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Part B
LINEAR OPERATORS IN LINEAR TOPOLOGICAL SPACES

CHAPTER I

LINEAR TOPOLOGICAL AND LINEAR METRIC SPACES

§ 1. Topological spaces and metric spaces. A non-void set X is called
a Hausdorff topological space if there exists a family % of sets UCX
called neighbourhoods satisfying the following axioms:

(1) For every v X, if 2 U and eV, U,V U, then there eists
a neighbourhood WC UV, W e, such that z< W.

(2) For every two poinis x and y, 2,y € X, there exist neighbourghoods
Us, Uye N such that xe Ug,y € Uy and Uz Uy= 0.

The family U of neighbourhoods determines a topology in the space X.
‘We say that the topology determined by a family 9 is not finer (not stronger)
than the topology determined by a family B, or that the topology de-
termined by the family B is not coarser (not weaker) than the topology
determined by the family % if for every # ¢ X and for every U« A such
that 2 ¢ U there exists a neighbourhood V € B such that ¢V and VC U.
Two topologies determined by families % and B are called equivalent
if the first is not finer than the second and the second is mot finer than
the first one, simultaneously. '

Suppose we are given a Hansdorff topologieal space, i.e. the following
collection: set X and topology determined by a family % of neighbourhoods
in X. We say that a set B « X is open if for every & e B there exists a neigh-
bourhood U €9 such that e U and UC B. A set BECX is called closed
if its complement, i.e. the set

CE={peX: s ¢E},

is an open set.

If follows immediately that every neighbourhood is ew definitione
an open Sset.

The union of an arbitrary number of open sets is an open set. Hence
an intersection of an arbitrary number of closed sets is a closed set.

An intersection of a finite number of open sets is an open set. A union
of a finite number of closed sets is a closed set.
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116 B. I. Linear topological and linear metric spaces

It for an arbitrary family {#} of disjoint closed sets there exists a family
{@;} of disjoint open sets such that @;D Fy, the space is called normal.

If o set is & union of a countable number of closed sets, it is called
a set of the class I',. If a set is an intersection of a countable number of
open sets, it is called a set of the dlass Gy.

The closure B of a set B is the smallest closed set containing E. Tt
follows from the last remark that

E= N .
ECF~—a closed seb

The interior int F of a set F is the greatest open set @ contained in E.
Evidently,

intH = U G={weh: 2¢CE}.

E>G@-—an open set

The closure of a set B can be defined also as the set
EBy={weX: UnE + 0 for every neighbourhood U. of the point »}.

Indeed, every open set containing at least one point of the set Hs
has common points with the set Z. Hence the complement of the set E
must be contained in the complement of the set E,. But if y ¢ H,, there
exists a neighbourhood Uy of the point ¥ having no common point with
the set F and, consequently, no commeon point with the set F,. Hence

CE,= U T,
VEE,
is an open sef, as a union of open sets.

Points belonging fo the set E, are called cluster points of the set E.
The notion of a ‘“‘cluster point” differs from the notion of an “accumula-
tion point”’ essentially. Namely, we call a point p an accumulation point
(lémit point) of a set B if it is a cluster point of the set EN{p}.

A cluster point of a family of sets % is a point which is a cluster point
of all sets A QL.

Evig_ently, the closure F of a closed set ¥ is equal to F: F=F.
Hence H = ¥ for an arbitrary set B.

The set E ~ OF is called the boundary of the set E.

We say that a set B is dense in a set B it ED B. In particular, a set B
is dense in the topological space X if B — X.

A space F is called separable if there exists a countable set dense in B.

A set B is called nowhere dense (non-dense) it E does not contain any
open set.

A set ¥ is called a set of the first category if it is the union of a count-
able number of nowhere dense sets. Evidently, a subset of a set of the
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first category is also a set of the first category. A set which is not of the
first category is called a set of the second category. Since, by definition,
a set of the second category is not nowhere dense, its closure must con-
tain an open set.

A set X is called a meiric space if there exists a real-valued, non-
negative function o(x,y) defined for all =,y e X and called a metric,
satisfying the conditions:

(1) ez, y) =0 if and only if z=y;

(2) ez, ¥)= oy, );

(3) el@,y) < el@,2)+e(2,y) (triangle inequality).

Every metric induces & family of neighbourhoods 9. Namely, a neigh-
bourhood of the point =z, is the set

U,= {&: olz,m,) < ¢} .

It is easily verified that the neighbourhoods defined above satisfy
axioms (1) and (2) of a Hausdorff topological space. Hence every metric
space is a topological space.

We say that two metries are equivalent if the topologies induced by
these metrics are equivalent.

In order to define a closed set in a metric space one can apply the
notion of convergence of a sequence. A sequence {z,} is said to be convergent
to an element 2, called the limit of the sequence, if

lim g (24, #) = 03
n—oo
we shall denote this by an—2.

A set F is closed.if and only if it contains limits of all convergent
sequences {#,} of elements belonging to F. Indeed, let us suppose that
there exists a sequence {Z}, n ¢F, such that ®,—« ¢ F. Then every
neighbourhood U of the point #, z « U, contains points of the sequence {@n}.
Hence none of the neighbourhoods U of the point # is contained in the
complement of the set F. Thus, the complement of the set F is not open.
Consequently, the set F is not closed.

On the other hand, if @,—>z for a certain sequence {z,}C F' implies
& € F, then for 5 « OF there exists a neighbourhood U C CF of the point y.
Hence the set CF is open and the set F' is closed.

The product X x ¥ of two Hausdorff topological spaces X and Y is
the set of ordered pairs («,y) with the product topology, i.e. a neigh-
bourhood of the point (z,, ¥,) is the set

W (%o, %oy U, V)= {(,9): w e Uz ¥ EVVQ}W

where U,, and Vy, are neighbourhoods of points @, and Y, in spaces X
and Y, respectively.
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A map f of a topological space X into a topological space ¥ is called
a continuous transformation if the inverse image f~*(&) of every open
set @, i.e. the set
U@ = {me X: f(w) € G},

is an open set or, equivalently, if the inverse image of every closed set is
a closed set. One can give another definition of a continuous transforma-
tion:

A transformation f of a topological space X into a topological space ¥
is called continuous if for every point # ¢ X and for every neighbourhood ¥
of the point f(z) there exists a neighbourhood U(V, #) of the point #
such that f(U)CV.

Both definitions are equivalent. Indeed, if we assume the first one,

‘the set U= jf"'(V) satisfies the assumptions of the second definition.
If we assume the second definition, then for every open set @,
= U U o,z .
2efH(@) vce
¥ —neighbourhood
Hence the set f~Y@) is open, as a union of open sets.

A superposition of two continuous transformations f and ¢ is a con-
tinmous transformation. Indeed, the set f~%(@) is open for every open
set G. Hence the set g~(f~(@)) is open. But (fg)"Y(G) = (7% (G). Thus
the set (fg)~*(G) is open for every open set @, as we had to prove.

If X and Y are metric space, one can say that a transformation f is
continuous if for every sequence {z,} convergent to a point x the sequence
{f(@n)} is convergent to the point f(z). Indeed, let F be a closed set. We
prove f~YF) to be a closed set. Let {#,} be an arbitrary sequence con-
vergent to a point @, @, € f~YF). Then f(2,) ¢ F and since the set F' is closed,
algo f(x) e F. Hence @ Y(F), and the set fY(F) is closed.

On the other hand, let #,—>. Let us write y» = f(@»). By hypothesis,
the inverse image of every closed set is closed; hence 7(z) € {y,}. Moreover,
one can show in an analogous manner that f(z) e {yn,) for every sub-
sequence {y,,}. The subsequence {y,} being arbitrary, we conclude that
the sequence {y.} is convergent to the point f(x).

A covering of a set E is a family of open sets {P_} such that BC |J P,.

A set B is called eompact if from every covering of the set B by Izlea.ns .

of open sets {P_} one can extract a finite system P, (i=1,2,..,m)
covering the set H.
" One can give the following dual definition of a compact seb:
A set B is compact if for every family of closed subsets {} of the
set B such that the set (| F, is void there exists a finite system F,
a

n
(i=1,2,..,n) such that [ F,=0.

=1
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A closed subset of a compact set is a compact set. The image of
a compact set by means of a continuous transformation is a compact
set. If & continuous transformation defined on a compact set is one-to-one,
then the inverse transformation is continuous.

If a topological space is a compact set, it is called a compact space.

A family F of subsets of a set E is called a filter if

(i) the family F does not contain the void set,

(ii) the imtersection of a finite number of sels belonging to the family F
belongs to this family,

(iil) if @ subset of a set F belongs to the family F, then F e F.

We say that a filier G refines a filter F if the family G contains the
family F. A filter F' which cannot be refined by any other filter is called
an ultrafilter.

The relation of refining defines a partial order in the set of filters.
Every ordered set of filters {G,} has a upper bound which is equal to the
filter G, made of all sets ' belonging to the family {G,} for a certain index c.
Hence it follows from Kuratowski-Zorn’s lemma that every filter is
contained in an ultrafilter.

If the set A u B belongs to an ultrafilter F, then either the set A
or the set B belongs to this ultrafilter. Indeed, supposing 4 ¢Fand B¢F,
the set

G={X: XuAcF}

is o filter. Bvidently, if X ¢ F, then X ¢ G (from property (ii) of a filter).
Moreover, B ¢ G and B ¢ F which contradicts the assumption that F is
an ultrafilter.

Hence it follows that if a union of a finite number of sets A, 4s, --.; 4da
belongs to an ultrafilter F, then at least one of these sets belongs to this
ultrafilter.

Tarorem 1.1. (Bourbaki [1].) A set E is compact if and only if every
filter has one cluster point.

Proof. We make use of the dual definition of a compact set: a set B
is compact if for each family of closed subsets {F,} of the set B with a void
intersection there exists a finite subfamily {#,} with a void inter-
section. .

Let us suppose that there exists a family {F,} of subsets of the set E
with a void intersection such that every finite subfamily {¥,} has a non-
void intersection. The family {F.} generates a filter F. Let us suppose
that this filter has a cluster point . Since the sets F, are closed, # belongs
to all sets F,. Hence = belongs to the intersection of all sets F,, which
contradicts the assumption that the family {F,}; has a void intergection.

On the other hand, if a filter F has no cluster points, closures of sets
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belonging to this filter form a family of sets whose intersection is void,
and the intersection of every finite subfamily of that family is non-void. m

§ 2. Properties of linear topological spaces aund linear metric spaces.
A linear space X is called a linear topological space if it is a Fausdorff
topological space and if the operations of addition of elements and of
multiplication of an element by a scalar are continuous operations, ie.
if the operation of addition is a continuous transformation of the product
X X X into the space X, and the operation of multiplication by a scalar
is a continuous transformation of the product Ox X (or BX X) into
the space X, where (' denotes the field of complex numbers and R the
field of real numbers.

Since addition is continuous, the set of neighbourhoods of the form
2+ U, where U runs over the set of neighbourhoods of zero, determines
a topology equivalent to the given one. Hence we can say that the topology
in a linear topological space is determined by the set of neighbourhoods
of zero.

In other words, a linear space X is called a linear topological space
if it possesses & topology having the following properties: For every open
set U the set # + U is open, and for every neighbourhood of zero, U, there
exists a neighbourhood of zero, ¥, such that V4V C U. Let us remark
that the last fact implies V C U. )

If a set U is open, then the set al = {au: u e U} is open for every
secalar o # 0.

A set U is called symmetric, if U= —T.

A set U is called balanced or cirded if aU C U for la] < 1.

THeOREM 2.1. If a set V is & neighbourhood of zero in a linear topological
space X, then there exists an open balamced set such that UC V.

Proof. It follows from the continuity of multiplication that there
exist a neighbourhood of zero ¥, and a number ¢ > 0 such that aV,CV
for |aj<e Let &V,= W; then aWCV for |a|<1. Let U— U aW.

al<l
Evidently, UCV and aU C U for |a| <1, and U is an open set, as [aﬁlnion
of open sets. m

CoroxrARy 2.2. If X is a linear topological space, then there exists
a topology determined by a family of balanced neighbourhoods of zero and
equivalent to the given one.

Proof. Let a topology in the space X be defined by a family % of
neighbourhoods. With every neighbourhood V ¢ % one can associate am
open balanced set U contained in V. The family of those sets is denoted
by B. Bince sets from the family B are open, each contains a neigh-
bourhood of zero ¥, « %. Hence the topologies determined by these families
are equivalent. m
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A linear topological space is called a linear metric space if the t.opology
given in the definition of a linear topological space is determined by
a metric o (@, ¥). ) o

A metric o'(z,y) is called an invariant metric if for every ze X

'@tz y+2)=2(,9) .

TaEOREM 2.3. (Kakutani [1].) If X 4 a linear melric space with
metric o(@,y), then there exists an invariant metric o'(z,y) equivalent to
the metric o(®, ¥). o

Proof. It follows from the continuity of multlphcatl‘on by a secalar
that for every neighbourhood of zero V there exists a nelghbourhc?od of
zero U such that U+ UCV. By Theorem 2.1, we may assume without
loss of generality that the neighbourhood U is balanced. )

Let us fix one balanced neighbourhood U and let us denote it by
U(1/2). By induction, a sequence of neighbourhoods U (1/27), n = 1,2, ..,
can be constructed satisfying the conditions

(1) aU@2M=TU@2" for Jal=1,

(@) T@E2™+U(12)C Uiz,

(8) T@2™C {z: oz, 0) < 1/2"}

By U(1) we denote the whole space X.

Let r be a dyadic mumber: r = > &(1/2%), where 0 < 7 <1 and & is

i=0

equal to 0 or to 1. We write

m m )
U(r)= Ze;U(llz") (Z is an algebraic sum of sets).
i=0 T=0
From formulae (1) and (2) we obtain
(1" aU(r)y="Ulr) if Jal=1,
29 T(ry+r) D U(r)+U(n) -
Let us take

o'(w,y) = inffr: o~y e U(r)}.
iti ") impli ! = d from (2’) we obtain o'(2,¥y)
Condition (1) implies o'(z, %)= ¢'(¥, ), an . i 4
< o'(#,2)+ 0'(2,y). The invariance of o' is proved immediately, since
o'(@t2, y+e) = intfr: (@+2)—(y+2) e T}
=inf{r: s—y < UM} =0 (%:9).
If o(ax, #)—>0, then the continuity of addition gives mx— x—>0. Since

U (1/2") are neighbourhoods, given an arbitrary » there exists ;:;\1 number I;;o
such that mx—z e U(1/2") for k> k. Hence ¢'(x, %) <1/2" for k> ko
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and, consequently, o'(zz,#)—0. On the other hand, if ¢'(wx, )—0, con-
dition (3) implies g(xx—2,0)—0, and continuity of addition gives
o(zx, 2)—0.

Hence it follows that o'(w,y)=0 if and only if =1y, and that
metrics o'(z,y) and p(z,y) are equivalent. ®

In the proof of Theorem 2.3 we did not apply the existence of
2 metric in an essential way. We made use only of the fact that there
exists a countable family of neighbourhoods of zero determining the
topology. In our case it was the family of neighbourhoods Vy, = {&: ¢ (%, 0)
< 1/2"}. Hence Theorem 2.3 can be formulated in the following
manner:

THROREM 2.3'. If a topology in a linear topological space is determined
by a countable family of neighbourhoods of zero, then there emists am in-
variant metric o(z, y) determining o topology equivalent to the given one.

Let us remark that in the proof of Theorem 2.3 we did not apply
multiplication by a scalar. Hence the theorem on the existence of an
invariant metric can be transferred to the case of Abelian mefric groups,
iLe. groups which are metric spaces with the continuous operation of
addition. »

Let X be a linear metric space with an invariant metric oz, y).
Let us write g(@, 0) = |z Then

(a) el =0 if and only if

(0) flax) = lizll, la] =1,

(e) lle+vll < llell+llyll (subadditivity, the so-called triangle condition).

A non-negative function satisfying conditions (a), (b), (e¢) is called
a norm. Every invariant metric induces a norm uniquely. On the other
hand, every norm induces the invariant metric o(w, y) = [le— .

- Two norms are called equivalent if the metries induced by these norms
are equivalent.

Let us remark that condition (c) ‘immediately implies continuity
of addition. Indeed, if @y, yo—y, then

z=0,

e+ y—@n—yall < o— zall +lly—ya] 0 .

Let X be a linear topological space, and let X, be a closed subspace
of X. As before we denote the quotient space by X/X,. The topology
in the space X induces the following topology in the space X/X;:

With every neighbourhood U C X we associate a neighbourhood [U]
made of all eosets [X] having common points with the neighbourhood U.
It is easily verified that the family of all sets [U] satisfies all axioms of
a family of neighbourhoods. In order to prove that these neighbourhoods
distinguish between points one has to apply in an essential way the fact
that the space X, is closed.
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Since this will cause no misunderstanding, we shall denote by X 1Xo
the linear topological space obtained by introducing the t'op()logy. described
above to the space X/X,, and we shall call this space the .qu,ot‘beﬂnt. space.

Tf X is a lineatr metric space with an invariant metric (i.e. it X is
a space with a norm || ), and if X, is a closed sul?space of X, then the
norm in the space X induces a morm in the quotient space X[ X,

el = int o+al.
zp€Xyg
This norm determines a topology in the guotient space corresponding
i i 7 ient spaces.
to the previously defined topology of quotien : ' ]

The map Px, of a space X into the space X/X, which asso_mate? with
every element @ of the space X the corresponding coset [xl (defined in §§,
A 1) is a continuous map. Indeed, let A be an open s«let in the space A.
The inverse image of the set 4, i.e. the set Ay= OzM4) = {Iz]: mfe h}
is also an open set. For if a point 2 € 4, belonged to the closure o 1’5 e

complement of the set 4o, the corresponding coset ‘[a:'] would belong
to the closure of the complement of the set A, contradicting the assump-
tion that A is an open set.

§ 3. Examples of linear metric spaces. . C o

Bxavere 3.1. Let a set Q and a countably additive algebl‘"a, ..to
subsets of Q be given. Let y be a measure defined on X. We consider the
set of all u-measurable funetions z(f) such that

(B g

loi = | T <

We identify all functions which differ only on a set measure p zero.
The set of these cosets will be denoted by .S (Q, =, u). soed

It is easily seen that the function llw]l is & norm. Inj e.e '

(a) The identification of elements of the same coset implies that
lle]) = 0 if and only if =(t) = 0.

fae (2)] _ f le @)

) ool = [ T o = | THR0N

Q
(¢) Let us observe thab the following inequality holds:

dp = |l if lof=1.

ja+dl _ _lal ol
T+la+bl — 1+lal 1—Hb1

Indeed, if |a-+b} > max(|a|, |b]), then the inequality |a+3] < MH.- |b]
implies

b la] o] _lal 181
r"h‘.‘ﬂbﬁi—“"ﬁﬁba i are STHial I+
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Let la+b| < max(la], |bl), and let us suppose la] > |a+b|. Then
la+bl _ lal _ ol . [l
T+Ta+ 8 ST ja] ST+l T

is an increasing function of the variable [t].

17l
14t
Condition (e¢) implies continuity of addition. We shall show that
multiplication by a secalar is continuous. Indeed, let a,—a, z,—>2. We
have

for

B Tp— T == An(Tn— %) + (@p— a)w .

Let us observe that if |bs| < 1, then the monotony of the funection
/(A +1¢)) implies [|bnan)| < |lwall. Let % be a natural number such that
llaa/k|| < 1. Then

loaten—2] = |13 (2, )] < %

i‘kf(m,,— w)” < kl@n—a]—0.

Let @ be a fixed element, and let ¢ be an arbitrary positive number.

There exists a set K of finite measure 4 such that
lz(¥)|
T A< ef3 .
ate LH 100

‘We consider the function #(f) on the set K. Since this function is

defined almost everywhere, we have Imu(K;) = 0, where K, = {teK:
A=00

|#(£)] > A}. Let us choose 4y in such a manner that #(H,) < ¢/3. Since
Gn—>a, there exists an index N such thab |a,— al < lu(E) e/3 for n > N.
Hence

_Han—a)]-|z(2)] an— a)z ()|

- - I ,
”(an a)w”— 1md”+Kfi—m1 dﬂ‘r

OINK

— 3
+ f 1 if??ani):)(w)(}m du < ef3+ef3+ef3=c.
E\K;,

Consequently, (a,— a)z—>0, and we infer the continuity of multiplication
by a scalar. Hence the space 8(2, X, x) is a linear metric space.

EXAMPLE 3.1.a. Let 2 be the closed interval [0,1], i the Lebesgue
measure, X the field of measurable sets. Then we denote §(Q, 2, p)
by 8 [0, 1].

Examrre 3.1.b. Let £ be the got of natural numbers, X the field
of all its subsets, and a{{n}) = 1/2". Then §(@, 2, p) is the space of all
sequences & = {£,} with the norm .

o= 'L Lol
=2 Atal

We denote this space by (s).
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ExAMPLE 3.2. Suppose we are given a set 2, a countably additive

algebra X of its subsets, and a measure u defined on X. Mo‘r_eover, let p
be a number satisfying the inequalities 0 < p << 1. We consider the set
of all g-measurable function #(f) such that

o = [ lo(®)Pdu < +oo.

‘We identify all functions which differ on a set of measure p zero
only. The set of all cosets obtained in this manner is denoted by L*(2, X, p).
This is a linear metric space. Indeed,

(a) the identification defined above implies that [z]=0 i and
only if #(f) = 0;
(b) we have
lasll = [law@Pdu= [le@Pap=lol i la|=1;
Q Q2

(©) lotyl= [l@®+y®Fds
< [ s+ ly@F1ds = el -+l -

Tt remains only to prove the continuity of multiplication by a number.
But [tz = |¢?|lz|. Hence a,—>a, zn— implies
llan@n— az]] < llan(@n— )]+ [(an—a) 2]
< sup |an]? - on— ||+ lan— a7l >0

and this was to be proved. 3 .
ExAMPLE 3.3. Let @ be a set, X a countably additive algebra clyf
its subsets, and g a measure defined on 3. We consider all px-measurable
functions «(f) such that
17
lo@ll = ( [lo@Pdu)< +oo,
Q

h >1.
" eréVf identify all functions #(t) and y(t) such that () # y() only

on sets of measure x equal to zero. We denote the set of all such cosets
by IP(Q2, X, u). Let us remark that if #,y eI?(Q2, X, p), then ;

(a) the identification defined above implies that jwl|= 0 if and
only if & = 0;

(b) we have

laall = { [ laoPap)? = [ la@Pap)” it 1ol =1;

Q
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) (c). lle 4+l < ||| +ly]l, which follows from the so-called Minkowski
inequality (see also the Appendix).
Hence the space IP(2, X, k) is a linear metric space.

Exawpre 3.3.a. Let Q be the interval [0, 1], 4 the Lebesgue measure
_and Z the field of sets measurable in Lebesgue sense. Then LP(Q, 5 ,u,;
is the space of functions integrable with power p on the interval ,[0 ,1]
We shall denote this space by I”. T

ExAMPLE 3.3.b. Let X be the family of all subsets of a countable
set £ and let the measure p be equal to one at each point of Q. Then
IP(Q, £, u) is the space of all sequences summable with power p. We shall
denote this space by 1P(Q). If £ is the set of all natural numbers, we de-
note P(2) briefly by iP. ,

Exawprm 3.4. Let Q be a set, X a countably additive algebra of
‘subsets of the set 2, and p a measure defined on 2. We consider the set

of /zimea,surable, essentially bounded functions z(f) on the set 2, i.e
functions for which T

llo]l = esssup [#(2)| = inf sup [#(f)] < +oo.
teQ BE,u{(E)=0 {c¢O\E
As in Example 3.3, we identify all functions which differ at most
on a :set of measure x equal to zero. We denote the set of cosets obtained
in this manner by M (2, X, u). Then
(?‘) ié!entiﬁca.tion of functions which differ on a set of measure
zero implies that |zl = 0 if and only if © = 0;

(B) sl = esssup|aa (1) = esssupla ()] = o, it [o] = 1;
(c) we have tea
lell + gl =  inf B4 i
" BruE)=0 ij}igx ]a;( )I+ E:JII(I;::E)=0 ze?{lzz*- }y (Z)l
> it w0ty

MBS =iy=o (TN
= inf sup |x(¢ t
E’”(EHM\I;I O+y@]
= llz+y|.

