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Part A
LINEAR OPERATORS IN LINEAR SPACES

§ 0. Auxiliary notions. We assume the reader to be acquainted
with notions of a set, a subset and a family of sets, and with the operations
on sets. We denote by 4 v B the unicn (sum), by A\B the difference,
and by 4 ~ B the intersection (product) of sets 4 and B. Let a family 2

of sets be given. We denote by |} 4 the union, and by [ A the intersec-
AeN Aeq
tion of sets of the family 9. In the sequel we shall often speak about points

instead of elements of a set. A set containing only one element z will be
denoted by {z}.

We also assume that the reader is acquainted with the notions of
a relation, a function and a one-to-one function. In the sequel, the terms
“map” and “transformation” will also mean a function.

Sets 4 and B are said to be of the same power if there exists a one-to-
one map of 4 onto B. Sets of the same power as the set of all positive
integers are called countable.

A set A is called ordered by the relation <3 if this relation satisfies the
following axioms for any two elements x,y e A4:

Loe<e . (reflexivity);

2ifaFy then s Ly ory < (connectivity);

3. ife<y and y LJw, then =y (weak asymmetry);

4 if e <y and y < then o <2  (transitivity).

A relation satisfying axioms 1-4 is called an order relation. A set A
is called well-ordered with respect to the order relation < if each non-
void subset B of A contains a first element, i.e. an element xp satisfying
the condition xz < y for all y ¢ B. It follows from the axiom of choice
that every set can he well-ordered. Let 4 be a well-ordered set. We write

Oup)y={yed:y<ax, y#u}.
If B is a non-void subset of A and if, for every x, O4(x) C B implies
veB, then B= A.
This theorem is called the principle of tranmsfinite. induction. The
method of proving theorems by transfinite induction is the same as that
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of complete induction; the only difference is that one has to suppose
the theorem to be true for all ¥ € Oa(x) instead of all positive integers
less than m. )

We say that a set Z is partially ordered if there exists an order relation
in Z, but this order relation need not be defined for all pairs of elements
@,y €Z. The principle of transfinite induction is equivalent to Kura-
towski-Zorn’s lemma:

If a set Z has the following property: every ordered subset Z,C Z has
an upper bound (i.c. an element x, such that @ < zy for all © e Z;, and
Y <@y and LY for meZ, imply y = @z), then the set Z also has an
upper bound.

Let a set X be given. Let us suppose that to every two elements «
and y of the set X there corresponds in a unique manner a. third element
x(Oy of that set. If the operation (© is associative, i.e.

(z0QY)02=20(y0O?),

and if to any two elements x,y ¢ X there exist: elements 2y, 2, ¢ X such
that #Oz = y and 2, Oz =y, then the set X is called a group.
If X is a group and the equality

QY =yOx

holds for any two elements %, y ¢ X, then X is called a commutative group
or an Abelian group. The operation © in Abelian groups is denoted
traditionally by “+”’ and called addition. The element z satisfying the
equation #+4 2 = y is called the difference of elements y and # and is denoted
by 2= y—=; the operation “—” is called subiraction. The element z—x
is denoted by 0 and is called the zero element or meuiral element. Let us
remark that y4 0=y for every y « X. Evidently, the zero element 0 is
unique. Indeed, let us suppose that 0, and 0, are two zeros in a group X;
then 0, = 0,+40,=0,. A subset M of a group X is called a subgroup
of the group X if M is a group with the same operation as X. If M, N are
subsets of a group X, we write

MON={Qy: xe M, yeN}.

If X is an Abelian group, the set M -+N is called the algebraic sum
of sets M and N. The sum {#}+M is denoted briefly by =+ M.

A commutative group X with another associative operation a-b
besides a+-b is called a ring if the following distributivity conditions are
satisfied:

(0.1) 2@+y)=2wt2y; (v4+y)z=a2+yz.

The operation a-b is called multiplication.
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Tf there exists an element e, (resp. &) in the ring satisfying the con-
dition #-er = @ (resp. e;-@ = x) for all & e X, then this element is called
the right unit (zesp. the lefi unit). If the units & and e both exist, then
they are equal, for ;= e;¢, = ¢. Such an element i called a unit and
will be denoted by e. A ring possessing a unit will be called a ring with
a unit.

TEEoREM 0.1. Every ring X can be extended to a ring X; with a unit.

Proof. Let us define the product of an element & ¢ X by an integer a
as follows: .

if a= 0, then a-o = 0;

if a=n, then n-& = z-+o+..+o (v being a positive integer);

n times -
if @ =—mn, then (—n).# = n-(—a), where —a is the element 0—a=.
Let us consider the set
X, = {(z,a): 2« X, a being an integer}.

The operations of multiplication by a sealar, addition of elements and
multiplication of elements can be defined in X, in the following manner:
b(@, a) = (bx, ba) ,
(z, 6)+(y, b) = (& +y, a+D)
(¢, a)(y,b) = (zy +bo+ay, ab) .
Tt is easily shown that the set X, is a ring with the operations defined
above and that the pair (0, 1) is the unit of this ring. Moreover, the set X
is identical with the subset X, of all pairs of the form (z,0). B (%)
Taking into account Theorem 0.1, in the sequel we shall consider
only rings with a unit, and we shall briefly call them rings. A
Let # be an element of a ring X. If there is an element #, (resp. 1)
such that &z, = e (vesp. @@ = e), this element is called the right inverse
(resp. the left inverse) of x; the element @ is called right-inve')'ftible (.left-
invertible). Tf an element @ is both right-invertible and left-invertible,
it ig called invertible. Then we have &= @y = 2, and the element
2y = @, is called the inverse of » and is denoted by [ )
A subset M of a ring X is called a subring of the ring X if it is & ring
with the same operdtions as X. If M and N are subsets of a ring X, we
write

(z,y ¢ X; a, b being integers),

M-N={zy:oeM, yeN}.
The set M-N is called the algebraic product of sets M and N. We
write briefly:
M= {x}- M; Mz= M- {2},

where MCX, weX.

(*) The sign w indicates the end of

/B

e proof.

Equations in linear spaces
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Elements @,y ¢ X such that xy = yx are called a commutative pair
of elements. If every pair of elements of a ring X is commutative, X is
called a commutative ring.

A ring X such that every non-zero element of X has an inverse is
called a field. For instance, the sets R of real numbers and C of complex
numbers are fields with the usual definitions of addition and multiplication
as ring-operations.

A right ideal (left ideal) in a ring X iz a set M C X such that

1. if 2,y e M, then o—y ¢ M;
2. if e X, then Mz C M (resp. M C M) .

If M is both a right ideal and a left ideal, M is called a two-sided
ideal.

Obviously, the whole ring X and also the set {0} are ideals. These
two ideals will be called trivial ideals. All other ideals will be called non-
trivial or proper ones.

It is easily verified that an intersection of an arbitrary number of
left ideals (right ideals) is a left ideal (right ideal), not necessarily a proper
one.

A proper ideal cannot contain the unit of the ring. A proper right
ideal (left ideal) cannot contain a right-invertible (left-invertible) element.
Conversely, if an element & is not right-invertible (left-invertible), then
there exists a proper right ideal (left ideal) containing . Indeed, such
an ideal is the set aX (resp. X=z).

A proper right ideal (left ideal, two-sided ideal) M is called a mazimal
right ideal (left ideal, two-sided ideal) if every proper right ideal (left
ideal, two-sided ideal) M, containing M is equal to M, i.e. M; D M implies
M, =M.

Every proper right ideal (left ideal, two-sided ideal) is contained
in a maximal right ideal (left ideal, two-sided ideal). Evidently, if M is
& two-sided ideal, the maximal right ideal and left ideal may be different
from each other.

A radical of a ring X is a set R(X) of elements # such that the element
e-+azy is invertible for all @, y ¢ X. We shall prove that a radical R(X)
is a two-sided ideal. Since # and y are arbitrary elements of the ring,
2 ¢ R(X) implies #,2 « R(X) and 2y, ¢ R(X) for arbitrary &, ¢ X and g, ¢ X.
Let us suppose that z,u e R(X). Let 2,y « X. Then the element

(0.2)

e+w(2—u)y = e+ woy— wuy
o = (e+w2y)[o— (e +z2y) " "wuy)
is- invertible. ‘ :
. A radical may also be defined as the intersection of all maximal
right ideals (left ideals) (see Jacobson [1]). '
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Let a group X and a subgroup M of X be given, andlet yOM = M Oy
for every y ¢ X. Every element @ ¢ X has its corresponding coset, i.e. the
set of elements of the form [z] = {xO2: #z e M}. This correspondence is
easily proved to be unique. We define

[2Oyl = O], where [RIOW]I={=20y:zecls], yelyl}.

The set of such cosets with the group operation defined above is
denoted by X/M and is called the quotient group or the factor group of X
by M.

Let X be a ring, and let M C X be a two-sided ideal. The operation
of multiplication in the quotient-group X/M is defined as follows:

ryl=Dblll={=0y: aelal, ycll}.

This operation is associative and distzibutive. Hence the set X/M may
be considered as a ring. This ring is called a gquotient ring. Obviously,
one can write [2] = 2+ M.

If X is a commutative ring, then X/M is a field if and only if M is
a maximal ideal.

A linear space over the field of complex (real) numbers is a com-
mutative group X such that the multiplication of elements of X by complex
(real) numbers is defined and satisties the following conditions:

Ho+y)=let+ty; (t+s)z=1tzx+sz (i, s are numbers, @,y ¢ X);
(0.3) .
‘(, 0-2=0.

(ts)w=1t(sz); L1-o=umx;

Tt follows from the above conditions that if # =0 and @ # 0, then
t=0.

Since most results for linear spaces over the field of real numbers
and over the field of complex numbers are the same, in contents as well
as in formulation, we shall understand by “linear space” both kinds of
linear spaces. Obviously, the words, ‘“number” or “scalar” will mean
a number from the field under consideration. The same is valid with
regard to funetions assuming numerical values; considering real-valued
and complex-valued functions, we obtain examples of linear spaces over
the field of real numbers and the field of complex numbers, respectively.

Let a linear space X and a subset ¥ of X be given, and let a sum of
two elements of ¥ and a product of an element of ¥ by a sealar again
belong to Y. Such a subset Y of the space X is called a linear subset,
a linear manifold, or a subspace of the space X.

Let E be an arbitrary subset of a space X. The smallest linear subset
containing the set H is called the space spanned by the set B, or the linear
span of E; it is demeted by linE.

2%
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20 A. Linear operators in linear spaces

It is easily shown that
n
lin¥E = {m eX: x= Ztimi, t; scalars, = eE} .
i=1

We say that an element © e X is linearly dependent on a set E (or on
the elements of the set E) if w elin B. If » is not linearly dependent on the
set E, we say that o is linearly independent on the set E. A set F is called
linearly independent if there is mo element « ¢ F linearly dependent on
the set of the remaining elements of E, ie. if @ ¢lin(E\{z}).

It follows from the form of the set linF that elements x,; are linearly
dependent if the equality

L@, + o Fo, =0 (a; # o)
implies
h=th—= .=t =0.

If the maximal number of linearly independent elements belonging
to a linear space X is finite, we call this number the dimension of the
space X and we denote it by dim X. Otherwise we say that the dimension
of the space X is infinite and we write dimX = +oo. If AimX < 4 oo,
we call X finite-dimensional; if dimX =4-oco, X is called infinite-di-
mensional. -

Let us remark that if the same finite-dimensional space X is con-
sidered as a space over the field of complex numbers and as a space over
the field of real numbers, its dimension in the second case is twice as
great as in the first one.

In further considerations, speaking about linear spaces over the
field of complex numbers we shall always have in mind the dimension
over this field.

A basts of a linear space X is a set of linearly independent elements {x,}
such that lin{z}= X.

The power of the set of indices {a} is called the power of the basis {z,}.
It can be shown that this power depends only on the space X itself, and

does not depend on the choice of the basis. A special case of this general
theorem is the following ‘

TEEOREM 0.2. If X is an n-dimensional space: AimX = n, then each
basis of X coniaing exactly n elements.

Proof. It follows immediately from the linear independence of
elements of a basis {#,} that the nuriber of elements of the basis is not
greater than dimX. Let us suppose that a sequence @, vy Om 18 & basis
and m <n = dimX. From the definition of dim X we infer the existence
of a sequence ¥i,..., ¥y, of linearly independent elements. But the set
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@y, ...y ©m 1S & basis. Consequently,

m
Y= 2 @ %; .
i=1

Let us consider a linear combination of elements vi:

m m n n m
Zt;y; = Z'Zt'-a,-,-mjz—— Z(Etfaﬁ)m,.
i=1 =1 i

i=14j=1 =1

Since m < n, we may find a number #; = 0 such thab

n
Ztiaﬁz 0 for j=1,2,..,m.
i=1
Hence the elements y; are not linearly independent, which is a contradie-
tion. @
COROLLARY 0.2. The linear span of n linearly independent elements x;
is of dimension w:
dimlin(2,, ..., Ta) =0 .

The product X x ¥ of two linear spaces X and ¥ is the space of all
ordered pairs (z,y) with the addition of elements and the multiplication
of an element by 2 scalar defined by the formulae:

(1, Y1) + (@2y ¥2) = (B 2oy Y1 H0); U@, Y) = (te, ty) .

It ¥ and Z are subspaces of a linear space X and if ¥ nZ= {0},
i.e. if the intersection of subspaces ¥ and Z consists of the element 0
only, then the set ¥ -Z is called the direct sum of subspaces Y and Z
and is denoted by Y @Z. Let us remark that the condition Y Z= {0}
implies that every element z e ¥ ®Z can be written in the form 4 =y +%,
where y ¢ ¥, 2 € Z, in a unique way.

¥ X = Y@®Z, we say that X can be decomposed into a direct sum
Y®Z. :

TemoreM 0.3. If X is a linear space and Y is a subspace of the space X,
then there exists a subspace Z such that X can be decomposed into a direct
sum of subspaces ¥ and Z: X =Y ®Z.

Proof (by transfinite induction). Let us take a relation < well-
ordering the set X. As we have already seen, such a relation exists by
the axiom of choice. Tf ¥ = X, we obtain the theorem by taking Z = {0}.
Let us suppose that ¥ s X. There exists an element y, ¢ ¥, first with
respect to the relation <. We write

X,={y+My: ye¥, A being an arbitrary scalar}.
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Evidently, this is a linear set. Let us denote by y, the first element of X
not belonging to X. Let

X, = {y+4y,: yeX,, A being an arbitrary scalar} .

We denote by y,; the first element of X not belonging to X,. Repeating
this argument we obtain a set ¥, = {yy, ¥,, ...} well-ordered with respect
to the relation <, and consisting of elements y, such that

Yy ¢1in{Y, y,: v, < ¥4} -

Let Z=1inY,. Obviously, Y+Z = X. Let us suppose z¢ ¥ and
. #eZ,z50. It follows from the general form of the elements of the set
lin ¥ that

" .
Y
2= E AiYg, Where yu eZ; A 05 yp < Yp, -
i=1
Hence

n—1
1
" Yp = Tngxiyﬁu
which contradicts the definition of the element y, . Thus z =0 and Y ®Z
is a direct sum. W ’
Let X be a linear space over the field of real numbers. We show
that X can be embedded in a linear space over the field of complex nutflbers

in & natural way. We consider the space of all ordered pairs z,y with
operations defined as follows:

(1) Y1) +(22y Y2) = (@485, Y1+ 10);
(a+ib) (@, ¥) = (az— Dby, ay +ba) .
We denote this space by X +iX. The rules of distributivit
L _ . y for the oper-
a.t‘mns defined above are easily verified. We only prove that the multi-
plication is associative. Indeed,
[(a+ib)(c+id)](z, y) = (ac—bd, be+ad) (, )
= [(ac—bd)5— (be +-ad)y, (ac—bd)y -+ (b + ad)4] ,
(a+ib){(c+id) (2, y)] = (a+ib) (cv— dy, cy +d)
= [(ac—bd)w— (be + ad)y, (ac—bd)y + (be + ad)x] .

nm}())n tl;]el oth;;r hand, if X is a linear space over the field of complex

ers, there always exists a linear space ¥ over the field

o T e ey e eld of real numbers
Indeed, let us write all elements of the space X in a transfinite se- .

quence {z,}. In the same way as in the proof of Theorem 0.2, we choose

a subsequence {y,} = {maﬁ} such that

Ypflin{y,: y <B and linfy}=X.
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Obviously, the linear span means a linear subset with multiplication
by complex numbers. If ¥ is the smallest linear space with real multiplica-
tion spanned by the sequence {y;}, we get Y+i¥ = X.

Let X, be a subspace of a linear space X. Obviously, the quotient
group [X] = X/X, is also a linear space. This space will be called the
quotient space.

The defect (or codimension) of a subspace X, of a linear space X is
the dimension of the quotient space X/X;:

codim X, = dim X/X,.

THRoREM 0.4. If X, is a subspace of a linear space X and if
codim X, < -+ oo, then there ewists a space X, such that X =X,®X, and
dim X, = codim X,.

Proof. Let us suppose that ecodimX,= n. We write [X] = X|X,.
There exist exactly = linearly independent elements [z, ..., [oa] € [X],

n

and every element [#] e [X] can be written in the form [l = Yeailal,
i=1

i=
where ¢; are scalars, in a unique manner. Letb @i, ..., @ be arbitrary fixed
elements such that @; ¢ [#i]. Blements x; are Linearly independent. Hence
every element # ¢ X can be written in the form

n?
* = X+ ZGUD{, where @, € X,,

d=1

in a unique manner. Thus X = X,@X;, where X, =lin{®, ..., %a}, and
dim X, = n = codimX,, by definition. m

If a linear space X is a ring (with the same definition of addition),
then X is ealled a linear ring or an algebra. A subset X, of an algebra X
“is called a subalgebra if it is an algebra with respect to the same operations
as X. If a subalgebra X, is a two-sided ideal, we can form the quotient
ring X/X,, which is obviously also an algebra, for afa] = [ox] for an
arbitrary scalar a. Analogously to Theorem 0.1 it may be proved that
every algebra can be extended to an algebra with a unit; it is sufficient
to replace the integer a in the proof of Theorem 0.1 by an arbitrary scalar ?.
Therefore, in the sequel we shall consider ouly algebras with a unit.

We shall now give examples of linear spaces.

ExXAMPLE 0.1. The n-dimensional vector space with addition and
multiplication by scalars defined as usual operations on vectors is a linear
space.

ExAMpLE 0.2. The space O[0,1] of continuous functions in the
closed interval [0, 1] is a linear space, for the sum of two continuous
functions and the product of a continuous funetion by a gealar are con-
tinuous.
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Exawrre 0.3. The space 0" 0, 1] of functions defined in the interval
[0, 1] and possessing the nth continuous derivative is a linear space, for
the derivative of a linear combination of two such functions is a linear
combination of their derivatives.
) ExAMPLE 0.4. The space C<[0, 1] of functions infinitely differentiable
in the interval [0,1] is a linear space.
) EX_A_'MZPLE 0.5. The space 8[0,1] of all measurable functions defined
in the interval [0, 1] is a linear space, for a linear combination of measur-
able functions is a measurable function. ’

Exampre 0.6. The space H*0,1] of functions defined in the in-

terval [0, 1] and satisfying Holder’s codition with the exponent g, i.e. the
condition

(%)

is a linear space, for a linear combination of two functions satisfying
Z.E[older’s condition satisfies Holder’s condition (if x =1, condition (%)
is called the Lipschitz condition).

. l2(f)—x(¢)] < elt—1'|* for arbitrary t,% [0,1] (0 < u<1),
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CHAPTER I

OPERATORS WITH A FINITE
AND SEMIFINITE DIMENSIONAL CHARACTERISTIC

§ 1. Linear operators. A linear operator is a map 4 of 2 linear subset D4
of a linear space X into a linear space ¥ (both over the same field of
numbers) such that

Aw+y) = Ao+ Ay;  Alto) = i(4z);

The set D4 is called the domain of the operator A. Indeed, & linear
operator is a pair (D, A), for it is defined both by the domain D4 and
by the form of the map A. However, to be brief, we shall use the traditional
notation A instead of the pair (D4, 4).

Let G be a subset of the set D4. We write

AG={yeY: y= Az, 2@} .
The set Hs= AD4 is called the range of the operator A or the set of its
values. The graph of an operator A is the set

Wa= {(#,9) e Xx¥: @ cDa,y= AnwecBa}.

x,y €Dy tis a sealar.

Tf Dy= X and Bs= Y, the operator A is called an epimorphism.

A linear operator A which maps the space X into the space Y is
called a monomorphism if Ds= X and if the operator A is one-to-one.
If an operator A is a monomorphism and an epimorphism simultaneously,
then A is called an ¢somorphism.

The set of all linear operators defined in the space X with values
in the space Y will be depoted by L(X-—X).

If an operator 4 e L(X->Y) is a monomorphism, we can define the
inverse operator A~ in such a manner that every element @ € D4 corresponds
to an element y e B4 satistying the condition y = Az. It is easily verified
that the operator A" is linear and Dy = By, Hspa= Da. Hence it
follows that if the operator A e L(X —~Y) is an isomorphism, then A~?
exists and is also an isomorphism.

Two linear spaces X and Y are called isomorphic it there is an iso-
morphism mapping the space X onto the space ¥. If spaces X and ¥ have
bases {#,}, {4,}, @ « %, of the same power, then X and Y are isomorphic.
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Indeed, the operator A defined by means of the formula

k k
4 (Ztiwu) = Ztiyui

=1 i=
is an isomorphism. =
We define the addition of operators A, B ¢ L(X -Y) and the multi-
plication of an operator by a scalar as follows:

(A+B)x = Aw+Bw; (tA)s=14(Ax), aeDsp=DsnDp.

Evidently, an operator ¢ such that 4 -+C = B does not exist for
any two operators 4, B e L(X —Y). This follows from the fact that the
domains D4 and Dp may be different. If the operator O exists, we write
0= B—4 and then C is called the difference of operators B and A4; the
operation “— ig called a subtraction.

We denote by L(X +Y) the set of all operators 4 e L(X »Y) such
that Dy = X. The operations of addition, subtraction and multiplication
by a scalar are well-defined in the set L(X—Y). Hence Ly(X -»Y) is
a linear space. The zero element is the zero operator §: §(x) = 0 for all
# ¢ X. In the sequel we denote this operator by 0, in the same manner
a8 the zero element of the space; this will not lead to any misunderstanding.

Let A eL(Y—>X) and BeL(X-Y), and let D4D Ez. The super-
position or the product of operators A and B is defined as an operator 4B
defined by means of the equality

(AB)o = A (Bu) .

We hsfwe -AB ¢ L(X »Z). If all the operators written below exist, the
following rules of distributivity hold:

A(B,+B,) = AB, + ABy;
(Al +A2)B = A'IB +-AzB;

AeL(Y—>Z), B,B,e L(X>Y),
A4, e (Y+Z), BeL(XY).

