KX, 5) is a & -quasi-Fredholm ideal. It
is sufficient to show that it is a Fredholm ideal. Let T e KX, 5), ie.
that the operator I+T is of a finite d-characteristic. By Theorem 4.1,
there exists a number ¢ > 0 such that the inequality ||T'—Ty|| < o implies

Rr4m = Erpppm-ny = %140 -

However, by hypothesis to every number g there exists an operator
K e KX, E) such that |E—T|| < o. Hence

er=‘%ng=0. &
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Remark. It is not known whether the assumption T em
in Corollary 7.2 can be replaced by the assumption 7 e T(X, &), where
T(X, 5) denotes the ideal of compact operators contained in the algebra
By(X, ). More generally, it is not known whether if J is a Fredholm
ideal contained in the algebra Ly(X, 5), then #;, 4 = 0 for all operators
Ted.

TreeoREM 7.4 If X ds a Banach space and an operator T e By(X, &)
is compaci, then the conjugate operator T is also compact.

The proof follows the same lines as that of Theorem 2.2, II; one
must only replace the space X* by the space 5.
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CHAPTER IV

&-POINTS AND THE THEOREM ON SPECTRAL DECOMPOSITION

In this chapter we shall consider linear spaces over the field of complex
numbers only. The fundamental theorems of this chapter were given by
Gohberg and Krein [1].

§ 1. P-points. Let us suppose that a linear closed operator 4 maps
a Banach space X into itself. A point 4 of the complex plane is called
a @-point if the operator A— AI is a @-operator. The set of all @-points
of the operator A is called the ®-set of the operator A and is denoted
by @A.

Let AePy. Since A— Al = A—yI— (A—2Ay)I, according to Theo-
rem 4.1, ITI, there exists a number ¢ > 0 such that all points of the disc
|A— 4] < & are @-points; moreover,

g == Hggor -
This immediately implies the following theorem:

TeeorEM 1.1. If X is a Banach space, then the ®-set P4 of a closed
operator A ¢ I{X) is an open set, whence it is at most a countable union
of connected components. In each connected component of the set @4 the
index x4 of the operator A is constant.

TrHEOREM 1.2. (Gohberg and XKrein [1].) If X is a Banach space and
every point A of the complex plane is a D-point of an operator A e B(X),
then the space X is of a finite dimension.

Proof. If |A| > |4, the operator A—AI is of a finite dimension.
Hence

%gg=0 (|| > I4]).
On the other hand, @4 consists of all points of the plane. Thus
%y =0 forall 4.

Let us consider the quotient algebra [B](X) = B(X)/T(X), where T (X)
is the ideal of compact operators. We denote by [4] the coset determined
by the operator A. We define the norm of the coset [4] as follows:

AT = 1 4fle = T:’g{m 1A+ .
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Let us suppose that the space X is not of a finite dimension. Then
the algebra [B](X) cannot be of a finite dimension, for otherwise the
space X would be locally compact, by Theorem 1.11, B IV.

By Corollary 3.5, III, we have A—AI = §,+K,, where the oper-
ator §, is invertible and the operator K, is of a finite dimension. Hence
the coset [S;] generated by the operator §, is inverse to the coset [A— AT].
Thus for every number A the element [4]—A[I] is invertible in the ring
[B](X). But this is impossible, because for every element a of a Banach
algebra there must exist a number x such that the element a— pe is not
invertible (see Theorem 1.6, IT). m

Theorem 1.2 can also be formulated in another way:

THEOREM 1.2°. If a Banach space X is infinite-dimensional, then
for every operator A e B(X) there ewists at least one point A which is not
a D-point of that operator.

§ 2. Properties of functlons ay_;; and B, We shall now investigate

the functions
ag(M) =04, and Bul)= PB4 s

inside each of the components of the set @4. First, we prove the following
lemmas

Lemwa 2.1, Let X and Y be Banach spaces, let A and B belong to
B(X—~Y) and let A be a D-operator. Then there ewists a number & >0
such that for all 1 satisfying the inequality 0 < |A| < & the equation

(A—21B)yz =0

has the same nwumber of linearly independent solutions.

~ Proof. First, we prove the lemma in the case of x4 = 0. We denote
by {é1; -y a,} @ basis of the space Z4, and by {g, ..., ¢a,}, & basis of the
direct complement of the subspace E4 in the space Y. Let {f;, ..., fa,}
be a system of functionals in the space ¥+ such that

ff(ek) =0y (j,b=1,2,.,0,).
The operator 4, defined by the equality '

a4
A0 = Ao+ D f2)gs
=1
has a continuous inverse (compare the proof of Theorem 1.2). Hence
the operator 4,— AB is. also continuously invertible for all A belonging
to the dise ]l] < o= | ATYI""IB|| and

B,— (4,~1B) = A“(I+ Zlk(BA“‘)")

k=1
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However, the equation (A—AB)z =0 is obviously equivalent to the
equation

ay
(di—2B)e= D 'fi(a)g

j=1
or to the system of equations
a4
(2.1) z= 25,12193.
i=1
)2.2) G=fdw) (k=1,2,..,a,).