Hence the space M (2, X, u) is a linear metric space.

EXAMPL}; 3.4.5. Let Q be the interval [0, 1], 4 the Lebesgue measure,
and X the field of Lebesgue measurable sets. Then M (2, 2, p) is the
:spaaee of all measurable, essentially bounded functions defined on the
interval [0,1]. We denote this space by M.

. Exawpre 3.4.b. Let 2 be the set of natural numbers, X the algebra
of all subsets of the set £, and x a measure equal to one at each point of Q.

Then M (R, Z, u) is the space of all bound i
paes by 1 s unded sequences. We denote this
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ExaMprE 3.5. Let 2 be a compact set. We denote by C(2) the set
of functions «(f) defined and continuous on the set €2 with the norm

lzll = sup l=z(®)] .
teQ

Evidently, C(f) is a linear space, since a linear combination of con-
tinnous functions is a continuous function. Moreover,

(a) el =0 if and only if (1) = 0;
(b) ozl = sup lac(1)] = sup o) =) i Clel=1;
(©  lotyl=suple(®)+y®)] <suplo@)]+suply (O] = Il Iyl -

Hence the space O(L) is a linear metric space.

EXAMPIE 3.5.a. Let @ be the closed interval [0,1]. C[0,1] is the
space of continuous functions on the interval [0, 1].

BXAMPLE 3.5.b. Let £ be the sequence of points 1,1/2,1/3,...,
together with the point 0. Then C(LQ) is the space of convergent sequences.
We denote this space by c.

ExXAMPLE 3.6. Let 2 be a compact set, and let Q; be a closed subset
of Q. We denote by C(2/Q,) the subset of those functions belonging to
C(£2) which are equal to zero on the set Q, with the same norm as in the
space O(R). Then C(2/Q;) is a linear metric space.

ExAMPLE 3.6.a. Let Q be the sequence {1/n} together with the
point 0. Let £, = {0}. Then C(Q]Q,) is the space of sequences convergent
to zero. We denote this space by 6.

Bxanerm 3.7. Let a set £ be the union of an increasing sequence
of a countable number of compact sets i

2CQ, (1=1,2,..), Q=€U1.Q,;A

We denote by Cy(Q) the space of all continuous functions on the

set 2. We define in Cy(Q2)

|zl = -1— ML, where  |lz]li = sup |z(#)| -
- & 2" 1+l tedy

Cosidering the fact thatb |je]s is a norm in the space C(2;) (Example 3.6),
arguments similar to those used in Example 3.1 show that |lel] i8 & norm
in the space Cy(Q). Hence CyQ2) is 2 linear metric space.

Examere 3.0.a. I Q= {1,2, ..., 4}, then Glf2) is called the space
of -all sequences and is denoted by (s)-
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Exavprr 3.8. Let £ be a closed bounded domain in an n-dimensional
Euclidean space. We denote by 0°(£) the set of all functions infinitely
differentiable on the set Q. If %, ..., kn are positive integers, we write

E= (ky, by ey bou)y, Bl =Fy+ho+...+En.

«The vector & is called a multiindexz. We define
N sl
1 e
= D
| 2™ 1 il

oH
—
ot ..ot

where

llellz = (®)

sup
I=(l1,000ln) €2

Applying the subadditivity of || [z and arguing as in Example 3.1
we easily verify that || || is a norm. Hence C®(2) is a linear metric space.
ExavmrLE 3.9. We denote by S(E") the space of all functions in-
finitely differentiable on the n-dimensional Euclidean space E™ and
such that
8"y (1)
ot ..otk

for arbitrary multiindices m = (my, ..., Ma) and k= (ky, ..., kz).

It is easily verified that ||, , is a symmetric and subadditive function.
Moreover, |jz]l,o= 0 implies #(t)= 0. Hence arguments analogous to
those applied in Example 3.1 show that

@l = sup [5G0 < 4oo

i=(l1,...stn) € BP

oo

1 [12]lm,
= D B R

MseeesMin K1seenslin

is a norm. Consequently, S(E"™) is a linear metric space.

Exawere 3.10. Let a topological space 2 be given, and let B denote
the set of all Borel subsets of Q. Evidently, 8 is a countably additive
algebra. A countably additive measure x (complex-valued or real-valued)
is called regular if for every set B ¢ 8 and for every number & > 0 there
exist a set F whose closure is contained in % and open set @ such that E
is contained in @, satisfying the inequality

r(0)<e

for every set CCG\F, CecB.
We denote by rcaf2 the set of all regular measures x such that

In
ﬂﬂl[:vi,ry:sup{zm(ﬂ’;)[: Ciy s One; Cin0j=0,14 #j}< +oo,

=1
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with the norm |j|l. Evidently,

(a) [ul= 0 if and only if u(E)= 0 for all sets E B,
(b) ol = var(au) = varp = lall, if lal=1;
Q

(¢) we have

a9l = var(u+») = sup > I(p+2) O

© gl

<sup[ 3 0o+ 3 b(0al]

=1 =1
m k
<sup Y lp(4dl+sup Y p(Bal = lull+ bl
iml i=1
where Ci, Ay, By C R and
A¢ m A;y
Bif\Bj =0 for ‘lr-—,-éj.
Cin O
Hence rcaf is a linear metric space.
Examrie 3.11. Let 2 be a compact metric space. We denote by

H*(2) the set of all bounded funetions on the set ‘QZ satisfying Hﬁlde’r’g
condition on £, i.e. functions (f) such that there is a constant € >

for which
lo () — 2 ()] < Cle(t, #) for all 1, e (0<p<l).

Tt is easily verified that this is a linear space. We define

lo(t)—a(t)]
loll = 52 10O+ 5% oe, 107

Evidently, Loo
(a) It ||| =0, then a(Z) =0 (compare Bxample 3.3) and &=0.

On the other hand, x= 0 implies |zl = 0.
(b) If |a| =1, then,
|as (£)— am (i)]
[e(?, )1
jw(t)—a)_ llol -
Lo(t, #)1°

las]] = sup la ()] -+ &1‘%

= p O+ g el

Equations in linear spaces
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(e) We have
lz+yl

— sup o (t) -y ()] + sup ][w(t)+y(t}]~[w(t1) +y ()]}
ted theo Le(t, t)]*

< sup [a(t)|+suply (] + + sup le@)—a@)l O W) —y @)

tiden L@, 0)1 vigfea Lo, #)F
= [lell+Ilyil .
Hence the space H,(Q) is a linear metric space.

. EXAI@LE 3.12. We say that a scalar product (inner product) is defined
in a linear space X if there exists a function defined for all pairs (=, ¥)
where @,y ¢ X, with values'in a field of scalars, such that ’

1) @+, 9) = (@, Y+ (2, y),

(2) (2, 9)= (y, @) (where @ is the complex number conjugate to a),
(3) (az, y) = a(w, y),

(4) (2, 2)>0 for z # 0.

A linear space with a scalar product is called a pre-Hilbert space.

A pre-Hilbert space is a linear metric space if we define the norm in the

following manner:
il =V (w, ).

Condition (1) implies = — ips 0 .
for oo, (1) implies [j0]l = 1/(0, 0) = 0. Condition (4) implies |jz] >0

In order to prove the triangle inequalit i ¥ i
Sehacars. mag g q Y, we first prove the following

Iz, I < )iyl -
Indeed, we have for an arbitrary number o
0< (z+ay, m—Fay)
= @0 +al(z, )+, )]+ ax(y, y)
= lolP+all, N+, 2)]+afylp .
Hence the discriminant of the last trinomial satisfies the inequality
[, y)%; @, 9P

— -yl < 0.
Thus

(z, y)+ 2, D)
r _?/)2“(:1/ @] < lolle- e -
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PBut there exists a number b, |b| = 1 such that the product (z, by) is a real
number. Let y,= by; then

_ i(’”’y"’i@“’”)

1
(@, | = lg (@, 90 < lll- Hyoll = lill- Iyl -

Now we prove the triangle inequality. We obtain

< |llF+ gl +2 ) -yl = (el + 1w 1)?

which was to be proved.
The space IA(Q, X, u) can be considered as a pre-Hilbert space if
we define the sealar product by the formula

@, 9) = [2@)y @) dp) .

§ 4. Complete limear topological spaces. Let 2 linear topological
space X be given. A fundamental family is a non-void family U of sets
such that for any two sets M, N <% there exists a set E e, E CMnXN,
and for every neighbourhood of zero U there exists a set Me¥, M—
—-MCU.

A fundamental family may have at most one cluster point. Indeed,
let us suppose that @ and y are cluster points of a fundamental family 9.
Let U be an arbitrary neighbourhood of zero. From the assumption that
the family % is fundamental we infer the existence of a set M ¥ such
that M—M C U. On the other hand, since  and y arve cluster points
of the family %, there exist points @;,y; ¢ M such that &—2y, y— ¥ ¢ U.
Hence

z—y = (#—m) oY1) +(H—Y) € U+U+TU.

Since the neighbourhood U is arbitrary, it follows that x = y.

A subset E of a linear topological space X (in particular the space X
itself) is called a complete set if every fundamental family A of subsets
of the set E possesses a cluster point belonging to the set E.

TrEoREM 4.1. A subset E of a complete linear topological space X is
complete if and only if it is closed.

Proof. Let U be an arbitrary fundamental family of subsets of the
set E. Since the space X is complete, the family U possesses a cluster
point @, i.e. for every neighbourhood U of the point z and for every
V e such that ¥V C E we have V ~ Uy # 0. Hence U, ~ E # 0, and this
proves that » e B = F.

On the other hand, if # is a point belonging to the closure of the
set B, and if % is a fundamental family with a cluster point », then the

g%
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family B = {U+V: U ¥, U being neighbourhoods of zero} is a fun-
damental family with a cluster point z. Let
BAE={U=UnE: UeB}.

Evidently, this is a fundamental family of subsets of the set B with
cluster point . The completeness of the set ¥ implies # ¢ E. Hence the
set B is closed. m

Not every linear topological space is complete. But

THEOREM 4.2. If X is a linear topologwa,l space, there exists a complete
linear topological space X such that X is a dense subset of X and the topology
induced in X by the space X is equivalent to the topology given in X.

Proof. We define points of the space X as fundamental families in
the space X. Addition of fundamental families is defined as follows:

UA+B={U+V: Ue¥U,VeB}.

It follows at once from the continuity of addition that the family
A+B is a fundamental family. Multiplication by a scalar is defined
similarly.

We say that two fundamental families % and B belong fo the same
class if 0 is the cluster point of the family %—B. We denote by z the
class of fundamental families with cluster point #. Bvidently, the set

X={:neX)
is a linear space. With each point © ¢ X we associate the class #; in this

sense, X C x. Topology in the space X can be introduced by means of
closed sets We call a set A C X closed if

(i) the set A ~ X is closed in the space X,

(ii) every fundamental family ¥ made of subsets of a set A ~ X

determines a point belonging to the set A.

It is easily verified that the space X with topology determined by
means of the closed sets defined above satisfies the theorem. m

The space x satisfying Theorem 4.2 is called the completion of the
space X.

§ 5. Complete linear metric spaces. We say that a sequence {wa}
of elements of a metric space X is 1 fundamental sequence or a Cauchy

sequence if for every ¢ > 0 there exists a number N such that 0(@n, Tm) < &
for n, m > N.

TeroREM 5.1. If a subsequence {&a,} of a fundamental sequence {@n}
is comvergent to a point m, then the sequence {tn} s convergent to z.

Proof. Let #,,—0, and let ¢ be an arbitrary positive number. There
exists an index k) such that g(2a,, #) < £/2 for k > k,. On the othet hand,
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since the sequence {#,} is fundamental, there exists a number N such
that o(@n, ®m) < &2 for n,m > N. Let m = ng for k¥ > k,. Then

0(@n, @) < 0B,y Tny) + 0Ty, ) < ef2+ef2=¢. W

A metric space X is called complete if every fundamental sequence
has a limit.

THEOREM 5.2. (Baire.) A complete metric space is of the second category.
Proof. Letus suppose that X is of the first category. Then X = |_J Fa,

n=1

where the sets F, are nowhere dense. One can suppose without loss of
generality that the sets F are closed. Since the set F, is nowhere dense,
there exists a ball K; of radius not greater than 1 such that K; nFy; = 0.
Again the set F, is nowhere dense and hence there exists a ball K, of
radius not greater than 1/2, K,C Ky, such that K,nFy= 0. In this
manner we define by induction a sequence {K,} of balls such that K, ., CK,,
the radius of the ball Ky, 7{Ka) < lln, and K, Fy= 0.

Let us consider the intersection ﬂ K. It is non-void. Indeed taking
=1
any sequence {s} such that @, ¢ Kn, we have ¢(2n, Tm) < 2/n for m > n.

Henee the sequence {&,} is fundamental. But K, ,, C K,,. Thus the liniit @
of this sequence belongs to K, for n =1, 2, ... Consequently, ﬂ En # 0.

n=1

Now, we have En"Fr=10, and 80 (| Ea)nFp=0 for m=1,2,..

n=1

Hence » ¢ iy (m =1, 2, ...), contradicting the assumption X = | J Fx. &

n=1

COoROLLARY 5.3. The complement CE of a set E of the first category
in & complete meiric space is a set of the second caiegory.

Proof. X = E u OFE. The set F is of the first category. If we assumed
the set CF to be also of the first category, the space X would be of the
first category, as the union of two sets of the first category. m

A linear metric space is called complete if it is complete as a metric
space.

If a sequence {z,} is fundamental, then the family % of sets

Uy = {&tn, Tns1, ...} is fundamental. On the other hand, if a family % is
fundamental, then there exists a sequence of neighbourhoods {Un}C %
such that

1
sup g(w,m)>—
2.2’ €Un

If {w,} is an arbitrary sequence satistying the condition «, € ﬂ Uy, then

=1

{»,} is a fundamental sequence. Hence the definition of the completeness
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of a linear metric space given above is the same as the definition of the
completeness of linear topological spaces given in the preceding section.

THEOREM 5.4. (Klee [1].) If X is a complete linear metric space with
metric g(z,y), and if o'(z,y) is an invariant metric equivalent to the metric
o(z, y), then the space X with metric ¢'(x,y) is also complete.

The proof of Theorem 5.4 is based on the following lemmas:

Lmama 5.5, (Sierpinski [1].) Let B be a complete linear metric space
with metric o(m, y). Suppose thai the space B is embedded in a complete
metric space B’ with a metric o'(x, y) in such a manner that the embedding
is continuous in both directions, i.e. o(#n, 2)—>0, if and only if o'(@n, )0
(here the element x € B is identified with its image in the space H’). Under
these assumptions the space E, considered as a subset of the space E', is
a @4-set (see §1).

Proof. By hypothesis, if ¢ F is any given element, there exists
a positive number 7,(z) < 1/n such that y € B and o'(z, y) < ra(z) imply
oy, 2) < 1/n. Let

Unlz) = {y B o'(y,®) < ralz)} and Gn= %Un(m)
ZE

(n=1,2;..),
Gy={) Gn.
N=

From the definition of the sets Un(z) it follows that they are open.
Hence the sets G are open. Thus, G, is an intersection of a countable
number of open sets. Evidently, E C G,. It remains to show that D 6.
Let @, € Gy; then @, € Gy for n = 1, 2, ... By definition, there exist elements
zn € B such that o (s, %) < 7a(xs). It follows from the definition of the
number 7,(z) that o' (@, %) < 1/n. Hence the sequence {,} is convergent
to the element @, in the sense of the metric ¢'.

Let ¢ be an arbitrary positive number, and let # be a natural number
satisfying the inequality 2/n < &. Finally, let &, be a natural number such
that

1
]ﬂ_< Tﬂ(wﬂ)— Q,(mﬂ: 500) ’
0
: , ) 1 ,
0'(@; @) < 0/ (3 @0) + 0@y @n) < 7= + €' (@0; Ba) < Tul@a)  for B>y
0

Hence it follows that p(wx, 24) < 1/n, by the definition of the number
ra(2). This proves the sequence {#,} to be fundamental in the metric o.
Thus, the completeness of the space F implies that z,<E. B

Lemwma 5.6. (Mazur; Sternbach [1].) If X is a complete linear melric
space with an invariant metric, and if X, is a linear subset of the space X,
dense in X and such that X, is a G4-set, then Xy= X.
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(-}
Proof. By hypothesis, X,= (") Gz, where each of the sets Gn is

n=1
open and dense in X. Hence the set X\@, is nowhere dense and the se$
X\X, is of the first category. Thus, X, is a set of the second category.
Let us suppose that the set X\ X, is non-void, i.e. there exists an element
y € X\X,. Since the metric is invariant, the coset y+ X, is of the second
category. But y+X,C X\X,, and the last set is of the first category,

which gives a contradiction. Hence the set X\X, is void.

Proof of Theorem 5.4. Let us denote by ¥ the completion of
the space X in the metric ¢'(z, y). By Lemma 5.5, the set X is the union
of a countable number of open sets in the metrie o’(#, y). Hence X = ¥,
by Lemma 5.6 W

A consequence of Theorem 5.4 is the following useful test for the

oo

completeness of the space X. We say that a series D @ is convergent to
n=1

n
a point z if the sequence {s,}= {2 xx} is convergent to the point #
k=1

(%, n € X).
THEOREM 5.7. A linear meiric space X is complete if, for every con-
vergent series of positive mumbers Y e, any series D @n satisfying the

n=1 n=1

inequalities |iwn|| < en is convergent.
Proof. Let {ys} be an arbitrary fundamental sequence. One can
extract a subsequence {y,} such that

gy —Yngll < &2 (B=1,2,..).

o .
Hence the series Y #x, where ox = Yny,, — Y, is convergent. Let us denote
=1

its sum by 2. In other words, the sequence {yn,} is convergent to the
point #. We show that y»—>z. Let ¢ be an arbitrary positive number.
There exists a number N such that |{yn—ym| < &2 for n,m > N. Let
ng > N be an index satisfying the inequality [lyn,— | < &/2. Then

lyn— 2l < Wn—Yngll + Iy, —2ll <& for n>N. =

TaEOREM 5.8. If X is a complete linear metric space and if X, 48
a closed subspace of X, then the quotient space XX, is complete.

Proof. By Theorem 5.4, one can assume the space X to be metrizable
in a complete manner by means of an invariant metric p(z,y) defined
by a norm | |l

Let {[#],} C X/X, be an arbitrary sequence satisfying the inequalities
Iz}l < 1/2" By the definition of the norm in the quotient space, there
exist elements @, ¢ [}y such that jz,]| < 1/2~. But the space X is complete.
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0
According to Theorem 5.7, the series ) &, is convergent and has a sum «.
n=1

The definition of the norm in the quotient space gives

oo ©0

QZ[m],,-_[m]ﬂgﬂan—mg (k=1,2,..).

n=k n=k
[o=]
Hence the series ) [#], is convergent to the element [#]. By Theorem 5.7,
n=1
the completeness of the space X/X, follows. B

§ 6. Completeness of some linear metric spaces.
Exawvpre 6.1. Spaces §(2, 2, u) and LP(Q, X, u) are complete.
Let us take a sequence {za}C S(Q, 2, u) (vesp. {wa}CIPQ, Z, u))
such that [za] < 1/4". Let )
Ap={t: |2a(8)] > 1/2%"F  (resp. An= {8t |m(t)] > (1/2™)1F}).
Evidently, (.l < 1/4™ implies u(A4x) < 1/2™

Let Bx= AL{A;. We have |#(t)] < 1/2F {resp. lo(®)] < (1/2%%) in

i=

0
the complement of the set Bx. Hence the sum of the series Y a,(t) exists
n=1

in the complement of the set B = (7} Bg. Moreover, this series is uniformly
k=1
convergent on each of the sets 2\Bg. Let us denote the sum of the series

2 @a(t) by o(t). The function «(2) is measurable on the set Q\B. Moreover,
n=1

let us remark that

)

A(BR) < D) w(d) <Tj2
=k

Hence p(B)= 0, and the function »(f) is measurable on the whole set 2
and determined uniquely with the exception of a set of measure u equal
to 0.

Since the seriesgmn(t) is uniformly convergent on sets @\Bx, the
funetion
B op= () for 1¢B,
bel:mgsto the space §(2\B, X, u) (resp. LP(2\ Bz, Z, u);), and the sequence
{g’; @¢— ]\ 5,} tends to zero in the respective norm, where % is arbitrary.
Hence it follows that #e8(Q, X, s) (resp. o <IP(Q, Z, p)), and the
series ,g 2, i convergent to the function .
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Thus, by Theorem 5.7, the space S(2, X, u) (resp. IPQ, 2, w) is
complete.

A complete pre-Hilbert space is called a Hilbert space. Hence spaces
I¥Q, 2, y) are Hilbert spaces.

ExAMPLE 6.2. The space M(Q, X, ) is complete.

o0 o0
Indeed, let 3 @a(t) be a series satisfying the condition Y [aa] < +oo.
n=1 n=1
Given any natural number z, there exists a set Ay such that u(Ada) =10

and 2wl = |#a(t)] for ¢ An. Let us consider the series ) # on the sef

n=1

= -
A, where A = U Ax. This series is uniformly convergent. Hence it
k=1
has a bounded measurable function z,(t) as the sum. Moreover,

mn
lim sup > [zi(t)—a(t) =0 -
m—roo TENA 31 !
Let
xo(t) for t¢d,

o) = 0 for ted.

ad - .
Since u(4) = 0, the series > #m(t) is convergent to the function z() in
m=1

the norm. )
Hence, by Theorem 5.7, the space M(Q, X, p) is complete.

ExAMPLE 6.3. O(Q) is a complete space. ) )

Indeed, let {zs(t)} be a fundamental sequence. This sequence is con-
vergent at every point. Hence it is convergent to a function =(3). The
function @(t) is continuous as the limit of a uniformly convergent sequence
£ continuous functions.
° Tet ¢ be an arbitrary positive number. Since {wn(t)} is & fundam,enta,l
sequence, there exists an index k such that ]]m;,(t)—‘ o)l < € for ¥ > k
This means that |z(t)—zx{f)] < ¢ for every @ Taking k'~>.oo we obtain
jo(f)— 2 (f)] < e for an arbitrary ¢. Hence [lz,— | < 2 which was to be
proved.

Rxawere 6.4. The space O(2/Q,) is complete. ' .

Indeed, 0(Q)Q,) is a closed subspace of the space C(L), since if @n(?)—>
—>u(f) € 0(Q) and z(t) = 0 for ey, then m(t) =0 for tel.

ExAMPLE 6.5. The space GQ) is complete. )

Indeed, let {a(t)} CCo(€2) be & fundamental sequence, i.e.