L1

We write briefly L(X »X)= L(X) and L (X->X)= L(X). For-
mulae (1.1) show that L,(X) is not only a linear Space but also an algebra.
) T.he algebra Ly(X) contains a unit, namely the identical operator
(identity) I: Ix = x for every » ¢ X.

An operator P eLy(X) is called a projector (projection operator), it
PP (w-here P2 = P-P). Each projector defines a decomposition of
the space into a direct sum X — ¥ @®Z, where

Y={zeX: Pu=w}, Z={weX: Pr=0}.

N ﬁ%deed, if e ¥~ Z, then =0, since 2= Pr=10. If z e X, then
g= m:'—li’a;sZ, " because P (w— Pz) = Por— Pt — Pp— Py = 0, and so
w=y+s where y = Pre ¥, 2=2—Po= (I—P)weZ. The set Y is
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called the projection space, and the set Z is called the direction of the
projection.

On the other hand, if X = Y@®Z is a decomposition of the space X
into a direct sum, then the operator Pz =y, where s=y+2, y ¥,
zeZ, is a projector on the projection space ¥ in the direction Z.

Let us remark that the operator I— P is also a projection operator
with projection space Z in the direction Y.

Let X, be a subspace of a linear space X. Every operator 4 e Ly(X -Y)
induees an operator [A] e L([X]—[X1), where [X] = X|X,, [¥] = ¥/4X,,
defined as follows:

’ [4]{z] = [4»] for

where [z] is the coset defined by the element z.
Let X, be a subspace of a linear space X, and let A ¢ L(X —XY). The
operator A, e Ly(X,~Y) defined by means of the formula

A=Az for zeDin X,

is called the restriction of the operator 4 to the subspace Xi.
T A eLy(X,—~Y), then an operator 4;eLy(X~>Y) satistying the
condition

zela],

Ajp= Az for xeX,

is called an exfension of the operator A to the space X.

The following theorem is a consequence of Theorem 0.3:

TEEoREM 1.1. Buery operator A eL(X—~Y) defined on a linear
subspace X, of a linear space X may be extended to an operator A defined
on the whole space X, and Bz = H,.

Proof. Let us write X as a direct sum X = X,@Z. As has been
proved before, there exists a projection operator P e Ly(X —X), projecting
the space X onto the subspace X,. The operator A = AP possesses all
the required properties. B

A linear operator whose domain is D4 = X and whose values belong
to the field of scalars is called a linear functional defined on the space X.
‘We denote by X’ the set of all linear functionals defined on the space X.

Let {z,} be a basis of the linear space X. Since every element @ ¢ X
can be written in the form ‘

n
L= Ztim‘u , where t; are scalars,
i1
in one and only one manner, every linear functional f can be written in
the form :
n
fla) = Ztiam, where a,, = f(m,) -

=1
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In particular, if X is an n-dimensional space spanned by the elements
(@1 vy @), every linear functional f is of the form

n (3
flz)= Ztia,. , Where = Ztiwi .
=1 =1

Evidently, linear functionals defined on the whole space X form
a linear space Ly(X —C) or L(X —R), depending on the field of sealars
under consideration. Hence one can speak about the linear independence
of elements of these spaces, i.e. functionals. It follows from previous con-
siderations regarding the form of functionals that dim X’ = dim X.

THEOREM 1.2. If g, fi, ..., fn are linear functionals defined on a linear
space X, and if fi(@) =0 for i=1,2,..,n implies g(x)=0, then the
functional g is linearly dependent on functionals f;.

Proof. Let us consider the linear operator 7 e L(X ~E™ defined
by the equality

To = [fi(2), o), <oy Fal@)] .
We define a transformation % on the linear subspace TX of the space E"
as follows:
BT ()] = h[fi(@), ..., fa(@)] = g (@) .

The transformation kis defined uniquely, for Tz = Ty implies T'(x—y) = 0

and consequently g(z) = g(y). Obviously, & is a linear functional defined
on the subspace T'X of the space E™; hence

n
BlY1y ooy Yn] = Eaaryt s
i=1

and §0

g(z) = Z aify(z) for xeX. m
=

Let an operator 4 € L(X) be given. Since 4 CX, ExsCA(H4) C By,
eagy induction shows that

XDEADEA,:) O EBp DB e (n=1,2,..).
THEOREM 1.3. Lel 4 ¢ Ly(X). If

Eyn=TFma for a fized positive integer m ,

then
Bp=Bem for all n>m.
Proof by induetion. It is easily seen that we only need to prove
the theo_rem for n = m+2. Let us suppose that B am+s 7 B ymea, 1.e. that
there exists an element y ¢ B s, such that Y ¢ B mes. From the definition
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of sets B . follows the existence of an element % ¢ B . satisfying the
equality Az=9y. But En= Fina, and S0 @e¢FB ms. Hence
Yy = A% € B ym+, Which contradicts the definition of the element y. Con-
sequently, EAm—H = EA_m-!-l .

§ 2. Dimensional characteristic of linear operators. Let X and ¥ be
linear spaces and let A ¢ L(X —»Y). We denote by Z, the set of zeros of
the operator A:

Z4= {@eDy: Ax=0}.

Evidently, sets Z4 and E4= AD, are linear spaces. The space Z.
is called the kernel of the operator A, and the quotient space Y/H, is
called the cokernel of the operator A. The number a4 = dimZ, is called
the nullity of the operator A, and the number f4 = dim Y/E = codim F,
is called the deficiency of the operator A. Hence, by definition, the de-
ficiency of an operator A is equal to the defect of its range.

L{x-=")

Fig. 1

The ordered pair (a4, f4) is called the dimensional characteristic of
the operator 4 or, more briefly, its d-characterisiic. We say that the
d -characteristic of an operator A is finite if numbers a4, f4 are both
finite. If at least one of the numbers a4, f4 is finite, we say that the
operator 4 has a semifinite d-characteristic.

We write

D(X->Y)

D~(X->Y) ; the set of operators 4 ¢ L(X ->Y)

DHX »Y) )
a4 < +oo, fa< +oo,
Ba< +oo, aa= +oo,
ag< +o0, fa= +oo.

such that
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Moreover, we write
Df(X~Y) = DX >X) n L(X >Y),
DX -5Y)=D(X>Y)n L(X->Y),

DX -»Y)= DX YY) nL{X >Y).
‘We shall write briefly:
DHX)= DHX->X);
D§(X) = Df (X -X);

D~ (X)= D~ (X >X);
Dy (X) = Dy (X ~»X);

D(X) =D (X ->X);
Dy(X) = Do(X »X) .

The above notions are of use in solving linear equations. For, if 4
is a linear operator, and if we consider the equation

(2.1) Az =y,
a solution of this equation exists if and only if y ¢ H4. On the other hand,
if Az =y for a certain »,, the general solution of equation (2.1) is of
the form

L= Ty+&y,

where #, is an arbitrary element of the set Z4. Thus, when solving equa-
tion (2.1), it is essential to know sets Z, and 4. Numbers oy and B,
characterize these sets in a certain way (but they do not describe them).
As we shall see later, the knowledge of deficiency and nullity may be
very useful in investigating the solvability of equation (2.1).

Very often the given equation ean be reduced to another one in such
& manner that the nullity and deficiency of the respective operator are

" easy to determine. Therefore, the following theorems play a fundamental

role in our further considerations.

The index x4 of an operator 4 e L(X —Y) iy defined in the following
manner:

fa—0os i AeDI-Y) ,
#4=) oo i AeDHNX->Y),
—o i A<D (X-Y).

The following important theorem holds for the index of a super-
position of two operators:

THEOREM 2.1, If D4D Eg and if

DHX >T), DHY>3Z),
Be { DI(X>Y), and Ae{D(Y-2Z),
DX -TY), D(Y->1Z),
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then
Df‘(X =7Z),

D (X7),
D(X->Z),

AB ¢

respectively, and

(2.2) #4B = HA+%p .

Proof. First we prove the theorem for operators with a finite
d-characteristic. Let €, = Ep~ Z4, and let dim € = »,. Evidently, the
space Z4 can be written as a direct sum

(2.3) Z4= G006,
where dim €, = as4—n,, and the space Y as a direct sum
(2.4) Y=Es006,®DC;,

where dim §;= n;.
Since the space €, DE; is isomorphic with the quotient space Y/Es,
we have dim{C,PC;) = Bs. Hence as—mn;+n3= fp and
a4 ﬂ B = Ny— N3 -
From formula (2.4) follows

- (2:8) Eys=B®AG,.
But dim AG, = dim §; = n,; finally,
(2.6) %4B = Pap— 0ap = Ba-+ns— (aB—+n,)

= Ba—aa-+Pfr—ap= #a-+xz .

Now let us suppose ad, ag < +oo. Then #; < + oo and consequently
a4 = ap-+n; << +oco.

Supposing B4, Bz < oo, we have ny; < fz < +oco. Hence fap = fp—
—my < +oo. W

The following obvious theorem may be considered as converse to
Theorem 2.1:

THROREM 2.2. Let A ¢ L(Y —Z), B e L(X —YX). By AB we understand
the superposition of operators A and B, whenever this superposition is
defined. If AB ¢ DY(X %), then B « DY (X -»Y). If AB ¢ D™(X >Z), then
A e D (Y —2).

This immediately implies

CoROLLARY 2.3. If A e L(XY), B eLy(Y>X), and if

ABeDy(¥), BAeDy(X),
then

AeD(X-Y), BeD(Y->X).
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COROLLARY 2.4. If T e Ly(X) and 4f there exists a positive integer m
such that I—T™ e Dy X), then I—T e Dy(X).
Indeed, it is sufficient to take in Corollary 2.3

A=I-T, B=I+T+..+1I"",

It follows from the definitions of a monomorphism and an epimorphism
that an operator A is a monomorphism if and only if as=0, 4 is an
epimorphism if and only if 84 =0, and 4 is an isomorphism if and only
if a4=p4=0.

We say that an operator A e Ly (X —>X) is right-invertible (left-in-
vertible) if there exists an operator B e Ly(Y »X) such that

AB=1Iy (resp. BA=1Ix),

where Iy and Iy are identity operators in spaces X and Y, respectively.
If there is no danger of a misunderstanding, we shall denote the
operators Iy and Iy by the same letter I.

THEOREM 2.5. An operator A e Ly(X —Y) is

right-invertible a=0,

a4 = 0.
Proof. Sufficiency. Let us suppose as = 0. This means that Z, = {0}
and that the operator A maps the whole space X onto the set Hi. Let

us decompose Y into a direct sum ¥.= E,@C. We define an operator
B e Ly Y —>X) as follows:

l if and only if ‘

left-invetrible

0 for

z  for

By = yeG,
y=A4z,reX.

Evidently, B(A4#) = o for « ¢ X. Hence BA = Ix, and B is the left in-
verse of A. ‘ :
Now let us suppose f4 = 0. This means that the operator 4 maps

the space X ontio the whole space Y. We define an operator B e Ly Y —+X)
by the following equality:

By=2a for y=Aw,seX.

Then we get A (By) = A% = y. Consequently, AB = Iy, and the operator B
is the right inverse of A.

Necessity. Let 4 eLy(X YY), and let us suppose that there exists
an operator B ¢ Ly(Y »X) such that BA = Ix. Moreover, let us suppose
that there is an element z e Z4, % # 0. Then

(BA)w = B{Az)= B(0)=0,
but this is impossible. Thus Z4 = {0} and as= 0.
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Now, if there exists an operator B e Ly¥ -X) such that 4B = Iy,

then
Bp < Bar=Pr,=0.

Consequently, fz=0. B

ExAMprE 2.1. The operator A defined in the space C[0,1] of all
continnous functions in the interval [0, 1] by the formula

i
A = f z(s)ds
0

is left-invertible, because

13
d
ﬁfm(s)ds= z(t), and so

0

d
4=1,

2.7)
and a4 = 0. If follows also from egquality (2.7) that the operator d/df is
right-invertible. Hence

Bajar =0 -

EXAMPLE 2.2. The operator p of multiplication by a function
p(t) € C[0, 1], p(t) different from zero in [0, 1], considered as an operator
in the space C[0,1], is invertible. Hence

ap=Pp=2#p=0.

'

§ 3. Finite-dimensional operators. Let two linear spaces X and Y
be given. An operator K ¢L(X—+Y) such that dimEBg = n < 4o i8
called a finite-dimensional operator. The number n is called the dimension
of the operator K. Each n-dimensional operator is of the form

n
Ko=) o@)ys,

=1
where the elements #: ¢ ¥ are linearly independent, and ¢; are linear
functionals defined over the space X. We denote by K(X->Y) the set
of all finite-dimensional operators. The set K (X —X) will be denoted
briefly by K (X). Let us remark that a sum of two finite-dimensional
operators, and superpositions AK and K4 of an arbitrary operator A

and a finite-dimensional operator K are finite-dimensional operators.

Tet K e K(X). We may consider the operator I-+K, where I ig t!ae
identity operator. We show that I-+K has 2 finite d-characteristic.

Indeed, let us consider the equation

: n
(I+K)w=m,, where Ko = un(m)y; .

=1

(3.1)

Equations in linear spaces 3
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The solution of this equation must be of the form

(8.2) &= g— Z Ciyi, where Oi= giz).

i=1

‘We apply functionals ¢; (j =1, 2, ..., n) to both sides of equation (3.2).

We obtain the following system of algebraic equations:

(3.3) Or=— D EuCi+L; (j=1,2,..

=1

) )

where Ky = j(ys) and Ly = pi(a,).

If the determinant of system. (3.3),
K,+1 K, ..K,
K, Ky+1 ... Ky,

E, K, ..E,+1,

(3.4)

is different from zero, then to any system of numbers (L, Ly, ..., In)
there exists a solution of the system of equations (3.3). Hence the operator
I+XK is invertible and the solution of equation (3.2) may easily be de-
termined.

On the other hand, if the determinant (3.4) is different from zero
and if @, = 0, then equations (3.3) have only a zero solution. Since equa-
tions (3.3) are linearly independent, equation (3.2) also has a zero solution
only.

If the determinant (3.4) is equal to zero, then it is not for all systems
(Ly, Loy ooy Iny) that a solution of system (3.2) exists. A necessary and
sufficient condition for the existence of a solution of (3.2) is that the
vector (Ly, ..., Ly) belong to a certain k-dimensional space, where the
{mmher k is the so-called rank of the matrix (Kj;). On the other hand,
in this ease the homogeneous equation (3.2) has n— & linearly independent
golutions y;. Hence

a,g=n—k and
and we get the following

TreoREM 3.1. If K e K(X), then I +K ¢ Dy(X) and

Brix=mn—k

#reg=0.

The following theorem is a consequence of Theorems 3.1 and 2.1:
THEOREM 3.2. If

D(X-Y), DX Y},
A ey DHX>Y), and K ¢ E(X >Y), then A+K e | DY X >Y),
D (X-Y), D (X-Y),
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respectively, and
HALE = K4 .

Proof. First, we suppose 4 ¢ D(X ~¥) and decompose the space X
into a direct sum of the space Zs and a certain space €: X = Z,®C.
Fvidently, by Theorem 2.5, the operator A, defined as the restriction
of the operator A to the space G, is left-invertible. Let K, be the restriction
of the operator K to the space €. Then

A +E, = (I +K1A;1)-A1 .

K, A7 is o finite-dimensional operator defined in the space Y with values
in Y. By Theorems 2.1, 2.5 and 3.1,

(3.5)

Hgrm, = AIpEAT T R4, = ey = Bay=Pa-

On the other hand, the operator 4 +X is an extension of the operator
A +EK,. We shall prove x g = #%4,1x,~ Ca- We congider three cases:

() KZ,CHyx, Then B p= B, g, and 80 Bax= Paprms
But ayyg = Capix, + 0y HENCR %4 x= %apz— %a-

(iiy Wehave Kz ¢ B, g foreachweZ,,s # 0. We writer = dimKZ ,.
Obviously, f o x = B4z, —7- On the other hand, oy x= 041k, F{a—7)
sinee the number a4— 7 is equal to the nullity of the operator K restricted
to the space Z,. Thus, %, g = %43 x,— G, DECAUSE (A+K)x= Kz for
&Te ZA. :

(iii) In the general case, we decompose the space Za into a direct
sum of two spaces €, and G Za= G, @®C,, where K€, CE, 1k, and
Ex ¢ By g, for every €y, 27 0. ‘

Tirst, we consider the restriction A,+K, of the operator A+K to
the space € @C,. Applying part (ii) of the proof we obtain %4, x, = %1 &:
—dim §,. On the other hand, applying part (i) of the proof we
get g = #q4x,—dim G But dim G, +dim €, = a4. Hence x,4,x
=¥ —Qy -

. Ail[‘*ililse 1‘—Zsults together with formula (3.5) yield the theorem for
A eD(X>Y).
Now let as < oo, fa= +oo. Formula (3.5) gives

%apm, = T

and since the dimension of the space Z. is finite, we get HArR = +?o.
Finally, let us suppose.as == + 00, Ba < +oo. Formula (3.5) implies

Hgrm, <Ba>

but the dimension of the space Z4 is infinite. Hence

Rgrg = R g, Oa=—c. W
3*
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Equations with finite-dimensional operators are well known in the
theory of integral equations as equatioms with degenerated kernels. We
now give examples of such equations and determine their solutions.

Exavrre 3.1. We shall investigate for what values of the real
parameters 4 and p the equation

1
(3.8) 2 (t)+2 f tsw(s)ds = pi—1
1]

has solutions belonging to the space C[0,1].
1
The operator K« = A [ts#(s)ds is one-dimensional. Henee the solution

must be of the form

(8.7 o(t) = p—1—1Ct, where C= [ sa(s)ds.

This gives the equality
1

[ sl(us—1)—20s)ds = C'.

[
Integration reduces this equality to the following one:
(3.8) FA+1)0=3u—}.

(i) If 2 %= —3, equation (3.8) has a unique solution:

o=t 1 2u—3
A+l 2 A¥3

Applying (3.7) we find that in case A = —3 for every value of L equa-
tion (3.6) has a unique solution given by the formula

A 2u—3

i 3(A+2p)
2 7+3

2(t) = pt—1— Gre

= —1.

(il) I A= —3, a solution of equation (3.8) exists if and only if

1
ip—t= [tu-1)@t=o0,

0

that is if 4= 3. Then the homogeneous equation, i.e. the equation

1
a(8)—3 [ tsa(s)ds =0,
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has only one linearly independent solution: @(?) =1, and equation (3.6)
has a solution (if and only if u=2) given by the formula
w(t) = 21—14+3Ct =3(C+4)t—1,

where ¢ is an arbitrary constant.
ExAMPLE 3.2. We investigate for what values of the real parameter 1
the equation

(3.9)

=2
w(t)— f sin{t-+s)a(s)ds = sin’2t~—%

0

has a continuous solution in the interval [0, =/2].
TIIZ . * .
The operator Kz= —A[sin(i+s)a(s)ds is two-dimensional, for
o
gin (£ +s) = sintcoss -+ cosisins. Hence the solution must be of the form.:

(3.10)

where

% (t) = sin2— £+ Oysint+ Cyeost,

2 =%
G’l-——f cossz(s)ds; Cp= [ sinsw(s)ds.
1]

¢
We obtain the following two equalities:
/2

0, = f coss[sin2s—2 -+ C;sins + Cyco85]ds
0

/2

Oy = f sins[sin2s— 3+ Oysins -+ Cyeoss]ds .
0

Since
2 w2

f coss(sin2s—2)ds = f sins (sin2s—2)ds =0,
0

2 % w2
f cosssinsds = %, f sin?sds = f costsds = =2,
0 0 ]

we obtain a system of equations
' 1—32) 0,—3mAC, = 0
(3.11) ( 2 1 2 ’
—37AC+(1—32)C= 0.
The determinant of this system
D, = (1—m) 22— A+l = 31 +=)A—2][(L—7)2—2]

is equal to zero for 1= 2/{(1+tm).
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Hence:

(i) T A 2[(14=), system (3.11) has no non-zero solutions, and
equation (3.9) has a unique solution #(f) = sinZt—%.

(i) If A= 2/(14 =), then D, = 0. But the rank of the matrix of the
determinant D, is equal to 1, and we can solve e.g. the first of the equa-
tions (3.11). We obtain

TG0 =0,

that is 0, = =+ C,. Then the homogeneous equation

/2

a(t)—2 [ sin(i+s)a(s)ds =0

has two non-zero linearly independent solutions:
2,(t) = sint 4 cos?;  @y(f) = sini— cost.

The general solution of equation (3.9) is given by the formula
A 2 . 2
= S ST -2 Dlsint—
»(t) == sin2t 2—i—l ﬂO’[smt—%— eost]+1 WD[smt cost],

where ¢ and D are arbitrary constants.

§ 4. Perturbations of operators. Let a class 2 of operators be given.
An operator B is called an U - perturbation of an operator A e W,if A +B A
If an operator B is an ¥U-perturbation of all operators 4 %, we call B
an U-perturbation.

THEOREM 4.1. The set of U-perturbations is additive, i.e. if operators
T,, T, are A-perturbations, then the operator Ty +T, is also an W-perturba-
tion.

Proof. Let 4 e Then A+T, ¢, for T, is an U-perturbation.
But T, is also an ¥U-perturbation. Hence (A-+T,)+T, e¥U. Thus, the
operator T, +T, is an U-perturbation. &

THEOREM 4.2. If the set U is homogeneous, i.e. if for any scalar & and
any operator A € W we have aA <N, then the set of W-perturbations is linear.

Proof. Let 4 €. Then %A €A for a4 £ 0. If an operator T is an
A-perturbation, then

Lavr=taancuy

.Hen@ A+aT U, and the operé.tor aT is an A -perturbation. Theorem 4.1
implies that the set of A-perturbations is a linear set. m
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In the last section (Theorem 3.2) we proved that finite-dimensional
operators are perturbations of the class of operators with finite d-charac-
teristics. Now we shall show the converse theorem to be also true.

TEEOREM 4.3. If the dass DX +X) of all operators with a finite
a.- characteristic is non-void, and if an operator K e L(X »Y) is a perturba-
tion of the class Dy(X —Y), then the operator K is finite-dimensional.

Proof. Let us suppose that the operator K is not finite-dimensional.
There exists a sequence {y,} of linearly independent elements belonging
to the image Hx of the space X by means of the operator K. Let @, be
elements satistying the condition K, = ya. Let X, be the space spanned
by the sequence {2,}, and ¥, the space spanned by the sequence {ya}.
We write the space X as a direet sum: X = X,@® €. The space € has an
infinite defect. Let A be an arbitrary operator with & finite d-charac-
teristic which maps the space X into the space Y. The set ¢, = AC also
has an infinite defect, and only a finite number of elements y» belongs
to this set. Indeed, let us suppose that there exists a subsequence Wnet
such that ¥, € A, i.e. there exists a sequence of elements {z,,} such that
Az, =Y,,. Then A, =0 for @, = @, —®,,. Bub elements Xy, are
linearly independent, and. 80 ag = oo, which contradicts the assumption
that the operator A has a finite d - characteristic.