Substituting in equation (2.2) the expression for  from equation (2.1)
we obtain the following homogeneous system of a, linear equations
determining the numbers &, (k=1,2, ..., ay):

ay
2[6jk_fk(Rzgi)]§f: 0 (k=1,..,0a,).

7=1

Evidently, the number a,_,; is equal to the number of linearly
independent solutions of system (2.3). All elements of the determinant
4(2) of system (2.3) are analytic functions of the parameter 1 inside the
dise |2 < g. If they are identically equal to zero, then the system has
7 = o4 linearly independent solutions. Therefore we have

Cysp=N= 0y

for all points A from the disc i} < 0.

Let us now suppose that at least one of the elements of the determinant
A(4) is different from zero at a certain point A of the dise |i| < 0. We
denote by 4,(4) anm arbitrary minor of the highest rank among all the
minors of the determinant 4 (1) different from zero at least at one point A
of the dise || < ¢, and by p, the rank of that minor. Bvidently, 4,(3) = 0
at points of the disc |A] < o, with the exception of some isolated points.
At points 1 such that 4,(4) # 0 system (2.3) has n—p linearly independent
solutions. ’

Let JA] < £ be the largest disc such that A4,(2) = 0 for all points inside
this dise (with the possible exception of the point A= 0). We have
a5 =n—p for all points A satisfying the inequalities 0 < Al <e In
this rhanner we have proved the lemmsa in the case of xs— 0.

Let us now suppose that x4 < 0. Let N denote a certain |2¢4] - di-
mensional space, and let ¥= Y @N. Evidently, the space ¥ can be
considered as a Banach space if we define the norm in ¥ as follows:

ly+2ll=lyli+lell  (ye¥, zeN).
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In the following we shall consider the operators 4 and B as operators
which map the space X into the space ¥. The index of the operator 4
will become greater by x4; hence it will be equal to zero. Applying the
first part of the lemma to the operator A and taking into account the fact
that changing the space Y into the space ¥ does not change the number
a,_yp; We Obtain our lerama also in this case.

It remains to consider the case x4 > 0. We denote by M a 24-di-
mensional space, and by X the direct sum of spaces X @M. We extend
the operators 4 and B to the whole space X taking

Ae=Be=0 forall zeM.

Then #4 =0 and we can apply the first part of the lemma to the oper-
ator A. Since we have

Of B =04 gty

for all A satisfying the inequalities 0 < |A| < ¢, the lemma is proved also
in the last case. @ ) '

The lemma proved above makes it possible to investigate some
properties of connected components of the set @4.

THEOREM 2.2. If X is a Banach space and if a set @ is a con-
nected component of the ®-set P4 of a closed operator AE.P(.X), then
the function aa(l) is constant for all poinis A e G with the ewception of some
isolated poinis:

asl)y=mn.

Moreover, we have as(d) >n at the isolated points A.
Proof. Let #n = min as(A) and let us suppose that as(1) assumes
re@

this minimum at a point A= 1y, le. that aa(l)= n. )
We denote by 2, an arbitrary point of the component & at wh}ch
a4(2g) > m. We show that the point 4, is isolated, i..e. t?la,t the?e ensfjs
a number & > 0 sitch that as(A) = = for all points 4 satisfying the inequali-
ties 0 < |A— 4| < &. We join the points 4, and 2, by means of a curve I’
lying entirely in the component &. Applying Lemma 2.1 to the operators 4
and B = I, we conclude that to every point 1 of the curve I' there corre-
sponds a number &, > 0 such that the function aa(u) is consta,nt: for all u
satisfying the inequalities 0 < [p—A| < g,. In this manner with every
point A we have associated its neighbourhood T,. T‘hus we have obta.'m.ed
a certain covering of the curve I'. From this covering we ch(?ose a finite
subcovering Uy, Uy, ..., Ny (4 € U). Without loss of generality we may
suppose that U; ~ U,,, # 0. Hence the function a,(A) assun}es the same
value at all points of neighbourhoods U; (j=1 ,.2, oy N ) with the only
possible exception of their centres. But a4(1) = » in the neighbourhood U,
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confaining the point 4,. Hence as(2) = » also at every point of the neigh-
bourhood Uy, with the exception of the point 4, itself of course. m

CoROLLARY 2.2. If there emists at least one point in a connected com-
ponent @ C D4 at which the operator A— Al has a continuous imverse, then
the operator A— AL has a continuous inverse at oll points of this component
with the exception of isolated points.

It immediately follows from Corollary 5.8, B IV, that:

TreeoREM 2.3. If X 48 a Banach space and if A eL(X) is a closed
operator and B e L(X) is an A -compact operator, then the ®-set of the oper-
ator A+B is identical with the ®-set of the operator A:

Dp=Dy.

§ 3. Analytic functions of operators. A function A4, with values in
the space B(X—Y) is called analytic in the domain @ if this function
is expansible in a series convergent with respeet to the norm of the
operators,

I
A= A+ D (A—20)*0y ,
k=1
in & certain neighbourhood of every point A < @, where O, ¢ B(X—Y)
(k=1,2,..) (see §11, BI).

The following theorem is easily verified:

TreoREM 3.1. Let X and Y be Banach spaces and let A, be an analytic
function in a domain G and with values in a space B(X —Y). If for every
2 e @ the operator A, is a @-operator, then the index of the operator A, has
the same value for all 1 @.