Hm [n—ml] = 0 -

M0
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By the definition of the norm in the space Gy(2), this implies

Lm |lgp—2nlli=0 (i=1,2,..),
4, M~>00
where [jz}l; is the norm in the space ('(€;). Thus, according to Example 6.4,
the sequence {#,(f)} is uniformly convergent on each set £2; to a function

o
«(t) continuous on the set Q; (1=1,2,..). But 2= | JQ;; hence the
=1

i
function »(t) is continuous on the set 2 and belongs to the space Co(Q).
It is easily verified that the definition of the norm ll]] implies
lim fjon— 2|} = 0. This proves the completeness of the space Cy(f).

ExAMPLE 6.6. The space (®(2) is complete.
Indeed, let {za} be a fundamental sequence in the space C™(Q), i.e.
lim |j#y— 2w =0 .

N, M—00

By the definition of the norm, this implies

m jep—mllt=0 (k=0,1,2,..).
N, =00
Applying the fact that this equality holds for k = 0, we conclude
that the sequence {xn(f)} is uniformly convergent to a continuous fune-
tion #(t) (Example 6.4). In a similar manner we verify that for an arbitrary
ollp(t)
ok, okn
formly convergent on the set @ and its limit is equal to the respective
derivative of the function #(f) by a well-known theorem of the calculus.
Hence it follows at once from the definition of the norm that the
space C™(Q) is complete.
" EXAMPLE 6.7. The space §(E") is complete.
Indeed, let {z.} be a fundamental sequence in the space S(H,), i.e.

multiindex k= (%, ..., km) the sequence of derivatives is uni-

lim ”mn“_ mn’” =0.

ny
Thus, according to the definition of the norm,

(*) Lim “mu_ mn.’”k,m =0
7,5/~>00
for arbitrary two multiindices %, m.
This equality holds also for m = (0,0,...,0). Hence the sequence
{on(f)} is uniformly convergent togéther with all its derivatives to an
infinitely differentiable function #(f) (see Example 6.6). Howerver, ac-
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cording to equality (%), given any positive number &, there exists a natural
number N such that

K]

f g . 17 i N.
(7o A Z)W; [m,,,u(t)—wn'(t)}! <e for n",n >
1t Bl

Taking n''—co We obtain the inequality
1 glEl

H a
I i e
ltl n H,Et’{‘.

et~ o] <

Since the number ¢ and the multiindices k,m are arbitrary,.this im;l)lies
z(t) e S(B") and lim 6 — #nl| = 0. Hence the space S$(E™ is complete.
Nn—-o0

e i lete.
ExAMPLE 6.8. The space rcaf is comp o
Indeed, let {us} be a sequence of regular measures satisfying the
oo

S i ily wverifi at u is
iti . Let p= . Tt is easily verified th
condition ";;ll,unl! < oo u“ Té’ly,,

5 e.
a measure and |jull < E llunl] < ~+co. We prove p to be a regular measur

=1 - . -
Let ¢ be an arbitrar‘;r positive number, and let N be an index satisfying

the inequality f llunll < /2. Since un are regular measuves, given any
set B there ex;ézggéts F; and G; such that F; C B Cint @ and u(C) < 5/2_?\7
for every OC G\F:.
N N _ 6@ and
Let G = () G, F={ Fi. Then FCECint@ an

i=1 =1

z, > € €
B(O1< D w0+ D) O < N 55 5= 2

=1 =N+
for every O C G\F.

Evidently, g 1in i convergent to the measure w in the norm. Hence
n=1

Theorem 5.7 imi)lies the space rcaf to be complete.

i lete.
Exawere 6.9. The space H¥(Q) is eomplete.
Indeed, if {z.(1)} is & fundamental sequence in the space hH"(Q),ﬂf;izr;
it is also a ,fundamental sequence in the space C(2). _Hence t ‘]33 s:q{w e
{zn(t)} is uniformly convergent to a continuous function a.a(t). umde,;I )
is ﬂa fundsmental sequence, i.e. for every >0 there exists an
such that |jz,— |l < & for »' >n. Hence

[ (t)— 2 (¥)]— [t — @ )] < Lo )T
for arbitrary ¢, Q. Taking n'—co Wwe obtain
[[@n(t)— 2 (8)]— [an(t)— 2 (t)]] < 8le(t, 1)) -
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Thus () belongs to the space H*Q) as the sum of functions () and
#(t)—#a(f). On the other hand, |z,(t)—u(f)| < ¢ (see Example 6.3). Hence

lon— 2]} < 2¢
and the space H*(f2) is complete.

§ 7. Bounded sets and locally bounded spaces. Let a linear topological
space X be given. We say that a set B C X is bounded if for every neigh-
bourhood T there exists a sealar a = 0 such that a® C U. It follows from
the continuity of addition that if the sets E, and F, are bounded, then the
set F,+-Fp is bounded. Indeed, let U be an arbitrary neighbourhood
of zero. There exists a balanced neighbourhood V such that V4V C T.
Sinee the sets #, B, are bounded, there exist numbers a; and a, satisfying
the conditions |a,| <1, |ay| <1, 0, B, C V, a, B, CV. Hence

0B +E)CVVCU.

The closure E of a bounded set E is a bounded set, since aEC U
implies af C T+T.

If X is a linear metric space, then a set E is bounded if and only if
tnn—>0 for every sequence {z,} CE and an arbitrary sequence 7,—0.

Evidently, it follows from the continuity of multiplication by a sealar

that every convergent sequence {zs} in a linear metric space is a bounded
set.

A space X is called locally bounded if there exists a bounded neigh-
bourhood ¥ of zero in X. By the definition of a bounded set;, the sequence

1
{ﬁV} determines a topology equivalent to the given one. Thus, according

to Theorem 2.1, one may construet in X an invariant metric determining
a topology equivalent to the given one.

We say that a norm |jz] (see §2) is P -homogeneous, 0 < p <1, if
izl = [¢?{lz]. A 1-homogeneous norm is called briefly homogeneous. If
there exists a p-homogeneous norm in a space X, a set B C X is bounded
if and only if

sup fizll < < +oo.
Tl

Indeed, let {#s} be a hounded sequence: lleall < M, and let {} be a se-
quence of numbers convergent to zero. Then

[nzal] = [talPliwall >0 ,
and so the set ¥ is bounded. On the other hand, if sup x| = -+oo, one
Ly
can choose a sequence {z,} C B such that llzn]] > n. iet tn = (1|lza])V?;
then th—0, bub [[tamy|| = 1. Hence the set B is not bounded.

Hence it follows that if there exists a P -homogeneous norm de-
termining the topology in a lineat metric space X, then the space X is

icm
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locally bounded. On the other hand, we show that if a space X is 1oFa:]ly
bounded, then there exists a p-homogeneous norm in X determining
a topology equivalent to the given one. .

I;Jet us suppose that V is a bounded neighbourhood of zero, and let
U = |J aV. Evidently, U is a neighbourhood of zero. We show that U

is a Il‘;lcflinded seb. Indeed, let {z,} C U; then @5 = daln, where y e V and

lan] < 1. If £5—>0, then fn%s = tu@ays—-0, since inan—0 and the set V is
bounded. BEvidently, aU C U for |a| <1.

We denote by "),I the class of bounded open sets such that aVCV
for laf < 1.

Let V e 2. We call the number

¢(V)=inf{s >0: V+V CsV, V U}
the modulus of concavily of the set V. ¢(V) is a finite number, since V—glV
is a bounded set, and hence there exists a number a = 1/s such thaje e
seb a(V+V) is contained in the open set V. The modulus of concavity of
the space X is the number
¢(X)=inf{e(V): VeU}.

THEOREM 7.1. (Aoki [1], Rolewiez [1].) I.f._X is a locally ‘blowndetzl
space, then for every P ‘satisfying the inequalities 0 <p <Po= ogc(%
there ,earists a p-homogeneous norm determining a topology equivalent to the

iven one. ,
! Proof. Let s— 2UP. By the definition of the number ¢(X) there
exists a set V ¢ such that
(7.1) V+V CsV.

Let us write U(2") = s"V, where « is an integer. For every dyadie number
r= f £:2%, where n, m are integers and &= 0 or 1, we define (as in Theo-

i=m

hid i g s .
rem 2.1) a neighbourhood U(r)= > e U(2%). Condition (7.1) implies

1=m
(a) T+ U@ +UQ) .
The construction of the neighbourhood U(r) implies U(r) ¢ ®. Hence
(b) , aU@FCU) for o<1,
and
(c) U@r)=sU(r).

Let us write |lf=inf{r: v e U(r)} Considerations amlog:ous to
those used in Theorem 2.1 show that this i.s & norm and that this norm
determines a topology equivalent to the given one. Moreover,

(1.2) oz = lal-Jall for lal=1
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and
(7.3) llsll = 2= .
Let
i)l
o = sup 12
0<t<oo {

Let us remark that condition (7.3) implies

] iz
sup L=
0<t<poo i 1S<.?-£s i

Indeed, every number ¢ is of the form = s"’, where 1<t <s.

Hence

tiﬂ (tls'll)ll Zntm t

s _ 5™ _ el e oy,

Evidently, [2]* > |z On the other hand, equality (7.3) implies

o = sup L2 oy
i<i<s T
Moreover,
. _ [t +9)ll jtt
lle <+ ylI woiipm-Tg sup Iw’i”-“ﬂjL sup sl Il 4yl .

0<hi<eo 1] o<ty<oo 1}
Hence |jz|[* is a norm equivalent
quivalent to the norm [z|. Moreover,

el — sup 10l _ o lltala

sup el _
o<i<eo (ta)?

I
SR la” = laf” sup "= lafjol
Thus the norm [zff* is p-homogeneous. W

o tThere are examples (Rolewicz [1]) of locally bounded spaces X such
hat no po-homogeneous norm existsin X, where p, = log,x)2. However, if
- 2

there exists a set V such that ¥ i
oy +V C ¢(X)V, then there exists a p,-homo-

It follows from. definition that the spaces
0@Q), 0QQ), HYQ), rea(Q), IAQ, Z,p), MQ,Z,u)
are locally bounded.

§ 8. Convex sets and continuous lin i i
e e ear functionals. Let X be a linear
{ow+by: 6,06 >0, a-b=1}

is called the segment joining points @,y e X.

A set WC X is called conver it j
b the se ini i
z,y ¢ W is contained in the set W. EmERS Joining any two potuts
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The intersection of an arbitrary number of convex sets W = Nnw,

is a convex set. Indeed, let x,y ¢ W. Then z,y e W, for all a. Hence
az+by e W, for a,b >0, a+b=1 and consequently ax--bye W.

The closure of a convex set W is a convex set. Indeed, if z ¢ W and
y ¢ W, then arbitrary neighbourhoods U and Uy, of points = and v, re-
spectively, have common points with the set W. Hence the neighbourhood
aUz+bTy (6,0 =0, a+b=1) of the point ax-+by has common points
with the set W. Thus, by the continuity of addition and multiplication
by a scalar, az-+by eW.-

An algebraic sum E-4-F of two convex sets ¥ and F is a convex set.

The smallest convex set containing a seb EC X is called the conver
Jull of the set E and is denoted by convE. It is easily verified that

eonvE={jam;: a;>=0, Zn,'a;:l, mieE}.

=1 i=1

If E is an open set, then the set conv.E is also open. This follows
from the continuity of addition and multiplication by a scalar and from
the form of the set convE.

It o set B is balanced, then the set conv ¥ is also balanced. Indeed,
let p € conv . We infer from the form of the set conv E that the element p
can be written as

n n
pe Soit, s, am0, Sunt
=1 =1

Let |a] < 1; then
n n
ap = 2 amry = Z ai(a,an) -
=1

i=1

But the set B is balanced. Hence az; < B and consequently ap e convE.

Tf a continuous linear functional f exists in a space X, then there
exist convex open sets, for instance the set U= {z: |f(x)] <1}. The
set U is open, as an inverse image of the interval (—1,1) by means
of a continuous transformation. Moreover, the set U is convex, since
if #,yeU, a,b>0, a-+b=1, then

[flaz+by)| < alf@)+0lf (] <1 -

On the other hand, let X be 2 linear topological space. If there exist
convex open sets in X, different from the whole space X, then (as we
show below) there exist continuous linear functionals.

Let us suppose X to be a linear topological space. Let U be a convex
open set different from the whole space X. Since a translation of sets
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maps open sets onto open sets and convex sets onto convex sets, we can
assume without loss of generality that 0 e U. Let

ol = inf{t> 0: 7 ¢ U}: inf{t >0 7 17}
Evidently,
U={z: oy <1}, U={z: |olz<1}.

Since the set U is open, the function [|z||;; is continuous at 0. Moreover,

('é—.I) [tz = tllzlly for t>0 (positive homogeneity)
and
(8.2) e +ylly < llello+lylly  (subadditivity) .
@ Y = .
Indeed, e’ Tole ¢ U. Hence, by the convexity of the set U,

llellio @ iyl Yy =ty o

— S _ W =2 _ 7,
lello+ylle lzlle * blo+iyvie vz  leile+iyio
Thus

ety _

) oo +lylle
which was to be proved. !

If the set U is balanced, condition (8.1) can be replaced by the fol-
lowing condition:
(8.3) bzl = [t - [zl for all scalars ¢  (homogeneity) .

A non-negative function satisfying conditions (8.2) and (8.3) is called
a pseudonorm.

Evidently, if |f(2)| < |l#|ly, then the functional f is continuous. Indeed,
let O be an arbitrary neighbourhood of zero in the field of scalars. There
exists a positive number ¢ such that 0D K, = {e: [2| < &}. It is easily
seen that f(eU)CK,CO.

‘THEOREM 8.1. (Hahn, Banach.) Let p be a functional defined on

a linear space X over the field of real numbers sotisfying the conditions
O ple+y)<p@)+p(y) (subadditivity),

(i) pa)=1p(x) for >0 (positive homogeneity).

If f, is a linear functional defined on a subspace X, C X and satisfying
the inequality
(8.4) fol) < p(w) ,
then there exists a linear functional f defined on the whole space X, indentical
with fo on the subspace X, and such that
(8.5) fe) < pl2)
on the whole space X.
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Proof. Let , be an arbitrary element of the space X not belonging
to X,. Suppose that X, == lin({z}+ Xy), i.e. that every element of X,
can be written in the form

(8.6) = Jp,+a (2 eX,).
If o', 2" € X,, inequality (8.4) gives

fol@") +Fol@'”) = fol@’ +8") < pL(@+2") +{— %0 +2")]
< p@o+a") +p(—z+a") .
Hence
fol@)—p(— & +2"") < —Fl&) + 2 (@ +27) .

Since this inequality holds for arbitrary o', o' e X,, We infer

A = sup [fola")—p(— 245" < inf [—fol@)+p (@ +27)] = B .
@ eXy 2’ X,

Tet A < t, < B. We define a functional f on the space X, by means
of the formula
f(@)= Mo +folz) (o= iy ta’, o' € Xy) .

Evidently, the functional f is linear, and it is identical with f, on
the subspace X,. We show that inequality (8.8) is satisfied for all # ¢ X;.
Let us suppose that 4> 0 in formula (8.6). Then

H@) = Ao+Fo(@') < AB+Fo(@") < AL—Fol@'/3) + P (%0 + ' A]+Fo(2)
= —fol@) + 1 (Mo +2") +fol@) = p(x) .

Tf A < 0, the proof follows the same lines, but the inequality i, > 4

must be applied in place of #, < B.

Tn the same manner -as in the proof of Theorem 0.3, Part A, we
represent X as a direct sum X = X,® Y, where ¥ =1lin{y;} and the
elements ¥, are linearly independent. Let X;= n{¥, {5}, e < Bl We
prove the theorem by applying transfinite induction. If the set of all «
such that a < § contains & greatest element, the arguments are the same
as those described above. In other cases we have Xp= Lé)ﬁX,, but the

sets X, (y < B) satisfy the theorem, by the induetion hyf;othesis. Hence
the theorem is satistied by the sum X, also. &

CoroLLARY 8.2. Let X be a linear topological space over the field of
real numbers, and let UC X, be a convez open set. If my ¢ U, then there
ewists @ continuous linear funciional f such that

flm) >1 and flz)<l for wxelU.

Proof. Let ye U. The set Uy= U—y is convex. Since &,—y ¢ Ty
we have |z—ylly > 1. We Jefine a functional f, on the one-dimensional

Equations in linear spaces 10


Yakuza


146 B. I. Linear topological and linear metric spaces

space X, spanned by the element xy—y in the following manner:
filt (zo—9)] = tlizg—y g, -
Evidently, ’ ¥l

folz) < @y, @eX,.

We can extend this functional to the whole space X, leaving the

;?;t inequality unchanged. Let 7?; besuch an extension of the functional f,
en .

~

fol@) < 1 for z e U,
Let e=1 +]7‘,(y). Then

and fNo(xo‘ y) = ”wu_?/”Un >1.

?o(ﬂ?o) > 1+I]::z(i'l) =¢, and folz—y)<lforzeU.

Hence
Tole) < 1+Fy) = c.

. 1~
The functional f= Ef" possesses the required properties. m

We ghall now consider linear tOpOlO ical spaces over the fiel of
g d

THEOREM 8.3. Let X be a linear topological space over the field of
complez numbers, If there exisis in X a convex open set U different from
the u’;ho‘le space X, then there ewists a continuous linear functional (with
multiplication by complex numbers) different from zero defined on the space X.

Proof. The space X may also be treated a i

_ 8 a linear space over the
ﬁeld‘ of real {mmbers. B.y the Hahn—Banach Theorem, there exists a real
continuous linear functional f, i.e. such that f@+y)=f(#)+f(y) and
f(tw) = tf(z) for real scalars t.

Let g(x) = j(w)—if(4z). Evidentl i i
96 . y, the functional g is continuous
and addltwe.: _g(w.—;— ¥) = g(z)+g(y). Moreover, g is homogeneous as
regards multiplication by real numbers. In order to show g to be homo-

geneous a8 regards multiplication by compl: T8 it i ici
B s ek y plex numbers it is sufficient

9(im) = fliz)—if(—@) = if(@) +f(iv) = ig(z). m

CoROLLARY 8.4. Let U be a convex open set in a linear iopological

space X over the field of complex numbers. T U,t
1 . Afxy ¢ U, then t i -
tinuous linear functional g(z) such that #1087, Shom thers e & oon

reg(z,) >1 and

reg{z) < 1

Proof. It is sufficient to repeat the

from Corollary 8.2. Then we take g{x)
that reg(e) = f(x).

for zeU.

construction of the functional f
= f(#z)—if(iz) and we remark
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Remark. If the convex set U in the assumptions of Theorem 8.3
is balanced, then the condition f(z) < o]y implies |g(2)] < |#lly .

§ 9. Locally convex spaces. A linear topological space X is called
locally convew if there exists a family 9 of convex sets in X determining
a topology in X equivalent to the given topology. In other words, a linear
topological space is locally convex if every neighbourhood of zero in the
given topology contains a convex neighbourhood of zero.

If X is locally convex, one can introduce a topology in X not only
by means of convex neighbourhoods of zero, but also by means of balanced
convex neighbourhoods of zero, i.e. such that aUC U for la| <1.

Tndeed, let W be a convex neighbourhood of zero. By Theorem 2.1,
there exists a balanced open set VC W. Let U = convV. V is a convex
set, as a convex hull. Moreover, since W is convex, we have UCW.

A subspace of a locally convex space is locally convex.

TaeorEM 9.1. If X is a locally convex space and if f, is a continuous
linear functional on a subspace X, C X, then f can be exiended to a con-
tinuous Vinear funmctional on the whole space X.

Proof. Since the space X is locally econvesx, there exists a balanced
convex open set U containing zero and such that

U~ X, ClrweXy |fola) <1} -

Hence we have |fy(#)] < |lzly on the subspace X,. By the Hahn—
Banach theorem, fy(z) can be extended to a functional f(z) such that
1f(#)] < \#lly- Evidently, f(v) is a continuous functional. ™

CoroLIARY 9.2. If X 4s a locally conver space, then for every reX,
x # 0, there ewists a continuous linear functional f such that f(z) # 0.

Proof. Let X, be a one-dimensional space spanned by the element .
Let fo(tw) = t. The extension f of the functional f, satisfies the statement
of the Corollary. B

TaEoREM 9.3. Let X be a locally convew space, and let WCX be
a convex set. If xpe X and @, ¢ W, then there ewisis a conlinuous linear
functional g(x) such thai

reg(m,) >1 and  Tegla)<l for meW.

Proof. Since the space X is locally convex, there exists a convex
neighbourhood U of zero in X such that @, ¢ W-+TU. The set WU is
convex and open. By Corollary 7.2, there exists a functional ¢() satisfying
the inequalities reg(w) >1 and reg(w) <1 for we W-+U, and hence
for zeW. m

COROLLARY 9.4. Let a linear space X have two convex topologies T,
and 1,. If the spaces (X,7,) and (X, 7,) have the same set of continuous

10*
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linear functionals, then a conver set in X is closed in (X, =) if and only
if it is closed in (X, Tp).

Proof. Let a convex set W be closed in the space (X, z;) and let
2, ¢ W. By Theorem 7.3, there exist a continuous linear functional g
on the space (X,7;) and a number ¢ > 0 such that

zeW reg(me) =>1+¢.

Since the functional g is continuous also on the space (X, 7,), the neigh-
bourhood {#: |g(2)— g(@)| < ¢} of the point =, in the space (X, 7,) does
not intersect the set W. Hence W is closed in the space (X, 7). m
Ewvidently, this Corollary does not imply the equivalence of the
topologies 7, and 7,.
If a locally convex space X is a linear metric space, then the topology

reg(z) <1 for cand

‘in X can be determined by means of a countable sequence of pseudonorms

(see § 8). Namely, as a family of neighbourhoods of zero we may take,
say, the countable family of sets {x ¢ X: p(w, 0) < 1/n} and from each
of these sets we may choose a convex and balanced neighbourhood U,.
Next, we may construect a pseudonorm || |, = || |lo, for each of these
neighbourhoods. It is easily verified that @n—« if and only iflim ||z,, — ||,

=0forn=1,2,..

Conversely, let us suppose a sequence of pseudonorms {|| |l»} is given
in a linear space X and determines a topology in X. In other words, there
exists a topology in X such that lim |om— ol =0 for n=1,2,.. if

m—oo

and only if #,—>#. Under this assumption the space X is metrizable.
Then a norm can be defined in X by means of the formula

0

< BT+,

Locally convex linear metric spaces are called briefly B-spaces.
If & B;-space is complete, it is called a B,-space. It follows from this
definition that the spaces

C@, CLQy), C@,

IR, X, u) for

are B,-spaces.

Arguing as in the proof of Theorem 9.1 one can prove the following

THEOREM 9.5. (Mazur, Orlicz [1].) Let X be a' By-space with a t-
pology determined by o sequence of pseudonorms {|| |l}. A linear func-
tional | on X is continuous if and only if there ewist a pseudonorm || llmg
and o positive constant Ky such thai

()] < Elialn, .

liel} =

™),

=1,

S(&"), HYQ),
M@, X, ©®)

rea(2),

icm
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COROLLARY 9.6. If X 4s a B,-space with the iopology determined

n
by a sequence of pseudonorms {|| |la}, then the conjugate space is X+ = | ] X7,

i=1

where Xy is the quotient space
X = X/{zeX: |{z|n =0}

with a topology determined by the norm || |- .
If X is a locally convex space, then a set EC X is bounded if and

only if
sup flwlle < Mo < +o0
zel

for all convex, symmetric neighbourhoods U.

linear spa.ces

linear
topological spaces

Sy
A
]

>

X
e
S

o

S
===
S

TFig. 7. Classification of linear topological spaces

1
Indeed, if sup jollv < My < +-oo, then 57

z€E U .
bourhood U is arbitrary, we conclude that the set E is bounded. On the

other hand, if sup |j@lly = -+ oo, then oB ¢ U for every scalar a. In partic-
E - -
ular, if X is a,lof*,;lly convex linear metric space with a topology é.let,ermmed
by a sequence of pseudonorms {|f ||,,} (see § 8), then & set B C X is bounded
if and only if sup [l < Mm < +oo.
zel

B C U. Since the neigh-
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If a space X is, simultaneously, locally convex and locally bounded,
then for any natural number n there exists a positive number %, such
that

lolle < Enliwlly  for all z e X .