We define a linear operator B eLyX~>Y) in such a manner that

Az i xeC@,
Br={y, if w@=ua,2a0d yn¢GC,
0 if o=, and yeC;.

It follows from the previous considerations thab ap < +4-oo. On the
other hand, Ep= €, @Y,= Es. Hence fz= fa < +oo. However, the
operator B— K does not have a finite d-characteristic, because (B— K)@n
= 0 for infinitely. many elements of the sequence {2s}, and consequently
ap-g = --co. Thus, the operator K is not a perturbation of the operator
B e Dy(X —+Y). This contradicts the assumption of the theorem. m

Remark. Tf the bases of spaces X and Y are of different powers,
there exist no operators with finite d-characteristics which map the
space X into the space Y.

Tet us remark that the inequality fa<< +oo was applied in the
proof of Theorem 4.3 only in order to show that fz < +oco. Hence the
following theorem holds:

TeEOREM 4.4. If the class DF (X —X) of all operators of fimite nullity
is non-void, and if an operator K e L(X ~+X) is a perturbation of the dass
D (X —~YX), then the operator K is finite-dimensional.
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§ 5. Algebras of operators and regularization to an ideal. Let X(X)
C Ly(X) be an algebra of operators, i.e. suppose that a linear combination
and a superposition of two operators belonging to X(X) also belong to
¥(X). Moreover, we always assume the identity I e ¥(X).

An example of an algebra ¥(X) yields the whole algebra L,(X). It
is easily verified that all finite-dimensional operators belonging to ¥(X)
form a two-sided ideal in the algebra X(X). We shall denote this ideal
by Ki(X).

THEOREM 5.1 (ON THE REPRESENTATION OF ALGEBRAS). Hvery al-
gebra X can be represented as an algebra of operators over a certain linear
space X. .

Proof. We define the linear space X as equal to the algebra X: X = X.
We associate with every @ ¢« X an operator A, defined as follows

Azy=wy, yeX.
Obviously, A, e Ly(X). It is easy to verify that

AptAhy= Ay, Agdy= Ay, A,=1

(where ¢ is the unity of the algebra ¥). Hence it follows immediately that
the set {4s: @ e X} is an algebra of operators over the space X. m

If for a given operator A ¢ ¥(X)C Ly(X) there exists an operator
R4 e ¥(X) such that BgA = I+T (or AR4= I+T), where T e J, and J
is a two-sided ideal contained in the algebra ¥(X), then this operator By
is called a left regularizer (or right regularizer) of the operator A to the ideal J.
If a regularizer is both left and right, it is called a simple regularizer.

A left (right) regularizer of an operator A to a zero ideal is usually
called a left inverse (right inverse) of the operator A.Tf there exists a Teg-
ularizer to a proper ideal J, it does not belong to J. Indeed, let us suppose
Raed. Since R4A =1I+4T, where T eJ, we have I= —T+R44 ed.
This would imply that the identity operator I edJ, which contradicts
the assumption that the ideal J is proper. '

Ii an operator 4 has a left regularizer (right regularizer) to an ideal J,
then the coset [R.] is a left inverse (right inverse) of the coset [4] in the
quotient algebra X(X)/J. Hence, if the operator A has a simple regularizer
to the ideal J, then
(5.1) [BallA] = [A][RA = [1] .

Thus fA]™ = [B4l. Let us remark that the last equality does not imply
that the operator A is invertible.

This implies the following properties of regularizers:

- PROPERTY B.1. If an operator A e X(X) C Ly(X) has aleft regularizer R,

am& @ vight regularizer B, to an ideal J C X(X), then each of those regularizers
8 simple, and B, — R, eJ.

im\
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PRrROPERTY 5.2. 4 simple regularizer to an ideal J is unique in the
sense that two simple regularizers differ by a term belonging to the ideal J.

PROPERTY 5.3. If an operator A e X(X) is of the form 4 = B-+T,
where the operator B has a left inverse (right inverse) B, e ¥(X) and T eJ
C X(X), then A possesses a left regularizer (vight regularizer) Ry = Bj fo the
ideal J. Conversely, if a left regularizer (right regularizer) of an operator A
has a left inverse (right inverse) B e X(X), then A = BT, where T ¢dJ.

PROPERTY b.4. If an operator A e X(X) has a left regqularizer (right
regularizer, simple reqularizer) R4 to a two-sided ideal J C X(X), then to
every T ed there ewists a left regularizer (right regularizer, simple reqularizer)
Rayr of the operator A+T, and

Rar= Ry.

Let us note that the following equality holds for a superposition
of two operators:
Rup= EpR4

(if the regularizers B4 and Rp exist). Indeed, we have e.g. for left regulari-
Zers
RsR4AB = Ry(I+T4)B= RgB+RpT4B=1I1+Ts+ReT4B,

where T4, Ty eJ. Hence also Tg-+RpT4B ¢J. Thus, RpRy is a regularizer
of the operator AB.
Evidently, if A, B ¢ LX), then

(5.2) ZABDZ_A and EABCEA.

Let us suppose that the operator A has a left regularizer (right
regularizer) R4 t0 a certain two-sided ideal J. Then )

Rud=TI+T, (ARs=1I+T,), where T,,Tyed.

Formulae (5.2) show that in order to investigate the kernel of an
operator 4 it is sufficient to investigate the operator A restricted to the
space Zpyp=Zip, 4> Z4-

Similarly, to investigate the eokernel of an operator 4 it is suffcient
to consider the operator A induced by the operator A in the guotient
space X/Br,r,, for By, g = B, CH,. In the case where ar,p < +oo
(Bryz, < ~+o0), this is an essential simplifieation, since it reduces the
investigation of infinite-dimensional spaces to the investigation of finite-
dimensional spaces. Therefore, in the sequel we shall investigate those
ideals of operators for which the operator I+ 7' has a finite nullity (de-
ficieney) for all T ed.

Moreover, e.g. if an operator A has a left regularizer R, which is
left-invertible, then the first of the formulae (5.2) implies Z, = Zp,4-
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Hence a, = ag, . Indeed, if R, is the left inverse of the operator R s
then

Zy=Zpp,d ZnaD %

Analogously, if an operator 4 hag a rvight regularizer R4 which is

right-invertible, then B, = B p,. Hence f, = f,p5,.

§ 6. Quasi-Fredholm ideals. A two-sided ideal J of operators is called
a quasi-Fredholm ideal it the operator I-+7T has finite d-characteristic
for every T eJ. If, moreover, x4z = 0 for every I'ed, then J is called
a Fredholm ideal.

Let X(X) be an algébra of operators. The set K,(X) of all finite-
dimensional operators belonging to the algebra ¥(X) is a two-sided
Fredholm ideal (Theorem 3.1).

It is possible to show that there exist quasi-Fredholm ideals which
are not Fredholm ideals. This is proved by the following example given
to the authors by G. Neubauer:

Exawpre 6.1. Let X be the space (s) of all sequences. Let the
operator R transform the space X into itself in the following manner:

Br=y, where o= {§, &, ..}, y=1{0,8,6&,.}.
We write
B=R-I.

Let X(X) be the algebra of all polynomials of the operator B with
complex coefficients. Each operator belonging to the algebra X(X) and
different from zero has a finite d-characteristic. Indeed, let ¢(B) ¢ X(X).

If ¢(B)=1, this fact is obvious. If ¢(B) # I, this polynomial can be
written in the form

n n
4B)=a, [ [ (B—aD)=a, [ [ (R—b:I), where b= as+1.
=1 fe=1

Each of the operators (R—b;I) has a finite d-characteristic.
Hence, by Theorem 2.1, the operator ¢(B) has a finite d-characteristic.
Thus every ideal in the algebra ¥(X) is quasi-Fredholm. Now we con-
sider the ideal of all operators of the form p— B-g(B). This ideal is
not a Fredholm ideal, for g(B)=1T implies 4 =T +B =R, whence
Brie = Br= 1, aryp=ap = 0, and 80 srp=1 # 0.

The following thegrem is an immediate consequence of Theorem 2.2
and of Corollary 2.3:

TEEOREM 6.1. Let ¥(X) be an algebra of operators. If am operator
A e X(X) has a simple reqularizer Ry to a quasi-Fredholm ideal J e X(X),
t;tz A has a finite d-characteristic. If, moreover, J is a Fredholm ideal,
them », =

= %Ry,
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An algebra of operators X(X) C Ly(X) is called regularizable to a two-
sided ideal J C X(X) if egch operator with a finite d-characteristic and
belonging to this algebra has a simple regularizer to the ideal J. An algebra
regularizable to the ideal K (X) of all finite-dimensional operators be-
longing to the algebra X(X) is called briefly regularizable.

THEOREM 6.2. If an algebra of operators, X(X), s reqularizable io
a quasi-Fredholm ideal J C X(X), then every operator T eJ is a perturbation
of the dass Dy(X) ~ X(X). If, moreover, J is a Fredholm ideal, then the
perturbations T eJ do mot change the index, i.e. we have

HA+T = %4

for every operator A e DyX)~ X(X) and for every operator T ed.

Proof. Let A eDyX)~ X(X). By the assumption, there exists
a simple regularizer R4 of the operator A to the ideal J. By Property 5.4,
the regularizer R4 is also a simple regularizer of the operator 4 +T for
all operators T e¢J. By Theorem 6.1, it follows that the operator A --T
has a finite d-characteristic. Since 4 is an arbitrary operator from
the set Dy(X) ~ X(X), the operators T eJ are perturbations of the class
Dy(X) ~ X(X).

If, moreover, J is a Fredholm ideal, then

Hgpp = —ARgp = KRy, = %4 - B

TEEOREM 6.3. If J is a quasi-Fredholm ideal in an algebra of oper-
ators X(X) regularizable to a quasi-Fredholm ideal J; C X(X), then every
operator T eJ is a perturbation of a class Dy X) ~ X(X). If, moreover,
J and J, are Fredholm ideals, then this perturbation does not change the
index, i.e.

warp = %4 for all operators A e Dy(X)~ X(X) and T edJ .

Proof. Let J = J +J,. Evidently, J is a linear set. We shall prove
that J is a two-sided ideal. Indeed, if T ed, Tyed,;, A ¢ X(X), then

A(T+T)= AT+ AT, eJ+J,=J ,
(T4+T)A = TA+T,AeJ+d,=4d .

The ideal J is quasi-Fredholm, since Theorem 6.2 implies that if
the operator I +T has a finite d-characteristic then the operator I+T-+T;
also has a finite d-characteristic. .

If J and J, are Fredholm ideals, there J is also a Fredholm idea,.l,
because Theorem 6.2 implies #y pyp, = %rpp- Since the al_gebra; X(X) is
regularizable to the ideal J3, thereNexists a simple regularizer K4 to the
ideal J,, whence also to the ideal J. Property 5.4 implies that for every
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operator T eJN, in particular for T’ ¢J, the operator B4 is a simple regu-
larizer of the operator 4 +T to the ideal 3, ie. Bar = R4. Hence, by
Theorem 6.1, the operator 4 4T has a finite d- characteristic. If, moreover,
J is a Fredholm ideal, then J is also a Fredholm ideal and Theorem 6.2
implies Harp = %4. B

COROLLARY 6.4. If J is a quasi-Fredholm ideal in a regularizable
algebra X{X), then every operator T e J is a perturbation of the class Do(X) A
N X(X). If J is a Fredholm ideal, then this perturbation does mot change
the index, i.e.

ayr = sa  for A eDy(X)~X(X) and Ted .

An analogous theorem holds for operators with semifinite charac-

teristics, namely:

TamorEM 6.5. Let X(X) be an algebra such that for every A e Dy(X) ~ X(X) there
exists a left reqularizer (right regularizer) o the ideal K(X). If I +T ¢ DHX)(I+T e Dj(X))
for every T’ eJ, the operators T ¢J are perturbations of the class DHX) ~ X(X) (DT (DX) ~
N~ X(X), respectively). ) ’

Let X(X) C Ly(X) be an algebra of operators, and let J he a quasi-
Fredholm operator in this algebra. In the definition of a quasi-Fredholm
operator the ideal J is supposed to be two-sided. Hence one can consider
the quotient algebra X,= X(X)/J. The coset induced in the algebra X,
by_ the operator 4 e X(X) will be denoted by [4]. The coset [} is the
unity of the algebra X,. The radical R(¥,) of the algebra ¥, is the set of
elements @ e X, such that the element [I]--azb is invertible for arbitrary
elements a, b ¢ ¥,. We write

Jo= {U e X(X): [U] e R(X,)}.
THEOREM 6.6. The set J, is a quasi-Fredholm ideal.

Proof. It is.well known (§ 0) that a radical is a two-sided ideal.
Hex.me i{he S(_at Jy is also a two-sided ideal. Tf U eJ,, the definition of the
radical implies that the element [I14-[U] is invertible in the algebra X;.
Hence there exists a coset [V] such that

PIHI+10) = (H1+ [U) V] = (1] -
This means that for every V ¢ v,
I+0)yW=I+T,, VI+U)=I+T,, where T,,T,ed.

?Ehus, the operator I+ U has a simple regularizer to the quasi-Fredholm
%déal J. By Theorem 6.1, the operator I- U has a finite d-character-
1stic. W

CoROLLARY 6.7. If the algebra X(X) is regularizable to a quasi-Fredholm

ideal J, then operators belonging to the ideal J, are pert i
b
Dy X) ~ X(X). ] perturbations. of the class
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The proof is an immediate consequence of Theorems 6.3 and 6.6.
COROLLARY 6.8. If an algebra X(X) is regularizable, and if

K,={U eX(X): [Ule R(X,)}, where X = X(X)ELX),

then operators belonging to the ideal K, are perturbations of the class Do(X) n
~ X(X).

THEOREM 6.9. If an algebra of operators X(X) is regularizable io
a quasi-Fredholm ideal J C X(X), then every quasi-Fredholm ideal Jc X(X)
is contained in the ideal Jy: Jc Jy.

Proof. Let Ued. Given arbitrary operators A, B e X(X) we have
AUB &J. Since the algebra X(X) is regularizable to the ideal J, the oper-
ator I+AUB has a simple regularizer to the ideal J. Hence the element
[I1+[A1[TU]BI] is invertible in the algebra ¥,= X(X)/J. But the oper-
ators A and B are arbitrary; this implies that the element [U] belongs
to the radical R(¥,). Hence Ued,. B

COROLLARY 6.10. If an algebra of operators X(X) is regularizable to
a quasi-Fredholm ideal J and if, moreover, this algebra is regularizable,
then Jy, = K,. '

Let an algebra ¥(X) regularizable to a Fredholm ideal J be given.
Let us remark that the index x4 satisfies the following conditions:

(i) w4 8 an integer-valued function defined in the set Dy(X) ~ X(X);
(ii) %a4r = %4 for T eJ (Theorem 6.2);

(iii) #ap = #4+»p (Theorem 2.1).

Properties (i), (i), (iii) characterize in a certain sense the index of
an operator. Namely, the following theorem holds:

TrmorEM 6.11. If X(X) is an algebra regularizable o a Fredholm
ideal J, and if a function v(A) satisfies conditions (i), (ii), (iii) and x4 =0
implies »(A) = 0, then there ewists an integer p such that

v(4) = pra .

Proof. Let ¢ be an arbitrary operator with index 1, belonging to
the set Dy(X) ~ X(X). By the assumption, there exists a simple regu-
larizer R¢ of the operator € to the ideal J. Theorem 6.1 implies

chz-—ncz——l.

Let A eDy(X)~¥(X) and let A have a positive index: %4 = M.
By Theorem 2.1, we have (R¢)"4 ¢ Dy(X) » X(X) and the operator (Rc)"4
has index zero. Hence, by the assumption, »[(Re)"A]= 0. According to
condition (iii)
y(4) = v(RY) = —mv(RB¢) -
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It %4=n <0, then we may prove »(4)= nv(0) analogously. But
¥(ReC) = v(I+T)=»(I)=0, Ted.

Hence »(ER¢) = —»(C). Thus,
y(A)= pxa

where p = v(0) for every A e Dy(X)~ X(X). &

Remark 6.12. The assumption that the function »(4) is defined
in the‘whole set Dy(X) ~ ¥(X) in not essential in Theorem 6.11. Tt i
sufficient that this function is defined in a set W satisfying the following
conditions:

(i)if A,BeW, then ABe W,

(i) if A ¢« W, then A+T ¢ W for every Ted,

(iii) if A ¢ W, then there exists a simple regularizer R4e W of the
operator A to the ideal J.

In this case one cannot require the number p in Theorem 6.11 to be
an integer. Indeed, if there exists an operator ¢ ¢ W with index equal
to 1, the proof of Theorem 6.11 can be performed without any changes.
Let us suppose that there exists no operator C ¢ W with index 1. Let q
be the least positive index of the operators belonging to the set W. Then
the index of every operator belonging to the set W is divisible by the
number ¢. Indeed, let us suppose that operators 4, B.« W have indices q
and s, respectively, and let s = ng+r, where 0 < r < g. Then

BR) W

where

and  #ppue = up—nx,=S—ng=7r<gq,

which contradicts the definition of the number q. Further arguments
areAana,logous to those in the proof of Theorem 6.11, i.e. we consider an
arbltllfa)ry operator 4 ¢ W with index ng and an operator ¢ with index q.
The index of the operator A(Rc)* is equal to zero, and
v(d) = nv(0) = %xc =§MA s
where p = »(C) is an integer.
§ 7. Decomposition of operators, There exists a connection between

numbers as, fz and the form of the operator. Namely, the following
theorem holds:

THEOREM 7.1. Let us suppose
D (X »Y) <
_ 5 then
DO (X —)Y ) ﬁA < a4
zf and only if the operator A can be written in the form
A=8+K,

cm
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where the operator K is finite-dimensional, and the operator S e Ty(X —~Y)
is left-invertible (right-invertible).

Proof. We first prove the necessity of the condition. Let us de-
compose the space X into a direct sum X = Z,@CE, and the space T
into a direct sum ¥ = F4@®C,. Let us suppose 4 € DFH(X —T) and as < fa.
This means that dimZ4 < dim ¢,. Hence there exists a finite-dimensional
operator K which is a one-to-one map of the subspace Z4 in the sub-
space @,. Thus, the operator § = A— K is defined in the space X and
maps X in ¥ one-to-one. We denote by Fs the image of the space X by
means of the operator 8. Obviously, the operator S~ exists on the set Eg.
Let us denote by B an arbitrary extension of the operator S—! to the
whole space Y. Evidently, §'8z = & for all # ¢ X. Hence the operator §
is left-invertible, and A = S-+K.

Now let us suppose AeD;(X—Y) and g, <a,. Then dimZ,
> dim @,. The operator A is a one-to-one map of the subspace € onto
the subspace E4. Hence there exists a finite-dimensional operator K
which maps part of the set Z4 into the whole space ©, one-to-one. Thus
the operator § = A— K maps part of the space X onto the whole space Y.
Let us consider the operator 87 It is defined on the whole space ¥ and
maps the space Y into the space X. Hence 88 'y = y for y ¢ Y. Thus the
operator § is right-invertible, and A = S+ K.

Now we prove the sufficiency of the condition. If the operator § is
left-invertible, Theorem 2.5 implies as= 0. If § is right-invertible, we
obtain fs= 0. Hence, by Theorems 2.2 and 3.2, a4 <Cf4 in the first
case and B4 < a4 in the second case. B

COROLIARY 7.2. If A e Dy(X —+Y), then =a= 0 if and only if

A=8+XK,

where K is a finite-dimensional operator and S is an invertible operator.
Remark 7.1, It follows from .the construction of the operator S—*
that if § is a right-invertible operator, then

S81=1, R8=I+EK,,
where K, is a finite-dimensional operator and dim K, = dim By, = —
It 8 is left-invertible, then
§-8=1,

where dimK; = dim By, = -+xg.

The following theorem is a consequence of Theorem 7.1:

THEOREM 7.3. If A4 e Df(X->Y) (resp. A e Dy (X—>Y)), then there
ewists an element R such that the operator AR4—1I (resp. Ra A—1I) 1s finite-
dimensional.

S81=I+K,
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Proof. If 4= +oo (resp. as= +oo), then the theorem is an
immediate consequence of Theorem 7.1. Let us suppose a4, f4 < -+ oo.
If a4 < fa (resp. fa<aa), the theorem is contained in Theorem 7.1,
If a4 > fa (vesp. fa > a4), then in place of Y (resp. X) we consider the
space Y, (vesp. X;), which is a direct sum of the space ¥ (resp. .X) and
the (as—fa)-dimensional (resp. (Ba— aa)-dimensional) space G. The
operator A may be considered as an operator 4, from L(X —X¥,). (The
operator A can be extended to the operator A4,:

Az for zeX
4, 0= <
0 for w¢C).
It is easily seen that x,, = 0. Hence, by Corollary 7.2,
A, =8+K,

where the operator § is invertible and the operator XK is finite-dimensional.

Let P be a projection of the space ¥, onto the space Y (resp. projection
of X; onto X). Then

A =PA4,=PS+PK (resp. 4= A,P= SP +KP).
Let B4= 8P (resp. Ra= PS™2), and let Yy €Y (resp. # ¢ X). Then
ARsy = PSS'Py+PES™ Py = Py { K,y = Py+K,y=y+Ky,
where K, = PKS™'P is a finite-dimensional operator (resp.
Rsdr = P8 8Pr+PSKPx — g +K z,

where K, = PS'KP is a finite-dimensional operator). m
Hence the following corollaries are immediately obtained.
COROLLARY 7.4.

_D+ X . N
A (X) then A Tus a right regularizer ,

o left regularizer

respectively, to the ideal K (X) of all finite-dimensional operators.
CoROLLARY 7.5. If A e Dy(X)
ideal K (X).

COROLLARY 7.6. The algebra Ly(X) is regularizable (see Theorem 6.2;
compare also Theorem 1.2, CI) (4)).

) then A has a simple regularizer to the

(") In the whole book, in the references to items of other chapters and parts ‘we\

shall write, for example, A TII instead of Part A, Ch
J 6 A, Chapter IITI. Thus Property 5.1, III
means Property 5.1 of Chapter III of the present part. perty
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§ 8. Eigenvalues, regular  values, and the spectrum of an operator.
Let us consider the operator 4 = T'— 1T, where T e Ly(X) and A is & num-
ber. If

ap_yr=Pr.g=0,

the number 2 is called a regular value of the operator TI. The set of all
numbers 2 which are not regular values is called the spectrum of the oper-
ator 7. If ap_,; > 0, then such an element A of the spectrum is called an
eigenvalue of the operator T. If 4, is an eigenvalue of the operator T,
there exists an % = 0 such that Tz = A,x. All elements 5 0 possessing
this property are called eigemvectors of the operator T corresponding to
the eigenvalue 2,. The space spanned by these vectors is called the eigen-
space. A principal vector corresponding to the value 4, is an element z
such that (T— 2,1z = 0 for a positive integer n. The space spanned
by principal vectors is called the principal space.