Let us remark that Lemma 2.1 remains true if we replace the operator
A—AB in this lemma by an-operator A, satisfying the assumptions of
Theorem 3.1. Thus we may give the following generalization of Theorem 2.2:

THEOREM 3.2. If an operator A, satisfies the assumptions of Theo-
rem 3.1, then the function a,, has a constant value at all points ) € G with
the exception of a set P of isolated points:

o, =n.
Moreover, we have a,, >n at isolated points belonging to the set P.

Hence we obtain the following

THEOBEM 3.3. Let X be o Banach space and let T, be an ‘amal,yti::
function in & domain G with values in the algebra B(X). If the operator T,
8 compact for every A € G, then the function a(i) = ar_p, has a constant value

a(d)=mn
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for all points A e G with the emception of isolated points. At isolated points
we have a(A) > n. Moreover, if a(l) = 0 at least at one point, then the operator
I—T, has an inverse (I—T,)" e B(X) for all 1e G with the ewception of
isolated points.
Let I' be a rectifiable curve contained in the domain @ By Theo-
rem 11.5, B I, the integral [4,dA exists.
r

If f(4) is a continuous linear functional defined on the space
B(X-Y), then

fUAAd}.) = [f(4)da.

Let us suppose that the curve I"is closed and that the domain G, C &
contained inside this curve is simply connected. Then we have

f(fAzdl) = [H4)dar=0

for an arbitrary continuous linear functional defined on the space B(X —X),
because the scalar-valued function F(2) = f(4,) of the variable 2 is ana-
lytic. Since the functionals f is arbitrary, it follows that

[4@n=0.
I

In a similar manner we verify Cauchy’s formula:

1 [ A,
=g )i

where I" is a closed curve with the point A inside.

§ 4. Resolvent of an operator. A theorem om spectral decomposition.
Let X be a Banach space. A point 1 of the complex plane is called a regular
point (§ 8, Chapter I) of an operator 4 e B(X) if the operator A— Al has
a continuous inverse, i.e. there exists an operator B, bounded and defined
on the whole space X such that

R(4—3l) = (A—2DR,=1.

Such an operator is called a resolvent. Tf an operator A has at least one
regular point Ao, then of course the operator A—74,I is closed, and 80
is the operator A. The set O4 of all regular points of an operator 4 is
open. Indeed, if 1, € 04, then the equality

A—2T = A— 2T+ (d— NI = (A= AT+ (h— 1) By,]
implies the existence of a resolvent E, in the dise
A= 2] < [IBy,JI7
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given by the formula
By = [I— (A— ) B, 1R, = ) (A—1)*BEH .
k=0

Hence follows

THEOREM 4.1. If X is a Banach space, then in every connected com-
ponent of the set O 4 of regular points of an operator A « B(X) the resolvent R,
of that operator is an amalytic function (with values in B(X)).

Since the spectrum S4 of an operator 4 (see § 8, Chapter I) con-
stitutes the complement of the set 04 of regular points to the whole
complex plane, the spectrum S84 is a closed set.

Let I' be a rectifiable are or a curve made up of such arcs. Let &,
be the domain closed by the curve I. We suppose that the curve I" con-
sists of regular points of the operator 4, i.e. that R, = (A—AI) is an
analytic funetion on the curve I" and that the curve is positively oriented
with respect to the domain &,.. Let us consider the integral

1
~ﬁledl.
r

The existence of this integral follows from Theorem 11.5, B I.
TrEEOREM 4.2. If X is o Banach space and A ¢ B(X), then the oper-
ator P is a projector and
X=X, ®%;, where X,.=P.X;; L.=I-PpX.
Moreover, both components X, and Ly are invariant subspaces of the oper-
ator A having the following properties:

1. the restriction of the operator A to the space X, is defined on the
whole space X and its spectrum lies inside the domain Gy

2. the restriction of the operator A to the space L. is defined on the
set Dy~ Xy and its spectrum lies outside the closure of the domain Gp.

Moreover, if Iy and T, are two curves with the above properties and if
the domains G, and Gr, are disjoint, then the respective projectors are
orthogonal, i.e.

'PI‘er'zz-Pr,-Prl:O if GI.ImG‘nzO.

Proof. First, we show that the operator P is a projector. If 2 and u
are two regular values of the operator A, then
B—R, = (A— )™ — (A — ul)™?
= (A~ A7 (A~ pI) (A~ ul)— (A—AD)] = (A~ p)R,R, .
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Hence if 4 # u, then
_E—R,
(41) BBy ==t

From the assumption that the curve I' is made up of regular, points
of the operator A we conclude that the distance between the spectrum S,
and the closed set which is the complement of the set G is positive.
Hence there exists a curve I contained inside the domain &, such that
8, C G, C Gy Bus

Pf_——le 1_——fR u

f_fu_=r;m
P

Hence the point u lies inside the domain @&, and the point 4, outside the
domain G,. Thus

P%:(——-——) ffRAR dpau_wffR‘“ BBy a2

=(_2E)‘2,IR‘L, ]‘” 2m)2f Uidz]