Hence convergence with respect to the pseudonorm | |, implies con-
vergence with respect to all pseudonorms. Consequently, || |, is a norm
determining a topology equivalent to the given one. Let us remark that
this pseadonorm is homogeneous, i.e. llazl, = |a]-|jzl, for an arbitrary
scalar a.

Spaces with a homogeneous norm are called normed spaces. Normed
spaces will be discussed in the next part.

§ 10. Z-topology and Z-comvergence. Let there be given & linear
space X and a total linear space Z of linear functionals defined on X.
We consider neighbourhoods of the form

U= {reX: |Efa)—Edm)| < &, EseF (i=1,2,...,n)}.

Neighbourhoods of this type determine a topology. Indeed, let

W= {o: [f(e)— &)l < &, i =n+1, .., n+m}.

Let FLS suppose that #z, ¢ U~ W. This means that a; = |&(a,)— Ei(@o)| < &
for i=1,2,...,n and a; = |&(@s)— &:(2;)] < & for i = n+1, ..., n+m.
Let
V={zeX: |ta)—&lm) < ei—ai, i=1,2,...,n4+m}.
It is easily seen that V is a neighbourhood of the point z, and VC U ~ W.
A topology defined in this manner is called the Z-topology.
The E-topology is a locally convex topology. Indeed, if
[§(@)—é(@)l<e and JE(@)—E(m) <e,
then
€0tz 4 (1—1)2"]— &(m)| = [[E(2)— E(@a)]+ (L—)[&(2")— & (2)]]
Lte+(l—te=¢.
Hence U is a convex set, as an intersection of sets of the form {z ¢ X:
1&(@)— &{m)| < &}
' THEOREM 10.1. A linear functional f is continuous in the Z-topology
if and only if feZ.
) Proof. If f ¢ %, then the inverse image of the set {z ¢ X: je—2o| < &}
is the set {w e X: |f(#)— 2| < £}, i.e. a neighbourhood in the 5 -topology.

Qn the other hand, let f be a Z-continuous functional. There exists
a neighbourhood of zero U= {weX: |&z)| <& =1, 2,...,n} such

that |f(@)] <1 for zeU. Let Hi= {z ¢ X: &) = 0} and H:ﬁg,_

=1
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Evidently, #,¢H implies ma,eH. Since HC U, we conclude that
|mf (@)| < 1 and, consequently, f(z) = 0. Hence (@) = 0fori=1,2,...,n
implies f(4) = 0. By Theorem 1.2, AT (*) f is a linear combination of the
functionals &;. Hence feZ. &

THEOREM 10.2. The space X' is a complete linear topological space
in the X -topology.

Proof. Let A be a family of subsets of the space X', fundamental
in the X-topology. It follows from the definition of neighbourhoods that
the family of sets of mumbers

P U) = {f(2): f W

is fundamental for every x ¢ X. Hence P () has one cluster point fq(%).

It ACP,, (), then AC A+4,, where A;C P,(¥) and A, C P (N).
Hence it follows immediately that the funcfional f, is additive. In a similar
manner one can prove the homogeneity of f,. Hence f, ¢ X'. By the de-
finition of the X -topology, the functional 7, is a cluster point of the
family %. ® .

TaEorREM 10.3. If ¢(x) is a real-valued positive function, then the set

K= {feX" f(@)| < c(a)}

is compact in the X-topology.

Proof. By definition, the X-topology is given by neighbourhoods
of zero, U, of the form :

U= {feX" |flm)l <& >0, wmeX, i=1,2,..,n}.

Let us take an arbitrary neighbourhood of this form and let us con-
sider a sequence {fm} of functionals satisfying the inequalities

(10.1) Sup |fp(@e)—fwlz) >¢ for m# m' .
1<i<n

According to the condition [f(#)] <e(®) the set of functionals
satisfying (10.1) is finite. Hence

»
K= U (fm+U) .
m=1
Since the neighbourhood U is arbitrary, this condition shows that the
set K is compact. o
But the set K is closed and the space X’ is complete in the X -topology.
Hence the set K is compact. B
Together with Z-topology one can consider also E-convergence. We

say that a sequence {an} is 5-convergent to an element » if ljﬂ& (@p—x)=0

for every £eZ.

) Le. Theorem 1.2 of Chapter I, Part A.
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A sequence {z,} is called 5-fundamental if the sequence {&(z,)} is
fondamental for every £ e Z.

If a space X is metrizable in the 5-topology, a sequence {u,} is con-
vergent in the Z-topology if and only if it is 5-convergent.

THEOREM 10.4. Let A be an operator which maps a linear space X
with a Z-iopology into a Unear space Y with an H -topology, and let us
suppose that the conjugate operator maps the space H into the space =, i.e.
that 4 e L(X Y, H—E). Then the operator A is continuous and maps
E-convergent sequences in H - convergent sequences.

Proof. Let U be an arbitrary neighbourhood of the point y, = Az,
in the space ¥. Then

U={y: Imy)—myo) < e, i=1,2,...,n}.
Let
V= {z: |&(@)— &) < & yi=A, i=1,2,.., n} .
Evidently, ¥ is a neighbourhood and 4V C U, which was to be proved.

Let {2} be a sequence Z-convergent to #. We consider the sequence
{42,}. We obtain

Limy(dan— Az) = lim é(wp—z) = 0 y where ¢(=A4yn. n
o0 fi>00

We say that a subset E of the space X is 5-closed if it is closed in
the Z-topology.

A linear subspace X, C X is 5- closed if and only if it iy £-describable.
In order to prove it we need only to remark that the notions of a Z- closed
subspace and of a Z-describable subspace are both equivalent to the
following condition:

For every element m, ¢ X, there ewisis a functional & € E such that

E@)#0 and £@=0 for secX,.

§ 11. Riemamn integral in complete linear metric spaces. Let X be
a linear metric space over the field of complex numbers (or real numbers).
Let L be a rectifiable curve (i.e. of finite length) on the complex plane,
L= {(i): a <1< b} Finally, let % () be a function defined on the curve I
with values in the space X. The Riemann integral of the function z(T)
ig defined in the same manner as the Riemann integral of a complex-
valned (or real-valued) function.

A subdivision A% of the curve L is a system of ng points
a=t <t <. <t =1p.
A sequence {4%} of subdivisions is called normal if

lim sup H#P—¢d 1=0.
(—mlﬁkgm] * Hl[
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Let
8w (x), 4%, w) = ¥ wm) [ — 2(£2,)]

ded
=1
where 73 is an arbitrary point satisfying the inequalities ¢, < 7, < #{0.
If the limit
lim 8(z(z), 4%, )
o0
exists for an arbitrary normal sequence of subdivisions and for an arbitrary
ehoice of points 7;, then this limit is called the Riemann iniegral of the
function x(t) on the curve L and is denoted by

[w(z)dr .
L

In the same manner as for complex-valued (real-valued) functions
it is proved that this limit does not depend on the choice of the normal
sequence of subdivisions or on the choice of the points 7z.

Functions which possess integrals are called ¢ntegrable. Other functions
are called non-integrable.

If L=1L,uL, and if a function %(¢) is integrable on each of the
curves L,,L,, then it is integrable on the curve L. If, moreover, the
curves I, and L, intersect at a finite number of points, then it is easily
proved that

[a@d = [s@dr+ [a(x)dr.

LioLs Ly Ly
Just -as for complex-valued (real-valued) functions, it is proved that
(11.1) [ las(z) +by (x)1dr = af e(@)dr+b]y(z)dr.
I L i

Evidently, if z(r) = ¢(v)-#, where ¢(7) is a complex-value('i (real-
valued) function integrable in the sense of Riemann, then the integral
n 7
[o(w)zdr = ( [(r)dr)w exists. In particnlar, if L= |JLsand o =Z: 2i®i,
L i=1 L, 3= 5
Jv?vhere Li= {z(1): a: <t< by}, we X, and x4 is the characteristic function
of the arc L;, the integral on the are L exists and

n

[a@dr= D Te(b)—=(a)] 2 .
L

i
TaEOREM 11.1. Let #(z) be a function with values in o linear metric
space X. If for an arbitrary neighbourhood of zero U C X there exists an
tntegrable. function wy(t) such thal
Slw(®)—u(z), 4%, w)e U

for any subdivision A%, then the funmclion x(7) is integrable.


Yakuza


154 B. I. Linear topological and linear metric spaces

Proof. Let {4’} be a normal sequence of subdivisions of the arc L.
Since the funetion wy(r) is integrable, there exists a positive integer i,
such that for 4, j > 4,

S(@u(s), 4, 74)— S(wu(r), 47, v) € U.
Hence

Sla(z), 4°, w)— 8 (= (x), 47, 7)
(#(z), 4%, w)— Sleglr), 4%, )]+
HSleote), 4% b S, 4%, v +

+[8(wo(x), 47, 1)~ 8(w(x), 47, w)] e U+ T +T .

z(t
[s

Since the neighbourhood U is arbitrary, this proves the existence of the
integral. m

CoROLLARY 11.2. If %(r) = DlodT) i, where g5 are uniformly bounded
i=1

scalar-valued functions: |pi(v)| < M, and if the séries D llwy)] 4s convergent,
=1
then the function z(t) is integrable. ‘

Proof. Let U be an arbitrary neighbourhood of zero. The continuity
of multiplication by a sealar implies the existence of a positive integer N
such that

Zu;vmel}' for Jui < M.

=N
N :
Henee, if 2y(z) = Y gi(r)ws, then 8z ()~ wy(7), 4%, ) e U.
i1

COoROLLARY 11.3. (Mazur, Orlicz [11) If X is a complete, locally conven
space and x(t) a continuous function, then the integral [o(v)dv emists.
L

Proof. A continuous funection #(7) can be approximated by means
of step functions. Let U be an arbitrary neighbourhood of zero, convex

E
and balanced. We find a simple function my = DacyE, satisfying the
=1

. 1
condition #(z)— zy(7) EEI U, where a; are scalars, %k, are characteristic
functions of measurable sets B, and |L] is the length of the arc L. Let

us remark that the local convexity of the space X implies
8@ (z)—zn(r), 4°, weT

for an arbitrary subdivision 4%. m
The fellowing theorem can be treated as

,» 10 & eertain extent, con-
verse to Corollary 11.3:

cm
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THEeEoREM 11.4. (Mazur, Orlicz [1]) If a complete linear meiric
space 48 not locally convew, then there ewists a non-integrable continuous
fumction.

Proof. Let L be the interval [0, 1] and let || || be the norm in the
space X. If the space X is not locally convex, there existg a number ¢ >0
with the following property: For every >0 there exists a system of
points @y, ..., T, such that [#5] < ¢ for ¢=1,...,n, and

SRR

i=1

(%)

Tet a sequence £,—0 be given. We write briefly % = o¥ and n; = n,,.
We define a function z(zr) in the following manner:

%

1
0 for 1=§,—c+ma
E =0,1,..,m
s =1 1z T OLem
x; for <= =? + ﬂk2k+17

and elsewhere as a linear function. . )
Geometirically, the function #(z) looks like a sequence of decreasing

sgpikes” convergent to zero (Fig. 8).

X(1) , 1
4o A ny
45 x5 Xy
i X[\IJ/\AA
| T T 17
8 z ?

Tig. 8. Graph of non-integrable continuous function

Evidently, the function #(z) is cont.inuolus'. )
Let us take a normal sequence of subdivisions

{A’“} 0=tP <P <. < =1,
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where
[0 for j=0,
1 j—1 o
fgk)=:§ nkzk for j=1,2,...,nk+1,
j— nx—1 .
IL'":__( ——3175) for j=np+2,..,0:+k+1.

Let 7=, ;= (P +4P))j2 for j=2,3, ..., n,+1, and 7;=7; for the
remaining indices j. By formula (%),

I8 (), 4%, 7)— 8z (z), 47, > .
Hence #(z) is a non-integrable function.

Since every regular curve contains an arc homeomorphic with the
interval [0,1], and the function constructed above is equal to zero for
7=0 and 7=1, a non-integrable continuous function #(z) can be con-
structed on every regular arc. m

Let x(t) be a function with values in a locally bounded space X.
We ecall the function (1) analytic if for every %, ¢ I there exists a neigh-
bourhood

Upy= {teL: [t—1,] < ¢}

such that
o0
)= D (—1)a® for 1eU,, where oWeX.
i=a

TEEOREM 11.5. An andlytic function «(1) defined on a rectifiable
curve, with values in a complete, locally bounded space X, is iniegrable.
Proof. Let & be an arbitrary positive number, and let ky be an
arbitrary point on L. We consider the neighbourhood U, = {t « L:
Jt—1to] < £} given in the definition of analiticity of the function «(¢). Since '

the function #(s) can be developed in a series, the series fﬂ(ia)‘m‘}"’ﬂ
is convergent. Let -
U= {tel: }i—t)< ie}.
The neighbourhood U;a is a union of a finite number of ares. Moreover,

o

i
z(t) = 2 [3% (t— t.,)] zi  for te Uy,
, 3¢ - . 4 .
where a; = (E) . Obviously, |p()] = I';g;(t_t“) l‘ < M. Hence the
function %(t) is integrable on the set U,.
The curve I is a compact set. Hence there exists a finite system of
sets Uy, ..., U, covering I. The function #(t) is integrable on each of
these -sets. Hence = (t) is integrable on the curve L. m

CHAPTER II

CONTINUOUS LINEAR OPERATORS
IN LINEAR TOPOLOGICAL SPACES

§ 1. Continuous linear operators. Let X and Y be linear topological
spaces. If an operator 4 « L(X —Y) is continuous, we call 4 a continuous
linear operator. If X and Y are linear metric spaces, this means that the
conditions @n—®, {#,} C D4, # € D4 imply Ax,—Az.

Let us remark that if X and Y are linear spaces over the field of
real numbers, and if an operator 4 € Ly(X —+7Y) is additive and continuous,
then A is linear. Indeed, the additivity of 4 implies

A (nz) = n(dw)
for every integer n. But

Ar= A (%m)«l—‘hi(%w) =nd (%.’c)

n times
Hence
Afz) =5 4a.
n ”
Consequently,
(1.1) A(wr) = w0dx

for an arbitrary rational number w. )

We prove that equality (1.1) is true also in the case were o is an
arbitrary real number. Let U be an arbitrary neighbourhood of zero.
There exists a rational number w, such that A(w—wy)ze U and

(o— wp) Az € U. Hence
wAzr— A (o) = (0— wy) Az +[wyds— A({wez)] FA[(0— o] e U4T .
Since the neighbourhood U is arbitrary, this implies w Az = J‘i(wm). )
We say that two linear topological spaces X and ¥ are isomorphic

if there exists a one-to-one linear operator A mappi.ng the whole space in
onto the whole space ¥ and such that both 4 and the inverse operator 4™

are continuous operators (compare § 1, AT ().

*) Te., §1 of Part A, Chapter I
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The isomorphism of two spaces considered as linear spaces does not
imply their isomorphism as linear topological spaces.

An operator 4 ¢ L(X—Y) is called bounded if it maps bounded sets
onto bounded sets.

THEHEOREM 1.1. A continuous linear operator is bounded.

Proof. Let A eL(X—Y), and let us suppose that the operator A
is continuous but not bounded. There exists a bounded set F such that
the set AF is not bounded. This means that there exists a neighbourhood
¥ CY for which A(aB)= a(AE) ¢V for every scalar a # 0. But the
set B is bounded. Hence for every neighbourhood of zero UC X there
exists a positive number a such that «BC U. Thus AU ¢ V for every
neighbourhood U CX, contradicting the assumption of continuity of
the operator A. m

CororrARY 1.2. Let X and Y be locally bounded spaces, and let || ||x
and || lly be px- and py-homogeneous nmorms in X and ¥, respectively.
A linear operator A from X into Y is continuous if and only if

= sup [l 4flr < +oo.
flx<1

Proof. Since the ball K= {z e X: |jzlx <1} is a bounded set, the
image of K is also bounded. Hence

sup [dally = sup [ylly < +oo.
<t ved(K)

On the other hand, if |4} < 4 co, then the unit ball in X is transformed
in a bounded set in' ¥. Hence for an arbitrary neighbourhood of zero U

in Y there exists a neighbourhood of zero ¥V C X such that AFV)CU.
Thus the operator A is continuous. m )

If px=py, then [dz|ly < l4]|-|o]x; the number ||A4] is ealled the

norm of the operator A.

Let X and Y be arbitrary locally bounded spaces. There always
exists a number p for which a p-homogeneous norm exists in both X
and Y. Indeed, by Theorem 7.1, there exists a px-homogeneons norm
in the space X and a py-homogeneous norm in the space Y. Without
loss of generality we may suppose that Px < py. Let us remark that

I o= (I IpPstow

is & px-homogeneous norm in the space Y.

Hence a norm of the operator can be defined for all continuous oper-
ators which transform a locally bounded space X into a locally bounded
space Y. Such norms may be different according to the choice of the
norms || |ix and || |lr, but they determine the same topology.

icm

§ 1. Continuous linear operators 159

Let X and Y be locally bounded spaces. A continuous operator
A e L(X~Y) is called an isometry if |Aa)ly = |z)x for all z ¢ X. Tt follows
from this definition that if an isomorphism 4 is an isometry, we have
Mi=jdY=1.
If X and Y are linear metric spaces, then the following theorem,
converse to Theorem 1.1, is true:

TeEoREM 1.3. If X and Y are linear metric spaces and if an operator
A e L{X—Y) is bounded, then A is continuous.

Proof. Let us suppose that the operator 4 is not continuous. There
exists a sequence {z,} convergent to zero such that |yall > & > 0, where
Y = Axy. Let us write

@ =ta[V]eall,  an = entier (1]l
By the subadditivity of the norm,

Hm;” < Hana;n”_l— sup iit'rnd < aﬂl“vn“_}- sup Htwn”
o<i<1 o<i<1

< |all/VIzall + sUp [iza] >0  as  n—>oo.
o<i<1

Let &y = V|j2n). Evidently, t,—0 and A(t, ;) = 9,7 0. Henee the bounded
set made of elements of the sequence {@,} (see § 7, I) is transformed onto
an unbounded set. ®

Let us now suppose that X and ¥ are locally convex linear metric
spaces. In each of these spaces there exists a countable sequence of
homogeneous pseudonorms || X and || |7, respectively.

The following theorem is a consequence of Theorems 1.1 and 1.3.

THEOREM 1.4. If X and Y are locally convex linear meiric spaces,
then an operator A e Ly(X —Y) is continuous if and only if it satisfies the
following condition:
(1.1) for every index k there ewists an index nx and a non-negative number ax

such that
4alf < ax sup |2||f jor al ze X .
I<i<ny

Proof. Sufficiency. Let F CX be an arbitrary bounded set. There

exists a sequence {My} of positive constants for which

X< M, forallzeE (n=1,2,..)

n

(see § 9, I). Hence, supposing (1.1) to be satisfied, we obtain
Azl < ax sup My forall e (k=1,2,..).
1<i<ng
Thus the set AF is also bounded. By Theorem 1.1, the operator A is
continuous.
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Necessity. If condition (1.1) is not satisfied, there exists an index k,
such that to every positive integer n there corresponds an element ,
with the property ) .

iz, > n sup o, -
1<i<n

Let &, = 2,/ sup |jr,]¥. The sequence {x,} is bounded and the sequence
<
{4z} is unb:);fl?ied, since [[Az, |7 > n. By Theorem 1.3, the operator A is
not continuous. m
TEEOREM 1.5. If a continuous linear operator A maps a linear to-
pological space X info a complete linear topological space ¥, then there
exists one and only one extension of the operator A to a contimuous linear
operator A which maps the completion X of the space X into the space Y.
Proof. By the definition of completion (see §4 of the previous
chapter), elements of the space X are fundamental families. Let 4 — %
be a fundamental family in the space X. Then A(W)= {A(U): T « A}
is a fundamental family in the space Y. Since Y is complete, each funda-
_ mental family determines an element y ¢ ¥. The operator A defined by
means of the equality A2 =y, where y is the element determined by
the family A (), is the required extension. m
Let X and ¥ be complete linear topological spaces. Theorem 1.5
shows that every continuous operator 4 ¢ L(X—Y) defined on a dense
linear subset D4 C X has one and only one extension 4 ¢ Ly(X Y ). Hence
we limit ourserlves to the consideration of continuous operators defined
in closed domains. This is justified also by the fact that the essential
properties of operators 4 and A are the same. )
If X and Y are linear topological spaces, we denote by By(X—YX)
the set of all continuous operators belonging to the space Ly(X—>Y).
We write briefly By(X)= By(X—>X). The set By(X—Y) is a linear
space. Indeed, let 4, Be By (X—>Y), and let ¥V be an arbitrary neigh-
bourhood of zero in the space Y. There exists a neighbourheod of zero
W C Y such that W4 W CV. Since the operators 4 and B are continuous,
there exist neighbourhoods of zero U, and U, in the space X satistying
the conditions AU, C W and BU,CW. Let U = Uy ~ U,; then

(A+B)UCAU+BUC AU, +BU,CW+WCYV.

In a similar manner we verify that the product of a continuous oper-
ator by a number is a-continuous operator. Since the superposition of
two continuous operators is a continuous operator, we may consider
the paraalgebra of continmous linear operators

By(X->Y)

By{X = = (BD(X) By YL—>X)

By Y)) .

icm
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Let o be a-family of bounded sets in a linear topological space X.
We denote by B,(X —Y) the space By(X —+Y) with the topology determined
by neighbourhoods of the following form:

A neighbourhood of an operator A4, is the set U(4,, B,V) of all
operators A suech that (4— 4,)BC V, where Bisan arbitrary set belonging
to ¢, and ¥ is a neighbourhood of zero in the space Y. B(X >Y) is a linear
topological space with this topology.

If ¢ is the family of all bounded sets, this topology is called the
topology of bounded convergence. The space B (X —Y) with this topology
will be denoted by B(X —X). The space B(X X ) will be denoted briefly
by B(X).

If the spaces X and Y are locally bounded with p-homogeneous
norms, then the topology in the space B(X—TY) is equivalent to the
topology determined by the norm of the operator, i.e. the set U = {4:
l4— 44|l < €} is a neighbourhood of the operator 4,.

We say that a subspace Y of alinear topological space X is a projection
of the space X if there exists a continuous projection operator P such
that ¥ = {# ¢ X: Pz — z}. Evidently, the set ¥, — {# ¢ X: Py — 0} is
also a projection of the space X, and ¥ =Y QY .- The subspace ¥,
will be called a complementary subspace of the subspace ¥ to the
space X.

Let us remember that every projection operator defines a decomposi-
tion of the space into a direct sum of two subspaces.

If a projection operator P is continuous, then the subspaces ¥ and Y L
induced by P are closed. Indeed, the inverse image of a one-point set {0},
which is obviously closed, is the space Y .Since I—P is also a continuous
Projection operator and the space Y is the inverse image of {0}, the spaces ¥
and Y, are both closed.