The dimension of the principal space is called the multiplicity of the
eigenvalue 1,. Evideptly, if there exist principal vectors, then - there
exist also eigenvectors. Indeed, if n is the least positive integer such
that (T'— 4,I)"r = 0, then z, = (T— % I)* ' is an eigenvector.

Every eigenvector is a principal vector. Therefore the dimension of
the principal space is not less than the dimension of the eigenspace.

The principal space G, corresponding to a value 4, is called spliitable
if the space X can be writen as a direct sum of subspaces

(8.1) X=6a,0N,,

where the subspace N, is invariani with respect to the operator T, i.e.
TN, CN,, and N, = (I'—24I)N,,.

Tf the principal space is finite-dimensional, then the decomposition (7.1)
is unique. Indeed, if n is the multiplicity of the value 7y, then

(T—2I)"G,=0.
Hence

Ny, = (T— 4 I G, ®(T— A" Ny = (T— 2 I)"X = Big_sozyn -

Thus, if the principal space corresponding to the value 7, is finite-di-
mensional and splittable, then the operator T— 4,I has a finite d-char-
acteristic.

The following theorem holds for regnlar values of powers of an
operator:

THEOREM 8.1. 1 is a regular value of the operator T™ if and only if the
n-th 7008 Ay, Agy wny In Of the number i are regular values of the operator T.

The proof is based on the following lemma:

Equations in linear spaces 4
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LEMMA. If commutative operators Ay, A, .., An map the space X
into iiself, and if as= fa=0, where A = A A,...4,, then

ay=fu=0 (i=1,2,..,n).

Proof. Let us suppose that a, >0 for a certain j. But the oper-
ators A, are commutative. Hence A= 4,..4; 4,.,..4, 4, Con-
sequently, a, > a,, >0, which is a contradiction.

On the other hand, let us suppose that f, >0 for a certain %.
Then A4 = A, 4,..4; A,,,..A,. Hence f, > f,, >0, which is a con-
tradiction. m

Proof of Theorem 8.1. We can write
(8.2) I"— Al = (T— I} (T—2I)...(T— 2 I) ,
and the sufficiency of the condition follows immediately. The necessity
of the condition follows from the lemma.

The spectrum of an operator is called diserete if it is either finite
or a countable sequence {1,} covergent to zero.

From Theorem 8.1 follows immediately

THEOREM 8.2. The following three conditions are equivalent:

1. Operator T has a discrete spectrum.

2. For every n the operator T™ has a discrete spectrum.

3. There exists a number n such that the operator T™ has a discrete
spectrum.

THEOREM 8.3. If there ewists a positive integer N such that for all
n> N the operator T™ has a discrete spectrum and the operator I—T™ has
a finite d-characteristic and index equal to zero, then the operator I—T
has a finite d-characteristic and index equal to zero.

Proof. By Theorem 8.2, the operator T has a discrete spectrum.
By Corollary 2.4, the d-characteristic of the operator I—7 is finite. We
write
"I = (T—eI)(T— &MI)..(T— e, I),

where &, ..., &, are the nth roots of unity (e = 1). Since the spectrum
of the operator 7' is discrete, there exists a natural number p such that
the operator I—T” has index zero, and numbers &, vy &2 are mnot
elements of the spectrum of the operator T. Then the operator
Ay = (T—ePD)...(T—¢2, 1) is invertible and x, =0. But I—77
= (I—-T)4,. Hence, by Theorem 2.1,

0=rn_pm= Hoptra, =% g W
Remark. The assumption that the operator I—T" hag index zero

for snfﬁciently large = can be replaced in Theorem 8.3 by the assumption
that this condition holds for an infinite sequence {n;} of relatively prime

eigenvector of the form
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numbers. However, the last assumption cannot be weakened any more.
Namely, one can show that to every sequence of the form {pn} (p being
a fixed number) there exist a space X and an operator T with a discrete
spectrum such that w#;_gw =0 but »;_5 5% 0.

Exampie 8.1. Every real number 2 is an eigenvalue of the operator
djdt e Ly(C<[0,1]). Indeed, the equation

a
has a solution for every value 1. To the value 1 there corresponds an

() = e*.

Hence the eigenspace is one-dimensional.

ExAMPLE 8.2. Every complex number is an eigenvalue of the oper-
ator d@2/di? e Ly(C™[0,1]). As is well known, the following (linearly in-
dependent) eigenvectors correspond to the eigenvalue A:

¢t ¢ | where A, %, are square roots of the number Af if 10,
1, t it 2=0.

Hence the eigenspace is two-dimensional.
ExAMPLE 8.3. The integral operator defined in Example 3.1

1
Az = f tsx(8)ds

has only one eigenvalue i==3; all values 13 } are regular (compare
the calculations in Example 3.1).

§ 9. Pararings and paraalgebras. An essential disadvantage of the
method of regularization in its present formulation is t?le fact that by
applying the language of the theory of algebras we limit ourvselves to
eperators which map a linear space X into itself. In order to formulate
the method of regularization in the general case it is necessary to develop
the theory of the so-called pararings. )

Let a system P of four Abelian groups (Py, P, Gy, G,) be. given. We
denote operations in all groups by “ -+ and we call them addition. More-
over, a second operation, ealled multiplication, is defined in ‘?he system P;
it need not always be performable. This multiplication satisties the follow-
ing conditions: .

(1) if Py, Py € Pyy Doy P2 € Pyy g1 € Gy, gy '« Gy, then the following prod-
uets exist and belong to the respective groups of the system P:

Pipye Pry PaPrePyy  Grfae Doy 9201 € Py

GiD1eG, DGy,  Pafi€ G, GePre G,
4*
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(2) if the multiplication is performable, then it is associative and
distributive with respect to addition.

Let us remark that groups P, and P, with the operations defined
above are rings (1).

In order to illustrate multiplication in the system P we give the
following diagram ‘

Fig. 2. Pararing. Arrow 1 shows the order of elements of the product. Arrow 2
shows the group to which the produet belongs

» A system P of four Abelian groups (Py, P,, G4, @) satisfying con-
ditions (1) and (2) will be called a pararing and will be denoted by

G
P= (Pl t Pg) .
Gy
It operations #y and yz are both performable, then either the prod-
ucts zy and yz both belong to one of the rings Py, ¢ = 1, 2, or one of the

products belongs to the ring P, and other, to the ring P,.
If two pararings are given:

@ @
P= (Pl Gl Pz) and P’ =(P; ! P;),
s &
and if P;CP;, G;C@ (i=1,2) and the operations in P and P’ are

consistent, then the pararing P’ i3 called a subpararing of the pararing P
We shall write: P’ C P. ! paang =

(1_) Groups @, and G, with the operations defined above are the so-calléd bimoduli
over rings P; and P, (Jacobson [1]).
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If an element # belongs to any of the groups Gy, @, or rings Py, P,,
then « is called an element of the pararing P = (P1 g: P,,), and we say
that # belongs to the pararing P: z ¢ P. We write

{P}={x: zeP}.
The set {P} is called the set of the pararing. Evidently,
{P=PvP,w@ub,.

A left ideal (right ideal) in a pararing P is a pararing J C P such that
for any two elements # eJ, z ¢ P for which the operation zz (resp. «z)
is performable the product zw eJ (resp. zz edJ).

Tt follows from this definition that if a pararing J is an ideal (left
or right) in a pararing P, then J is of the form:

Gy~ {J}

J=(P1r\{J} PRI

Pzﬁ{J})-

Evidently, the set P; ~ {J} is an ideal in the ring Py (i = 1, 2), and sets
@i~ {J} are bimoduli over these rings.

. In further considerations we shall not distinguish between a para-
ring P and its set {P} whenever no misunderstanding can arise. For in-
stance, if J is an ideal in a pararing P, we shall write simply:

G nd

2!’\

Jz(Pan Psz).

An ideal which is left and right simultaneously is called a two-sided
ideal.

Evidently, the pararing P itself and the system composed of neutral
elements of all groups constituting P are ideals. These ideals will be called
irivial ideals. All other ideals will be called non-trivial or proper.

A pararing P= (P1 gl .Pz\) is called a paraalgebra if the groups
2

P, P,, @, G, are linear spaces, and if for every two elements x,y eP
for which the operation @y is performable and for an arbitrary scalar ?
we have

(wy) = (iw)y = @(ty) .

The following system gives an example of a paraalgebra: Let two
linear spaces X and Y be given. We take

P=L(X}), P,=L(Y), G =IL{X~>Y), G, = LY »X).
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We write

L(X=2Y) = |L(X
o ) (o( .
If the spaces X and Y are infinite-dimensional, then the set Ky(X<Y)
of all finite-dimensional operators belonging to Ly(X=Y) is a non-trivial
ideal.

If the rings P; constituting a pararing P have unities ¢; (4 = 1,2),
then P is called a pararing with unities.

Ly(X »Y) Y))

THEOREM 9.1. Bvery paraalgebra P = (A1 gl Az) can be extended to
a paraalgebra with wnities. )
Proof. Algebras A; (¢ =1,2) can be extended to algebras A; with
unities by taking
Ai={(w,a): vcd;, ais a scalar} (i— 1,2,
and defining operations in sets A; as follows
(#,8)+(y, b)= (@+y,a+b)
(9.1) b(z, a) = (bx, ba)
(#, a)(y, b) = (vy + bz +ay, ab)
(see Theore}m 0.1).
We define multiplication between elements of spaces 8 and sets A;:

(@, yediy, i=1,2;
a, b are scalars),

(92) if weSs(i=10r2), (y,a)ed; (j=1 or 2), and if the product xy
(resp. ym) is defined, then

(Y, a)=wy+ar (resp. (y,a)r = Y&+ ax) .

) Let us }"ema,rk that if the produet oy is defined, the sums on the
right-hand side of formulae (9.2) are also defined.

It is easy to verify that the system P — (Zl gl L) with operations
2

def.iq:led by formulae (9.1) and (9.2) is a paraalgebra and that (0, 1) are

unities of this paraalgebra, where 0; is the zero element of the algebra 4;.

Elements of algebras 4; can be identified with pairs of the form (=, 0)

Where z e 4;. ® o
Taking into account Theorem 9.1, in the sequel we ghall consider

only paraalgebras with unities, and we shall call them briefly paraalgebras.
A radical of & pararing P with unities is the set

R(P)={weP:if a,beP and avb e P; (i=1 or 2),

then there exists an element (¢;-a % by},
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TEEOREM 9.2. The radical R(P) of a pararing P with unities is a two-
sided ideal.

Proof. Let #,y « R(P), and let us suppose that the sum « -y exists,
i.e. that elements # and y belong to the same group G4 or ring P; simul-
taneously. Let a and b be two elements of the pararing P such that
a(x+y)beP; (=1 or 2). It follows immediately from the definition
of a pararing that the elements azb and ayb e P;. But z, y « R(P), whence
the element

ei+a(x-+y)b = (e -+ awb)[e: -+ (e:+axb) ayb]

is invertible. Thus, #+y ¢ R(P). Hence we have shown that the set R(P)
is linear.

Let us suppose that 2 ¢ R(P). Let @ and b be two elements such thab
the element 2 = awb is well defined, and let ¢ and d denote two elements
of the pararing P satisfying the condition czd e Ps (i=1 or 2). Then
the element

e+ cz2d = 61+ (ca)x(bd)

is invertible, since z ¢ R(P). Thus, z ¢ R(P), since elements ¢ and & are
arbitrary. But elements & and b are also arbitrary; hence the set R(P)
is an ideal. m

Let a pararing P and a two-sided ideal J in P be given. Let us consider
the following quotient groups:

[_P'.]=_P£/P{f\J, [Gi]=G¢/GinJ (7:21’2)'

(6]

The system [P]= ([Pll 6]

[Pz]) is also a pararing. Indeed, if we
write conventionally
x4+ Gind

x+Pind

G .
where @€ (1=1,2),

w—l—J::t P,

the cosets induced by elements z,y are of the form z-+J, y+4J. Con-
sequently,

[elly] = (+J)(y +J) = »-y+ o] +Jy+J* = z-y +J = [wy] .

The pararing [P] is called the guotient pararing and is denoted by
[P]= P/J.

Let a paraalgebra P and a two-sided ideal J C P be given. We say
that an element @ e P has a left regularizer (vight regularizer) to the left
ideal (right ideal) J C P if there exists an element R, e P such thab R,
= ec+T (resp. aRy==¢;+T), where T eJ. If B, is a left regularizer and
a right regularizer to a two-sided ideal J simultaneously, then R, is called
a simple regularizer to the ideal J. If an element a has a simple regularizer Rs
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to a two-sided ideal J C P, then there exists a coset [Ry] in the quotient
p.a;ra,algebra, P[J such that the elements [a][R,] and [R:] [e] are equal
either to [e,] or to [e,]. :

) § 10. Paraalgebras of operators. Let two linear spaces X and Y be
given, and let 4,(X) and A,(¥) be algebras of operators which map the
spaces X and Y into themselves, respectively. Let

BX »Y)CL(X~Y) and 8(¥->X)CL(Y —->X)

be linear spaces of linear operators. If for any operators

A e8(X—>Y), Bel(Y->X), O ed)(X), DeAdyX)
we have

ABe A)(Y), BAcA(X),
DA, ACe8(X~>Y), BD,CBef,(Y>X) ,

then the system
Sy(X ->Y)

P(XsY) = (AI(X) ST )

4,(Y ))
is a paraalgebra. Such a paraalgebra is called a paraalgebra of operators.

TraeoREM 10.1. Bvery paraalgebra P = (P, G P,

18  isomorphic
G,

with a certain paraalgebra of operators.
Proof. Let X =P, X G, ¥ = P, G,. We associate the operator
Pi®) = (119, P1g) , Where @=(p,g) e X=P,xG,,

' with the element p, ¢ P, ,
PolY) = (P20, P2g) , Where y=(p,g)e¥ = P,x6G,,

with the element p, ¢ P,,
9(@) = (029, :1p), where @=(p,g) X, y=(g.9,0p) ¢ Y,

with the element g, ¢ Gy,

Yy=@,9e¥Y,n= (929, 92p) X,
with the element g, e @, .
Tt is easily verified that this correspondence is an isomorphism. m
In paraalgebras of operators the role of unity is played by the identity
g}}l):lliai(:s Ix aatl;li tIY In spaces X and ¥, respectively. In the sequel we
ppose that every paraalgebra of consi i
posspiner ol g [ opgra.tors under consideration
‘We denote by Ep(X<¥) the set of all finite-di i 1
. = te-dimensional operators
‘bl;;l}:ﬁgng to the paraalgebra P(X= Y). We denote the ideal K (X=X)
: y by E(X=Y) If every operator with a finite

92Y) = (929, 92p) ,  Where

4 -eharacteristic
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bélonging to the paraalgebra P(X=Y) has a simple regularizer to a two-
sided ideal J, then the paraalgebra P(X<=1Y) is called regularizable to the
ideal J. If a paraalgebra P(X<=7Y) is regularizable to the ideal Ep(X=Y),
we say briefly that P(X<Y) is regularizable. It follows from Theorem 7.3
that the paraalgebra Ly(X<=Y) is regularizable. We write:

DH(X=Y)y the set of all operators from (nullity,

Dp(X=Y){ the paraalgebra P(X<=Y¥) which { deficiency,

Dp(X=Y) have a finite d-characteristic .
We denote the respective sets in the paraalgebra Ly(X=Y) by

DHX=Y), Dy X=Y), D(X=Y).

A proper ideal J in a paraalgebra P(X<=Y)is called a quasi-Fredholm
ideal it for every T e A;ndJ (i=1,2) the operator e;+T has a finite
d-characteristic. If, moreover, the indices are equal to zero: ’

Aoyr = 0  for every TedAdind (i=1,2),
then J is called a Fredholm ideal.

THEOREM 10.2. If an operator A eP(X < Y) has a simple regular-
izer R4 to @ quasi-Fredholm ideal JC P(X < ¥), then A has a finite
d.- characteristic. :

Proof. By the assumption, AR and Rs4 are of the form e;-+Ty
(i=1,2), where T, T,eJ. Hence Corollary 2.3 and the definition of
a quasi-Fredholm ideal complete the proof. m

Now we repeat the construction of the maximal quasi-Fredholm
jdeal. Let P(X<=Y) be a paraalgebra of linear operators, regularizable
to a quasi-Fredholm ideal J C P(X=Y).

Let R(P,) be the radical of the quotient paraalgebra Py= P (X< Y)/J,

and let
Jo= {U e P(X=2X): [UleR(Py)},

where [U] is the coset defined by the operator U.

THEOREM 10.3. J, is the mawimal quasi-Fredholm ideal in the para-
algebra P(X=Y).

Proof. By Theorem 6.7, ideals JJ, ~ A (i =1, 2) are quasi-Fredholm
ideals in algebras A4, respectively. Hence, according to the definition
of a quasi-Fredholm ideal, J, is a quasi-Fredholm jdeal in the paraalgebra
P(X=Y).

On the other hand, let J be a quasi-Fredholm ideal in the paraalgebra
P(X=Y) and let Ued. By the definition of a quasi-Fredholm ideal,
the operator ¢;+4-A UB has a finite d-characteristic for all 4, B e P(X=Y)
such that AUB e 4,. Since the paraalgebra P(X=Y) is regularizable
to the ideal J, the coset [e--A4 UB] is invertible in the pararing P,. Since
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4, B are arbitrary, the coset [U] generated by the operator U belongs
to the radical R(P,). Hence UeJ,. W

Exavpie 10.1. Let us consider the differential equation
d
FOO+POO®) = q(t).

A solution of this equation can be obtained by the so-called method of
variation of a constant. This is just the method of construction of a simple
regularizer of the operator 4 — djdt+p (where P i3 the operator of multi-
plication by the funection p(f)) to the ideal of finite-dimensional operators
in the paraalgebra L,(CY0,1]=0 [0,1]). Indeed, the solution of this

equation obtained by the method of variation of a constant can be written
in the form:

@) &= ERaq+a,,
where x, is an arbitrary solution of the homogeneous equation:

% = coxp[— [ p(o)do]

(¢is an arbitrary constant), and the operator R, is defined in the following
manner: .

t i 8
Bay = exp[~f;p(a)da]-fexp[fp(a)da]y(s)ds.
0 o 0
Since the constant ¢ may be treated as a functional, one can write:
11
%= K 0= £®)2,, where % = exp [—— fp(o-)do-] ,
[}

and K, is a one-dimensional operator. Thus equality (i) gives
®=R1g+K,o= R4As+E,», and so Rad— I-K,

Hence By i3 a left regularizer of the operator A. On the other hand,

J ¢ 3 .
Raw=|2 _
ARsm [dt +P(t)]eXP[ ofp(c)da]ofexp[ofp(o')do]w(s)dg

=—p(t)exp[—§fp(<r)dg] ftexp [ffp(:r)da]m(s)ds—i-

+exp[— fp(o‘)dd] exp[ffp(o')da]w(t)+

+p(7)exp| f p(0)ds] f exp| f p(0)ds]o(s)s
0 0 0
=w(t).

icm

§ 10. Paraalgebras of operators 59

Thus AR4= I. Consequently R, is also a right regularizer. Hence it
is a simple regularizer to the ideal of finite-dimensional opera.tors‘.

§ 11. Semi-Fredholm ideals. Perturbations by means of opers'itors bt?lo_ng-
ing to some ideals. In §3 we have shown that if K is a fu_n‘?e-
dimensional operator, then it is a perturbation of all operators with finite
d-characteristics, and also of classes D~ (X —Y) and Dﬁ‘@X —>.Y)' lf an
operator K is a D (X —Y)-perturbation, then it must be finite-dimensional
(Theorem. 4.3).

Tt we do not consider the set of all linear operators but only some
subsets of this set, the situation may be different. Let a paraalgebra

(X ~>T) 4 (Y))

P(X=Y)= (AI(X) 8,(X )

of operators over linear spaces X and Y be. giver}. We say that aaz 1dea:}
JCP(X=Y) is a positive semi-Fredholm 'Lde.al ﬁ. for' every TeAin
(i=1,2) the operator e;+T is of finite. nullity, Le. if Gy < -Zl-ooul ,
Analogously, we say that an ideal J is a q:wga,twe. s.emz-Frcj,d'ho m g
it for every T e A;~dJ the operator e;-+T is of finite deficiency, ie.
ﬂuﬂ'\;e—{_s:; that a paraalgebra P(X<«Y) is leﬂ-requlwrizable (right-
regularizable) to a left ideal (right idea,?) JCP(X=Y) if every 01;1'—2113%1"
with finite nullity (deficiency) belonging to thfa paraalgebra P(X=Y)
has a left regularizer (right regularizer) to the ideal J. ‘ .
TarorEM 11.1. If @ paraalgebra P(X<=Y) 433 leﬁ—regjwlamzable (r:&gh;
regularizable) to a left (right) positive (negative) semzi-ﬁ?redholgf ! ; g
J CP(X=Y), then for every operator A eP.(Xc—-—‘ Y) of fv,mtefT " (7,114/.(6;
ficiency) and for every operator T ed for u‘;h.wh the sum A+T is defined,
the operator A+T is of finite nullity (deficiency). .
Proof. By hypothesis there exists an operator RseP(X=Y) sudl
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that B4d = e;+T (resp. ARy= 6;+T), where TeJ, i=1 or 2. Hence
for each operator T,eJ for which the sum A 4T, is defined

BaAd+To) = e, +T+RBsTy (resp. (A+T)Rs= e;4+T+T,Ry).
Let us remark that operators on the right-hand side of the lagt

equality are of finite nullity (deficiency), by the assumption regarding

the ideal J. Hence, by Theorem 2.2, the operator 4 +T, is of finite nullity
(deficiency). m

TEROREM 11.2. If a paraslgebra P(X=Y) satisfies the assumptions
of Theorem 11.1, then all operators belonging to & certain left (right) Ppositive
(negative) semi-Fredholm ideal J, C P(X<=Y) are perturbations of the class
of operators of finite nullity (deficiency) belonging to the paraalgebra P(X <= Y)

Proof. Let J = J +J;. In the same way a8 in Theorem 6.3 we show
that the set J is a left (right) positive (negative) semi-Fredholm ideal.
Evidently, the paraalgebra P(X=7Y) is left-regularizable (right-regulari-
zable) to the ideal J. Hence, by Theorem 11.1, operators belonging to
the ideal J, and in particular operators belonging to the ideal J, are
perturbations of the class of operators of finite nullity (deficiency) be-
longing to the paraalgebra P (X< Y) m

CorOLLARY 11.3. If a parealgebra P(X=Y) is regularizable to a quasi-
Freaholm ideal J, and if an operator A e P(X=Y) has a finite d-charac-
leristic, then, for every operator T eJ for which the sum A +T is defined,

the operator A+T has a finite d-characteristic. If J is a Fredholm ideal,
then, moreover,

Rypm ==Yy .