1
=ﬁrf1a,,d,z_1?p.

and

Consequently, P, is a projector. We now show that if the domains G,
and @, are disjoint, then the respective projectors P, and P, are
orthogonal. Indeed, if 1 ely, uel}, then

aa W _,
)i Y
Iy s Iy

Applying an analogous decomposition to that used in the previous case
we obtain
Pl“l-PI'; = Pr,Pn

From the commutativity of the resolvent and the operator A follows
the commutativity of the operator P, and the operator A. Hence
AD, X)) = A(PrX,n D)= P A(X A D)C Xy
and analogously,
ADynTy)=A(PrLpnDy)= P A(LprnD,)CLy.
Moreover, .
. (A-AD)R,= (A~ ul)B,+(A—mwR,=I+(A—wR,.

Equations in linear spaces » 20
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Hence

du f
= = | R.d,
A—A= 2m A dn = omi f I+ #

{0. I—Pr= —Pp if A lies outside the curve I',

1. I—Pp=I—P, if 2 lies inside the curve I'.

Hence it follows that if 1 lies outside the curve I', then the operator
A— 2T is invertible on the set X, and if 1 lies inside the curve I, then
the operator A— AI is invertible on the set X,. W

Let us remark that according to Theorem 1.4, ITI, the operator 4
is bounded in the space X, as a closed linear operator defined in a closed
domain.

If there is a finite number of points 4, ..., 4» of the spectrum S4 in
the domain G, then

Pp=P,+..+P,, P,P,=0 for i#j,

where the operators P, (j= 1, 2, ..., n) are projectors and the projections
P,XCD, of the space X are mvanant spaces for the operator A such
that in each of them the spectrum of the.operator A consists of one
number 5 only. ’

- Indeed, if y; are disjoint circles with cenfres at corresponding
points 4;, which He inside the domain G, then

n n
1
Pr= (— om fR‘dl) = 2By
. f=1 74 j=1

§' 5. Decomposition of the operator P,. In the last section we defined
the operator P,. If the numbers 4,, ..., 4» are all values of the spectrum
of an operator A contained inside a curve I', then

Pp=P, +..+P,,.

In this section we shall deal with the question when the opera.tors P,
and P, are of finite dimensions. We recall the definition of a sphtta.ble
space (§ 7, AI). Let

@, = {w e X: there exists an exponent n such that (A—AI)" = 0}.
If the space X can be written as a direct sum
(5.1) X = @, ®N,

where the space N, P is invariant and sueh that the operator (A— 101)
is invertible on X, 107 " then @, is called a spliitable space. ‘

Let an operator 4 e L(X) be closed. We say that the space &, -(defined
as above) is normally splittable it phe subspace N, is closed and the operator

&
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(A— X I) is continuously invertible on the space N 2+ It is easily seen
that the point Ay, corresponding to a normally splittable principal space
of a finite dimension of the operator 4, is a &-point of this operator.
Moreover, all points 1 # 4, in a certain neighbourhood of the point 2,
are regular points of the operator A. Indeed, let us denote by 4, and A4,
the operators induced by the operator 4 in subspaces G, and N, It
follows from the definition that there is a number » such that (4,— 3,1 ) =0.

Let n denote the least natural number satisfying the equality
(43— A I)*= 0. Writing B; = 4;—1,I we obtain

— (= 2L = Bi— (i—2)'T

= (4= AD[(A— )" +(A— "B, +...+B, ] .
Hence

n—1
— (A= AD) = (2= 2) 7T+ D (A—1)7B1.
7=1

On the other hand, the operator A,— 4,I is continuously invertible
in the subspace N, . Hence for all numbers A from the dise

1A= 2ol < 1/l[(As— 2 D)7

there exists a resolvent
(Ay— AT)™ = Ry+ (A+2) B+ oo+ (A= A" BRIV 4.

where R,= (4;,— A I)™". Hence it follows that all ’points 2 satisfying
the inequalities 0 < |A— 4,| < [|RBy]|™* are regular points of the operator A4,
and the resolvent R, for these points is defined by the formula

(8.2) R,= (A—A)By 1 +...+(A—=2) 2B+ (A— 1) P+ 2 (A— A)*RET |
k=0
where the linear operators B; and R, are extended to the whole space X
is such a manner that B,y =0, Bw =0 for ©e@,, yeN,, and P is
a projection operator of the space X onto the subspace G, .
Integrating both sides of equality (5.1) over the contour I', we obtain

(6.3) P=>, =% fRﬂu.
Ir

THEOREM 5.1. Let X be a Banach space. Let I' be a rectifiable curve
which is the boundary of a domain @, and is made wup of regular points
of a closed operator A e L(X). The domain Gy contains a finite number of
points of the spectrum of the operator A which are eigenvalues with normally
splittable principal spaces of finite dimensions if and only if the projection
operaior P, is of a finite dimension.
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Moreover, if the above condition is satisfied, the subspace X.= P,.X
18 the direct sum of all principal spaces of the operator A corresponding to
eigenvalues 1 e Gp.