By Theorem 0.3, if X, is a subspace of a linear space X, the
space X can be written as the direct sum of X, and some space Z: X =
=X, ®Z.

If X, is a closed subspace of a linear topological space X, we cannot
always find a closed subspace Z such that X — X, P Z. Hence it is not
for every subspace X, that there exists a continuous projection operator.
In the general case it is not sufficient even if X, is a finite-dimensional
space. This follows from

THEOREM 1.6. Let X, be an n-dimensional subspace of a linear to-
pological space X. The subspace X, is a projection of the space X if and
only if there exists a system of continuous functionals f,, weey Ju Such thai
the condition

weX, and f@)=0 for i=1,2,..,n

tmplies x = 0.

Equations in linear spaces 11
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Proof. Necessity. Since X, is finite-dimensional, there exists a system
of continnous funetionals {f3} on X, such that f¥z)=0fori=1,2,
jraplies 4 = 0. Let f,(x) = f%(Px), where P is a projection operator on the
subspace X,. The functionals f; are defined on the whole space X and are
continnous as superpositions of continuous operators. Bvidently, if # ¢ X,
and f,(#) = fYx)= 0 for i=1,2,...,m, then o =10.
Sufficiency. It is easily shown that there exist elements e; e X, such
that L g o
or i=7,
MeD=10 tor i#j.

Indeed, let {e,..., a} De a basis of the space X, and let

Pw=2f;(m)ei

f=1

Sinece P is a sum of continuous operators, P is continuous. Moreover,

Por = 2[2]‘; w)eg] ey = Zf, (v)e; = Pz .
=1 {i=1
Hence P is a projection operator.

CoroLLARY 1.7. If there ewists a total family of linear functionals on
a Umear topological space X, or if, in particular, X is a locally convex space,
then every finite-dimensional subspace X, is a projection of the space X.

The following notion of continuity with respect to an operator
(B. Sz. Nagy [1], [2]) is of importance in the theory of perturbations of
unbounded operators.

Let an operator A ¢ L(X—>Y) be given. We define a new topology
in the set D4 by taking sets of the following form as a family of neigh-
bourhoods of zero:

UndA™),

where U and V are neighbourhoods in spaces X and ¥, respectively,
and A~*(V) is the inverse image of the set V.

The set D4 with this topology will be denoted by X4. It is easily
seen that the operator A transforms the space X, into the space ¥ con-
tinnously. An operator B e L(X—>¥) is called A-continuous if DzD D
and the restriction of B to the set D4 transforms X4 into ¥ continuously.

Evidently, every continuous operator is A -continuous.

If X and Y are linear metric spaces and if B ¢ L(X —Y) is an A-con-
tinous operator, then the topology in the space X4 can be defined by
means of the norm

lol = |lollx +l| 4zl ,

cm
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where || [z and || [ly are norms defining topologies in spaces X and ¥,
respectively.

§ 2. Equicontinuous operators. et X and Y be linear topological
spaces. Let A be a subset of the set B(X—+Y), not necessarily linear.

We say that the operators belonging to the set A are equicontinuous
if for every neighbourhood of zero ¥ C Y there exists a neighbourhood
of zero UCX such that ATCYV for all 4 9.

Let % be a family of operators from By(X ~ ). The family 9 is a family
of equicontinnous operators if there exists an operator 4, such that A(T)
C 4,(U) for every neighbourhood U and every operator A ¢ 9. If X and ¥
are linear metric spaces, the condition 4(U) C 4,(U) can be expressed by
means of the norms as follows: [[da] < {|de2] for all z € X.

A closed subset ¥ of a linear topological space X is called a barrel
if for every element w ¢ X there exists a positive number a, such that
bz eV for |b] < a,.

A linear topological space X is called a barrel space if every barrel
¥V CX contains an open set (Vilansky [1], p. 224).

TuEOREM 2.1. If a linear topological space X is a barrel space, then
every convex barrel VC X contains a neighbourhood of zero.

Proof. Since X is barrel space, every barrel ¥V C X contains an
open subset U. Let © ¢ U. Since V is a barrel, there exists a number a > 0
such that —ax e V. It follows from the properties of convex sets that
the set

conv(U v {— ax})\{— az}

is open. Obviously, this set contains zero. m )
THEOREM 2.2. Bvery linear topological space X of the second category
is a barrel space.
Proof. Let VCX be an arbitrary barrel. Let us write

={ne: eV},

‘where n =1, 2, ... Since ¥ is a barrel, we have X C U nV. But the space X

is of the second category. Hence there exists an mdex 7, sSuch that the
set m,V is of the second category. Thus the set ¥ is of the second category.
Since V is closed, V contains an open set. m
THEOREM 2.3. (Banach, Steinhaus.) Let X be a barrel space and let ¥
be a linear topological space. If a family U C By(X->Y) of operators is such
that the set {Ax: A « U} is bounded for every x € X, then the family A is
EqUICONTINUOUS.
Proof. Let ¥ be an arbitrary neighbourhood of zero in the space X
and let V; be a balanced neighbourhood of zerc such that 1+V cCvV.
11*
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We write B
U= 47V .
AeA

Since the operators A ¢ are continuous, the set U is closed. We
show that the set U, is a barrel. Indeed, let # ¢ X. Then the set {Aa:
A e} is bounded. Hence there exists a number a such that adz eV,
for all operators 4 €. Thus, az ¢ U;. Since @ is an arbitrary element
of the space X, this implies that the set U, is a barrel.

The assumption that X is a barrel space implies the existence of an
open set U,C U,. Let @, ¢ U,. The set {Ax,: A A} is bounded. Hence
there exists a number b, |b} < 1, such that bAx, «V,. Thus, bxye U,.
Let U be a neighbourhood of zero of the form U = b(U,—a,). Then we
have for all ze U

Ar = bAx'—bAr,, where ' ¢U,.

Hence Az ebV;—T;CV,+V;CV. Consequently, A(U)CV for all oper-
ators A ¢9. Since the neighbourhood V is arbitrary, this implies the
equicontinuity of the family %. m
COROLLARY 2.4. (Banach, Steinhaus.) If X and ¥ are complete linear
metric spaces, and if a family A C B(X —~Y) is such that the set {Az: A A}
i8 bounded for every fiwed x ¢ X, then lim Az = 0 uniformly with respect
0

to operaiors A .

THEOREM 2.5. Let A, be a linear operator possessing the following
property: for every fived x ¢ X the element A,z is a point of accumulation
of the set {Az: A e N}, where A C By(X—~>Y) is a family of equicontinuous
operators. Then A, 18 a continuous operator.

Proof. Let V be an arbitrary neighbourhood of zero in the space Y,
and let W be a neighbourhood of zero in Y such that W+W CV. Since
operators belonging to the set 9% are equicontinuous, there exists a neigh-
bourhood U such that AU C W for all A 9. We fix an element e U
arbitrarily. There exists an operator A ¢« for which Azx— Az e W.
Hence A2 AU+WCW+WCV. Thus A, UCYV, which was to be
proved. W

CoROLLARY 2.6. If X and Y are complete linear meiric spaces and if
the sequence {An} C By(X —Y) is convergent at every point, then the operator
A =1lim 4, belongs t0 B{X—+Y).

-0

Proof. The linearity of the Jimit follows from the rules for arithmetic
operations on limits. Since the sequence {4,} is convergent, it is obviously
bounded at every poin.. By the Banach-Steinhaus Theorem 2.2, the
operators A, are equicontinuous. Applymg Theorem 25 we ﬁnd that
the limit operator is continnous. m ;

cm
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A set B C X is called {otal if the set of linear combinations of elements
of ¥ iz dense in X.

THEOREM 2.7. If X and Y are complete linear metric spaces and if
a sequence {4} C ByX ~TY) of equicontinuous operators is convergent to
an operator A on a total set B, then A « B(X—Y) and Apz— Az for all
reX.

Proof. If 4pz-—+Ax on a set E, then this convergence holds also
for any linear combination of elements of E, i.e. on a certain dense set D.
Let ¢ be an arbitrary positive number. By the assumption of equiconti-
nuity, there exists a 6 > 0 such that the inequality lr— || < 6 implies
ldpr— Az’ < e for all n. Hence

lAmr— dn@l < [Adma'— Ap2'| + | Amr— Ana’|| + [ Adpz— dpa’ll < 32 .

Since the space Y is complete, Ax=limd,2 exists. By Theorem 2.3,
n->o0
the operator 4 is linear and continuous. m

§ 3. Continuity of the inverse of a continuous operator in complete linear
metric spaces.

THEOREM 3.1. (Banach [2].) If X and Y are complele linear metric
spaces and if A € B(X —>Y) maps X onto Y, then the image AU of any
open set UCX is open.

Proof. Let A CB(X—~Y). We prove that the closure AT of the
image of an arbitrary neighbourhood of zere U in the space X contains
a neighbourhood of zero in the space Y. Since a— b is a continuous function
of arguments a and b, there exists a neighbourhood of zero M in the
space X such that M— 2 C T. The sequence {x/n} tends to zero for every
2 e X. Hence z « nM for sufficiently large n. Thus

X= UMM Y:AX:G%AM.

n=1 fn=1
By the Baire theorem (Theorem 5.2, I) on categories, at least one of the
sets n.AM contains a non-void open set. Since the map y-+ny is a homeo-

morphism of the space ¥ onto itself, the set AM contains also a non-
void open set V. Hence -

"AUDAM—AMDAM—AMDV—V.

The set (a—V) is open because the map y—a—y is a homeomorphism.

The aet V—V = [ {a—V) is open as union of open sets. Moreover,
aeV

V—7¥ contains 0. Hence it is a neighbourhood of zero. Thus the closure
of the image of a neighbourhood of zero contains o neighbourhood of
zero. )
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Given any & > 0, we denote by X, and ¥, balls with centre at the
point zero and radii ¢ in spaces X and Y, respectively. Let & >0 be

o

arbitrary and let & > 0, where > 's; < . As we have already shown, there
=1

exists a sequence {7} of positive numbers convergent to zero such that

(8.1) AX, DY, (i=0,1,.).
Let y € ¥, . We show that there is an element # € X,,, such that Az = y.
Formula (3.1) implies the existence of an element #, ¢ X, satisfying the
inequality lly— Aa,|| < #,. Since y— Az, ¢ ¥, , taking i = 1 in formula (3.1)
we conclude that there exists an element x, ¢ X, such that |y— Az,—
— Az]| < 5. In this manner we may define a sequence of points {w.},
%, € X, , such that
n

(3.2) [y_A(Zm,)] <y =0,1,..).

im0
We take z,, = @4+ ...+ 2,. Then |, —2,ll = [[@p s+ 25l < gy + o+
+£m for m > n. Hence the sequence {z,} is fundamental. Consequently,
the series @,+#;+... is convergent to a point z for which

llzll = Lim [jea]] < lim (go+er+...+en) < 2g.

Since the operator A is continuous, formula (3.2) implies y = Ax. This
proves that an arbitrary ball X,, with centre 0 in the space X is trans-
formed onto the set AX,, containing a certain ball Y, with centre 0 in the
space Y. Hence the image of a neighbourhood of zero in the space X
by means of the operator A contains a certain neighbouthood of zero
in the space Y.

Now, let U C X be a non-void open set, let # ¢ U, and let ¥ be a neigh-
bourhood of zero in X such that #+¥ C U. We denote by M a neigh-
bourhood of zero in the space ¥ satisfying the condition AN D M. Then

AUD A(w4+N)=Ae+ AN D Aw+M .

Hence AU contains a neighbourhood of -each of its points. m

TeroREM 3.2. If X and Y are complete linear metric spaces and the
operator A e B(X—>Y) is an isomorphism, then the imverse operator
Al e B{X ).

Proof. Let AX =Y. The map (4™)~*= A transforms open sets
onto open set. (Theorem 3.1). Hence the operator 4™ is continuous. m

CoROLLARY 3.3. If X and Y are complete linear metric spaces and an
operaior A e By X ->Y) is of finite deficiency: Ba<< 4 oo, then the set By
18 closed,

cm
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Proof. Let 4 e B(X—Y) n Dy (X—>Y). Let € be the quotient space
X|Z4. By hypothesis, ¥ = B,®GC,, where dim ¢, < + oo
Let Xoy= ©x ¢ with the natural topology of a product. Evidently,
X, is a complete space. Let
A%  for
A=
- for

ze®,
ze@,

where A° is an operator induced by A in the quotient space (.

The operator 4, is a continuous and one-to-one map of the space X,
onto the space Y. Hence 4, has an inverse 47*. By Theorem 3.2, 47718
continuous.

Since the subspace € is closed in the space X,, the subspace

B = (4771(®)
is closed as the inverse image of a closed set by means of a continuous
operator. m

CoROLLARY 3.4. If X and Y are complete linear meiric spaces with
total families of functionals and A € DX —>Y) is a continuous operator,
then there exists an operator R4 e By(X—Y) such that

AR4—I and RsA-—-1I
are finite dimensional operators.
Proof. We write the spaces X and Y as direct sums:

X=Z:0C, Y=E5:06,

where © is a closed space. (See Corollary 1.7.)

Let A, be the restriction of the operator A to the space €. By Co-
rollary 3.3, the set E, is closed. Hence, by Theorem 3.2, the operator 47,
whien maps the subspace 4 onto the subspace ¢, is continuous. Let Ry
be an arbitrary extension of the operator A;*to the space Y. Since the
subspace §; is finite-dimensional, the operator R4 is continuous. It is
easily verified that the operator R4 possesses the required properties. m

CoBOLLARY 3.5. If X and Y are complete linear metric spaces with
iotal families of functionals then the paraalgebra

By(X—-Y)

By(X = ¥)= (Bo(X) BT —X)

By Y))
s regularizable.

§ 4. Locally algebraic operators. An operator A4 e LX) is ecalled
locally algebraic if for every # ¢ X there exists a (non-zero) polynomial
P,(t) such that P (4d)z= 0.

THEOREM 4.1. (Kaplansky [2].) If X is a complete linear meiric space,
then every locally algebraic operator A e By(X) is algebraic.
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Proof. We apply the method of categories. Let X, = {# ¢ X: there
exists a polynomial P of degree < n such that P(4)z = 0}.

We show that X, is a closed set. Let us suppose that {w;} C X,,
i.e. that there exist polynomials P; of degree < n such that Piy(d)z; = 0,
Moreover, let the sequence {z;} be convergent to an element 2 ¢ X. One
can normalize all coefficients of the polynomials P; so as to make them
absolutely < 1. Moreover, one of those coefficients can be assumed to
be equal to 1. There exists a subsequence {P;} of the sequence of poly-
nomials {P} convergent (*) to a non-zero polynomial P such that P(4)z =0
and the degree of P is < n. Hence z ¢ X,, and the set X, is closed.

Since the space X is equal to | Xy, Baire’s theorem on categories
n=1

(Theorem 5.2, I) shows that at least one of the sets X, has a non-void
interior U. Let y be an arbitrary element of that interior. The set U— ¥
is & neighbourhood of zero and each of its elements is anihilated by
a certain polynomial of degree < 2n. Multiplying the neighbourhood U
by scalars we find that this property holds for an arbitrary element of
the space ¥. By the Kaplansky Theorem 5.2, A II, the operator 4 is
algebraic.

§ 5. Basis of a linear metric space and its properties. Let s complete
linear metric space X be given. A sequence of elements {e,} C X is called
a Schauder basis (J. Schauder [17) or simply a basis of the space X if every
element @ ¢ X can be represented uniquely as the sum of the series

oo
&= Zh&z s

i=1
where the coefficients ¢; are scalars. .
Evidently, if a space has a basis, then it is separable. Let us write

[#]n = jt_—ei .

=1
THEOREM 5.1. If X is a complete linear metric space with a basis {en},
then all operaiors Pnz = [x], are equicontinuous. ;
Proof. Let us denote by X, the linear space of all sequences of
o :
numbers y = {n;}, such that the series 2 migi is convergent. We define

=1
& norm in X, in the following manner:

(5.1) C el = sup| Smecﬂ.

(') By the contergence. of o' sequence of polynomials we understand the convergence
of all sequences of epefficients of these polynomials. . S

icm
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It is easily shown that X, is a linear metric space with this norm. We
will show that X, is complete. Let a sequence {yz} be given, where

Y= {Tl(ik)}€xl (i=1,2,..),
and let {y,} satisfy the Cauchy condition. For an arbitrary & > 0 there
exigts a natural number m, such that

n
Wn— 2l = sup] NI —yPled <o it m, k> m,.
7 =1

Consequently, the inequality
n
(5-2) |2 I — ey < e
Li;ll u
holds for k, m = m, and for an arbitrary n. Hence it follows that
‘ n i R n—1 "
I — e, < 512; [ —1Te + | X [ —nle < 2.
= g
Consequently,
~ lim (g — ) = 0
m, k—oo
for an arbitrary ». Thus, the sequence of numbers {3{™} is convergent for
every fixed n. We denote its limit by #a.
If we take k—oco in inequality (5.2), we obtain
n

D —nl-el<e

i=1

(5.3) }
for an m > m, and for an arbitrary n. Now, let us write

n k3
s = Zni.”')ei y = 2"71“% .

=1 i=1
Taking into account inequality (5.3) we obtain

“'gn-l-p“' Snn* < ”82(3—)11_ Sﬁﬂ) “* +2¢

for m = m, and for arbitrary indices » and p.

Let an arbitrary number o > 0 be given. We choose a number ¢ > 0
in such a manner that 2& < }o. Now, let us fix an index m > m, and let
us choose a number » such that the inequality

*
s, — s < do0

holds for n > n, and for an arbitrary p. This is always possible, because
Nod - -
the series }'n{™e; is convergent. Hence the inequality

Q=1
”Sn-!—p“- Sm”* <o
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holds for n > n, and for an arbitrary p > 0. Thus the series

L)

Z Nt ei

i=1

is convergent and y = {n;} € X,. Since inequality (5.3) gives the estimation

n
sup| [ —nlef<e for mm,,

=1
i.e. the inequality

W—yml*<e for m>m,,

the space X, is complete.
Evidently, to every element # = S’t; 6; € X there corresponds exactly
one element y, = {I:} ¢ X;. Gonverse{;: to every element y = {n:;} ¢ X,
there corresponds exactly one element my, e X, namely @, = g‘mei. Thus
=

=1
an operator & = A,y is defined and is a one-to-one map of the space X,
onto the space X. It is easily seen that 4, is a linear operator. It is also
continuous, because

14yl = ol =| }:’ tied < sup| ) tied] = lyl* .
i=1 T =l

Hence 4, is a continuous linear operator which maps the complete linear
metric space X; onto the complete linear metric space X one-to-one.
By Theorem 3.2, there exists the inverse operator A;* which is also linear
and continuous. Consequently, A5t is bounded. Hence it follows that

.1 =] Z tied < Iyl < 1457 .

Thus the operators P,z = [¢], are equicontinuous. m
Henee, if X is a locally bounded complete space with a p-homo-

geneous norm | || and with a basis {és}, then there exists a - positive
number K such that
(5.4) izl < Kzl for all ».

The least number K satisfying condition (5.4) is called the morm of the
basis.

Theorem 1.1 implies that f; from the equality z = Zc‘ct;e{ are con-
‘binuou' linear functionals. These functionals will be called I;:ew functionals
and will often be denoted by i=qiz) (i=1,2, L)

iom
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Let there be given two linear metric spaces X and ¥ with bases {ea} and
{fx}, respectively. We say that the bases {en} and {f»} are equivalent if the

o0 oo
series ) 'tnen is convergent if and only if the series }'tnfn is convergent.

n=1 n=1
THEOREM 5.2. If bases {en} and {fn} of linear meiric complete spaces X

and Y, respectively, are equivalent, then the spaces X and Y are isomorphic.
Proof. As before, we denote by X, (resp. ¥;) the space of sequences

0
{ta} such that the series }tne, is convergent, with the norm
n=1

Hm{l} = SEP n;’: t«;eiﬂ

o0
(resp. the series ) tnf» is convergent, with the norm
n=1

)-

Iyl = sup| 3t
B =1
As we have shown in the proof of Theorem 5.1, the spaces X, and ¥,
are both complete. Let Z be the space of sequences z—= {,} such that

the series ) inen is convergent, with the norm
n=1

llellz = max ([l lelly) -

The space Z is complete, for if {z,} is a fundamental sequence in the
norm || |iz, then it is fundamental in both || |k and || ||3. Hence it is con-
vergent to some elements 2y = {{X}and 2y = {if }. But the basis functionals
are continuous. Thus ¥ = ¥ and zx = 2y-

It is easily verified that the sequence {2,} is convergent in the norm | |lz
to the element 2= zx. Hence the space Z is complete.

Evidently, the space Z is transformed onto spaces X, and Y, con-
tinunously if we associate the sequence {i,} with the same sequence {ia}.
By the Banach Theorem (Theorem 3.2), the spaces X; and ¥, are iso-
morphic to the space Z. Hence X, is isomorphic to ¥;. We have shown
in the proof of Theorem 5.1 that the space X, is isomorphic to the space X
(¥, is isomorphic to ¥, respectively). Hence the space X is isomorphic
to the space Y. ®

We say that a linear topological space Y is spanned by a sequence {ex}

TamorREM 5.3. If & sequence of linearly independent elements {en}
in a complete linear metric space X is such that the operators Pn = [l
are equicontinuous in the set X, = lin{e,}, then the sequence {en} is & basis
of the subspace spanned by {ea}.
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Proof. It follows from the continuity of the operators P, that P,
can be extended to the space X, uniquely. Moreover, the extensions P,
are also equicontinuous.

Let Xy = {#: & = }'tnes}. Evidently, X, C X,. Since the operators P,

n=1

are equicontinuous, the sequence {e,} is a basis of the space X,. We show
that X, is a complete space.

As in the previous theorem, we show that the space X, of all sequences
of numbers {#;} such that

) = sup | tied < +oco
n i=1

is complete in the norm |{#;}]l. Bvidently, Jul| < {{f:}l, where s — Dlties.
i=1

On the other hand, z—-0 implies [}{t;}||—0, by the equicontinuity of the
operators Pn. Hence the map associating the element # with the se-
quence {l,} is an isomorphism continuous in both directions. By Theo-
rem 5.4, I, the space X, is complete. Since the space X, is dense in the
space X, we have X,= X,. m

CoROLLARY 5.4. Lei X be a complete linear metric space with a basis {e,}.
Let t,,1s, ... be an arbitrary sequence of nmumbers, and let py, p,, ... be an
inereasing sequence of indices. Then the sequence {e,}, where

Py
€= 2 ey,
T=py+1

s a basis of the space spanned by {c.}.

CoROLLARY 5.5. A sequence {e,} of linearly independent elements of
a linear meiric space X is a basis of this space if and only if the following
two conditions are satisfied: .

(1) linear combinations of elements en are dense in- the space X,

(2) operators Pni = [#], are equicontinuous in the space lin{e,}..

COROLLARY 5.6. A sequence {e,} of linearly independent elements of
a locally bounded complete space X with o P-homogeneous norm || | is o basis
of X if and only if the following two conditions are satisfied:

(1) linear combinations of elements e, are demse in the space X,

(2) there exists a number K such that

gznt,efﬂg Kﬂ{g"‘e‘” ‘

i=1

for an arbitrary n.

icm
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THEOREM 5.7. Let X be a complete linear meiric space with a basis {en}.
Let {zn}, loxll = 1, be a sequence of elements of the form
@y = Zt&")e,- ,  where lim P =0.
i=1 koo
If {en} is an arbitrary sequence of positive numbers, then there exist an in-
creasing sequence of indices {pa} and a subsequence {xx } of the sequence {ry}
such that

. Py N
Hmkn— 2 t(fk)eiw[]< e .
i=pnt+1
Proof — by induction. Let p, =0, 2, = 2,. We denote by p, an
index satisfying the inequality
k£) ,
Hm,~ Zt‘i”e,.‘fi < & -
=1

Let us suppose that the element x;,_, and the number p, are already

chosen. The assumption lim #® = 0 implies the existence of an element Zx,
N k—o

Dy
S

Let p,., be a number satisfying the inequality

such that

l<§an.