Indeed, if J is a Fredholm ideal, then RAYT == — KR, . = — %R, = %4.

COROLLARY 11.4. Bach quasi-Fredholm ideal J n a paraalgebra
L(X<=Y) is contained in the ideal H(X=Y) of all finite-dimensional
operators,

Proof. The paraalgebra L (X< Y) is regularizable. Hence, by Corol-
lary 11.3, each operator T eJ is a perturbation of the class Dy X=Y)
of operators with finite d-characteristics, belonging to the paraalgebra
L(X=Y). Consequently, by Theorem 4.3, the operator T is finite-di-
mensional. Thus J C K(X=Y). m

TJ.‘HZEOREM 11.5. If & paraalgebra P (X ¥) of operators is regularizable,
and.'n.f. every (fpamtar A e P(XY) is the sum of two operators: A = A, +A,
of finite nyl?ztxy (deficiency), then the set of perturbations of the class of oper-
wlors of ﬂmta nullity (deficiency) is a left ideal (right ideal) in the para-
algebra P(X<=7Y). ’

Proof. The linearity of the set of perturbations follows from Theo-
rem 4.2. Let ¥ be a perturbation of the class of operators with finite
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d -characteristies, and let us suppose that 4 « P(X=Y) is a,n.operator
of finite nullity (deficiency) such that the sum A-+V exists. Let
BeP(X=Y) be an operator with a finite d-characteristic such that
the su]{,erposition BV (resp. VB) is meaningful. )

The paraalgebra P(X=7) is regularizable. Hence there exists an
operator Rp such that

BREg=e;+K (vesp. RgB=e;+K)

(=1 or 2), where. K is a finite-dimensional operator. By Theorems 2.1
and 3.2, the operator

[4+BYV = (BRz— K)A+BV = B(Bpd +V)— KA
(resp. A+BV = A(RzB—E)+VB = (AB5+V)B—AK)

i inite nullity (deficiency). Hence the operator BV (resp. VB)is a per-
}ci;)’tf):’;?;ﬁle of tllﬁz (class of Zperators of finite nullity (deficiency). Since
we supposed every operator from the paraalgebr?, to be t}le sum 01; t;}vlo.
operators of finite nullity (deficiency), by applying the linearity of the
set of perturbations we obtain the theorem. .
CoROLLARY 11.6. If every operaior belonging to a regulamzalfle para-
algebra P(X=Y) can be written as the sum of two oglwmt.or? with finite
d - characteristics, then the perturbations of operato?*s ’LIJ"Lih finite d-charac-
teristics belonging to this paraalgebra form a two-sided 1deal. redbotm
i the ideal obtained in this manner is a quasi-Fre ho
idealE;;?lfngg, Theorem 10.2, it is the maximal qua,si—Fredhoh?l u?e‘a,l.
Remark 11.7. By Theorem 11.1, the assumption o.f ¥egul.a.nza1?1]1ty1
of the paraalgebra P(X=Y) to the ideal Kp(X= Y) of ﬁmte-dnnlensgmia;l
operators belonging to the paraalgebra P(XY——‘Y).can be replace n
Theorem 11.5 and in Corollary 11.6 by the assumpt_n?n of left Izegularlzaj
bility (right regularizability) to a lefta;](riiht) positive (negative) semi-
i ined in this paraalgebra. ) .
Fredg?llﬁ;&(?jvlinc; ]zgii:]:slﬁion arises: is it possible in every a;-lgfabra tohwnte
an arbitrary operator as the sum of two opergtors with finite d-charae-
teristics? In case of algebra L,(X) the following theorem holds. .
THEOREM 11.8. Buvery operator A e LX) is the sum of two isomor-
hisms. o
o Proof. (1) If the space X is ﬁnite-.dime.nsion?,l, the theoremfls mﬁs
Let us suppose the space X to be infinite-dimensional. The proof con
a few steps.

(*) The authors are indebted to G. Neubauer, who communicated this proof to
them. ’
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. (a) .Let us suppose S = 0, i.e. B, = X. Let us decompoge the space X
into a d}rect sum X = Z,®C. Obviously, the power of the bagis of the
space € is the same as the power of the basis of the whole space X. Hence
the power of the hasis of the subspace Z4 is not greater than the power

of the basis of X. Thus both bases can be numbered in the followin,
manner: ¢

basis of €: Bigy tel, n=1,2,..,

basis of Zs: @, 4eI'CT.
Let us write

yi,nZ%.Aw't,n7 iel, n=1,2,..,
and let us define operators B and € as follows:
Bw:_-—_ _(]miz Yix for 4deI’ ,

Bmi,n =Yin +yi,n+17 Omi,n =Yin— Yint1 for el ?
By = Ovy=1y,, for ie PAVER

It is easily verified that the subspaces Hz and ¢ both contain all
elemfants Yin- Hence fp= f,=0. Moreover, all elements Bz,, Bx.
are linearly independent, and the same holds for the elements Gm.“C’m.m
He‘nce as = ac = 0. Consequently, operators B and ¢ are both géomgz-.
phisms. But (B+0) Pyp=2Y;, = Aw,, and (B4 0)#; = 0= Az,. Thus

B40=4.

v (b) Let us suppose a4 — 0, ie. Z4=
space X into a direct sum X=E,0¢,.
basis of the subspace €, is not greater than
space X. Hence both bases can be defined

bagis of X: g

{0}. Let us decompose the
Obviously, the power of the
the power of the basis of the
as follows:

i ’ieI,’n:l,Z,...,

basis of @,: Yoo teI'CI.
Let us write
Yin=34sn n=1,2,..
Evidently, all elements Yim> Where eI, n=0,1,2 5.

i - .., are Ii
Independent. We define operators B and ¢ by the foll ? nearly

owing equalities:
B,y = Yior +Yionrs+Yisnro ]
By, = Yiokv1tYionie .
C’:I:i,zk+1 = Yot Yipps1— Yiorres for g el k= O dr 2y

O = — Yioni1r T Yionre ]

Bop=Cm,,=y,, for ie NI,
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If i eI’ then the subspace generated by the elements Bwx,, (Cz,,,
respectively), n=1,2,...,2k+2, contains veetors #;,,..,¥;q and
Yionrr T Yioire Yionii— Yionse, TeSpectively) which are linearly independent.
Hence the dimension of this subspace is equal to 2%--2. This implies
the linear independence of elements Bux,, (Cwz,,, respectively). Thus
ap = dg= 0. On the other hand, we have y,, ¢ Ex and y,, ¢ B,. Hence
Br= pc= 0, and operators B and C are both isomorphisms. Moreover,
it is easily verified that

(B+0) 2, =2y, = Az .
Thus
BiC—A4.

In the general case it is always possible to decompose the space X
into a direct sum in two ways:

X—'——ZA@(Z, X=EA®€1-

(¢) If the powers of the bases of subspaces Z4 and G, are equal, there
exists an isomorphism T of the subspace Z,4 onto the subspace €. Let

[Br=Cer=1A4s for weG,,
Bo=—Cx=Tx for weZy.

It is easily verified that operators B and C are both isomorphisms, and
B+C=A.

If the powers of the bases of subspaces Z,4 and €, are different, then
either the power of the basis of Z, is greater than the power of the basis
of @, or conversely. In the first case we write Z4 as a direct sum Z4 = €, ®
@ G, where the power of the basis of the subspace €, is equal to the power
of the basis of .

Let X; = €@ G, and let A; be the restriction of the operator 4 to
the space X;. Arguments analogous to those applied in the case (a) show
that the operator 4, can be written as the sum of two isomorphism B
and € of the space X, onto the space E4. Next, by applying the arguments
of (c) we can extend these operators to isomorphisms of the space X
onto itself.

The second case can be reduced to (b) and (¢) in a similar manner. |

Remark 11.9. The assumption that the operator 4 maps the
space X onto itself was not essential in the above proof. Essential was
the role played by the powers of the bases. Hence we may say that if
the powers of the bases of spaces X and ¥ are equal, then every operator
A eL(X »Y) is the sum of two isomorphisms of the space X cnto the
space Y.
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If the powers of the bases of spaces X and Y are not equal, then
such a representation of A cannot exist, for there exist no isomorphisms
of the space X onto the space Y.

In the case of an arbitrary algebra of operators X(X) the theorem
on the representation of an operator as the sum of two operators with
finite d - characteristics does not hold. This can be verified by the following
example:

Examere 11.10. Let X be the space of all continuous functions
(z) of a complex variable defined in the whole ecomplex plane. Let X(X)
by the algebra of operators P of multiplication by a complex polyno-
mial p(2). If the polynomial p(z) is not a constant, then the corresponding
operator P is of infinite deficiency fp. Indeed, by the fundamental theorem
of algebra, there exists a number 2, such that (%) = 0. Let ug remark
that if @ ¢ Bp, then there exists a constant ¢ > 0 such that

lo(z)—@(2)| < clz—z| for |e—z < 1.
Consequently, writing
Te)=le—#m|*, O0<a<l )
we obtain
@, ¢ in{Hp, 25, § > a} .
Hence ﬂp: + 0.
Thus »
De(X) = {al: 0 # ais a complex number} .
Hence, if the operator P ¢ ¥(X) is not of the form al, it cannot be

written as a sum of two operators with finite d-characteristics belonging
to this algebra. : :

cm

CHAPTER II

ALGEBRAIC AND ALMOST ALGEBRAIC OPERATORS

In this chapter we shall investigate algebraic and almost algebraic
operators. We shall show later (Part D) that this class has some very
important applications. In case of polynomials of algebraic and almost
algebraic operators it is easy to determine effectively the simple regularizer
and, consequently, the solutions of the respective equations. In this
chapter Sections 1-4 are of auxiliary character. Fundamental theorems
are given in § 5 and 6. Section 7 has a special character: it contains more
general theorems for equations in algebraie operators with constant
coefficients.

§ 1. Hermite’s interpolation formula. Partition of unity. We now give
the following lemma by Hermite on interpolation with multiple knots.

Levma 1.1. (Hermite [1).) There exists exactly one polynomial W (t)
of degree N—1 assuming (together with its derivatives of order k) given
values Yy, ot n different points i (i=1,2,..,n; k=0,1,..,rn—1;
1 +74 o+ = N):

WRE) = 1y,
The polynomial W () is given by the following formula:

r—1

. _ n P(t) (t—t )ﬂ (t—t )k
(1.1) W(t) = Z(t— )" Zﬂki{'Tti)‘ (re=1—ste) k!‘ )

i=1 k=0

n

Pty =[] t—tm)™,

"W; DARI0
{f(t)}<k;u>=2(:;,f;—' 7

Proof. The polynomial under consideration is of the form

n ri—1

W(t) = 22 YueLiax(t)

. =1 k=0
Equations in linear spaces &
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if the polynomials L(t) of degree N—1 (1 =1,2,...,n;k=0,1,..,7—1)
satisfy the following conditions:
1) IRt) =0 (m=£4, j=0,1,..,7r,—1),
@) LR) =6, (1=0,1,..,r,~1),
where & is the Kronecker symbol, i.e.
X 0 for i k,
b= 1 for i=5Fk.

Now, we determine such polynomials L. If we take into account
property (1), the polynomial Ly should have the root t, of multiplicity 7,
for m s 4, and the root t; of multiplicity k. Hence L;(f) must be of the
form

L(t) = (B8 o (b= 1,0 1) (E— 1) (E— 1)1 (8)
where Ii(f) is a polynomial of degeree
N—I1—(n+..+rFhktry+o+n)=r—k—1.

Applying the notation adopted above we may write the polynomial

Li(?) in the form

(1)
(t—1t)"*
In order to determine the polynomials Iu(f) we apply property (2),

which implies that the expansion of the polynomial Ly in a Taylor series
in a neighbourhood of the point # is of the form

(t— tc)

Lip(t) = Tin(t) .

La(t) =

3
The rational hmctlon% (t; (t;))
point #;. Hence it can be expanded in a Taylor series with respect to
powers of +—1;. On the other hand, li(t) must be a polynomial of degree
ri—k—1. Thus, it must be the sum of those terms of this expansion which

are of degree mot greater than ri—k—1, i.e.

[L+o—t)"*+..].

is regular in a neighbourhood of the

(t—te)
Foelt) = i P }m_m;m‘

Conversely, if 7y satisfies this equality, conditions (1) and (2)
hold. Consequentyly,

P() P()  (t—t)*[(t—t)™
1) = 1 = . B
Bl = e e = e A { PO) Joer-sity

Hence we obtain the required form of the polynomial W(i). m

icm
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This is the Hermite interpolation formula. Let us remark that
P(i) »
— ;)" ” (b=t .
m#z

By the assumptions of the breceding lemma the following lemma
also holds:

LEMMA 1.2 (ON THE PARTITION OF UNITY). If we write

n

pult) = ) [ [ (t—tm)™

12) .
— s .
qi(t) = {_’_P(t) }(ﬂ—l;l{)’ (t=1,2,...,9),
then
(1.3) 1= Dpilt),
=1

and this representation is unique (if t; and r, are fized).
Proof. We take W () = 1; hence WO(t) =1, W™(t) = 0 for k> 1
and ¢=1, 2, ..., n. Thus, by the Hermite interpolation formula,

1= 2 [ ] (= tm)™ {(t-; (tt‘))ﬂ}m—z;u) .

=1 m=1
mEL

If 4 are single knots, Hermite’s lemma yields the Lagrange inter-
polation formula. Indeed, in this case

{(t——h)"} _{t—_t; _i=h
P Jo-uw PO oy PO =gy

= ﬁ (t—tm)] " |, = ﬁ (ti—tm) " .

m=1 m=1
m#EL mEL

Hence we have the following formula for the polynomial W(t):

(1.4) W)= 2 Yos t{_

4=1 m=1
m#i

This is the Lagrange interpolation formula. Let us also remark that the
last formula gives the following partition of unity in case of single knots: -

(1.5) I—Znt—

i=1 mw=1
m#ET

5%
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§ 2. Algebraic and almost algebraic elements in a linear ring. Let X
be an algebra with unity I (over the field of complex numbers). If there
exists a polynomial

P(t)=po+put+..+poxt"
in variable ¢ with complex coefficients, satisfying the condition
(2.1) P8)=1T,
where § ¢ X and T is an element of a two-sided ideal J C X, then we say
that the element 8 is almost algebraic with respect to the ideal J. Whenever
there is no danger of confusion we shall call S briefly an almost algebraic
element.

Without loss of generality we shall assume once for all that py = 1.
If S satisfies the polynomial identity P(S)= T with a polynomial of
degree N and does not satisfy any identity of degree less than N, we say
that the almost algebraic element S i3 of order N. In this case we call
P(t) the characteristic polynomial of the element 8, and the roots of this
polynomial the characteristic roots of the element 8. Since py =1, we
agsume

(2.2) P =[] t—tn)y™,

where all complex numbers t, are different and »,+r,+...+7m%=N.
If T= 0 in identity (2.1), we call the element S algebraic.

Evidently, if an element § is almost algebraic, then the coset [S]
defined by this element in the quotient ring [¥] = X/J is algebraic and
has the same characteristic polynomial and the same characteristic roots
as 8. This follows from the fact that the sum and the product of cosets
correspond to the sum and the product of elements generating those cosets.

In the sequel we shall see that the properties of the characteristic
polynomial determine in a certain sense the properties of the element 8.
Our further considerations will be bassed on those properties.

The following two cases are of great importance in various applica-
tions: P(f) =#*—1 and P(1) = t"—1. In the first case we say that the
element S8 in an involution, because it satisties the equation §*= I. In
the second one, we call 8 an involution of order N, because it satisfies
the equation 8¥ = I. In these cases the characteristic roots are single,
ie.n= N and r; = ... = r» = 1, and they are the Nth roots of unity, i.e.

I = MY (m=0,1,..,N—1).

Suppose we are given an algebraic element & of order N with the
characteristic polynomial

P) = [[—ta™ (ri+rat.tr,=DN).

m=1

cm

§ 2. Algebraic and almost algebraic elements 69

atmost algebraic
operafors

algebraic operators

involutions
of grder n

Fig. 4. Classification of almost algebraic operators

We assume, of course, once for all that the numbers #; are different
from each other. We write
(2.3) Pi=pdS) (i=1,2,..,n),
where py(f) are polynomials defined by formulae (1.2). Elements P; have
the following properties, important in further considerations:
PrROPERTY 2.1. The sum of elemenis P; is equal to the unilty of the
ring
ki
(2.4) DPi=1.
i=1
This property follows immediately from the definition of polynomials
pi(t) and from Lemma 1.2 on the partition of unity.
ProPERTY 2.2. Hlements P; are idempotent and disjoint, i.e.
P, if i=]j
0 if i#j
Indeed, let ¢ 5= j. Taking into account the fact that all polynomials

of the element S whose coefficients are numbers are commutative, we
obtain

(2.5) PP = (,j=1,2,..,7).

PiPy= s(8)ay(8) [ [ (S—tnIy=- [ [ (8—tuI)s

m=1 k=1
mz=i k#j
=a(®u®) [ (S—tmIymP(8)=0.
m=1
mzkimt]
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Hence, by formula (2.4), we get

n n
(2.6) Pi=Pi ) Pj= D P;P;=PF (i=1,2,..,m).
i=1 i=1
Let us remark that formula (2.6) implies that each element P; is also
algebraic, has the characteristic polynomial #*—¢ and, consequently, is
of order 2 and has characteristic roots 0, 1.
PrOPERTY 2.3. The following equality holds for every fized 4:

(2.7) (8—4I"P; = 0.
Indeed,
(8—4I)*Pe= gu(8)(S—teI)" [ [ (S—tm Iy = u(8) P(8) = 0 .
m==1
m#&i

Let us now suppose that the characteristic roots of the element §

are single, ie. r;=...=ry =1 and ¥ = n. By formula (2.7), we have
(8—#I)P;= 0, that is

(2.8) SP;=t4:P;.

Hence

(2.9) 8= Ztil’t .

d==1
Remark 2.1. If §*= I, then the elements P: are of the form
Py=3(I+8), P=3}I-8).

Remark 2.2. If 8¥ = I (I > 2), then the elements P can be written
in the following form:
=1

N&
where & = ¢ 5 the Nth root of unity,

Remark 2.3. If an algebraic element has single roots, formula (2.9)
easily implies

(2.10) QW) = '@ P

=1

N-1

Py, shmgk (k=1,2,..,N),

for an arbitrary polynomial Q () with comyplex coefficients. Hence the
element @(8) is also algebraic and has characteristic roots Q(ts).

Remark 2.4. If the algebraic elements 8,, §, commiute, then their
sum and their superposition are also algebraic. Moreover, if the charac-
teristic roots of these elements are

by ety and. b, .., By,

icm
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then their sum and their superposition have characteristic roots

bttty and Gt (k=1,2,..,N,m=1,2,..,N),
respectively (in this ease each root is taken the number of times equal
to its multiplicity).

TEmEoREM 2.1. If 8 is an algebraic element in an algebra X, then
AS—B8A + al for each scalar a %0 and for any A e X.

Proof. Let P(?) be the characteristic polynomial of the element 8,
and let us suppose that 48—8A4 =al (a+0). We shall show by
induction that

AR 84 = gn8  for n=1,2,..

Indeed,

A8 84 = A8 SAS™+ SAST— St
= (A8—84)8"+ 8(48"— 8"4) = aS™+ 8- a(n—1) 8"
= a[8*"+(n—1)8"] = anS".

Hence, given any polynomial @(¢), we have
AQ(8)—Q(8)4A = aQ'(8),

where @' denotes the derivative of the polynomial Q. In particular,
P(8) = 0 implies .
0= AP(S)—P(8)A = aP'(8).
Hence P'(8)= 0, which contradicts the assumption that P(f) is the
characteristic polynomial of the element 8. Thus, AS—S4 £4l. m
Remark 2.5. Let S be an almost algebraic element, and let P(8) = 7.
If there exists a polynomial @(#) such that Q(8)7T = 0 (or TQ(S8)= 0),
then 8§ is an algebraic element. Indeed, we have

QI)PB)=@Q(8)T=10 (resp. P(8)Q(8) = TQ(8)=10).

Remark 2.6. If § is an almost algebraic element: P(S)= T and
there exists a polynomial Q(f) such that Q(T)= 0, then § is an
algebraic element, since Q[P (8)]= Q(T) = 0.

Remark 2.7. If § is an almost algebraic element: P(8) = T, then
8T = T8. Indeed, ST = SP(8) = P(8)S = T&.

COBOLLARY 2.2. If 8 is an almost algebraic element, P(8) = T, T €,
then AS—SA # oI +T, for each scalar a # 0, any A e X and any Tyed.

This follows immediately from Theorem 2.1 if we consider the quotient
ring X/J.

§ 3. Properties of polynomials in algebraic and almost algebraic elements.
We now give some properties of polynomials in algebraic operators
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necessary in further considerations. As before, let S Dbe an algebraic
element of order IV with the characteristic polynomial P (t). Let us consider
an element of the form '

M
(31) A(8)= D 4,8, where ApcX (m=0,1,..,N).

We write

M
At)= ZAmtm (t is a sealar),

m=0

(32) AY)= A,
M
A1) = m! 2 (,Z)Aktf‘m
k=m . ar™ .=t

(m=1,2,..,M;i=1,2,..,n),

d
Where — R(¥) is the derivative of the polynomial R(i).

We prove the following formulae:

M
(3.3) A= DL amays— g1

m=0
ri—1 1
G4 A®E=) S A (S—uI"Pe, (i=1,2,...,n)
=0 . '
n

ri—1
1
D D) amy(s— e,

i=1 m=0

85 A(8) =
Formula (3.3) may be derived in the following manner:

A(8) = ZA am— ZAm[S—t,;I)—]-tiI]’"

m=0
m

— j M~ e
—m=0Amk2;( ) St 1

M M
- S S gt s

k=0 =k

i

‘ = %17 AP (§— 4 Iy
m=0 !

icm
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To prove formula (3.4) let us remark that, by formula (2.7),
(8—t; I)*P; = 0. Hence

M ri—1
1 :
A(R)Pi= Z — AG) (8 1T Py— S % A™(8) (S— 1, Iy P; .
m=0 m=o

Formula (3.5) follows from the preceding ones and from formula (2.4):
n o ri—1

9 Y Pi= N aw)p= My %Amm) (S— 1™ P; .

i=1 i=1 m=1

Let us remark that, by formulae (3.4) and (3.5), it is sufficient to
consider polynomials A (S) of degrees not greater than N—1. If we con-
sider A (8)P; it is even sufficient to limit oneself to polynomials of degrees
not greater than r;—1. All terms of higher degrees can be reduced by
means of the identity P(S8) = 0. In the sequel we shall proceed in this
manner. ) :

If one of the characteristic roots is equal to zero, e.g. #; = 0, we have
A™(0) = m! 4, and
- ri—1
(3.8) A(8)Pr= D AnS"Pi.