Proof. Let the spectrum of the operator 4 contained in the interior
of the domain @, consist of a finite number of eigenvalues 4, ..., 4, with
corresponding normally splittable principal subspaces of finite dimensions.
Formulae (5.1) and (5.3) imply

Pr=Py+..+P;,, (P,P,,=0forj+ k),

where the projection operator P, (j=1,2,...,n) projects the whole
space X on a principal subspace of a finite dimension of the operator 4
corresponding to the eigenvalue 1;. Hence the operator P, is of a finite
dimension and

Xp=PrX= )P, X= G +G,+..+6, .
=1

Conversely, let us suppose that the projection operator P, is o
a finite dimension. Then the space X can be represented in the form
of the direct sum of spaces X, and D, invariant with respect to the
operator A:
X=X, ®D;,.

We denote by 4; and A, the restrictions of the operator 4 to the
subspaces X, and D, respectively. Since the subspace X is of a finite
dimension, the spectrum of the operator A, consists of a finite number
of values 4 (j=1,2,..,n; 2;¢@;). It follows from the well-known
properties of the theory of finite matrices that the space X can be de-
composed into the direet sum of spaces B; (j=1,32,...,n) invariant
with respect to the operator A and such that the operator 4,— 4T is
nilpotent in the space B;. Hence it follows in particular that the operator
A,— 2,1 is invertible on all subspaces B, (k¥ # j).

The operator A,— A is invertible for all numbers A e G,; hence the
spectrum of the operator 4 in the domain G, is the same as the spectrum
of the operator A, in this domain. Hence the operator A has a finite
number of eigenvalues 4 (j=1,2,..,n) with corresponding principal
subspaces By (j=1,2, .., 7n) of a finite dimension in the interior of the
domain @G;. These spaces are normally splittable because the space X
can be decomposed into the direct sum of spaces invariant with respect
to the operator A:

X=E,0N; (j=1,2,..,n),
where the operator A— AT has a continuous inverse in the space

Ny=X.0 DB,
k#§

(j=112)'--:n)- n
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§ 6. Perturbations of the operator P,.. Let I"be an arbitrary rectifiable
curve which is the boundary of a domain &, and has the following prop-
erties with: respect to a closed operator A e L(X):

(a) The operator A has a finite number of eigenvalues with correspond-
ing nmormally splittable principal subspaces, inside the domain G.

(b) All the remaining points 2 # 4; in the closure of the domain G,
are regular points of the operator 4.

The root number of the operator A corresponding to the curve is defined
a8 the sum of all numbers v4(4;) such that 4; (j= 1,2, ..., n) is an v4(Ay)-
tuple eigenvalue of the operator A inside the domain Gy, i.e. the number

va(l) = va(l) + oo +va(2) -
We infer from the formula Pr= 3} P, that
j=

v (I) = dimP.X ,

where P, is a projection operator defined by means of the formula
17 -1
PF—EPJ (A—2I)ax.

THEOREM 6.1. (Gohberg and XKrein [1].) Let X be a Banach
space. Let I'" be the boundary of a domain G, and I'—a rectifiable curve
having properties (a) and (b) with respect to a closed operator A e L(X).
There ewists a number o >0 such that. for all operators B e B(X),
Dy = X, satisfying the inequality ||B|| < ¢ the curve I" has properties (a)
and (b) with respect to the operater A-+B and

v mg(l) = va(I) .

Proof. As before, let R, denote the resolvent of the operator A.
Let us set
d = 1jmax |R,).
Ael’
Then
J— dz
SR ) gy
where |I'] denotes the length of the curve I'. The number g defined above
satisfies the theorem. Indeed, let an operator B e B(X—Y), Dg= X,
satisfy the inequality ||B|| < o. All points A e I' are regular points of the
operator A +B Dbecause, as can easily be seen, if 1< I’, then there exists
an operator

(evidently, o< d),

e

(6.1) (4+B—2D) = [(I+BR)(4—)]" = R, (I+ Y (~ BEY)

<
I
-
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where the inequality |B|l < ¢ implies that this series is convergent,
because

IBEI<IBI' IRl <1 (Ael).
We now define a projection operator P, by means of the equality

~ 1 i
Pl_ﬂrf(AJrB—u) .

Formula (6.1) implies

N 1 3 Iy B |BAP
I1Pr—Pril= 5 Pf R*J_; <—BR‘WN<§E e TIBIIET
Applying the inequality
IBll < o = 2»®l2rd+1TT), |Bji<d™ (Ael)
we obtain
HPI‘—PI'” <1.

This and Theorem 5.1, III, imply
(6.2) dim P X — ¢imP. X .

Hence the operator P.is of a finite dimension because so is the operator P.

Thus, by Theorem 5.1, the eurve I" has properties (a) and (b) with
respect to the operator 4 +B. Moreover, equality (6.2) implies v, )
= A(P ) | |

The above theorem is called the theorem on the continuity of the root
number of an operaior.

Remark. It follows from the proof that the theorem remains valid
if the conditions imposed on the operator B are replaced by more general
ones, namely: Let B be an A4-bounded operator satisfying the inequality

IBR)|| < 2nd(2rd--|I') for all 1el.
It is easily seen that this inequality will be satisfied for all 1¢ 1" if the
operator B is of a sufficiently small 4 -norm, i.e. if the inequality
1Ball < k(lkzfl + | All)
is satisfied for a sufficiently small number k, e.g. for
0 < k< 2rd(2nd + [T)) (1 42/d)"" .