) Ppiy i
Hmk,— Z t(ikﬁ)giﬂ < ie,-
i=1
Then

Pty
Ba:kn— 2 t(f"‘)eiﬂ< & W
T=pp+1

THEOREM 5.8. If a locally bounded space X has a basis {en}, then
every infinitely dimensional subspace X,C X comtains a subsequence {&n}

= {f t2e:}, |lo,ll = 1, such that im;t?= 0 fori=1,2,..

1;1‘0 of. Let us suppose that the theorem is false. There ixists a Pos-
itive integer k such that the conditions # e X, jgfl = 1, # =f§lt,,e,. imply
{llz]]] = max || > e. Henee there exists a one-to-one fransformation of

1<i<k

the space i, onto the space Xj of all systems of nm.nbers. j{?i, e e} w.hich
is continuous in both directions. Consequently, X, is a finite-dimensional
space, which contradicts the assumption. B
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§ 6. Examples of bases in linear metric spaces.
Exavrre 6.1. The sequence
6n={6nk}, n=1,2,..
(3, being the Kronecker symbol) is a basis in spaces co and ®, p > 0.
This basis is called a standard basis.

ExaMpiE. 6.2. There exists also a Schander basis in the space C[0,1]
(Schauder [7]). It is constructed in the following manner:

X

g (1)

N
W

F IR

0

N[>
o

Fig. 9. Schauder basis of the space O[0, 1]

We define a function wum(f) (0 <i< 2% k=0,1,...):

if t ¢ [4/2%, (i--1)/2%], then wum(f) = 0;

if te[i/2%, (i+1)/2%], then the graph of ww(f) is an isosceles triangle
with altitude 1.

Every continuous function #(¢) in the interval [0, 1] can be umquely

written in the form of a series
oo 261

a(t) = at +a(l—0)+ D' ¥ awun(t),
k=0 i=0
where a, = (1), a;= «(0), and the coefficients az; can be uniquely de-
termined by a certain geometric construction. Namely, we draw the
chord I(?) of the arc # = &(f) through the points #/2* and (-+1)/2%. The
number ay; is given by means of the formula
2i+1)_ (2'£+1)

Oy; = & — T
( 2k+1 2k+1

icm
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Evidently, the graph of the partial sum

§—1 2k—1

apt - ay(1—1) + Z 2 s Uugi(t)

k=0 i=0

is a polygon with 2°4-1 vertices lying on the curve x = x(f) at points
with equidistant abscissae. It is proved that the sequence of functions

Ty 1—1; ug(2); wiolt), un(t); uso(t), un(t) , Uss()3

is a basis of the space C[0, 1].

ExAMPLE 6.3. Let H be a Hilbert space with a sealar product (z, ).
A sequence of elements {e,}, e, # 0, iz called orthogonal if (en, em)= 0
for m # n. If, moreover, |lesli = V(en, €s) = 1, the sequence {e,} is called
orthonormal.

Every orihogonal sequence {es} is a basis of the space H,= lin{en}.

Indeed, if o= Zaﬂe,,, then

llalfp = (2 @nen, Zane,. = 1%13 lenl? -

fa=1 n—
Hence

lwlnliz = D lanleallt < Jiol

fn=1

By Theorem 4.3, the sequence {e,} is a basis.

Let us remark that if {e,} is an orthonormal sequence, then the coef-
ficients of expansions of elements # « H, constitute the space 7%, and the
map z->{a,} i3 an isometry, i.e. the norm || in the space Ho is equal
to the norm |{a,}| in the space I

If linear combinations of elements e, are dense in the space H, then
H,= H and the sequence {en} is a basis of the space H. A basis made
of elements of an orthogonal (orthonormal) sequence is called an orthogonal
(orthonormal) basis.

Since the space H, and I* are isometric, a neeessary and sufficient
condition for H = H, is that an = (®,e) =0 for n=1,2,... should
imply »= 0.

In. every separable Hilbert space there exists an orthonormal basis.
Indeed, let {w,} be a sequence of elements such that linear combinations
of z, are dense in the space H. Without loss of generality we may suppose
that all elements #, are linearly independent. We construct an ortho-
normal sequence {e¢;} by induction. We require the subspaces spanned
by elements @, ..., #n and by elements e, ..., &, to be equal. Let us take
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e; = o,/]jw,). Let us suppose that the elements ey, ..., én are already de-
fined. Let

n
’

bns1= ";»+1/”5;+1” , where €, = &y, — 2(“’n+1; erey, .
he1

Evidently, lle,,,[| = 1. Moreover,

n
(Cnirs €)= (mn-n“ Z (CHRPEA LY @j)
k=

= @pry; )~ @pyqs)=0 for j=1,2,..,n

and this is what was to be proved. B
Let us consider the space I2(Q2, X, u). This is a Hilbert space with
a scalar product (z,y) = [z(t)y(t)du.
Q

In the space [* the sequence {e.} = {{6nt}} is an orthonormal basis.
In the space I7[0,1] the sequence of functions ™ (n =0, 41,
+2,..) is an orthonormal basis.

T—— ) M (D o ryt)

P[RR
-

t -1 —_— -1 _

Fig. 10. The Rademacher system

Another orthonormal system is the Rademacher system. This system
is made of functions ru(f) defined in the closed interval [0, 1] as follows:

75(0) = 0
1 for k—;l < ték if % is an odd number,
2 2"
ra(t) = .
—1 for =L

< th; if % is an even number,

211.

where k=1,2,...,2% n=1,2,... If we disregard the countable set
of points of the form %/2*, we obtain

ra(f) = sgnsin2=t  for 0<CE<<1.

From the' definition of r,(f) it follows immediately that the system
{ra()} is orthonormal. However, the Rademacher system is not a basis,

iom
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-1

because taking
and <1,

w(t)=1|

+1 for O<i<
-1 for i<t

1
Y
3
E]

A

we have (z,r7) = 0 for all j, but z + 0.
We now give the construction of the Haar orthonormal system. Let
hoyot)=1 for 1e[0,1],
Byo(0) = 1,
h,{0)=0 for j>0,
1 for (j—L)2*<i(@—1)2™",
BB =1—1 for (Z—1)2"< it 2",
0  for remaining t€[0,1] (j=0,1,..,2" n=1,2,..).
The sequence

1, hos hugs Paos hopy Bops Rogy Bogy Tiggy oo

is an orthogonal system. Dividing functions of this system by their norms
in the space I*0,1], we obtain an orthonormal system {hm}, where
by = Ry 3/l ill, m = 2"-j. This system is called the Haar system.

hy (1)

Fig. 11. The Haar system

We show that every simple function

om+1

g= 2 bix[f—1 i

i nHl ? onl
can be written as a linear combination of the functions

h—1,07 ho,u ey hn,17 L] hn,zﬂ -

Proof —by induction with respect to n. If n = —1 the theorem
is obvious. Let us suppose that the theorem iy true for == k—1.

Equations in linear spaces 12
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Let a function
ok+1

1) = bygri-r i
() é‘ g, ot

be given, and let
ok

bos—1+ D
1) = g ATy i
9l0) g 2 "+l

Tt is easily verified that

2%
bas—1+D
9= gD+ ) S s
i=1
By the induetion hypothesis, go(f) is a linear combination of functions
By oy Bp—yzen - Hence g(t) is a linear combination of functions
h—l,l:'“? hhgg. [ |
Since the functions of the form

n
1) = biypi-r s
g(t) ,2.,; E L=
are dense in the space I?[0, 1], the Haar system is a basis of this space.

BxAMPLE 6.4. The Haar system is a Dasis of the space LF[0,1],
p=L ‘
Indeed, let us write

Oni = x[i—l AN
on on
In the same manner as in the last example one can prove that each of
the functions
g1 o3 Inans Tn1s <oor Tntr2d

can be writhen as a linear combination of functions Ry, ..., Ronyy. The
functions gy ji1s -5 Inaves form an orthogonal system. Hence the projection
operator Py on the space Hp, spanned by the elements hy, ..., bm can be
written in two ways:

m
[@lm+Pz, where Pr= 2 (=, Bl

§=1
and
Pom (@, gns) gt oo T () Gnsra) Iusans
TgmralE 2 n,d+1) Gnd+1 Tgmenail? 3 Int1,87) In1,29
Since

[m(r)h:&'ﬂfw(t)dt for vel,
Iy

cm
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where )
[ Gy for 1<2"—j,
(I—2m+j—1)j2m*, (1—2" +h)evY) for  1>2—j,
we get

m

1Pl = o= ( D] [awad] ;Ikx)w
Ix

k=1

< ( 2] Ik[l“’_‘ (If e ()] dt)p)llp

<(2 f iw(tn%)w: liell

k=1 Ix

for Holder’s inequality (see the Appendix) implies

[ lemlar= [ loi-1d < ( [ lo@par)’ L.
Ix Ix T

Hence it follows that the operators Pp are linear and continuous, with

the norms [|[Pnl| <1 (substituting #(f) = 1 we find that ||Pn| = 1). More-

over, the operators Pp = [2]n are equicontinnous. Hence the Haar

system is a basis of the space L*([0,1]), by Theorem 4.3.

§ 7. Continnous operators in spaces with a basis. Let us suppose
that ien} and {e,} are bases in the linear metric spaces X and ¥, re-
spectively. Elements of the spaces X and Y can be represented by means
of sequences of coefficients of expansions with respect to the bases. Those
sequences will be denoted by {&:} for # € X and by {a} for y ¢ Y. To any
map y = Az, where A € B(X—~Y), there corresponds a map defined on
sequences of coefficients of expansion in a basis. Since there is no danger
of confusion we shall denote both operators by the same letter A.

Thus, with every operator 4 one can associate the matrix of transfor-
mation of the coefficients

[ |
N L e e
(7.1) )@ IR

Qny Ong «-« Gun

“Let B B

oo 00
‘”zzfcet‘x; yszmeify.

i=1 =1

12%
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We consider the operators

A,z =[4z], and A, 0= A4,[],.
We write
ax  {(i=mn), ar  (1<<n, k<m),
= iy =
[lhk}n 0 (i > ‘”) ; [ zh]mn 0 (i 1 or b m.) ‘

Applying this notation we introduce the following matrices:

_[all]n [(11‘2]11 bl [alk]n bl ] i ayy al:'! b alk b 1
[Aln = [aﬂ]n [ai‘z]n [aﬂl\]n ==y Gy oo Qg ’
0 .0

_[a'll]mn [am]nm b [a’lk]nm all al’ alm 0
[AJem = | [@slpm [Bsalnm - (20 dnm g G oo Qg O ’
0 0 .0 O

It is easily seen that these matrices correspond to the operators Ay
and Agpm introduced before. Indeed, if we put y = Az and A,z = {{nxl},
Anm@ = {[K]nm}, we obtain

]

= @i & .'< 3
| T e (<)
0 (i>mn),

ie.
(%3] = Z[Qik]nfk (i=1,2,...).
k=1
Hence it follows that

m =<1
[7lam = 2[aik]n§k= Z[aik]mfk (t=1,2,..).
k=1 k=1
THEOREM T7.1. (Cohen—Dunford [1].) If linear metric spaces X and ¥
possess bases and A e B(X—+Y), then for every xe X
limAd,2 = Az and lim Apmr= 4dx.

n—0 n,M—00

Proof. Since lim [y}, = ¥, we have

lim A4,z = lim[d2], = Az (zeX).
n—o0

n—>00
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By the Hahn-Banach theorem, the operators 4, are equicontinuous,
i.e. for every ¢ > 0 there exists a § > 0 such that ||| < & implies 4,5} < &
(n=1,2,..). We choose numbers ¥, M in such s manner that

#ln—all <6, |doz—Adn|<e for m=M,n>=XN.
Then

45— Anmal| < |A2— Anzi + | Ans— Aol 2Tm]] < 2e
for m > M, n > N. Hence
lim Appe= Ax

n,m—o00

(xeX). m
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CHAPTER III
@-OPERATORS IN LINEAR TOPOLOGICAL SPACES

§ 1. Closed operators, Let X and ¥ be linear topological spaces.
We have called the set

Wai={(z,¥y): #eDs, y= Az} CXXY

the graph of the operator A e L(X—Y) (compare § 1, A I).

We say that an operator 4 ¢ L(X—~Y) is closed if its graph is closed.
If X and Y are linear metric spaces, then this condition can be formulated
as follows: an operator A ¢ L(X—Y)is closed if the conditions {#,} C Da,
zp—>x and Axp—y imply €Dy and y = Az. :

TaeoreM 1.1. Let X and Y belinear topological spaces. If A ¢ B(X —~Y)
and if the domain D4 C X is closed, then the operator A is closed.

Proof. It is sufficient to show that the complement of the graph W4
is open. Let (@, Yo) ¢ Wa. If 2, ¢ D4, then there exists a neighbourhood
of zero U such that

(e +U)nDg=0.

By the definition of the graph, it follows that for every neighbourhood
of zero V in the space Y we have ’

W((-’”ﬂs Yo)s Uz V)" 4=0,

where W((@y, ¥o), U, V) is the neighbourhood of the point (2, y,) in the
product X XY, determined by the neighbourhoods U and V. If z,e Dy
and (@,, ¥,) ¢ Wa, there exists a neighbourhood of zero V in the space ¥
such that ¥, ¢ Azy+V. Let V; be a neighbourhood of zero in ¥ satisfying
the condition ¥;+V,; C V. It follows from the continuity of the operator 4
that there exists & neighbourhood of zero U in the space X such that
A(zy4-U)C Azmy+V,. It is easily verified that

W@, %), U, Vi) s Wa=0. m

If the domain D4 of a continuous operator 4 is not closed, it is evident
that 4 is not closed.

TaeoREM 1.2. If X and Y are linear topological spaces and if a closed
operator A ¢ L(X—Y) is one-to-one, then the imverse operator A7} is closed.
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Proof. The graph of the inverse operator A~' is a subset of the
product of spaces ¥ XX of the form

W= {{y, A7) y B }.

The transformation of the product ¥ xX onto the produet X XY
associating the pair (z,y) with the pair (y,s)isan isomorphism, contin-
wous in both directions, which maps the graph W . onto the graph Wy
The graph W, is closed by hypothesis. Hence the graph W, is also
closed. W .

There exist closed discontinuous operators. Indeed, it is sufficient
to consider a continuous one-to-one operator which does not possess
a continuous inverse, for example the integral operator

¢
f o(t)dt
0
which maps the space O[0,1] of continuous functions into itself. The
inverse operator is the differential operator d/df, which is discontinuous
and elosed. It is defined in the set of all differentiable functions in the
interval [0, 1].

TaEOREM 1.3. (Banach [2].) If X and Y are complete linear metric

spaces and A e L(X—~Y) is a closed operator, then A is continuous.

Proof. By hypothesis, the graph W4 of the operator A is @ closed
linear subspace of the complete metric space X x ¥. Hence Wy is also
a complete metric space. But the projection operator P of the space Wa
onto the space X is continuous, one-to-ome and linear; hence it is an
isomorphism. Since the inverse of P is the operator associating the pair
(¢, Am) with the element # <X, A is a continuous operator. B

COROLLARY 1.4. Let X and Y be complete linear metric spaces. If
A,BeL(X—~>Y) are closed operators and DpD Da, then the operator B
18 A - continuous.

Proof. By hypothesis, B e L(X4—Y). Since the topology in the
space X4 is not coarser than the given topology, B is a closed operator
which maps the space X4 into Y. Let us remark that the space X4 is
isomorphic with the graph Wa of the operator A. Since the graph Wi
is closed, the space X4 is complete. By Theorem 1.3, the operator B maps
the space X4 into the space Y continuously. @

If an operator A e B(X—Y) is given and Y is a coIPplete _space,
then the operator 4 can be uniquely extended to an operator A e By(X ~Y),
where X is the completion of the space X (Theorem 1.4, II). This
theorem does not hold for closed operators, as the following example
shows:
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ExampLE 1.1. Let Y = ¢,. We define in ¥ a continuous operator 471
in the following manner: A y,} = {§,.,+¥/n}. The operator 4! maps
the space ¢, into itself, but is not one-to-one. Indeed, 47*{1,0,...,0,...}
= {1/n} = 47*{0, 1, 1/2, ...}. However, if we limit ourselves to the space ¥,
of sequences of 5 finite number of elements yy, # 0, A" isa one-to-one map.
Let X = A"Y(Y,). The set X is dense in the space ¢,.

The operator .4~ which maps the space ¥, into the space X is closed.
Indeed, if y,—y, A7y, —~, then ¢ X. Hence y ¢ Yy= D, and Ay = =
By Theorem 1.2, the operator 4 = (A~")™* is closed in the space X; hence
its graph W4 is closed. However, the closure of W, in the space X x ¥
is a closed set, butisnot the graph of the operator, for A~ is not one-to-one
on the whole space ¢;,. m

TeEOREM 1.5. Let X and Y be linear topological spaces, and let
A eL(X—->Y) be closed and B e L(X—~Y) be continuous. Then A +B is
a closed operator.

Proof. We prove that the map of the graph W4 of the operator A
onto the graph W,.p of the operator A-+B associating the point
{z,(A+B)a)e W, with the point (#, Az) « W is a continuous operator.
If UCW_,p is a neighbourhood, we take U,= {(#,0): (z,y)e U}
Evidently, given any neighbourhood ¥V C X there exists a neighbourhood U
such that U, CV. Let W be an arbitrary neighbourhood of zero in the
graph W 5. Since B is a continuous operator, there exists a neighbour-
hood U, such that (U,—B(U,)}n WaC W. Hence the map defined
above is continuous. Thus the graph W, is closed as an inverse image
of the closed set Ws. m

Hence it follows that continuous operators are perturbations of
closed operators. A sum of two closed operators is not necessarily a closed
operator. Indeed, let A be an arbitrary closed operator whose domain Dy
is not closed, and let B be a continuous operator. Let Ay=A+B A, =—A.
Evidently, the operators 4, and A4, are closed. Their sum is a continuous
operator B defined in a domain D4 which it not closed. Hence this sum
is not a closed operator.

§ 2. @-operators. Let X and Y be linear topological spaces. A closed
operator A e L(X—Y) is called normally resolvable if the set B4 of its
values is closed.

A normally resolvable operator

d- characteristic b -operator,
with finite { nallity will be called { @ -operator ,
deficiency D_-operator

(Gohberg and Krein [1]).
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We denote by ¥+ the set of all continuous linear functionals defined
on the space Y and having values in a field of scalars. Obviously this is
a linear space. The corresponding operator conjugate to an operator
A ¢ B(X—~Y) will be denoted by A*. (See also § 1, A IIL.) This operator
is well defined only if the spaces X and YT are total.

In §5, AIIl, we have defined ®g-operators as operators whose
dp-characteristics are equal to their d-characteristics. According to
these definitions a normally resolvable @p.-operator is a &-operator.

TeEoREM 2.1. If X and Y are linear topological spaces and X+, Y+
are total spaces, then every normally resolvable operator A e L(X —X) with
a finite d-characteristic is a @-operator.

Proof. By hypothesis, the set E4 is a closed subspace with a finite
defect, i.e. there exists a system of elements ¥, ..., ¥, such that every
element y ¢ ¥ can be written in the form

ka
y=y0+§:ai.l/i: Yoe Ba,
=1
in a unique manner.

The functionals #i(y) = a: ave linear. Since E4 is a closed set, they
are continuous. Hence f, = a ., where A7 is the conjugate of the oper-
ator 4. A

TEEOREM 2.2. {Atkinson [1].) Let X, X, Z be linear topological spaces,
and let AeL(Y—~Z) and B e L(X—Y) be ®-operators. If the set Dy is
dense in the space Y, then the superposition AB is a ®-operator and

XAB = XA+ XB .

The proof is based on the following lemma:
Lemua 2.3. Let a linear topological space ¥ be a Tirect sum of the
form
Y =ROF,
where F is a finite-dimensional space. If a linear set D is dense in the space Y,
then the set D, = D A R is dense in R, and D can be writlen as a direct
sum: D= D, ®F, where F' CD.
Proof. We denote a Dasis of the space F by {&, ..., €a}. We define
linear functionals f; in the space F' as follows:
o 1 # d=3, .
i(e:) = . (4,j=1,2,..,1).
files) 0 it ey ’ 3 =y ey
We now define extensions f; of functionals f; on the whole space ¥
in the following manner: if y ¢ ¥, then y = x4z, where 2 < R, 2 e F; we
assume that fi(y) = fq(z). By definition, the functionals f; are continuous.
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Moreover, fiy) = 0 for y ¢ B and, conversely, fi(y)=0fori=1,2,...,n
implies y € R.

Since the set .D is dense, one can choose a set of points ey, ..., e, € D
such that det[fi(e;)] # 0.

For every y « R and for every neighbourhood of zero U we have
W+U)nD #0. Let 2pe(y+ U)~nD and let

n
7= zo+24kvek )
=1
where the numbers a7 are chosen in such a manner that %, e D,. Such
numbers af exist. Indeed, 2, ¢ D. Hence Z e D, if and only if

flz) =0 for i=1,2,..,n.

Thus we obtain a system of linear equations with the coefficients al as
unknowns:
n

(2.1) D alfile) thz) =0 (i=1,2,..,n).

k=1

By hypothesis, det[fi(e;)] # 0. Hence this system of equations has
a solution.
) Let 6 be an arbitrary positive number. Since f; are continuous fune-
tionals, there exists a neighbourhood of zero U, such that if z ¢ Uy, then

<o (i=1,2,..,n).

) On the other hand, if ¢ is an arbitrary positive number, then there
G‘XIS’ES a 6> 0 such that the condition |fi(z)| < & implies that the solu-
jclons aY of the system of equations (2.1) are absolutely less than e. Moreover,
if U is an arbitrary neighbourhood of zero, there exists an &> 0 such

S LYRs 7 . ud s
that the inequalities |aj| < ¢ imply D aey € U. Generally, we may con-
=1
clude that for an arbitrary neighbourhood of zero U, there exists a neigh-
n
bourhood of zero U, such that 3 ale, ¢ U,.

k=1

Let ¥ be an arbitrary neighbourhood of zero. Let U, be a neighbour-
hood of zero satisfying the condition Uy+U,CV, and let U, be a neigh-
bourhood of zero constructed in the manner described above. Writing
U= U, nU, we have y - U~ D # 0, by hypothesis. Let 2, e (y +U) n
NDC(y+U) ~D. Then Z ez U;. Hence 7 €Y+ Uy+U, Cy-+Uy+
+U, Cy+V. By hypothesis, we have 2, ¢ D. Hence the set Di=R~D
is dense in R,

Let F'=1lin{e, ..., es}. It is easily verified that D — D,®F. m

Proof of Theorem 2.2. There is only one difference between the
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proof of this theorem and the proof of Theorem 1.1, A I. Namely, defining
decomposition (1.4) one has to require additionally that ®C D,. This
can be obtained by applying the above lemma. Moreover, one has to
remark that ADs= E4 and AD, = E4gz, where Dy =Dy~ E4s. &

§ 3. Operators conjugate to @-operators. Let a linear topological
space X be given. It may happen that X* contains only a trivial functional
(i.e. a functional equal to zero everywhere), for example as in the case
of the space S[0, 1].