. . m=0 .
Hence in this case decompositions (3.3) and (3.5) are not essential.

If the characteristic roots of an element S are single, formula (3.5)
assumes a very simple form (compare Example 2.3):

n

37 : AS) = Y A(t)Ps.
i=1
Now we consider the polynomial
N-1
(3.8) "A(8)= ) S™An
m=0

under the preeeding assﬁmptions. ‘

If the coefficients 4, ¢ X are commutative with the element § (e.g. if
the coefficients of the polynomial 4(S) are numbers), polynomials A4 (8)
and "A(S8) are identical. In other cases we have the following equality:

N-1
=A(8)+ D (8" An—An8™).

m=0

(3.9) *A(8)

Of course, formulae analogous to those deduced above are valid also
for polynomials 4 (8), only the. order arrangement of factors containing
the element § and not eontaining S must be chaunged into the inverse one.
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The bilinear form
[4, B]= AB—BA

is called a commutator of elements A and B. The following formulae are

easily verified:
[{B’A]]Z - [[A;B]]a

EA“"B:OB:[A: 0]+[['37ch
H:A-B’ 0]1= A[By 0]]+[[A7 O]Ba
[4, 1B, Ol +[B, 10, AI[+[C, [4, B][=0.

TerorREM 3.1. If § is an algebraic element of an algebra X and if

N N-1
B(8)= D bmS™, A(8)= Y Ans",
m=0 m=0

where the coefficients by, are complew numbers, Am e X and [A,, S]eJ,J
being a two-sided ideal in the algebra X, then
[b(8), A(8)] ed .
Proof. Let 0 < m < N—1. The properties of commutators imply
I8, An8™] = — [Am 8™, 8] = — Anl8™, 81— [4m, S18™

=—[4pn, 818" cd .

Hence
N-1

8, 4= D' IS, dnS™] T .

m=0
Let us suppose that [S™, 4(8)] ¢J. Then
8™, A(8)]= 8[8"™, A(S)]+I[8, A(8)]8" < J .
Thus, [8*, A(8)]ed for n = 1,2,... Consequently,

M M
BS), A(81= D' lms™ A= Y balS™, A(S)] . m

m=0

Remark. Tn general, this theorem is not true if the coefficients by,
are not numbers. In that case it would he necessary to suppose addition-
ally that [bm, 4;]= 0 for all indices m and k.

TeRoREM 3.2. If 8 is an algebraic element in an algebra X with the

n
characteristic polynomial P(t) — Il G—tn)™ (4 drn =N ), and if
m=1

N-1 N—1
A48)= D An8™, B(S)= D Bas™,
T me=p

m=0

icm
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where Apm, BmeX (m=0,1,..,N-1) and '[4n,8]ed CX, J being
@ two-sided ideal, then

B(8)A(8) = C(8)+Tpa,

where
N-1 n ﬂ—ll )
c®) =D onsm= D 57 090 (S—4I) P,
m=0 i=1 j=0
i . .
09 = 3 (1) BRI AP (G=1,2, 5 = 0,1,y i),
. k=0
n ri—1 1 .
m m
Toa= > D) pro BUGS— P, A1 (S— I Pt
i=1 k,m=0 . .
+ZB(S) [A(8), PAP: .
=1
Proof. Since Pi=P, (i=1,2,..,1), we have

7

B(8)A(8)= D B(8)A(S)P;
- 2"‘ [B(S)A(S)P:—B(8)PiA(8)P;+B(S) PiA(8) P
- Zn B(S)[A(8), PAPi+ ) B(S)PiA(8) Ps .

=1 i=1

However, polynomials P; and (8—1tI)* are commutative. Hence,

by formula (2.4),

B(8)P:;A(8)Ps
ri—1 il 1
=[ Y & BRas—u1] P [ D o s—ul)] P
=0 * m=0
-1
1 m L, IyEPR
= ——— BW(t,) A™(t,)(S—1,I) i
{m! *
k%:) kim!

ri—1

+ Y k_vl'“! BO(t)[(S— b )Py, A™(E)}H(8—4I)™Ps.
ml

kym=0
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But (§8—4I)%P; = 0. Hence

7—1

N e B A (51 Ty
k,m=0

ri—1ri—1-k 1
Tl B(k)(h)A(m)(t() (8— iiI)k‘}'m_Pt’ :

k=0 m=0

ri—

19
=2 k#zmB"‘)‘“)A"""’W(S~ttr>"1a

i=0 k=0
-y ]17 [S () B(k)(tt)A(f—”(t;)] (8—tI)Py .
7=0 k=0

If we write

i,
0N (1) = 2 (i)B”‘)(h)A(j“k)(ti) (G=0,1,..,7r-1),
=0

then
B(S)A(S) = Zﬂ [ 5‘ Ji, 0(t) (S— 1| Pot

+ Z [B)14(8), Par.+
D o B IS — LIy, A()1(5— tI"P

kym=0

= C(8)+T5a4 .

We have still to show Tpsed. By hypothesis we have [4,

my S ed.
Hence, by Theorem 3.1,

US—tD)*Ps, A™ ()] eJ  and  [A(S), Pd=— [Ps, A(S)] e .

Thus all terms of the element Tra

belong to the ideal J. Consequently,
Tpaed m

4. Regularization of polynomials in algebraic and almost algebraic ele-
ments. We show that, under some assumptions, regularizers: of polyno-

mialg in algebraic and almost algebraic elements can be obtained ef-

fectiw‘fe.ly, and that they -are also polynomials®of the same type with
coefficients determined by coefficients of the given polynomials.

cm
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THEOREM 4.1. Let 8 be an algebraic elements in an algebra X, with
n

the characteristic polynomial P(t) = [] (t— &) (r,+...+10 = N), and let J

= N-1
be a two-sided ideal in the algebra X. If a polynomial A(S)= 3 AmS™
m=0

with coefficients Am € X satisfies the following conditions:
1. ApS8—84med (m=0,1,.., N-1),
9. there emist elements [A(t)]™" (1=1,2,..,n),

then there emists a simple regularizer R ,q of the element A(8) to the
ideal J, given by the formula
N-1

(4.1) By =2 B8,
7=0
where
n r—1
(=)™ meipmyyp. g5 N1
By= ;»;;j——-_!(m—j)!ti B™(t)P;  (j=0,1,..., N—1)
(419 BOt) = [A ()17,
. m—1
(4.1 B(m)(ti) - —[A (ti)]—12 (";:) B‘k)(ti)A(m_—k’(t{)

k=0
(m=1,2,..,r—11i=1,2,..,m).
Proof. First we determine the left regularizer B(.S) of the element
A(S). By Theorem 3.2, the element B(S) is a left regularizer of the element
A®)if Co=1I, C=..= 0y =0, ie if C™(&)= b, I (m=0,1, ..
wvy 7,—1), where 4, is the Kronecker symbol. Hence we obtain the fol-
lowing system of equations:

(4.2) Zm(’,’:) BB(E) AP = b ] (m=0,1, ., r,—1).

k=0
If m = 0, this equation is of the form B%(#;).A%t;) = 1. Hence our
agsumptions imply
(4.2) BOt) = [A0(#)] = [A ()] -
Tf the elements BO(ts), ..., B™ 9(t;) are already determined, we obtain
from the mth equation :

m—1

Bty = —CA@T Y (3] B 4™ H)
k=0 e
(m=1,2,..,n=1).

bl
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Hence
k3 ri—1
i 1
B = [2’ mB(’")(h)(S—hI)m] P
=1 m=0
n [ ri—1 1 m 1
- ) 2 pim) — 1) [P ym—g 1‘]
_Zl m!B “‘)[2( 1) (i)t‘ s P‘J
i=1  m=0 i=0
n rg—1 r{~1
_ (=" i poms ] il
—2{ [2 Mm—pis B S Pi.
i=1 j=0 m=j
Thus
V(=
Bip;= ) At BV WP (j=0,1,...,7—1),
m=3
for every fixed 4. Evidently, this implies
n ri—1
(=)™ ey .
Bi= ) D s B W (=01, ., ¥-1)
i=1 m=y

The right regularizer B'(S) is determined in an analogous manner

by changing the order of elements A(8) and B(S) in formulae (4.2).
By Property 5.1, T (), . :

Tp=B(8)—B(8)<J,

and each of these regularizers is simple. Thus, we take R as) = B(8).

Remark. If the characteristic Toots of the elements 4(8) are single,
then the existence of left inverses (right inverses) of elements A(t) is
a sufficient condition for the existence of a left regularizer (right regular-
izer). Indeed, in this case system (4.2) is reduced to the first equation,
and our assumption is sufficient to solve this equation. .

COROLLARY 4.2. If the assumptions of Theorem 4.1 are satisfied,

and if
Mm,81=0 for m= 0,1,..,N—1,
then the element [A (8)]" ewists and
(481 = By -

Proof. Indeed, in this case we can agsume o = {0}.
~— B 5, = 0. Moreover,

By A(8)=1 and

Then Bf(8)—

A®)Byg=1. m

() Bee footnote on P. 48.
£
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In some cases the regularizei' R, can be given in a simpler form,
not by means of a Tecurrence formula. o

THEEOREM 4.3. If the assumptions of Theorem 4.1 are satisfied, tmd
if all elements Aq, ..., Ay_, are commutative, then the simple regularizer
of the element A(8) to the ideal J is of the form:

N-—1 X
Ryg = 2 B8,
j=0

where o
n 1 » ‘
By= DA D) st Duali) Py

=1 it

and Dmxlts) is & minor of the determinant

det
o<m,E<N~1

D(ti) = Ami(ts)

where

() anre)  for mzE,
Anmi(t) =

0 for m<k,

obtained by cancelling the (m-+1)-st column and the' (k+1)-st r@. @
Proof. Let us consider the system of equations (4.2). Sli::ad be
elements A, ..., Ay_, are commubutive, this systgm can b}i so lemem?;
means of determinants. The determinant D (t;) of this sysberln 2 fs ments
A (t)= A(t) on the principal diagonal, and all th;_f’ emdn
fh?é diagonal are equal to zero. Hence D(t;) = [A(t:)}" ", an
N-1
(m) __ —{(N—1) ’—1)k+mDmk(tt) 6015
B(t) = [A (#)] ,; (

— (1A ()] T Dpolts)  (m=10,1,..., N—1).

Thus,
Zﬂ\ N-1 (—1)"”’ ( 1)m[A(t.)]_(N~1)tvp—1Dm0(ti)Pi.
.Bj = ‘—‘-—’.' — .—! h () 12
& &~ gtm 3;_1
\ 1 = . (i=0,1,.,N-1).m
= DA D) sy DB =01
i=1 m=j

Remark. If the characteristic roots of an element 8 aAre si?gizi‘ v;rz
need not assume the commutativity of elements.Ao, ..«.,),t NA—(%')’(M= i
this case the system (4.2) is reduced to one equation B9(#) :
Hence the following corollary holds:
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COROLLARY 4.4. If the assumptions of Theorem 4.1 are satisfied and
tf all characteristic roots of the elements S are single, then the simple regularizer
of the element A (8) to the ideal J is of the form

~1

Ryq= Z[A tm)] " Py = 2 R 8%,

m=1 k=0

where

Rk——z DA A (4] (k=0,1, . n—1),

V is the Vandermonde determinant of numbers tiy ey tu, and dmg is the minor”

of that determinant obtained by cancelling its m-th row and (k+1)-st column.

Proof. This follows directly from the proof of Theorem 4. 1, if we
take rm =1 (m=1,...,%) and apply the equality

R(t,) =[A@)] "= )"thk (m=1,..,n). m

fors

COROLLARY 4.5. Let S be an almost algebraic element in an algebra ¥,

te. P8)=1T, P(t)= [] (t—tm)™, (11 41yt ... L1y = N), where T belongs
m=1

to a certain two-sided ideal J C X. If o polynomial A (8 2 Ap 8™, where
m=0
Am € X, satisfies the following conditions:

L [Am, 81€J (m=0,1, ..., N—1),

2. elements A(t;) have simple regularizers BO(ty) to the ideal J (i — 1,
2,..,n),

then the simple regularizer R g to the ideal J ewists and is given by for-
mulae (4.1), (4.1%), (4.17).

Proof. Let [4] be the coset defined by the element 4 in the quotient
ring [X] = ¥/J. Evidently, if 8 is an almost algebraic element in the
algebra X, then 8] is an algebraic element in the algebra X. It is easily

seen that the polynomial [4]([S]) = Z‘ [4=][ST™ satisties the assump-
tions of Corollary 4.2. Hence the element {[4A)( [S])} = Ry ayLsy EXIstS.
But B4 € By g5y Thus,

By A(8)=I+T; AR y=I+T,, where Ty, Toed .

This proves the element R gy 10 e a sunple regularizer of the element
A(S). m

COROLLARY 4.6. If the assumptions of Corollary 4.5 are satisfied,
and if '

§ 4. Regularization of polynomials 81

2'. elements [A ()] emist,
then the simple regularizer B, emists and is defined as in Theorem 4.1.

§ 5. Algebraic and almost algebraic operators. An operator S e Ly(X)
is algebraic resp. almost algebraic if it is an algebraic resp. almost algebraic
element of an algebra X(X)C Ly(X). Obviously, all theorems proved
previously also hold in the case of the algebra X(X). Let us remark that
in this case operators P; defined by formulae (2.3) are disjoint projection
operators by formulae (2.5).

PrOPERTY 5.1. If an operator S ¢ X(X) is algebraic, then the space X
is a direct sum of projections: )

X=0ZXi, Xi;=PX={Puw;zeX}.
=1

To prove this property let us remark that, by Property 2.1, each
element « ¢ X can be written as a sum

(81) o= Do, where m=PweX; (i=1,2,..,2).

By Property 2.2, this representation is unique.
From Properties 2.3 and 5.1 follows

(3.2) (8—t Iz = 0

for arbitrary #;¢X; (i=1,2,...,n). The last formula shows that the
operator § is an algebraic operator on each of the spaces X;, with only
one root #;, and of order 7.
THEOREM 5.1. If S € X(X), then the following conditions are equivalent:
(a) 8 4s am algebraic operator with the characteristic polynomial

n

P(t) =[] t—twy™,

m=1
and of order N = ri+ ... +7n.
(b) There exist n linear operators P; such that

PPy = 5y Ps; 2191 =1 and (B—4uIy"Pi=0

(6,i=1,2, .., m)
(6¢4; means the Kronecker symbol).
(c) The space X is the direct sum of n subspaces X; such thai
(S—4iI'e=0 for zeX;.

Eqguations in linear spaces 6
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Proof. The implications (a)->(b)->(e) immediately follow from
properties (2.1)-(2.3) and 5.1. Hence we prove only that condition (a)
follows from condition (c). Indeed let the space X be the direct sum of »
spaces X, such that (S—1inI)™s =0 for ¢ X;. We take

= ]n] (S—tn Iy .

m=1

- P(8)

n
By hypothesis, # = > '@;, where u; ¢ X;. Hence

P)s= 3 P@s= 3| [] =D st~ 0
i=1 1 m=1
m#i

=

for every ¢ X. Consequently, the operator S is algebraic of order N = r -+
...+, with the characteristic polynomial P (). Thus, conditions (a),
(b), (c) are equivalent. B

If the characteristic roots of an algebraic operator S are single, then,
by formula 5.2,

(5.3)
for arbitrary ;e X; (i =1, 2, ..., n). Hence any of the spaces X; is an
eigenspace for the operator S.

One can give another characterization of algebraic operators. Let
zeX and let us write:

Xu(z)=lin{z, 8z,..., 8"} (n=0,1,..),
X (2) = lin{z, 8z, 822, ...} .
Evidently, dimX,(2) < n+1 for an arbitrary z e X.

THEOREM 5.2. (Kaplansky [2].) An operator SeLy(X) is algebraic
of order N if and only if

Spy = tym

=supdimX _(2) =N .
zeX

Proof. Necessity. Let us suppose that the operator § is algebraic
of order N. Let its characteristic polynomial be
P(8) =P I+pS8+..+9¥8" =0 (py=1).
If follows from the definition of an algebraic operator that

8"p elin{z, 8w, ..., 8w} = X () for m>=N

for an arbitrary « e X. This immediately implies 5 < N. The fact that P(t)
is a characteristic polynomial implies N > 5. Hence N = ds.

cm
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Sufficiency. We write
X,= {® e X: there exists a natural number n, such that
(8— al)'x = 0} .

First, we prove that X, ~ X, = {0} for a % b. Let us remark that
operators (S—al) and (S8—bI) are commutative. Hence

(5.4) (8—al)X,C X, for a+£b.

Let us suppose that there exists an element 0, 2 ¢ X4 ~ X;. Hence
there is a number nq such that (S— al)"z = 0, but @, = (S—al)* ' » 5= 0.
From condition (5.4) follows 2, € Xp.

On the other hand, S, = az;; hence

(8—bI)™2, = (a—b)"2%, =0 for m=0,1,..

Thus, 2, ¢ X5, which contradicts 2; e X;. Hence 2= 0.

Since 6g= N, the elements x, 8z, ..., 8%z are linearly dependent
for an arbitrary = ¢ X,  # 0. Hence there exists a polynomial P,() of
degree N such that P(S)z = 0. Let us factorize the polynomial Ps:

Pot) = [[(G—a)®  (r+..dra=DN).
=1

n
Hence, by Theorem 5.1, # = Y @;, where (§— a;I)"z; = 0. Thus, z;¢ X,,,.
i=1

=

We now show that the condition X, 5 {0} may hold only for a finite

number of a;. Indeed, let us suppose that there are more than ¥ numbers a;

satisfying the condition Xg # {0}. Let ;¢ X, be elements different
N+1

from zero such that Sz = a;, and let o = 2 #;. By hypothesis, 5= N.

Hence there exists a non-trivial polynomlal W(t) of degree mot greater
than & for which W(S)z = 0. But

N+1 N+1
W)=Y W(B)zi= D Wlaa
i=1 i=1
Thus, W (a:) = 0 for i =1, 2, ..., N--1. This proves the polynomial W (t)
to be identically equal to zero, which is a contradiction. Hence there
exist at most N spaces Xg # {0}.
Tt follows that every element of the space X can be written in the

form
n
o= Su,

i=1

where #ieX, (1=1,2, < N).

6*
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But we have shown that X~ Xg; = 0 for ¢ == j. Hence the space X ig
the direet sum of spaces Xo: X = X, @D... DX, of order r — P14 ty,
where 7; is the smallest number m for which (§—a;I)™z = 0 for « ¢ X,
Evidently, ¥ <r. Let us remark that if a; € X, is an element different

k3
from zero such that (8—a:;I)"; 0 and 2z = '@, then there is mno

i=1
polynomial W(S) of degree less than r,'+ ... -7, assuming the value zero
at the point . Hence N > r. Consequently, N =r. &

Exavere 5.1. Every linear transformation § of a finite dimensional
vector space is algebraic. Its characteristic polynomial is equal to the
minimal polynomial of the matrix corresponding to the transformation .

Exawers 5.2. Every finite dimensional operator S defined in an
infinite dimensional space X is algebraic, since the space SX is finite
dimensional.

ExaMPrE 5.3. Let X be an arbitrary linear space of functions a(t).
I Sx=wm(—1), then §82=1I. X, is the space of all even functions, i.e.
functions satisfying the condition #(—3) = #(?), and X, is the space of
all odd functions, ie. functions ®(f) such that 2(—1) = —a(t). Hence
it follows that every funetion can be written as the sum of an even function
and an odd function.

Exampre 5.4. Let X be the space of all square matrices of rank n»
with real elements. The transposition of a matrix is an involution. X, is
the space of all symmetrix matrices, i.e. matrices whose elements satisfy
the condition agp = az;. X, is the space of all antisymmetric matrices.
i.e. matrices satisfying ax; = —ayg. Hence it follows that every matrix
can be written as the sum of a symmetric matrix and an antisymmetric
matrix.

I Part D we shall give other examples of algebraie and almost algebraic
operators appearing in some integral and differential equations.

§ 6. Dimensional characteristic of polynomials in algebraic and almost
algebraic operators. As follows from the considerations of § 4, under
some assumptions the simple regularizer of an algebraic and almost
algebraic operator is easy to determine. Hence the following theorems
are deduced:

TEEOREM 6.1. Let S be an almost algebraic operator in an algebra
a
X(X), and let P(S)= T,, where P(t)= [](t—tm)™ is the characteristic

m=1

polynomial and T, belongs io a certain quasi-Fredholm ideal J C %(X).
N—1
If a polynomial A(S)= D An8™ satisfies the following conditions:

m=0

L. 4dn e X(X), [4m, Sl ed (m= 0,1,.., N—1).

icm
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2. There exist simple regularizers BO(t;) of operators A (t:) to the ideal o,
then the operator A(8)+T has a finite d-characteristic for every Ted.
If, moreover, J is a Fredholm ideal and the algebra ¥(X) is regularizable
to a certain Fredholm ideal J, C X(X), then

Hasy+r = %asy Jor every Ted .

Proof. By Corollary 4.5 and by the assumptions, the operator 4 (S)
has a simple regularizer R, to the ideal J. By Property 5.4, I, the
operator A(S)+T also has a simple regularizer to the ideal J, and B 4, 5
= R . Hence, by Theorem 6.1, I, the operator A4(8)+T has a finite
d-characteristic for every operator 7 eJ.

If, moreover, J and J, are both Fredholm ideals, and of the algebra
X(X) is regularizable to the ideal Jy, it follows from Theorem 6.3, I, that
every operator T eJ is a perturbation of the class Dy(X) n X(X) of all
operators from the algebra X(X) with a finite d-characteristic, which
does not change the index. Hence x g, 7= % g for all TedJ. @

THEOREM 6.2. Let S be an algebraic operator in an algebra X(X),

n

with the characteristic polynomial P(t) = [](t—tn)™, and let a polynomial
m=1

A(S) satisfy the following conditions:

1. Ay e X(X), [An,SleJ CX(X) (m= 0,1, ..
a quasi-Fredholm ideal,

2. there exist operators [A(t:)]™ (i=1,2,...,10).

Then the operator A (8S)+T has a finite d- characteristic for every T edJ.
If, moreover, J is a Fredholm ideal, and if the algebra X(X) is reqularizable
to a certain Fredholm ideal J,, then

, N—1), where J is

Hyger = %aw Jor every T ed .