Moreover, if we define the number » 4(I") a8 dim P, X also in case when
the space P.X is infinite-dimensional, i.e. if the operator B satisfies
the same conditions as before, the equality v, (I} = » (I') holds also
in this case.
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CHAPTER V

PERTURBATIONS OF & -, &_- AND #-OPERATORS

§1. &,-, O_- and P-perturbations. Let two Banach spaces X Aa.nd Y
be given. Let §(X—~Y)C B(X—Y) be a space of linear operators. We
denote by

@ - operators

Ds(X=>T) ; contained in the
DY(X—~Y)| the set of all & -operators space S(X—T),
D5(X—Y) @_ -operators
and by
Fg(X—Y) Dy(X—~Y) .
FHX—+Y)| the set of all DX -Y) perturbations.
F5(X~Y) D5(X—~TY)

By Theorem 4.2, A I, the sets Fg(X ~>Y), F}H(X »Y), Fg(X—~Y) are
linear. o

TEEoREM 1.1. (Gohberg, Markus, Feldmsan [1].) The set Fg(X—~Y)
(FE(X~>Y), F5(X X)) is closed in the space 8(X—~X). v

Proof. Let us suppose that a sequence of operators Ty ¢ Fig(X—~Y)
is convergent in the norm to an operator T € (X —Y). Let A e Dg(X —>1]'Z).
By Theorem 4.1, ILI, there exists an index « .such that A+T—
—TyeDs(X—>Y). But Tn Fs(X—>Y). Hence A4T=A+(T—Ta)+

| € X-Y).
TT’aJthjéroof fir classes F5(X—~Y) and Fg(X—~Y) is analogous, only
in place of Theorem 4.1, III, one should apply Theorems 4.2 and 4.3
of that chapter, tespectively. B
8y(X ?Y) Ay Y))

8x(X YY)

THEOREM 1.2. Let

PX=aY)= (AL(X)
be an arbitrary regularizable paraalgebra. Moreover, let the space Sy(X —:Y) 8
contain at least one @ -operator F. Then the set Fp(X = Y) of all perturbations
of the class Dp(X < X) of @-operators belonging to the paraalgebra P(X = Y)
is a maximal Fredholm ideal.
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Proof. Let 4 be an arbitrary operator from the paraalgebra
P(X = Y). The operator 4 can be written as the sum of two @ -operators.
Indeed, let e.g. A € 4,(X) (or A e AyY)); then 4 = al-+(A—al). Let
o > ||All; then the operator A— al is invertible by Theorem 1.2, I. Hence
the operator 4 i3 the sum of two invertible operators.

Let us now suppose that 4 e §(X—Y). Then 4 = aF +a(4/a—F).
But F'is a @-operator, Theorem 4.1, ITI, implies that 4/a— F is a @-oper-
ator for sufficiently large values a. Hence the operator A is the sum of
two O@-operators.

The arguments in the case of A e 83(¥—X) are similar. Since the
paraalgebra P(X < Y) is regularizable, every ®-operator P « §;(X —=Y)
has a simple regularizer Rpe So(¥Y—X) and this regularizer is also
a @-operator. Hence we may apply Corollary 11.5, A I, in order to show
that the set Fp(X = Y) is a maximal quasi-Fredholm ideal in the para-
algebra P(X < Y). Thus in order to complete the proof it is-sufficient
to apply the following theorem:

TEeoREM 1.3. If X and Y are Banach spaces, then every quasi-
Fredholm ideal contained in the paraalgebra P(X = Y) is Fredholm.

Proof. Let J be a quasi-Fredholm ideal contained in the paraalgebra,
P(X = Y). If Ted, then aT eJ, where a is a scalar. Since J is a quasi-
Fredbolm ideal, the index f(a) = #; +ar 18 finite. By Theorem 1.1, IV, it
is constant. But f(0) = 0. Hence f(a)= #11qp= 0 and x%;,, =0 for an
arbitrary Ted. m

Let T'(X = Y) denote the ideal of compact operators in a para-
algebra B(X = Y¥). We consider the quotient paraalgebra B(X = Y)/
|T(X = Y). We denote by R the radical of this paraalgebra and by
To{X = Y) the set of those operators which belong to cosets belonging
to the radical R:

TfX = Y)={T<B(X <= Y): [T]<R}.

THEOREM 1.4. The st ToX < Y) is a mawimal Fredholm ideal in
the paraslgebra B(X = Y).