By Theorem 1.3, the set X is linear. It may be considered as a linear
topological space with the topology of bounded convergence. This topo-
logy will be called the sirong topology.

TaeorEM 3.1. If X and Y are linear topological spaces, X+ and ¥+
are total spaces and A e By(X —Y), then the conjugate operator A™ ¢ (¥+—Xt)
is continuous in the strong topology.

Proof. Evidently, the general properties of conjugate operators
imply that the operator A* islinear. Let U be a neighbourhood of zero
in the space X*. This neighbourhood contains a neighbourhood U, of the
form

U,= {&: [£(z)| < ¢ for we B},

where B is a certain bounded set. Let B, = AB. Evidently, the set B,C Y
is bounded. Let V be a neighbourhood of zero in the space X of the form

V={n: gl <&, yeBi}-
Let us consider the set
ATV ={&: =A%y, neV}= {E= ATy in(dz)]<e for AzeB;}
={& || <e,reB}=U,CU.

This proves the continuity of the operator At. m

ComorLARY 3.2. Let X and ¥ be complete linear metric spaces. Lel Xt
and Y+ be total spaces. If a @-operator A belongs to L(X ) and Dy = X,
then the conjugate operator A e L(Y+—>X¥) is a P-operator.

Proof. As in the proof of Theorem 4.1, AL, using in addition the
fact that B is a closed set we conclude that o+ = B 4. On the other hand,
applying Lemma 2.3 we write the set D4 as a direct sum D4 = Z4@® Dy,
and the space Y as a direct sum ¥ = E4® G,. The operator A considered
as a map of the set D, onto the set B is one-to-one and closed; by Theo-
rem 1.2, the inverse operator A~ is closed. By hypothesis, the set Ex
is a complete space, as a closed subset of & complete space. Hence the
operator A~ is continuous, by Theorem 1.3. Hence it follows that every
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continuous linear functional & defined on the set D, is the image of some
continuous linear functional defined on F4 by means of the conjugate
operator A*. Indeed, £ = A*+y, where 7(y) = &(4~Y(y)). Since X = Z4 @D,
and since every continuous linear functional defined on D; can be ex-
tended to a continuous linear functional defined on D in one way only,
we have

Byi={& E@)=0 for weZ,}.

Hence the operator A* is normally resolvable and pa+= ay. Thus we
have proved that A% is a @-operator. m
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COMPACT OPERATORS IN LINEAR TOPOLOGICAL SPACES

§ 1. Compact and precompact sets. In § 1, I, a subset K of a linear
topological space X was called compact if every covering of this set con-
tains a finite subcovering. A subset K of a linear topological space X is
called relatively compact if its closure is a compact set.

Fig. 12. e¢-net of the set ¥

We say that a subset K of a linear topological space X is precompact
if for every neighbourhood V C X there exists a finite system of points

Zyy -ery @p € X such that K C U (@:+V)-
=1
If X is a linear metric space, a set K C X is precompact if and only
if for every positive number ¢ there exists a finite -net, i.e. a system
of points @, ...; &, such that for every point « e K there exists an index 1

satisfying the inequality o(z, #:) < e.
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A subset of a precompact set is precompact. If the sets F, and H,
are precompact, then the set E; v E, is precompact.

TaroOREM 1.1. If the sets E, and B, are precompact, then the set E, + K,
18 precompact.

Proof. Let U be an arbitrary neighbourhood of zero, and let V be
a neighbourhood of zero such that ¥4V C U. By hypothesis, there exist
finite systems of points a3, 43, ..., 2, € X and af, 23, ..., 4}, € X satisfying
the conditions

ne
and  E,C |J(#24V).

j=1

E,C G (@i 4+7)

i=1

Let y; ;= «};+a3; then

7y Ne n N2
B, +B,C U U W+ +7) C U Ulyay+0).

i=1 =2 =1 j=1

Hence the set F;+ E, is precompact. B
From the definition of compactness it follows immediately that

every relatively compact set in a linear topological space is precompact.
The converse theorem is not true in general. However, it holds for complete
spaces, as follows from the next theorem:

THEOREM 1.2. (Bourbaki[1].) If a linear topological space X is complete,
then every precompact closed set K C X is a compact.

Proof. Let F, be an arbitrary filter. We refine this filter by an
ultrafilter F' made of subsets of the set K. We show that the ultrafilter F
is a fundamental family. Indeed, if ¥ is an arbitrary neighbourhood of

zero, there exists a system of points @, ..., x, such that K C Lnj (e +V).

i=1
However, the properties of ultrafilters (see § 1, I) imply the existence
of a point @; such that Ay = (#:+V) ~ K ¢ F. But Ay— Ay CV—V. Since
the neighbourhood V is arbitrary, the ultrafilter F must be a fundamental
family. Since the space X is complete, the family F has a cluster point a.
But the set K is closed. Hence » € K, and since  is a cluster point of the
ultrafilter F, it is a cluster point of the filter F,. Thus it follows from
Theorem 1.1, I, that K is a compact set. m

TeporEM 1.3. Let K be a precompact set. If V is a neighbourhood and
{2} CK is a directed family of poinis such that z, ¢ 2,+V for y < a, then
the family {z} is finite.

Proof. Suppose that the family {,} is infinite. Let U be a balanced
neighbourhood of zero satisfying the condition U+ UCYV. The condition
%, ¢ z,-+V implies (z,+U) ~ (2,4 U) = 0. Hence if we take any point y
and suppose that a # y, the points «, and «, cannot both belong to the
set 4+ U. Consequently, there is no finite system of points ¥, ..., ¥a such
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n
that K C | (y:-+U). Thus the set K is not precompact, which contradicts
i=1

the assumption. m

In our further considerations we shall need the following theorem
of a purely topological character:

THEOREM 1.4. (Leray [1].) If Y 4s a topological space, K a compact
space, 1(t, k) a continuous transformation of the product ¥ x K inio a to-
pological space X, and F a closed set in the space X such thai ¥ does not
intersect the set 1(t, K), then there exisis a neighbourhood V of the point t
such that F does not intersect the set f(V, K).

Proof. Let k e K. There exists a neighbourhood V(%) of the point ¢
and a neighbourhood W (k) of the point k such that F does not intersect
the set ]‘(V(k), W(k)). If we cover the set K by a finite number of neigh-
bourhoods W(k), then the desired neighbourhood V is the intersection
of the neighbourhoods V (k) corresponding to W{k). m

TrEOREM 1.5. Hvery compact set K in a linear topological space X
s bounded.

Proof. Let V be an arbitrary neighbourhood of zero in the space X.
We denote by F the complement of the set V: F = CV. Let us take the
field of sealars in place of ¥, let K be a compact set contained in X, and
let .

fE, k)=1tkeX,

where keK, 118 a scalar.

Then there exists a neighbourhood of zero 4 = {2: |2| < 6} in the space ¥
such that
AR ={zk: zed, ke K}CV.

Since the neighbourhood V is arbitrary, the set K is bounded. ®

CoroLLARY 1.6. Every precompact set K in a linear topological space X
is bounded.

Proof. Let X be the completion of the space X. Let K denote the
closure of the set X in the space X. By Theorem 1.2, the set K is compact.
Hence it is bounded, by Theorem 1.5. Thus the set K is bounded, as
a subset of a bounded set. W

TEEOREM 1.7. If F is a closed set in a linear topological space X and K
is a compact set in X, then the set F+K is closed.

Proof. If z ¢ F+K, then F has no common points with the set z— K.
By Theorem 1.4, there exists a neighbourhood ¥ of the point z such that F
does not intersect the set ¥— K. Hence V does not intersect the set 7+ K. ®

TrmorEM 1.8. Let B be o closed sei of sealars different from zero, and
let ¥ be a closed set of points # 0O of ‘& linear topological space X. Then the
set BF 18 closed.
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Proof. Let ¢ be a compact subset of the field of scalars, made up
of the number 0 and of numbers ™, where b ¢ B. If # ¢ BF, then F has
no common points with the set Gw. By Theorem 1.4, there exists a neigh-
bourhood ¥V of the point # such that F does not intersect the set GV.
Hence V does not intersect the set BF. m

TaEOREM 1.9. If W is a neighbourhood of the point 0 and 4 is a neigh-
bourhood of the number 0, then the intersection V of sets bW, where b ¢ 4,
is a neighbourhood of the point 0.

Proof. We apply the previous theorem to the complements B and F
of sets 4 and W, respectively, taking into account the fact that 4 and W
are open. &

THEOREM 1.10. If there exists an open neighbourhood V of the point 0
in a linear topological space X such that V is compact, then for an arbitrary
closed subspace ¥ of the space X (Y # X) there is a point x ¢V such that
¢ Y+V.

Proof. Let ze X, but' 2 ¢ ¥. Since the subspace ¥ is closed, there
exists a neighbourhood W of the point 0 such that z ¢ ¥-+-W. By Theo-
rem 1.5, there exists a number a # 0 such that oV C W. Hence 2 ¢ Y +aV
and a 2¢ ¥ +V, ie. X # Y 4V.

Let us suppose that the theorem is false, i.e. that ¥ C ¥ +V. Then

Y+V = Y+V. However, by Theorem 1.7, the set ¥ -+ is closed. On .

the other hand, the set ¥Y+V = {J(y+V) is open as a union of open

ne¥
sets. Since X is a connected space, it follows that ¥ 4V = X, contradicting
the condition X # Y+V. m

THEOREM 1.11. If Y is a finite-dimensional subspace of a linear
topological space X, then

(a) the space Y is an Euclidean space,
(b) the subspace Y is closed in X.

Proof. First, we prove that condition (a) is satistied. We denote
bY {41, Y25 .-, Ym} the basis of the space Y. With every point (xy, y, ..., Zm)
of the Euclidean space E™ one can associate the point &9, +... +ZnYn of
the space Y. This correspondence f is a one-to-one linear and continuous
map of the space E™ onto the space ¥. One has to prove that the inverse
operator /" is continuous. Let a ball U = {(@y, ..., Zm): |22+ ...+ loml> < 1}
be given in the space E™. It is sufficient to show that the set f(U)is a neigh-
bourhood of 0 in the space ¥. But the set U° = U— U is compact and
0 ¢ U°. Hence the set f(U°) is compact (§1, I) and 0 ¢ f(U°). It follows
that the point 0 in the space ¥ has a convex neighbourhood ¥ which
does not interseet the set F(U°). However, the set f~(V)is convex, contains
the point 0 and does not intersect the boundary U° of the ball U with
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centre in 0. Thus f(V)C U, and so VC f(U). Consequently, f(U) is
a neighbourhood of the point 0 in the space Y.

We now proceed to the proof of (b). Let z e ¥, 24 Y. Let us denote
by Z the subspace of X spanned by the basis {2, Y1y ooy Ym}. It follows
from condition (a) that the space Z is Euclidean. Hence Y is a subspace
of an Buclidean subspace Z, and ¥ is not closed in Z, which is impossible. ®

A linear topological space X is called locally compact if there exists
a precompact neighbourhood of zero in X.

TeEEOREM 1.12. Bvery locally compact subspace X of a linear topological
space X is closed and Buclidean.

Proof. Without loss of generality, we can assume that the space X
is complete. Let V' be a neighbourhood of zero in the space ¥ such that
the set V is compact (see Theorem 1.2). Applying induection we define
& sequence of closed Euclidean subspaces Y, of the space ¥ in the following
manner. We take ¥,= {0}. If ¥,_, are already defined and Y, ,# ¥,
we apply Theorem 1.10: there exists a point ¥, €V such thaty, ¢ ¥, ,+V.
Then we take ¥, = lin{y,,, ¥,,_,}. Evidently, dim ¥, = n. By Theorem 1.11,
the space Y, is a closed Euclidean subspace of the space Y. Hence 9, e V
and y» ¢ ym +V for m < n. By Theorem 1.3, the sequence of subspaces {¥a}
is finite and its last element is ¥. Thus the space ¥ is an Euclidean subspace
of the space X. Applying the previous theorem we find that ¥ is closed. m

§ 2. Characterization of precompact sets in concrete spaces.

THEOREM 2.1. (Cohen and Dunford [1].) If a linear meiric space X
has a basis {en}, then a set K C X is precompact if and only if

(1) lpm)) < Ms for oll €K, where @ are basis functionals, i.e.
z = Yoix)er,
i=1

(2) the series &= D pi(®)e; is uniformly convergent for z e K.
i=1
Proof. Let us suppose that assumptions (1) and (2) are satisfied.
To an arbitrary number ¢ > 0 one can choose a natural number n satistying
the inequality

o0

HZ W’l(w)ﬂiu<%8 for all z e K .

i=n+1
Let us consider the set
n
Ko={[2ls: ze K}, where [2].= Zqzi(m) e.
i=1
By assumption (1), the set K, is precompact. Hence there exists
a finite system of-peints o, ..., @ such that to.every a' ¢ K, there is an
13

Equations in linear spaces
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index i satisfying the inequality [lo'—a] < §e. Thus
fe—ad] < llp— (2Tl - Ilela— 2l < & .

Since # is an arbitrary element of K, the set K is precompact.
Conversely, let us suppose that K is a precompact set. Since {en}
is a basis, we conclude from Theorem 5.1, IT, that the transformations

n
falo) = D oul@)es
=1
are equicontinuoﬁs, i.e. for every >0 there exists a é >0 such that
for all n and for |jz]| < 6 we have ’

[fal)] < %e .

The set K is precompact. Hence there exists a finite system of points
o', ..., 2™ guch that for every » ¢ K there is an index ¢ satisfying the
inequality
o2} < min(8, }e) .
It follows from the convergence of the sequence {fx(#)} to the element
that there exists a number N, such that
falz®)—2 <3e for =>N,, i=1,2,.,N,.
Hence ] N
Ifal@)—2l] < [Fa(@)— fal@®)]| -+l fa(@’)— o'l + o' — 2]l < &
for # ¢ K and n > N,. This proves the uniform convergence on. K of the
expansion of # with respect to the basis. B
CoROLLARY 2.2. A set K is precompact in the space I* (0 < p < +o0)

if and only if |ws] < M and the series >, |ws[? is uniformly convergent for all

i=1
sequences {wy} C K.

COROLLARY 2.3. A set K is precompact in the space ¢, if and only
if I3 < M and lim sup |pa(2)] = 0.

nroo zeK

Let X be a locally convex linear metric space. It follows from the
definition that a set K is precompact in the space X if and only if a finite
e-net can be defined in K with respect to every pseudonorm.

THROREM 2.4. Let M(a,,,) be the space of all sequences of complex
numbers &= {£;} such that

el = SUD By mlE,] < o0,

where (a,,) i8 an infinite matriz with positive elements, and 6, ,, < Gy
(nym=1,2,..). If we define the topology in M/, ) by means of pseudo-
norme-{f I, , M(a,,,) becomes a linear metric locally comver complete space.
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A set KC M(a,,) is precompact if and only if
(3') a‘n.mlgni < -Mm 3

. =1 ver) o
(b) lima,, , sup &, | = 0 (m=1,2,..)
n—+00 éeK

If for every number m there exists a number k such that lim (a, /@y i)
= 0, then the condition (a) implies the condition (b). e

THEOREM 2.5. (Arzeld [1].) 4 set K C ((Q) is precompact if and only
if 4t consists of uniformly bounded and equicontinuous funciions.

Proof. Necessity. Let the set K be precompact and let & be an arbi-
trary positive number. There exists a system of functions @y, ..., 2, € C(Q)
such that to every function @ ¢ K one can choose a function #; satisfying
the inequality

lo— @] = Sup Jedt)—= ()] < $e.
Hence it follows
lleell < llwell -+ 42 < sup flal + 3 =,

ie. the functions #e¢ K are uniformly bounded. Moreover, since the
funetions () are continuous on a compact set K, they are uniformly
continuous on K. Hence for every ¢ there exists a number & > 0 such
that the condition g(f, ') < 6; implies -

(f)—xi{t)] < %e.
Let 6 = mind; and let p(f, ') < 6. Then
i

[o(t)— ()] < o () —ult)] + lma(t)— 2a(t')] + loalt) — 5 {t')] < & .

Hence all functions #(f) in K are equicontinuous.

Sufficiency. Let us suppose that a family K of functions #(t) is equi-
continunons. This means that to any number ¢ >0 and to an arbitrary
point £, e Q2 there exists a neighbourhood V, of the point #, such that
t eV, implies |z(t)—x(fy)] < /3 for all functions z e K.

Sets T, form a covering of the compact set Q. Let us choose a finite
subcovering ¥, , ..., ¥;,. Let us now choose an arbitrary system S of
functions {#:(f)} in such a manner that '

sup |wilt,)—wsll,) > % for  iFj§.
i<m<n

Since the functions wi(f) arve uniformly bounded, the system § is
finite, by Theorem 1.3. Evidently, to every function #(f) in K one can
choose an index 7 satisfying the inequality

sup (@ (t,)— 2udlty) < 45,
1<men -
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since otherwise the function #(f) could be added to the system S. Hence
le®)— )] < 10(1)— 2 (tn)| + |2 (tn) — 2iltn)| + 2:(tn)— 24(2)|
< 3}etletie=c¢
and Jlo—a4]| < e. This shows that the finite system § is an s-net. m
COROLLARY 2.6. A set K C C™[0, 1] ¢s precompact if and only if
d"z(t)

at”

Proof. If a set K is precompact, then it is precompact in each
pseudonorm. By the Arzelda Theorem 2.5, the functions d™(f)/dt® are
uniformly bounded in each Ppseudonorm.

On the other hand, if (2.1) holds, then these functions satisfy the
Lipschitz condition with the constant M, ,,. Hence they are equicon-
tinuous and uniformly bounded in each pseudonorm. Thus the set K
is precompact in each pseudonorm, i.e. precompact. W

(2.1) sup ||@ln < Mn, where |2|ln= sup
TeK o<

§ 3. Compact operators. Let X and ¥ be linear topologieal spaces.
An operator T e L(X—Y) is called compact (or completely continuous)
if there exists a neighbourhood of zero U, C X such that the set TU,is
precompact.

Every compact operator is continuous. Indeed, let V be an arbitrary
open set in the space Y. By Corollary 1.6, the set 7T, is bounded. Hence
there exists a number i, such that y +2,T7U,CV. Thus

ValX= { (y+4TT,).

yernTX
But !

Iy +4TU)= ( (+4T,)
zel 1y
is open as a umion of open sets. Hence the set

IV AIX)= | T y+5,T0,)
veVnTX

is open, which is what was to be proved.

The sum of two compact operators is a compact operator. Indeed,
if Ty,T,eB(X->Y) are compact operators, then there exist neighbour-
hoods of zero U, U, C X such that the sets T, Uy and T, U, are precompact.
The neighbourhood of zeto U, = U, ~ U, satisfies the condition

(T1+T) Uy C I, U+ 1, Uy -

By Theorem 1.1, the set (T,+T,) U, is precompact.
In a similar manner we show that the product of a compact operator
by a number is a compact operator.
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Evidently, the restriction T, of a compact operator T ¢ B(X—+Y)
to a subspace X,C X is a compact operator.

Let three linear topological spaces X » ¥, Z be given. Let T, ¢« L(X -Y)
and T, e L(Y->Z). If one of the operators Ty, T, is continuons and the
other one is compact, then the superposition T, T, is & compact operator.

In order to prove this fact, we first show that the image of a pre-
compact set K CX by means of a continuous operator T eL(X-Y)
is precompact. Indeed, let U be an arbitrary neighbourhood of zero in
the space Y. There exists a neighbourhood of zero V in the space X such
that TV C U. Since the set K is precompact, there exists a finite system

n
of points &, ..., 2, ¢ X satisfying the condition K C U (#:4+7V). Hence

=1

n n
TKC‘U (T2 +TV)C U (y:+T),  where Yi= Tmy.
i=1 i=1

It the operator T} is compact, there exists a neighbourhood of zero T,
in the space X such that the set T, U, is precompact. Hence the set T, T, U,
is also precompact. If T, is a compact operator and U, is a neighbourhood
of zero in the space ¥ such that the set T, U, is precompact, then the
continuity of the operator T, implies the existence of a neighbourhood
of zero U;C X for which the inclusion T,U,; C U, holds. Consequently,
the set T,T,U,C T, U, is precompact.

Hence the set T(X<=Y) of all compact operators forms a two-sided
ideal in the paraalgebra By(X=T). If at least one of the spaces X , X is
of infinite dimension, this ideal is a proper one, since one of the identi-
ties Ix and Iy is not contained in it. This follows from Theorem 1.12,
which states that a space of infinite dimension is not locally compact.
We shall denote by T(X) the ideal of compact operators in the algebra
By(X).

Let us suppose that there are two topologies, G, and G,, in a space X.
We say that the topology G, is compact with respect to the topology G, if
there exists a neighbourhood U €6, precompact in the topology ;.
We denote by X5, (¢ = 1, 2) the space X with the topology Gi. If a linear
operator 4 maps the space X, in the space X, continuously, then 4
considered as an operator which maps the space X+, into itself is compact,
since the topology B, is compaet with respect to G,. Moreover, we have
the following

TaEOREM 3.1. If G, is & topology compact with respect to the topology G,
and if A e By(Xg,—Y'6,), then A considered as an operator from the algebra
B(X<,) is compact.

Proof. Let U,e G, be a neighbourhood of zero precompaet in the
topology G,. We show the set AU, to be precompact in the topology G,.
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Let U be an arbitrary neighbourhood of zero in the topology G,. Let V

be a neighbourhood of zero in the topology ©, such that AV C U.
Since the neighbourhood U, is precompact in the: topology G,, there

s @n %uch that U, C U z¢+V). Hence

i=1

exists a system of points x, ..

AT, C U(Aacpl—U) .
i=1
Thus the set AU, is precompact in the topology G,. M

In investigating perturbations of discontinuous operators the notion
of A-compactness is very useful. It is defined in the same manner as
the notion of A-continuity (see §1, II). We say that an operator
B e L(X—+Y)is A-compact if DpD Dy and B is a compact operator which
maps the space X, in the space ¥. As in § 1, II, we denote by X4 the
set D4 provided with the topology determined by neighbourhoods of
the form U ~ A~YV), where U and V are neighbourhoods of zero in spaces
X and Y, respectively. Evidently, every compact operator is A - compact.

The set of compact operators is not necessarily elosgd in the algebra
By(X).

Exampir 3.1. Let X = (s) be the space of all sequences (see Ex-
ample 3.1.b, B I), It is easily verified that the closure of the ideal of
finite-dimensional operators in this space contains the identity.

However, if there exists a bounded neighbourhood of zero in the
space X, then the following theorem holds:

THEOREM 3.2. If the spaces X and Y are locally bounded, the ideal
T(X=Y) of compact operators is dosed in the paraalgebra By(X=7Y).

Proof. Let U, be a bounded neighbourhood of zerc in X. An oper-
ator T is compact if and only if the set T'U, is precompact. Let an oper-
ator T, belong to the closure of the set T'(X—Y). Let V be an arbitrary
neighbourhood of zero in the space Y. Evidently, there exists a neigh-
bourhood of zero V; satisfying the condition ¥V;+4V,C V. The definition
of topology and the condition T, e T(X—Y) imply the existence of an
operator T, ¢ T'(X—7Y) such that T,o—T,x eV, for ze U,. But the
operator T is precompact. Henece there exists a finite system of points

.., @ Of the space X such that U, C U z;+V;). Thus

i=1
n
T,7,C iU\(aw +7,+Vy) C U‘(wﬁ—V) .
=] =1

Since the neighbourhood V is arbitrary, this implies T, U0 to be a pre-
compact sét. Hence T, is a eom’pa,et operator. The proofs for the operators
T e {Y+X), T(X), T(Y) 4ré analogous. m
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TarorEM 3.3. Let X and Y be linear meiric spaces and let ¥ have
a basis {6,}. If T ¢ B(X—~Y) is a compact operator, then the sequence of
operators {Tn}, where Tnz = [Twl,, is convergent to the operator T in the
sense of bounded convergence.