Proof. It follows from Theorem 4.1 that the operator 4(S) has
a simple regularizer R,y , and the proof follows the same lines as that
of Theorem 6.1. ®

§ 7. Polynomials in algebraic operators with constant coefficients. If an
operator 8 e Ly(X) is algebraie, and if

a(8) = agI +...+ay_ 851,
where @, ..., ay_, are complex numbers, then of course &8—Sa;= 0
for ¢=0,1,.., N—1. Hence, if a{t) #0 (i=1,2,..,n) then, by
Corollary 4.2, the operator [a(S)]™" exists and
[a(8)]7 = By -

However, in case of constant coefficients one can apply Theorem 5.1
and obtain results also if some a(#) are equal to zero.
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Let us suppose that 8 eLy(X) is an algebraic opemtor with the
characteristic polynomial P (t) = H (t—tm)™ (r+ ...+ =N).

m=1
We write
B, (t) = Zig_ynn= {z; e X5 (8—t: )"z, = 0}
. (m=0,1,..,mn—1; :1=1,2,...,n).
It is easily seen that By(t)= {0}, () = X, and that E,(¢)
C Bpa(ty). ‘
LevmMA 7.1. B (4) # B, () for m=0,1,.8rn—1 (i=1,2,..,n).

Proof. Let us suppose that there exists an index m, (0 < m, < 1:—1)
such that

By () = Byt -
By Theorem 1.3, I, we obtain

E,,(t) = B, ,(t;) for all m,<m <.

In particular,
B, () = B,(t) = X;.
Hence m, = r;, which contradicts the assumption. Thus we have
B, () # B, . (t) (m=0,1,..,7r—1). ||
TEEOREM T7.1. Let Piy € By (t:), where »; is an arbitrarily fized integer
in the interval 0 <vi<mi—1 (i=1,2,..,n).
n
Y= D Py e Zyg if and only if
i=1

(71 aBt) =0 for k=0,1,.,m—1 (i=1,2,..,n).

If »i= 0, then the equation a(S)y = 0 has only the zero solution.

Proof. By Theorem 5.1, the equation a(8)y = 0 is equivalent to
the system of independent equations:

a(8YPy =0

Let us write 9: = Piy, and let us suppose that conditions (7.1) are
satistied. If y, € B,(¢;), then
ri—1
1
a(8)ys = a(8) Py = Z 5 a™ (1) (S8—I)"Pey

m=0

(i=1,2,..,n).

ri=1

= D am)(8— )y
m=vi
ri—1

Z (k) (S— I (S—t,I)ye] = 0 .

m=y;

I

cm
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Hence the condition is sufficient. On the other hand, it y; ¢ B, (&) is an
arbitrary solution of a(8)ys:= 0, then

r4—1
0=a(8)yi= Z -%Ia(m)(tt)(s——ti.l)myi
m=0
»i—1 1
=Y (1) (8—tT)" e
m=0

Writing the operator (S8— #:I)*~* on both sides of the last equality,

we obtain
vi—1

2 %“(m)(tf)(S—‘tJ)"'”””?/t =0.

m=0
But y; < B,(t:); hence we obtain the following equality
aO(t) (S8—HIy Y= 0,
valid for an arbitrary y; € B,,(#;). By Lemma 7 .1, there exists & y; € B, (f:)
such that (S—tI)" 'y # 0. Thus, a® (t;) = 0.

Generally, supposing that aOt) = . = () =0 (0 <k < »—1)
and transforming the equality
‘ vg—1
2 L gmgy (S—tuIymye = 0
m!
m=k

by means of the operator (§—t:I)*¥, we obtain
a®(t) =0 E=0,1,..,n—1.
Hence condition (7.1) is necessary. B

THEOREM 7.2. If an operator a(8) satisfies condition (7.1),' thefn,
a mecessary condition for the equation a(8)z = X, to have a solution 1S

(7.2) (S—tIy" Py =0 (6=1,2,..,m) (@eX).
Proof. By Theorem 5.1, the equation a(8)z =%, i8 equivalent
to the system of independent equations
a(8) Pz =P, (i=1,2, ey W) .
1 x;= Pz is a solution of the equation a(8)%: = Pi%, then con-
dition (6.1) implies
(8=t I)* " Pyay = (8— Iy "a(S) @

for

ri—1

= (B—uIy™ 2 % &P (k) (8— 1w

=i
ri—1

[2 %.!a""(it) (8— t;I)"""] (8—ul)'mi = 0.

k=v
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Hence condition (7.2) is necessary. m

fI;HEOREM 7.3. If conditions (7.1) and (7.2) are satisfied, then the
equation a(8)w = m, has a solution x if and only if

ri—ri—1
» yil i o—1 79
(13)  (B—tIy*"Pg= [?;Tm] D (1) (39— D) Pus,
k=0

(m=0;1,..,ri—»—1; =1, 2, ey M),

where di (t,) is the determinant obtained by cancelling the (m+1)-st column
and the (k-+1)-st row in the determinant

4, (t;) = det it ,
o<, k<ri—ri—1
0 for  k>m,
Omi(ts) = 1 (i+m—FK
Gt for k<m.

Proof. By T?heo'rem 5.1, the equation a(8)z = x, is equivalent to
the system of » independent equations

a(8) Py = Piay (i=1, 2, ey %) .

Applying thfb operators (S—I)™ (m= 0,1, wvy Pi—v;—1) to both sides
OEE the equation a(S)P;z = P;z, we obtain the following system of equa-
tions:

ri—1 1

2 7100 (S— LD ™P s — (S 1, Ty Pya,

k=»

(7.4)

(m=0,1,.., r—wv--1).
Now, let us write Tl

Uy = (8— I+ Py y o V3= (8=, 1) P,
(1=0,1, .., rn—»n—1).
System (7.4) can be written in the following form:

re—1

1
S —a®
7 a (tg)uk+m_,‘ =, (m=0,1, .., ri—wi—1)

Jo=v;
or in the more convenient form:
ri—l—pg

1 k
(7.5) ZJ G 0 e =t (= 0,1, ., r—y1) |
£

icm
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All the elements of the principal diagonal of the determinant d,(Z:)
are equal to ;}—' a®(t;) # 0, but the elements below the principal diagonal
it
are equal to zero. Hence

1 Ti—vi
autt) =| 200" % 0.

The solution of system (7.5) assumes the form

rg—i—1

Uy = = (— 1) ™t vr

du(t’i)
k=0
(m=0,1,..,r—1—ry).

Hence conditions (7.3) follow immediately.

Conversely, if there exists an element @ satisfying conditions (7.3),
one can make the same substitution and solve system (7.6) with respect
t0 elements vz. The determinant of system (3.2) is different from zero,
since it is the determinant of the linear transformation inverse to the
linear transformation defined by formulae (7.5). Hence system (7.6) has
a solution (9, ..., ¥y_,_,) defined by formulae (7.5). It follows that for
m =0 the equation

ri—1

2 %a(k)(i‘)(s- (I Pw = Pezy  (i=1,2, .y m)

k=
is satisfied. But we supposed condition (7.1) to be satisfied. Hence
is a solution of the equation a(S)o = z,. W
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CHAPTER III
@:~OPERATORS

§ 1. Conjugate spaces and conjugate operators. We denote by X’ the
space of all linear functionals defined on the space X. A space £C X'
is total if the condition & () = 0 for all & « £ implies 2 = 0 (# € X). Bvidently,
the space X' is total. Indeed, Jet = be an arbitrary element of the space X,

@ # 0. Let us denote by X, the one-dimensional space spanned by the ‘

element z, i.e. X, = {y: y = aw, a being a scalar}. We consider a functional
f defined on the space X, by the formula f(a®)= a. Evidently, it is
& linear functional. By Theorem 1.1, I, this functional can be extended
to a linear funetional f defined on the whole space X. Hence feX' and
f(x) # 0. Since the element z ¢ X is arbitrary, the space X’ is total.

Let us remark that elements # ¢ X can be treated as functionals
defined on a total space 5 by the formula

Fol8) = E() .

Thus if we denote by &' the space of all linear functionals defined
on the space &, the space X can be mapped into the space £ monomorti-
cally. This monomorphism will be called the natural embedding and will
be denoted by x. The image »X of the space X by means of this mono-
morphism is a total space of funetionals on the space 5, since £(z) = 0
for all z implies & = 0.

Each total subspace of the space X" is called a conjugate space to X
(adjoint space, dual space).

Let HC Y’ be a conjugate space. To any operator A4 e L(X-—>Y)
corresponds an operator 74 defined on the space H with values in the
space X': ’

(nd)z = n(dz) (for all z e D4 and for all neH).

The operator nd is called the conjugate operaior (adjoint operator)
to the operator A. We shall denote it by 4',i.e. A'n = 74. Let us remark
that (A+B) = A'"+B and I'=1I.

Let EC X’ be an arbitrary conjugate space. We consider the oper-
ator A’ as defined for those functionals ne H for which 4’y = nd 5.
In this manner to every operator 4 ¢ L(X—Y) there corresponds an

cm
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operator A e L(H —E). With this general formulation the operator A’ may
en to be defined only at the element 0. ,

happIn the sequel we shall consider only operators A eLy(X —>Yl for
which A’ e L(H—5), i.e. operators A ¢ Ly(X->Y) such that A'ne & for
every n e H. We denote the set of such operators by Lo(X —iY, H—E). .
Obviously, this is a linear space. Writing 4 eLO(X»Y,H —f.:) we s’hall
suppose automatically that we consider the conjugate operator A’ as
an operator mapping the space H into the space 5. We denote the sgacie
L XX, E—~E) briefly by L(X, E). Evidently, the space Lo(X, =) is
an algebra, since (AB) = B'4".

inite-di i rator Ko = x)x;, where
THEOREM 1.1. A finite-dimensional operator _};1 filw) @,

functionals fie X' and elementis ;e Y are linearly independent, belongs
1o the set L(X—~Y¥, H~E) if and only if fie & (i=1,2,...,n).

Proof. Let &e & If fi e, then A’ = 3 E(wi)fieE. On the other
i=1

hand, if A'¢ = Zn' £(w;)ﬁ for all £ ¢ 5, then one can find functionals & e H
)
=1
such that
&i(xs) = Oy ,

for the elements @ are linearly independent and the space H is total.
Hence A’E; = f; belongs to Z by hypothesis. W , -

Evidently, if A eLy(X—~>Y, H—E), thejn A eL(H—~E,X->Y). If
a set B is a subset of the space ¥, we write

Bt = {neH: y(y)=0 for all y e E}.

The set E- is called the H-orthogonal complement of the set E.
TemoREM 1.2. If A e L(X~Y, H—E), then ay < fa-

Proof. Evidently,
’ o= dimBEy .

On the other hand, every functional » e E induces 1? I;ﬁ;:?ﬁlv
in the quotient space Y/H4. If fa= diim Y/E4 < oo, 1;h1511b1ia reﬂ cnsion
of the space of functionals (¥/Ha)' is equa,l_ to the num X fd Lenee
as < Pa. If fa= + oo, then the inequality in the theorem holds

tically. ) . B
o %Veysa; that a subspace BC Yis H -describable if (EL)t = B, where
(BYY: = {yeX: n(y)= 0 for 9 e B},

An operator A e L(X-+¥,H—5) is said to be H—resolwﬁle if the

set E, is H-describable. . _
Ig an operator A is H -resolvable then, of course, dim B4 = §,- Hence
we have
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TeroREM 1.3. If an operator A e L(X—Y, H —->5) is H -resolvable,
then ay = B,.

CoROLLARY 1.4. If an operator A e Ly(X —Y, H—E)is an epimorphism
then the conjugate operator A’ is a monomorphism.

Let B be a subspace of a linear space X. Let &g be a map of the
space X into the quotient space X/E such that to every element z e X
there corresponds the coset [x]= s+ & containing #, i.e.

Opr=0+FE (reX).

Evidently, the operator @z is linear.

CoROLLARY 1.5. Let B be a subspace of a linear space X, and let 5
be a conjugate space to X. If H C(X/E) is a subspace satisfying the con-
dition OZH C 5, then the operator &y is a monomorphism of the space H
into the space BL.

Proof. Evidently, the map & is an epimorphism. Hence the oper-
ator @F is a monomorphism. Let £ € ORH, & ¢ B There exists an element
@ e B such that £(z) # 0, but & = Opz. Thus,

£(@) = n(Pra) = n(0)=0,

which contradicts the condition Ex) #0. @

Each operator 4 ¢ L(X —¥) is Y'-resolvable. Indeed, let y, be an
arbitrary element of the space Y not belonging to the set H4. Let
Yo =1lin{y,+E4}, ie. ¥V,= {aYo+2: 2 € By, a being a scalar}. We define
the following funectional: Nye(y) = @ for y ¢ ¥,. By Theorem 1.1, I, the
functional 7,, can be extended to the whole space Y. Let us remark that
this extension is a functional equal to zero on the set By, just as the
functional 7,,. Henece this extension belongs to the set BL. Thus to every
Yo ¢ B, there exists a functional 7, ¢ B, such that T(¥o) = 1. Hence
E,={yeXY: n(y)= 0 for all functionals ne B}

Hence we obtain the following

CororLLARY 1.6. If 4 eL(X~>Y, Y'—X'), then a, = Ba-

Theorem 1.3 does not hold without the agsumption of H -resolva-
bility even if X = ¥ and 5 = H. This is shown by the following example:

. Exaweim 1.1. Let X = ¥ = C*[0, 11 be-the space of functions x(t)
infinitely many times differentiable in the interval [0,1]. Let £=H

1
be the space of functionals & of the form &(w) = [z(t)£(t)dt. where
0
§(1) € 0¥[0,1] and £™(0)=0 (n=0,1,2,...). Here £7(t) denotes the
1
nth derivative of the function £(1). Finally, let A[z(t)] =y (f) = [=(s)ds.
i
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Tvidently, as = 0 and f4 = 1. We calculate n(Axz), where the functional 7

ig defined by means of function #(f):
1 1

ay(Aw):wa(s)ds]n(t)dt

o i
11

=[f1m(s)ds- ftn(s)ds]:—{-flm(t)[fn(s)ds]dt
t 0 o

0

= fm(t)[fn(s)ds]dt.

0

Hence the conjugate operator A’y maps the functional # of the form

7(®) = fl n(t)e(t)dt in the functional & of the form
’ ¢
1
£(@)= [ E@a(t)dt, where E(t) = [ n(s)ds .
0
1]
This operator is a one-to-one map of the space H onto itself. Hence
,=pp=0 and ay < fy. ' )
- Lff A e Ly X ——>YI’1, H —:E). According to our convention the conjugate
operator A’ maps the space H into the space 5. Spacgs Y anc} X cstf:h be
treated as spaces of functionals over spaces H and :..respectwely. il'
it immediately follows from the definition of the eon]ugater%er?;or .
) N j ' is the operator A itself, an
the operator A’’ conjugate to A’ is .
31’&: L(H —>I')’~', X->Y). Applying these arguments and changing the roles
0 ] . .
of operators A and A’ in Theorem 1.2 we obtain
TamorEM 1.7. If A e (XY, H—~5), then a4 < Ba- ~
In order to get a theorem dual to Theorem 1.3 we mu;t explain
what it means that the operator A4’ is X-resolvable. We write
W= {weX: &w)=0 for all EecE ).
Th
- By = {EcE: E(x)=0 for all xeU}.
But & B, implies £ = A’y Hence £(2) = n(Az) and since the space H
is total, we obtain A= {w<X: do=0}= Z1.
Thus the rollowing theorems hold: . _;
ToRoREM 1.8 If A ¢ Ly(X~Y,H—>E) and B, = Z4, then ay = po-
THEOREM 1.9. If A e (XY, Y'—=X'), then a4 = ﬁA,.d. )
Proof. Let us decompose the spaces X and ¥ into direc
AzzA@G:l, Y=EA@(52 E
The operator 4 is a one-to-one map of the space € onto the space £a.

s ¢ o ionals
Hence the operator A’ is a one-to-one map of the space of all functionals

sSums:
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defined on the set B4 onto the space of all functionals defined on the
set ®;. On the other hand, every functional defined on the set @, can be

extended to the whole space X in such a manner that it assumes the
value 0 on the set Z,. Hence

fo=dmX)6, =dmZ, =a, m.

§ 2. dg-characteristic and @y-operators. It follows from +the con-
siderations of the previous section that we do not alwayshave x4 = —x,,
Therefore we introduce the H-index as the difference of numbers BE = ay,
and a,. Thus, the H-index »% of an operator A eLy(X—Y, H->5) is
defined by the equality

wh=pl—a,.

Since f5 < B , we have »Z < x,. The pair of numbers (ay, BE)is
called the dy-characteristic of the operator A. Evidently, the pair of

numbers (a, a ) is the dg-characteristic of the operator A’ by definition.
Hence xZ = —u%, .

Fig. 5

As is shown by Example 11, the dg-characteristic is not always
equal to the d-characteristic; even if X = ¥, 5= #. By this example

?
one can also show that a theorem on the index of a superposition analogous

to Theore.m 2.1, I, does not hold for the H-index. Indeed, if we take
B = d/di in Example 1.1, we get BA = —I. Hence

M= npy=0.
On the other hand, % = %y = —1, and 5 = 0. Thus

R B

) If the dH-eh.a.raeteristie of an operator 4 e DX —Y) is equal to
its d-characteristic, then the operator 4 is called a & -operator.

TEvoREM 2.1. If a finite-dimensional 0
perator K belongs to Ly(X, 5
then the operator I+K s a D-operator. ! o 2

cm
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n
Proof. Let Ko = 3 2:£(s). We have shown that (Theorem 3.1, I)

i=1
tryx = Brig=n—%,
where %k is the rank of the matrix (fi(mj)). If we consider the conjugate
n
operator I4+-K', where (K'= 3 £(wi)éi, then of course ay,g = B,z

i=1
= n—1F, where £’ is the rank of the matrix (£ws). But k = &'. Hence
Biix (equal to ay, gz, by definition) iy equal to Or g =frix. B

We say that a subspace X, is described by a family E, (not necessarily
linear) of linear functionals defined on a space X if # ¢ X, holds if and
only if &(2) = 0 for all funetionals & ¢ 5. In other words, a subspace X,
is deseribed by a family 5, if and only if it is 5,- deseribable, and X} =lin5&,
An operator A eLy(X—>Y,H—Z) is H-resolvable if and only if the
set 4 of its values can be described by » family H, C H. It is easily verified
that an operator A e Ly(X—Y, H—5) with a finite d-characteristic is
a @g-operator if and only if the set H4 can be deseribed by « finite system
of functionals. If a subspace X, C X can be described by a finite system
of functionals &,C 5, then of course every space X; containing X, (X,
CX,CX) can also be described by a finite system of functionals
E,Clin5,C 5.

THEOREM 2.2. If A « Dy(X—>Y), then fo every conjugate subspace =
there ewists a Dg-operator B e Ly(Y—X) such that the operators AB—I
and BA—1I are finite-dimensional in spaces ¥ and X, respectively.

Proof. By hypothesis, the dimension of the space Z, is finite:
dimZ4 = n. Let us consider a system of functionals {fi, ..., fa} C & whose
restrictions to the space Z, are linearly independent. Let € = {z ¢ X:
(X)=10, i=1,2,..,n}. We write the space X as a direct sum
X = Z,®C. The operator A restricted to the space € is invertible and
maps € into B, . Let A;* be its inverse defined on the space B, . We write
the space Y as a direct sum ¥ = H,®CE;,. We define the operator B as
follows:

ATy
0 for

for yelH,,

ye@.

Since Hp= § can be described by a finite system of functionals,
B is a &-operator.

On the other hand, 4B is a projection P, on the subspace Hu,
and BA is a projection Pg on the subspace €. Since a, and g, are finite,
these operators differ from identity by a finite-dimensional operator
only. m

Remark. Since the space ® can be described by a finite system of
functionals belonging to the space &, we have Pg=I—K, where

By =
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K e¢K(X,Z5) Similarly, if 4 is a @®x-operator, then Py, = I—K, where
K «E(Y, H).

Let us remark that the operator B defined in Theorem 2.2 satisfies
the following equalities:

(2.1) ABA=A and BAB=B.

Each operator B satisfying equalities (2.1) is called almost inverse
to the operator A. It follows from the form of these equalities that if
an operator B iy almost inverse to an operator 4, then the operator 4
is almost inverse to the operator B. Hence the following corollary can be
formulated:

CoroLLARY 2.3. If A ¢ Dy(X-Y), then to every conjugate space =
there emists a Dg-operator B e DY —X) which is almost inverse to the
operator A.

THEOREM 2.4. If a @y -operator B belongs to Ly(X —¥) and if a D,-oper-
ator A belongs to Ly(Y—Z), where HA C X, then the superposition AB is
also a Pg-operator and

in =

Proof. Let us decompose the spéce ¥ into a direct sum of form (9.4),
Chapter I, ie. Y= Ep@E,®DCE,. Since B is a @y -operator, the sub-
space Ep can be deseribed by a finite system of functionals of dimension
equal to the dimension of the space €, ®C,. Hence every space YO Hp
can be deseribed by a finite system of functionals. In particular, the
space Bp®C, can be described by a finite system of functiomals &
(1=1,2,...,n). Since 4 is a @ -operator, the set B, can be described
by afinite system of functionals #;. The inclusion HA C 3 and formula (2.5),
Chapter I, imply

Bs=EsnDAG,.

Hence the set B, ; can be described by the system 7, ..., Npar 614, .
Thus »5p = x5, and Theorem 2.1, I, gives (2.2). m
The following theorem is, in a sense, converse to Theorem 2.4:

THEOREM 2.5. Let Be L(X—Y) and A CL(Y—=Z, H->ZX). If Bas
<+oo and fyp= iz, then B, < +oco and f, = p¥.

Proof. By Theorem 2.2, I, fap < oo implies B4 < + oo,

By hypothesis, the set Bz can be described by a finite system of
tunctionals. Hence every space containing Hug, in particular By = B @
@4 (see 2.5, Chapter I), can be described by a finite system of fune-
‘tionals. Thus g, = fZ. @

*  From Theorem 2.5 and Corollary 2.3, I, follows at once

oy A

icm
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CoROLLARY 2.6. If A eLy(X—>Y) and BeLy(Y~X), and if AB is
a Ds-operator and BA is a Dg-operator, then A and B are a ®y-operaior
and a DPg-operator, respectively.

Corollary 2.6 implies

CorOLLARY 2.7. If T e LX) and if there exists a positive integer m
such that the operator I—T™ is o @-operator, then the operator I—T is
also a Bz-operator.

Indeed, it is sufficient to apply the previous corollary with 4 = I—T,
B=I+T+..4+T" ' &

§ 3. (£, H)-quasi-Fredholm ideals. Let us write

L(X~Y, H—~2Z)

=Y, HaE)=
LXet, =) L(Y—~X,5->H)

(La(X, 2) LY, H)) .

Evidently, the system L(X = Y, H 5) is a paraalgebra of operators.
Suppose we are given two arbitrary algebras
A(X,E)CL(X,5), Ay Y,H)CL(Y,H)
and spaces of operators
S(X—-Y,H>E) CL(X-Y, H>5),
S(Y->X,E~>H)CL(Y—~>X,E~H).