Proof. By Corollary 5.8, B II, the paraalgebra B(X = Y) is re-
gularizable. According to Remark 10.3, AT and Theorem 5.7, BIV,
the set Ty(X = Y)is a Fredholm ideal. By Theorem 10.2 and Remark 10.3,
AT, it is a maximal Fredholm ideal. m

By Theorem 11.1, AT, every element of the ideal I(X = Y) is
a @, - and &_-perturbation. Hence we infer the following

- COROLLARY 1.5. If a Banach paraalgebra P(X < Y) 48 regularizable,
then Fp(X @ X)CFEHX = ¥), where Fp(X=Y), FHX=Y) and
Fp(X = Y) denote the sets of ®-, D, - and O_-perturbations, respectively,
contained in the paraalgebra P(X = X).
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1t follows from Theorem 1.5, IT (stating that a radical in a Banach
paraalgebra is closed) that the ideal Ty(X = Y) is closed. Hence one may
consider the quotient paraalgebra B(X = Y)/Ty(X = Y). The norm in
this quotient paraalgebra induces the following norm in the paraalgebra
B(X = X):

ldlle=  inf |4+T.
TeTy(XT)

Theorem 4.1, III, can be strengthened in the following manner:

THEOREM 1.6. Let X and Y be Banach spaces and let A e L(X—Y)
be a D-operator. There exvists a number g > 0 such that for every operator
B e B(X »X) satisfying the inequality ||Bllc < o, A +B is also a @-operator
and x4+ = #4.

In other words: For every @-operator A which maps the space X into
the space Y there exists a positive number g such that all operators of a C-norm
less than ¢ are D-perturbations of the operator A which do not change the
index. .

Proof. It immediately follows from Theorem 4.1 that if ||B]| < g,
then B is a @-perturbation which does not change the index. But, by
Theorem 3.2, I, every operator T e To(X) is a &-perturbations of the
operator 4 +B not changing the index. Hence B4 T is a @-perturbation
of the operator 4 not changing the index. This yields the theorem, because
the operator 7' has been arbitrary.

§2. The form of the maximal Fredholm ideal in some concrete
spaces. We shall now give the form of the ideal T(X)= Fx(X) for
algebras B(X) over some Banach spaces X. Evidently, in spaces I*
(1< p< +o0) and ¢ we have the equality T,= T(X), because there
cannot exist any two-sided ideal which would contain a non-compact
operator (sée Theorem 2.4, II). However, there exist spacés in' which
the ideal T,(X) is essentially wider than the ideal T'(X).

TueorEM 2.1. If X = C[0, 1], then the ideal W(X) of weakly compact
operators is a Fredholm ideal wider than the ideal T(X).

Proof. Let

1
2.1 Ty = f z(s)ts3ds .
]

The operator T is well-defined since for each ¢ the integral (2.1)
has only a weak singularity. Let S(X)= {weX: |w(s)] <1}. Let {za}
C 8(X) be an arbitrary sequence. The operators

1
Taz= [ w(s)tsds, O<a<l1,

a
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transforming the space C[0,1] into C[a, 1] are compact.(compare the
Theorem 3.5, B ILI). Hence by the diagonal method we can find a sub-
sequence {z,} such that the sequence y; = Ty, is uniformly convergent
on each interval [a,1] Moreover, we are able to find a subsequence
24{t) = ¥p,(?) which is convergent at the point ¢ = 0. It is easy to check
that the sequence {2;} is weakly convergent. It implies that the operator T
is weakly compact.

On the other hand, the operator 7' is not compact. Indeed, let
for s

1—mns <
0 for s>=1/n.

als) =

By a simple calculation we obtain
1/n

f (1—n8)isds = —1—(5)'

¥a(2) =0 t4+1\n

and it is easy to check thac the sequence {y»(¢)} is not uniformly con- .

tinuous, which is what was to be proved (see Theorem 2.5, B IV).
Therefore

W(X) # T(X).

On the other hand, by applying the Dunford-Pettis theorem (Theo-
rem 7.5, II) we can see that squaring any weakly compact operator
T e W(X) we obtain & compact operator 72 ¢ T(X). By Theorem 9.3, A I,
the operator I—T is of a finite d-characteristic. By Theorem 1.3, W (X)
is a Fredholm ideal. m

It is possible to prove Theorem 2.1 for all spaces €(2) and for spaces
L(Q, X, u) if the measure u is not purely atomic.

TEEOREM 2.2. If X = ((R), then TyX)= W(X).

Proof. Theorem 1.4 immediately implies W(X)C T,(X). We shall
prove the converse inclusion To(X)C W(X). Let us suppose that T e To(X)
but T' ¢ W(X). By Theorem 8.2, II, there exists a weakly unconditionally

o0 Recd
convergent series Y such that the series Y Tw, is not unconditionally

n=1 n=1
convergent. Hence there exists a permutation of the sequence {,}, an
mcrea,smg sequence of indices {p,} and a constant § >0 such that
1Tyl > 0, where
PE+1
Yr = Z T, «

i=pp+1

Evidently, this implies [y, > &/ T}
On the other hand, the weak unconditional convergence of the series

implies that the sequence {y,}, and hence also the sequence {T'y,}, are
weakly convergent to zero.
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By Theorem 5.2, I, one can extract a subsequence {y, .} which is
a basis of the space spanned over it; in fact: a basis equivalent to the
standard basis in the space ¢,.