Proof. Let B be an arbitrary bounded set. If T is a compact operator,
there exists a neighbourhood of zero U, such that the set TU, is pre-
compact. Since B is a bounded set, there exists a number A for which
the inclusion AB C U, holds. By the Cohen~Dunford Theorem 1.1, the
sequence {{y]»— ¥} tends to zero uniformly for y € TU,. Hence the sequence
{Tno—Tax} tends to zero uniformly for z e U,. In particular, it tends
to zero uniformly for # ¢ AB. Thus the sequence {T,2z— T} tends to zero
uniformly for ¢ B. m

Example 3.1 shows that the eonverse of this theorem is not true.
However, if the space X is locally bounded, Theorem 3.2 implies that
the condition given in Theorem 3.3 is also sufficient in order that T be
a compact operator.

COROLLARY 3.4. If a mairix (au) salisfies the condition

S < e,

=1 k=1

(3.1)

then the operator A corresponding to this matriz is compact in the space IF,
where 1/p+1/g = 1.
Indeed,

M—ai<{ > [ki L] i
=n+1 k=1

Hence it follows that lim||A— 4,}j= 0. Thus 4 is a compact operator.

>0
Let us remark that if p = r = 2, then condition (3.1) assumes a simpler

form:
{ Y Yloat}®< +oo,

i=1 k=1

and if p=1, then (3.1) is to be written in the form

{2 sup ]ancl'} < +oo.

i=1
THeorREM 3.5, If T(s,?) 45 a coniinuous funclion in the square
a < 8,1< b, then the integral operator y = Tz, where
b
y(s)= [ T(s, Da(n)dt,
a

which maps the space O[a, b] into diself, is compact in Cls, b].
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Proof. Let B be a bounded set in the space O[a, b]; then |jo] < M
for all # ¢ B. The set TFE is also bounded, since

vl < T for yeTEH.

If z ¢ B, then writing y = Az we have

b b
)=y < [ 1T, )—Tls, Ollo()dt < M [ |T(s', )—T(s, t)|dt .

Since T'(s, ?) is a continuous function, if the difference s—s’ is sufficiently
smadl, then the right-hand side of the last inequality is arbitrarily small,
independently of z ¢ E. Hence the functions from the set TE are equi-
continuous and uniformly bounded. Thus the set TFH is precompact (see
Theorem 2.5). This proves that the operator T is compact. M

TeEOREM 3.6. Let a function T(s,t) be integrable with power v’ in
a domain QX Q', where r = min (p, ¢’) (given «, we denote by a’ the number
satisfying the equality 1/a-t+1/a" = 1):

[ [ 16, oraa]™ < 0< +eo.
@ 2
Then the integral operator T

Ty =y(s) = fT(s, 1y (t) di

8 @ compaci operator which maps the space IP in the space LA
Prooi. It follows from Holder’s inequality that

wel <[ [ 126, oraf[ [ lemra]"
o 2
=[ f IT(s,t)rdz]l”“[ f ]m(i)["dt]up

= lall[ [1Z(s, O a]"".
Hence we obtain y

il =[ [l@eas] <jeil[ f( f (s, i e,
Q ¥ o

Slince " < ¢, we have 7 > g. Applying Holder’s inequality with exponents
/g and (r'[q)’ to the first integral on the right-hand side of the last in-
equality we obtain
nyn < |}$“[ f (IIT(SQ t)lr'dt)ds]lll"[fl(r’lﬂ)dalll(qf'lq)’) = C'Olumu 5
¥ a Qr

where () is the measure of ©; in the power 1/{g(r'lg)’).
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Since the function 7' is an element of the space L{Qx2'), one can
find a sequence of continuous functions {T(s,?)} such that

[ff|T(s,t)—T,,(s,zyﬁdtds]l”’gs,, (n=1,2,..),
Q' 0

where £;—0. Denoting by T, the integral operator determined by the
function Tx(s,?) and taking into account the fact that T, is a compact
operator (the proof being similar to the proof of Theorem 3.5), we conclude
that T is a compact operator as a limit in norm of a sequence of compact
operators (Theorem 3.2). W

The function 7'(s,?) determining the integral operator To= [ T(s,?) x
2
x @(t)dt is called the iniegral kernel of the operator T.

TaEoREM 3.7. Let T'(s, t) be a funciion infinitely differentiable defined
in the square [0,1]X% [0, 1]. The operator

1
To=y(s)= [ T(s,Da(t)ds

maps the space C°[0,1] of functions infinitely differentiable in the in-
terval [0,1] into itself. Moreover, T is a compact operator.
Proof. Sinee

ys) = [ TP, Do ()ds,
]

Theorem 3.5 implies that the set T'U, is precompact, where U,= {a:
l@®I<1} m

§ 4. Properties of compact operators which map a space into itself.
‘We begin with three lemmas. The first one is of a purely algebraic character
and the other two are topolegical lemmas.

Let 4 e L(X) and let y ¢ B4 be given. We write

Y, =lin{y, 4y, ..., 4"y} (n=1,2,..).

LEMMA 4.1. If A e L(X) is a monomorphism (i.e. Z4, = {0}) and n is
an arbitrary positive inieger, then

(1) dm ¥, =mn,

(2) ¥, "B ;= {0}.

Proof (1). Let us suppose that (1) does not hold. Let m be the
least number for which (1) is not true, i.e.

ay +a, Ay +...+a, A" y=0,

where a,,_, # 0. Since y ¢ B4, we have a,= 0. Hence

A(ay -+ +0y  A™Y) =0,
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and the assumptions on A imply
Y+ ooty Ay =0

This means that dim ¥,,_, < m—1, contradictory to the definition of the
number m.

(2) Let us suppose that 0 5 @ e ¥ » 4"X. Then
2 =byy +b, Ay +...+b, AV =A% # 0

for some zeX. Since y ¢ B4, this implies b, = 0. However, du = Av
implies ¥ = v because 4 is a monomorphism. Hence

byttt b, A" =A""2 £ 0,

ie. Y, ,nA™'X # {0}. Repeating these arguments we finally obtain
¥, ~n AX # {0}, contradicting our assumption. m

Levwma 4.2. Let X be a linear topological space and let an operator
A e B(X) with a closed set of values B4 have a left inverse A, e By(X). If
y ¢ B, and Y =1in{y}, then for every neighbourhood of zero U there ewists
a neighbourhood of zero U’ such that AUD (Y +TU') n Ba.

Prooi. Bince 4 has a continuous left inverse 4, , there exists a neigh-
bourhood U, satisfying the condition AU D U; n E4. Let T, be a balanced
neighbourhood such that U,+ U,C Uy, and let % be a positive number
satisfying ay ¢ U, for Ja] < k. Since H,is a closed set, there exists a balanced
neighbourhood U, such that (ky-+ Us) n Ba= 0. Since B4 is a linear
space, we have (ay+ U;) nEy4= 0 for |a] > %. The neighbourhood we
are looking for is U’= U, ~ U,. Indeed, we have

AUD (U4 Us) n EBaD (ay+U) ~n By - (la] < k)

and
(ay+U)YnE1=0
Hence AUD (Y4 U)nEs. B

Lemwa 4.3. If U is a neighbourhood of zero in a linear topological

space X and z ¢ U, then there ewists a positive number r < 1 such that rz € 2T
but rz ¢ U.

I:roof. Let n be the least natural number such that z e 2*U. Then
r=2""" n

(la] = %) .

TEBOREM 4.4. Let X be a complete linear topologi
pological space, and let
fy st k:’le’(X), ;io:—. 1{ —T. We denote by U, a neighbourhood of zero tra,;bsformed

oper in o subset of a compact set K. If F is a closed

oy the operstor T in ¢ f a closed subset of U,,
Proof. Let us suppose that y ¢ AF. We shall determine a neigh-
bourl}ood of the point y which does not intersect the set AF. Let ¥V be
a neighbourhood of y whose closure ¥V does not intersect the compact
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set A[F ~ (y+k)], and let Fy=F ~ A7(V). Since the set F, is closed
and does not intersect the set y--K, we have y ¢ F;—K. Moreover,
TF,C K, and so AF, = (I-T)F,CF,—K. By Theorem 1.7, the set
F,— K is closed. Let ¥, be the complement of the set F;— K. The neigh-
bourbood of the point y which we seek is Vo=V nV;, for AF T,
= AF "V V= ﬂlﬁV‘,:AFanlmT(,: 0. m

THEOREM 4.5. Let ¥ be a finite-dimensional subspace of a linear
topological space X, and let U, be a neighbourhood iransformed by the oper-
ator T e T(X) in a precompact set. If Ty = 0 for y ¢ ¥ implies y = 0, then
the set ¥ ~ U, is compact.

Proof. The restriction T, of the operator T to the subspace ¥ maps
the set ¥ ~ T, onto a compact set, and the inverse of the operator T
is continuous because the space Y is finite-dimensional.

THROREM 4.6. Let X be a linear topological space, and let T « T(X),
A =1I—-T. We denote by U, a neighbourhood of zero transformed by the
operator T in a precompact set. Then the inverse image A7Y(0) is a closed
Buclidean subspace of the space X and the set A7YH0) ~ U, is & precompact
neighbourhood of zero in this space.

Proof. The set ¥ = A~%0) is closed because the operator A i
continuous. Moreover, # ¢ ¥ implies # = Te. Hence ¥ n Uy= YA TU,.
Thus ¥ ~ U, is a precompact neighbourhood of zero in the subspace Y.
This and Theorem 1.12 imply ¥ to be an Euclidean space. B

THEOREM 4.7. Under the assumplions of the previous theorem the
inverse image A~™0) is a closed Euclidean space and A™"(0) ~ U, 18 a pre-
compact neighbourhood of zero in this space.

Proof. We replace the operator 4 in the previous theorem by the
operator A™. Then I— A™ is a compact operator as & polynomial in T
without a free term. B

§ 5. The Riesz theory. In this section we show that T eLy(X—+X)
is a compact operator, then the operator I—T has & finite d-characteristic
and its index is equal to zero. The first theorems of this type were given
by F. Riesz [1] and therefore this theory is named the Riesz theory.

TaeoREM 5.1. If X 4s a complete linear iopological space and if
T e T(X), A= I—T, then the subspace Ea i3 closed in the space X.

Proof. Let U, be a neighbourhood of zero transformed by the
operator T in a precompact seb, and let F,= AYATg) = T,-+47Y0).
By Theorem 4.4, the set Fy is closed. However, the set

0, = A AU = Tp+4A70)=" U (2+7T))
3 . zeA7Y0)

is. open a8 & union of open sets. Hence the set Fy = F\0; 1s closed and
F: = F\F,CF,. Let ¢F,. Since 0 is an interior point of the set F,,
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the segment joining the point 0 with the point # (which is connected)
contains at least one point of the boundary ;. Let us denote by B the
set of real numbers b >1. Then % ¢ BF; C BF,. Hence X = F; u BF,.
Thus

Eys=AX = AF, v BAF, .

By Theorem 4.4, the set AF, = AU, is closed. But AF, is the com-
plement of the set AU, in the set 4T,. Hence AF,— AF,, where F, is
the complement of the set U, ~ 0, in the set U,.

According to Theorem 4.4, the set AF, is closed. Hence the set AF,
is also closed. But 0 ¢ AF, because F, does not intersect A7Y0). Hence
BAF, is a closed set, by Theorem 1.8. Applying Theorem 4.4 we conclude
that AX = E, is a closed set. @

ToeOREM 5.2. (Williamson [1].) If X is a complete linear topological
space and T e T(X), then either the operator A = I—T is a one-to-one map
of the space X onto itself and the operators A and A~ are both continuous
or there exists a point z X, x # 0, such that Az = 0.

Proof. In the general case, there may be three possible reasons
why & linear continuous operator 4 is not an isomorphism continuous
in both directions, and one and only one of the three possibilities may
occur. They are the following:

(a) there exists a point e X, v # 0 such that Ax = 0;

(b} Az = 0 implies x = 0, and so the correspondence between the space X
and the set By is one-to-one, but the operator A~ is not CONTINUOUS ;

(c) Az = 0 implies x= 0, i.e. the correspondence between X and By
is one-to-one, and A is a continuous operator, but B # X,

We shall show that in the above case neither (b) nor (¢) may hold.
First, let us suppose that condition (b) is satisfied. Then there exists
a neighbourhood of zero U, such that 0 € A(X\U,). Let U, be a neigh-
bourhood of zero which is transformed by the operator 7T in a precompact
set, and let U, be a balanced neighbourhood such that U,C Uy~ U;.
Then 0 ¢ A(X\T,).

Let B be the family of balanced neighbourhoods of zero. Obviously,
Bis a fundamental family. Let B, be the family of sets of the form A"YB) n
~ (2U\U,) where B ¢%.

Evidently, the family 48, = {4B,: B, ¢ B} is a fundamental family
having 0 as the only cluster point.

On the other hand, the set T(20U,) is compact, by Theorem 1.2.
We conclude from Theorem 1.1, I, that every filter of subsets of this
set has a cluster point. The family B, generates a filter ¥ of all subsets
of ¥ for which there exists a set B, €B,; such that B, CF. Hence the
family 78, has a cluster point z.
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Let us remark that if «, is a cluster point of the family T%,, then
it is also a cluster point of the family %,. Indeed, let us take an arbitrary
set BeB,. Let U be an arbitrary neighbourhood of zero. Moreover, let
a set B, ¢ B, satisfying the condition AB, C U be given, and let B,= B, n B.
Sinee #, is a cluster point of the family T8, we have {#,+ U) ~ TB, # 0.
This means that there exists a point # € B, such that Az e 2+ U. Hence

o= Te+Avex,+-U+T.

Thus B n (24 U+ U) # 0. The sets U and B being arbitrary, it follows
that x, is a cluster point of the family B,.

It follows from the definition of the family B, that z,¢ U,. Hence
x, # 0. But the continuity of the operator 4 implies that Aw, is a cluster
point of the family A%B,. Hence Az, = 0, in contradiction to our assump-
tion. Hence case (b) is excluded from our considerations.

Now, let us suppose that condition (c) is satisfied. Let y ¢ B4. We
write

Y,=ln{y, 4y, ..., 4"}, n=10,1,2,..
By Lemma 4.1, dimY,=n and Y, ~ E, = {0}. Hence Theorem 4.5
implies the set ¥, ~ U, to be compaet for any positive integer n. Thus,
if UC U,, then the set ¥, ~ U is also compact.

We suppose that the operator A satisfies condition (e). By Theo-
rem 5.1, the set E4 is closed. Applying Lemma 4.2 we conclude that
there exists a neighbourhood U’ such that AU, D (¥;+ U’)n Ey. Let U
be an open balanced neighbourhood satisfying the condition U C Uy n .U’.
By Theorem 1.10, if # is an arbitrary natural number, t}nen there exists
a point y, € ¥, ~ U such that y,¢ ¥, .+ U. Hence y, = Az, ,+a,3,
where 2,_, € ¥,_,. This implies 4z, , ¢ ¥;+ U for any natural nu'mber n,
and since the operator A is one-to-one, we obtain 2, ¢ U, for an arbitrary n.
On the other hand,

=—y, La b Yris — Zp— Opa¥) -
Tep— T2 =—Ynp1 (BT Opi1¥ T Yni1— 2~ o1

But if m >z, the expression in brackets on the right-hand side of this
equality is a point of the space ¥y. Hence T2y ¢ Ten+- U for m >n. But
the sequence {T'z,} is a subset of the precompact set T'Uy; by Tl}eorem 1.3,
the sequence {z,} is finite, in contradiction to our assumption. Eence
condition (¢) cannot be satisfied, either. The only possible case is (a),
which proves the theorem. ®

THEOREM 5.3. If X is a linear topological space and T < T(X),
A = I—T, then there exvists an integer s such that

AH0)CAH0)C...CA™0)= 47%0) = ... (k=9).
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Proof. Since 4% 'z = 0 implies A" = 0, we have 4~"*}(0) C A="(0)
for n > 1. Let us suppose that

(5.1) ATTH0) £ AT™0) .
By Theorem 1.10, there exists a point @, such that
(5.2) Bp e AT0) N Ty, and A(0)+T,.

According to assumption (5.1), A"z, = 0. Hence Aw, e A™"*(0). The
condition 4™zy = 0 implies for m < n

(5.3) Bm e A7), Aty € A7VHYH0) .
Henee we obtain from (5.1), (5.2) and (5.3)
Ly ¢ (A% +2m— Azm + Uy)

ie. Tay ¢ Tom+ Uy. On the other hand, we obviously have Tz, e T_Uo.
Applying Theorem 1.3, we conclude that the sequence of indices satisfying
condition (5.1) is finite. We denote by s the last term of this sequence. m

THEOREM 5.4. Keeping the notation of the last theorem wunchanged,
we have A™™0) n A°X = {0} for an arbiltrary n > 0.

Proof. Let @ e A™™0) ~ A°X. There exists an element y ¢ X such
that #= A% and A" = 0. Hence A" % = 0, and the previous lemma
implies

ye A™"80) = A75(0) .
This implies A% =0, that is =0 m

TueoREM 5.5. If X is a complete linear topological space, T e T(X)
and A= I—T, then the subspaces E ;. are closed,

XDAXDAXD . DAX = .= A*X = ... (k>s),

and the operator A™' maps the space F . onto itself continuously.

Proof. By Theorem 5.1, the set B4 = AX is closed. Let n > 0 and
let us suppose that we have already proved the set B, ,,= A"X to be
a closed set. The restriction of the operator T to the subspace A™X maps
the set A®X into itself, since TA™ = A™T and T A" is a compact operator.
Hence A™'X is a closed subspace. Moreover, the above restriction is one-
to-one on the space A°X (see Theorem 5.4). Therefore (Theorem 5.2)
the restriction of the operator A to the subspace A%X has a continuous
inverse which maps the subspace A°X onto itself. In particular, A*"7X
= A*X. m

THEOREM 5.6. In the notation from Theorem 5.5, the space X is & direct
sum:

X =A"%0)D4A*X .
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Proof. Let #eX. By the previous theorem there exists a yeX
such that 4%y = A%. Hence A*z— A%) = 0. Consequently, z e A°X +
+A7%0). By Theorem 5.4 (taking » = s) we find that this is a direct sum.

THEOREM 5.7. If X is a complete linear topological space and T' e T(X),
then the operator A =I1-—T is a @-operator and »;_ 5= 0.

Proof. It follows from Theorem 5.6 that the operator 4 has a finite
d-characteristic. By Theorem 5.1, the d-characteristic of 4 is equal to
the dx:-characteristic of this operator. Hence 4 is a @-operator. Theo-
rems 5.3 and 5.5 imply

Hge1 = H g5 -

By Theorem 2.1, AT, it follows that

(8+1) s = 8%4 .
Consequently, x4= 0. B

COROLLARY 5.8. If X and Y are complete linear iopological spaces,
then the ideal T(X = Y) of compact operators in the paraalgebra By(X = Y)
is & Fredholm ideal.

COROLLARY 5.9. If X and Y are compleie linear metric spaces and
spaces X*, X are total, then the operators T « T(X = Y) are @-perturbations
which do not change the index, i.e. x = x4 for every @-operalor
AeB(X <= Y) and every T e T(X = Y).

Proof. By Corollary 3.5, IT, the paraalgebra By(X = Y) is regular-
izable to the ideal of finite-dimensional operators. Hence it is also regular-
izable to the ideal of compact operators T(X = ¥). Hence Theorem 6.2,
AT, yields the conclusion of the corollary. m

CoROLLARY 5.10. Let X and Y be complete linear metric spaces and
let X+, Y+ be total spaces. Let A eL(X—~Y) be a P-operator and let
T e L(X—~Y) be an A-compact operator. Then A+T is a @-operator and

KA+ = %4 -
Proof. This corollary is an immediate consequence of Corollary 5.9
if we replace the paraalgebra ByX = T) by the paraalgebra By(X4 = Y),
where X4 denotes the set D4 with norm Jo} = |lzlix+ [Azlly (a8 in § 1, II),
1 Iz and || llr ave norms in X and ¥, respectively. W

§ 6. The set of eigenvalues of a compact operator.

TarorEM 6.1. If X is a linear iopological space and T e T(X), then
either the ber of eig 1 of the operator T 1is finite or they form
a sequence convergent to zero.

Proof. Let Ay, .., 4,,... be the sequence of eigenvalues different
from one another and not belonging to a neighbourhood 4 of the point 0.
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Moreover, let
6.1) Ag,=T=,,

where z, # 0. Let us suppose that the element z, is linearly dependent
on the elements @, ...,%,_;, ie. ,= a2, +...+a,_,2,_,. Applying the
operator 4,I—T to both sides of this equality, we obtain by (6.1),

a,(A,— i)y + ..t a, y(A,— 24, )@, = 0.

Hence there exists an element x,, u < v, linearly dependent on the
elements 2, ..., z,_,. Repeating these arguments we finally obtain #, = 0,
contradieting the assumption @, #* 0. Hence the elements z,, ..., s, are
linearly independent. We denote by X, the linear space spanned by these
elements. By Theorem 1.11, the spaces X, are closed and Euclidean.
Since )

X, #X,,, XCXC..CXCX, C..,

we conclude from Theorem 1.10 that there exists a y, such that
(6.2) Y,eX, Uy, 9,¢X,,+T,.

Here U, is & neighbourhood of zero transformed by the operator T in
a precompact set. Since y, ¢ X,, formula (6.1) and the definition of the
space X, imply

}"ryv ¢ (;‘ryeryr+Tyﬂ+2'1 UO) 3
ie. Ty, ¢(Ty,+2,U,). By Theorem 1.9, there exists a neighbourhood
of zero V such that V CAU,. Hence Ty, ¢ (Ty,+V). On the other hand,

formula (6.2) implies Ty, ¢ TU,. Applying Theorem 1.3 we conclude
that the sequence {4} is finite. ®
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Part C

LINEAR OPERATORS IN BANACH SPACES

In Chapter I, Part A, we have shown a deep connection between
the theory of linear equations in linear spaces and the properties of quasi-
Fredholm ideals and Fredholm ideals in paraalgebras of operators. In § 5,
B IV, we proved that the ideal T(X = X) of compact operators is a Fred-
holm ideal in the paraalgebra B(X = ¥) of continnous operators. In this
part we shall investigate quasi-Fredholm and semi-Fredholm ideals in
paraalgebras of operators over Banach spaces. We shall also deal with
perturbations with a small norm.

Chapter I is of an auxiliary character: notions and theorems given
here will be necessary in further considerations.

In Chapter IT we shall investigate ideals of operators over Banach
spaces. In particular, we shall deal with classes of operators which are
proved in Chapter V to be semi-Fredholm ideals (positive or negative).

Chapter IIT contains the theory of perturbations with a small norm.

In Chapter IV we give elements of the spectral theory, in particular
the theorem on the continuity of projections of a spectral decomposition.

Chapter V contains the general theory of perturbations of operators
over Banach spaces. All the results of this chapter may be transferred
without changes to the case of locally bounded spaces with a total family
of functionals (see paper [6] by the present authors).

Equations in linear spaces 14
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