We can deal similarly with the sequence {Ty, }. Finally, we find
that the operator T' transforms the elements e; = ¥z, into elements Tey;
moreover, the sequences {¢;} and {Te;} are both bases in spaces ¥, and ¥,
spanned by those sequences, respectively, and equivalent to the standard
basis in the space ¢,. Hence the operator 7! is well-defined and continuous
on the space ¥,. But the spaces ¥, and ¢, are isomorphic. By Sobezyk’s
theorem (Theorem 8.3, I), which states that if a subspace ¥, of a space X
and the space ¢, are isomorphic, then Y is a projection of the space X,
we may extend the operator T~ to an operator 7' defined on the whole
space X. But

(I-T"T)e;=0 (j=1,2,..).

Hence the operator I—7*T does not possess a finite d-characteristic.
Consequently, T ¢ T,, which is a contradiction. m

§ 3. Semicompact and co-semicompact operators as &,- and &_-per-
turbations. Theorem 11.1, A I, shows that if an operator T ¢ B(X = ¥)
belongs to the ideal Ty(X = ¥), then it is both a & -perturbation and
a @_-perturbation. However, there may exist @, - and. &_ -.pe‘];turbations
with do not belong to this ideal. :

TeeorEM 3.1. (Kato [1].) Let X and Y be Banach spaces and let
A eB(X~Y) be a O -operator. If T is an arbitrary semicompact operator,
then A+T is a & ~opemtor

Proof. We write the space X as a direct sum X = Zy @G where ©
is a closed subspace. Let 4, and T, denote restrictions of operators A
and T to the space €, respectively. Evidently, a,, = 0. Since E,=E,
is a closed set by hypothesis, there exists a positive number y such that

l4z| = (4ol > y |l for & « €. Let 0 < & < y, and let M denote an arbi-
trary subspace of the space € such that
(Ao +To)ulj < elul] for wueM.
Then
(3.1) 17wl = | Tull = Aoull— I(Ao+To)ull = (y—2) llull -

Sinee the operator T is semicompact, it follows that the space M is of
a finite dimension. Hence @, r, < +oco. Thus

Gypp € Ayt ag < 00
In order to complete the proof it is sufficient to show the set B 4, to be
closed. Since dimZ4 < +oo, this is equivalent to the statement that
the set H, g, is closed. But this follows at once from formula (3.1) and
from the following lemma;::
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Lemma 3.2. (Kato [1].) Let X and ¥ be Banach spaces and let
4 e B(X—>Y). If E4 is not a closed set, then for every number ¢ > 0 there
ezists an infinite-dimensional space M, such that

Ao < eljml] for we M, .

Proof. The operator 4 induces an operator [4] which is a one-to-
one map of the quotient space X/Z4 onto the set Z4. Let us suppose that
there exists a number 6 > 0 such that I[41iz]l > 8[z]]}. Then the oper-
ator A is invertible and, consequently, the set B, is closed. Thus for
every number § > 0 there exists an element [#], e X/Z, such that

(82) [[A Ll < 8]z -

It follows from the definition of the quotient space and of the operator
on the cosets that there exists an element x, ¢ X satisfying the inequality

(3.2 Azl < & i)l -

It is easily proved that the elements @5 can be chosen from an arbi-
trary subspace of a finite codimension. Hence one can choose 2 sequence
of elements {2} and a sequence of functionals {f} CX* such that |z,
= fall =1 and

lfori=j £
Ly) =4 and |A%n|| < = |l2on]| .
i) {MOH.H Il < 2l

Let M, be the subspace spanned by the elements @y &y, ... Evidently,

the space M, is infinite-dimensional. Moreover, we have

Mol < Dl gl < max J = e max [fia)| < ol

.
for every element o= Y ;2. m
i=1

Moreover, Lemma 3.2 implies

COROLLARY 3.3. If X and Y are Banach spaces and if T e B(X—>Y)
is @ compact operator, then for every number & > 0 there exists an infinite-
dimensional subspace M, such that the restriction of the operator T fo the
subspace M, is of a norm less tham e.

A theorem analogical to Theorem 3.1 for &_-operators has been
proved by J. N. Viadimirski.

THEOREM 3.4. (Vladimirski [11)If AcB(X—=Y)isa D_ -operator and
TeB(X->Y) is a cosemicompact operator, then A+T is a D_-operator.

Proof. Let us suppose that AT is not a @_-operator. Lemma, 6.3,
III, implies that there is a subspace M C Y with infinite codimension
such that the operator Du(A +T) is compact. Theorem 6.1, III, implies
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that there is a subspace N D M with infinite codimension such that @y T
is a compact operator. Obviously @x(d4 +T) is a compact operator, x-vhence
dyA is also a compact operator, which contradicts the assumptions. W

Remark. The theorems of this section ean easily be proved also
for discontinuous @-operators if we consider the space X4 made up of
the set D, provided with the norm |z{l4= |jz| -+ ||dz|] instea,d. of the
space X (see §1, B II). Evidently, the ope‘raator A maps contmuously
the space X4 into the space ¥. Moreover, in plac.e of ’?he usual semi-
compactness (co-semicompactness) one m%my mvestlga’Fe A-sermj
compactness (A-co-semicompactness) defined‘ in the following -manner.
An operator T eL(X—Y) is called A-semzcompa?t (A-co-semwf)mpact)
if the operator T e Ly(X 4—7Y) is semicompact (cojsemleomll)aet). Evidently,
every semicompact (co-semicompact) operator is 4 -semicompact (4-co-
semicompact). :
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