Let us consider the paraalgebra

8(X Y, H>E)
N =F) = =y A(Y, H)|.
PEe ¥, Hen - (42,5 STV T Av,m

We denote by Kp(X=Y,H=.5) the set of all finite-dimensional
operators belonging to the paraalgebra P(X‘——,‘ Y,H=E). )

We say that an ideal J C P(X = Y, H= &) is a (£, H)-quasi-Fredholm
ideal if

C [ Ig+T @ operator . TEI Jn4(X,5),
‘ : or
the operator l I+ i - operator J A (Y, H).

REM 3.1. If an operator A eP(X<Y,H=E) has o simple
regulf;'f;' R4 to af(E, H)-Zuasi—ﬁ’mdholm ideal JCP(X<Y,Ha5),
then A is either a Og-operator or a Pg-operator.

Proof. Indeed, under the assumptions of the theorem, operators
AR, and R, A are &.-operators or @H—oper@tors. By Corollary 2.5,
both operator 4 and operator R, are ®g-operators or ®p-operators,
respectively. m

Equations in linear spaces

7
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TEROREM 3.2. Bvery quasi-Fredholm ideal contained in a regularizable
paraalgebra P(X =Y ,H<8) is (5, H)-quasi-Fredholm.

Proof. Let either T eJ n A4(X, Z) or T'ed n 4,(Y, H). Hence the
ope.rz.utor es+T has a finite d-characteristic. The assumption of regulari-
zability of thfs paraalgebra P(X <Y, H=25) implies that the operator
Z +T -has a simple regularizer to the ideal Kx(X <Y, H 5). But this
ideal is (&, H)-quasi-Fredholm (Theorem 2,1). By Theorem 3.1, the
operator e;+T is a P.-operator (or a Py-operator). H ’

TZEEEOREM 33 If an algebra of operators ¥X(X) contains the ideal
K. (X, B), and if the operator I +K is a Og-operator for every finite-dimen-
sional operator K e X(X), then X(X)CL(X, ).

Pr(?of. Let us suppose that the operator 7' ¢ X(X) does not preserve
the (;’Jrltfjuga.te space £Z, i.e. that there exists a functional £ ¢.F such that
n=T'E¢F. Let th ; =,
= ¢ e operator P e K (X, 5E) be of the form Pz = &(z)w,.

PT = E(Tr)wy = n(x)x, .
We choose #, in such a manner that #(z,) # 0. We take

Ky = n(®@) X .

A (%)
Then K is a finite-dimensional operator belonging to X(X). But
B _g= {®: n(x) = 0}.
Tndeed, I-K { 7(®) }

n(e—Ka) = n(a)— 10 5z
. (%) N(#) = 0.
owever, 7 ¢ 5. Hence I— K is not a'@,- operator, which i
' tradicts

the assumption. Th Y rose tho 0
e -p us, every operator T' e X(X) preserves the conjugate
» HIftE & E)\a,raa.lgebra, P(X<Y,H=5) be given. We denote by
to(t};_ , X<« ¥) the set of operators conjugate to operators belonging
t e paraalgebra P(X =Y,H=E). It is easily verified that this set
:;1 a pama.a.lgell)m. If J is an ideal in the paraslgebra P(X= Y, H<25)
then tl.le set-J of operators conjugate to operators belonging to th7e idea:lJ’
is an ideal in the paraalgebra P'(H=5, X=7Y).

Indeed, if 79, Tyed’, Ae P'(H5, X Y), then

& T+ 0, Ty = (a, T+ a, T,) e’
A'T = (T, 4) eJ",

(ay, @, numbers),
TiA' = (AT) eJ’.

Hence, if RA is a left rggula‘r]zer of the oper tor A to the ideal ¢J
y - P
by app]Y]ng the equa ]ty‘ . : ’

ARy = (R4A) = (I4+T) =I+T, where

Ted

cm
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we find that R/ is a right regularizer of the operator 4’ to the ideal J’
(an analogous implication holds for a right regularizer). Taking into
account the fact that two simple regularizers to an ideal differ by a term
belonging to the ideal only (Property 5.2, I), we find that a simple regu-
larizer of an op.rator 4’ conjugate to A satisfies the equaliby

Ry= (R, .
§ 4. Pertorbations of &@.-operators. The following theorem, analogous
to Theorems 3.2, I, and 4.2, I, hold for perturbations of & - operators:

TrEoREM 4.1. If A € D(X-Y) is a Pu-operator, then every operator
K ¢ E(X—Y,H—E) is a $g-perturbation of the operaior A.

Proof. Since K ¢ K(X—+Y, H—5), we have Kz = 3 gi(®)xi, where

=1 .
gi € 5. Bvidently, 4 +K ¢ D(X~Y) (Theorem 3.2, I). Let € = {&: g«(4m)
=0 fori=1,2,..,n} If G,

(A+E)z= Az .
But
AC=Ean{y: gily) =0 for i=1,2,..,2}.

On the other hand. 4 is a @x-operator, by hypothesis. Hence E4 can
be described by a finite system of functionals. Consequently, AT can
also be described by a finite system of functionals. But X, +x D AC.
Hence B,z can also be described by a finite system of functionals. This
proves A +K to be a $z-operator. W,

TepoREM 4.2. If J is a (2, H)-quasi-Fredholm ideal in a paraalyebra
P(X <Y, H=E) reqularizable to this ideal, the operators belonging to J
are perturbations of the class of all @g-operators and Pg-operators belonging
to the paraalgebra P(X< Y, H =5).

Proof. Tet AeP(X=Y,H=5) be a @--operator (or a @g-oper-
ator). By hypothesis, there exists a simple regularizer R4 of the operator A
to the ideal J, ie.

R4A = e+ Ty, ARy = e+ T,
Tet T eJ. If the addition A-+T is performable, then

where Ty, Thed (i =1 or 2).

RuA+T)— e+ RaT+Ty, (A+T)Rs=e+TRs+T, (i=1or32).

But the set J is an ideal. Hence R4T+Ty, TRa 4T, eJ. Since J is a (£, H)-

quasi-Fredholm ideal, the operators R4 +T) and (A+T)R4 are

&,-operators or @y-operators. By Corollary 2.5, the operator A+T is
a O-operator or a Pg-operator, respectively. W )

THEOREM 4.3. Theorem 4.2 remains true if we replace the assumption

of reqularizability of the paraalgebra P(X <Y, H=5) to the ideal J by the

T*
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assumption of regularizability of this paraalgebra to an arbitrary (2, H)-
quasi-Fredholm ideal J; contained in P(X=Y,H=25).

Proof. Let J = J-+dJ;. As in the proof of Theorem- 6.3, I, we show J
to be a (&, H)-quasi-Fredholm ideal. By Theorem 4.2, operators belonging
to the ideal J, , in particular operators belonging to the ideal J, are per-
turbations of the class of all @.- and Pg-operators belonging to the
paraalgebra P(X=Y,H=5). m

Remark. Since in case of @ -operators the Z-index is equal to
the index, by applying Theorem 4.2, I, one can preove that if J and J;
are (£, H)-Fredholm ideals, then perturbations by means of operators
belonging to the ideal J do not change the Z-index and the H-index.

§ 5. Theorems on reduction of the space of functionals. As is shown
by Example 1.1, not all d.-characteristics are equal if we vary the con-
jugate space Z. The following theorem shows that some changes of spa-
ces X and £ leave the d-characteristic unchanged.

THEOREM 5.1 (FIRST THEOREM ON REDUCTION). Let a linear space X
and a conjugate space 5 be given. Suppose that an operator T e L(X) is such
that the operator A =1I14T has a finite d,-characteristic. Let X, be an
arbitrary subspace of the space X, containing TX, and 5, an arbitrary
subspace of the space &, containing ET. Then the operator A resiricted to the
space Xy has a finite dg,-characteristic equal to the d,-characteristic of the
operator A on the whole space X.

This follows immediately from the fact that all solutions of the
equation (I+4T)« = 0 in the space X belong to X,. Similarly, all solutions
of the equation &(I41T)=0 in the space 5 belong to 5,.

Applying Theorem 5.1 one can prove the following

THEOREM 5.2 (SECOND THEOREM ON REDUCTION). Let X, be a subspace
of a linear space X, and let 5, be a subspace of a space 5 conjugate to X.
If an operator A ¢L(X,, 5,) has a simple regularizer R4 such that

AR =I+T, R4A=14T,,

cm
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where the operators T', T, can be eslended to operators T, T e(X ,.E'_),
and the operators I +f, I+T, are ®.-operaiors, then the operator A is
a Dy, -operator. o

Proof. Operators I —‘,—T,N I+T; may be considered on the beole
space X. By hypothesis, I+T and I4-T, are @-operators. By the First
Theorem on Reduction (Theorem 5.1), the operators I+T and I-+T,
are @-operators. Hence the operators AR, and R A4 are also @, - Oper-
ators. By Corollary 2.5, the operator A is a D, -operator. W
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CHAPTER IV

DETERMINANT THEORY OF &.-OPERATORS

§ 1. Almost inverse operators. Let us remember that an operator
BeL(Y-»X) is called almost inverse to an operator A e Ly(X—-Y) if

ABA=A, BAB=23B
(compare § 2, IIT).
TEEOREM 1.1. If an operator B is almost inverse to an operator
A € L(X —>Y), then the general form of the solution of the equation
1.1)
8
(1.2)

Ar=a,, where @yeBy,

=22 +Bx,, where w,ecZy.

Proof. Let @¢ X be a solution of equation (1.1). Then Az = ABAsx
= ABw,. But the equality Az = ABz, holds if and only if # = x, +Bax,. m

If A is a O -operator mapping the space X onto itself, then Theo-
rem 1.1 can be formulated in another way. Let {21, ..., 21} De a basis of
the space Z4, and {G, ..., {n} a basis of the space Z ., where 4 = A'¢
(§ €8). Let n¢ (1 =1,2,...,n) be linearly independent functionals, and y;
{i=1,2, ..., m) linearly independent elements such that

(1.3) 17{(2]) = 6., (i,j: 1, 2, ey n)

(L4 Lly)=6y (i,j=1,2,..,m)

and ni(y) = 0 if yeEA,
Ly =0if £cH .

Evidently, each element of the space X can be written in the form

and

a’=2"'ifyi+yo: Yoe Ba,

=1
and each element of the space & can be written in the form
m
£=2amg—(—no, where n,eH,,
=1 :

(coefficients a; being scalars).

cm
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TreoREM 1.2. If a ®g-operator A maps the space X onto itself, and
if B is am operator almost inverse to A, then

(1) each solution of the equation
where  Li(@) =0 (@#=1,2,.

(1.5)

is of the form

Ax=un,, .y M)

L= ay% + ...+ an2n +Bay;
the element B, is the only soluiion of the equation (1.5) satisfying the con-
ditions
n(B) =0 (t=1,2,..,0);
(2) each solution of the equation
(1.6) EA =&, Ez) =0 (7:':"172:“'7"')’

is of the form

where

&= aoly+ ...+ amlm+ 5B

the element &B s the only solution of equation (1.6) satisfying the
conditions '
(&B)y; =0

§ 2. Determinant system of a & -operator. Let Xy Xy be 1i:r.ma.1'
spaces. A k-linear fumctional is a map of the product X, X ... X X, into
the set of scalars, f(#;, ..., %), such that for .ny fixed k—1 e.len}ents
B0y ey 80y By ey By [0 ey By By 23,15 ey @%) isalinear functional
of the element a; (1 =1,2, ..., k). We write

(ti=1,2,..,m).

Xr=XxXXX..XX.

Tet A e Ly(X, 5); then the expression &(Az) is a biline_a;r functional
defined on the product X X Z. We say that a bilinear functional f beloy.;,gs
to the space Ly(X,Z) if there exists an operator A € Ly(X, &) for which

@, 8= E(4s) (@eX, EeS).

The set of all @,-operators belonging to the ring Ly(X, &) wil be
denoted by Py(X, E). L . -

The order of an operator A e (X, 5) is the number r , = min (e, ¢g)-
‘We write

d, =Gl =lag—ad. ;

If an operator A € (X, 5) has a non-positive index, W5 =u,<0,

then every infinite sequence RN — :
a ‘ (Da}t = (Do, Dy, .}

(R
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satisfying the following five conditions is called a determinant system for

the operator A:

(1) Dy is a (2n+d)-Vinear functional defined on the product 5™+ x Xn,
we denote the value of this functional at the point (&, .

Ty ey By) DY
Eyeen &y
-Dn( 1 ) n.d);
By eeny

in particular, D, is a d-linear functional, and if @ = 0, D, is a number.
(2) Do is skew-symmetric with respect to variables & and x4, i.e. for

every pel.“mutation P = (Pyy -y Pn+a) Of numbers 1 y 3 +d and every
permutation g = (g, ..., ¢x) of numbers 1, ..., # the following equalities

hold:
D”(EPU"" Pn+d — sgnp-l),,, 51?'“? n+d ,
Dyy ooy Bn Lyyenny Xy,
Dﬂ(fl, R n+d) — Sgnq:Dﬂ 517 ‘tty Sn4d ,
Lgyy onny By, Dy ey Tn
where sgnp =1 if the
it is odd.

*t? Sntdy

permutation p is even, and sgnp = —1 if

(3) If'n >0, then Dy considered as a bilinear functional of arbitrarily
chosen variables z; and &5 belongs to the space L(X, 5).

(4) There exists a const s i !
1 2000, nstant v 2> 0 such that D, is not identically equal

(5) The jollowing equalities hold for n=10,1,..:

(21) b, (EOA”é’""’ n+d)

Tgy Byy  ewey By
> £
22(_1)1.50(%‘)._&‘( Ly eenes e, s Enva ,
=0 Ty vees Biqy Liyay ooy
(2.2) Dyiq (50, S ntd
Azy,y 2y .y @y

n
= 2(—1)151(%) D, (£°’ Eur wes $imay Eipry oy n+d)
0, ’

i=1

It »5 > 0, the determinant system {Dy}~ is defined analogously, but

we change th i i
E“XX‘”+§, e roles of spaces X and Z, ie. we consider the product
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§ 2. Determinant system of a ®z-operator

The constant 7 determined by condition (4) is called the order of the
determinant system r = r{Dy}*, and the number d = d{D,}* the defect
of the determinant system. D, is called the determinant of the operator A,
and D, for n > 1 the minors of order n of the operator A.

The following properties are easily verified:
PrROPERTY 2.1. If mi = m;0r & = &; for 1 # j, then

D, (51, fn+d) .

Dy eeey T

ProPERTY 2.2. If {Dn}* is a determinant system of an operator
A e®yX, E) and ¢ £ 0, then {cDn}* is also a determinant system for ihe
*

1
operator A, and {E’_‘D“ is a determinant system for the operator cA.

PrOPERTY 2.3. If {Dn}* is a determinant system for the operator
A e DX, E) and if the operator B e Ly(X, £) has an inverse B~ ¢ Ly X, 5),

then
513—15 ety n+dBi1)‘+
" Byy eeey Tn

is a determinant system for the operator AB and

D, &, veey 5,;4-;1 +
B2, ..., B2y

is a determinant system for the operator BA.

TEEOREM 2.1. If an operator A eD(X,5) has an almost inverse
operator B e Ly(X, E) and if 4= 0, then the system {0n}" defined by the
formula
o E(Ban),  &lz) &i(2a)

(51, W) ...........
B O
Py vees O Enta(B2) .o En+a(Bn), Enval?1) .- Enval2a)
(n=10,1,..)
is a determinant system for the operator A if ay = 0. Here, {2, ..., 24} is
a basis of the space Z, (in this case d= d{6,}" = —ud = a,).

Proof. It is easily seen that the system {0,}* satisties conditiogs
(1)-(4) defining the determinant system. We show that condition (5) is
also satisfied. Tt follows from the construction of the almost inverse oper-
ator B (Corollary 2.3, ITI) that the following equalities hold:

AB=1, BA=I-K,,
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where the as-dimensional operator K, is. a projection operator on the
subspace Z4. Hence we obtain condition (2.1) expanding the deter-
minant .

fo(%) . Eo(mn) 0 .. 0
-;§%+d)= &1(Bm,) &,(Bawn) &(=) R ACH)

(foA, &y -
6n+d
Loy Lyy o 3 Tn

Enya(BBo) oo Enpa(Bu,) Enial#) oo Epialea)

with respect to the first row, and condition (2.2) expanding the deter

minant
foy s Enra) So(o)  £o( Bary) oo Eo(Bwn)  &y(=1) ... &ol2a)
Opra M i e R R
o & ra( @) Enpal B2 <o Enpa(Boy)Eppa(?) oo Enyal®a)

with respect to the first column. m
In an analogous manner we obtain the dual theorem:

THEOREM 2.2. If an operator A e@y(X,E) has an almost énverse

operator B e Ly(X, E) and if r4a= 0, then the system {0.}~ defined by the
Jormula

51(Bw1) 51(Bwn+d)

0 (51, ey bn ): &n(By) .. &x(Boyyg)
Dyyoeny Ty (@) o G®nga)
Latty {a(®nyq)

is a (?etermimnt system for the operator A if aq= 0. Here (Ly, ..., La) 18
a basis of the space Z, (in this case d = d{0,}" = »5 = a ).

COROLE;ARY 23. If Ae®yX,E) and if 5= 0 and r, = 0, then the
operator A~ e Ly(X , E) ewists, and the determinant system for the operator A

8 of the form
Dn (El’ A fﬂ
Ly +eey T,
In particular, the determinant system for the identity operator is the

following one:
4 I (é’u ) 51;)
AZiy «ovy Tp

= det Ef(.A_lmj)

1<ii<n

n=1,2,...).

Iy = = det &(x;):

1<i,j<n

cm
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COROLLARY 2.4. If S e Ly(X) is an algebraic operalor with the charac-

n
teristic polynomial P(t) = J] (—1n)™ (ry+...+12 = N) and if an operator
m=1

N-—-1
A(8) = D An8™ satisfies the following conditions:

m=0
{i) Ap8—84n=10,
(i)
then there exists @ determinant system for the operator A(S) and it is of the
form

Dy=1, Da (51’ " E") -

Dyy eney &n,

there exist operators [AE)]™ (i=1,2,..,1n),

det £(R g5 ;)

1<, f<n

m=1,2,..),

where B, is a simple regularizer of the operator A(S).

Proof. Corollary 4.6, II, implies the existence of the operator
[A(8)]* = R, (the operator B,y being determined effectively). By
Theorem 3.1, III, we have A(S) e @y(X, E) for an arbitrary family &.
By Corollary 2.3, the operator A(S) has 2 determinant system {Dp} of
the form described above. &

§ 3. Connection between the determinant system and the solutions of equa-
tions, We shall investigate the question which operators possess & deter-
minant system.

TEEOREM 3.1. If an operator A e LyX,E) has a determinant - system

{Dn}*, then A e O(X , E). Moreover,
ra=1{Dpy =7, da=da{Da}T=4d

and

a,=r+4d,’ G =—d,

e =T,

and i Nyy ooy Tppg €5y Y1g ey Y€ X are elements saisfying the condq?tion

Dr (7;1, weey 77r+d) # 0 ,
Yig e -9 Yr

then there ewist elemonts Cyy ey by € 2 and 215 5 %pig € X such that

N /‘Dr.(ﬂli o
B1) o) = —len Slunr b

‘ D' (Ziy sevs ’7r+d)
e o r g sy Yr o

for every w e X
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and
D, (’71: vy Mi1s €3 Moy Mpa
(3.2) &(a) = Y s U for every £e X .

7 veny s
Dr( Tiy ooy 771—d)
Yiy ooy Ur
Blements L; (i = 1,2, ..., r) form a basis of the space Z 5 and elements 2

( = L9 Ly, ) g
1=1,2 7 +d a basis 0’ the space Zd. The bilinear functional de]
n NCLLON ined

D, (f;: My eeey 771+d)
£(By) = — Yo a Yr ]
D, ("71, seey "7r+4z)
Yay ven Yr

defines an operator B e Ly(X, E) almost inverse to A.

The equation Azx= 1z, has a solution if and i
) n only if Cilwy) =0
(t=1, ...,7). This solution is of the form ! e

(3.3)

&= 62+ "’+ﬂr+dzr+a+B«’lf‘o ,

where mi(Bro) = 0 (i =1, ..., r+d).
The equation EA = &, has o solution if and only i £ )
2i) = 0 =
wos 7+d). This solution is of the form v e b=t

&= el + ... +07C1-+50-B 5
where E(By:)) =0 (i=1,2,..,7).

. Proof. Condition (3) of the preceding section ensures the-existence
of ‘elements {s and 2. By (3.1) and by econdition (2), Ci(ys) = 645
(z.,y.z 1,2,..,7). Moreover, by (3.2) and by condition (2), 7i(es) = 8¢y
(iz,jzl,.?,,...,r—]—d). Hence the elements {;,...,% and Y1y ey Yr ATE
h.neal_rly mdf:pendent, and also the elements z, ..., 2, +g and 7y, ...y 7
are hnea‘ﬂ){ {ndependent. By (3.1), & are solutions of the equation £4 =r-5?
since conditions (2) and (2.2) for n = r—1 imply {(Az)=0 for every
;z;lel X. A;alggouzly, by conditions (3.2), (2) and (2.1) with # = r—1, it

) ) OWS — -d . > . s, ,.
o at £(A4z;) =0 for every £e¢Z. Since & is total, this implies
Replacing & by £4 in formula (3.3) and applying condition (2.1)

for n=17r we obtain AB = I—K;, where Kﬂ:j&(m)yi is an r-di-
i=1

3 aee

mensional operator. Analogously, replacing by :Zm and applying for-
mula (2.2) for » =7 we obtain BA = I1—K,, where K,z = g‘dm(m)z;.

Hence the operator B is almost inverse to the operator 4, by Cor:;lla,ry 1.1.
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§ 3. Connection between the determinant system and solutions of equations

Since the operato" A4 has a finite d-characteristic: a4 = r+d and
ap = 7, and since the set B4 is described by the functionals & (¢ =1, ..., 7)
(§ 5, I), A is a @-operator. By Theorem 1.3, we obtain the part of the
theorem concerning the equation Az = &,. Taking into account the fact
that A’ is & @x-operator, we get the part of the theorem concerning the
equation £4 = &. B

Also the converse theorem holds:

THEOREM 3.2. Huvery operator A e O(X, =) has a unique determinant
system {Dn}* if we do not take into account a constant factor different from

zero. Moreover,
4= a{Da}* = |al ;

This system is defined in the following manner (for x4 < 0):

r=r{Dp}* = ra.

(8.4) Dpy=0 for n=0,1,.,7—1,
Ey s &
Dr( e *“) =[ det &f=)]-[ det &(@)],
Lyy eeey Br 1<, j<r+4 1<, i<r
s &
b +d-+k
D,.. ( 1 , )
Lyy veey Tpipe

Eppiar o fpww) (k=1,2,..)
s Ty

511¢(Bw47)} ‘Dr(

i<ii<k Tpar

= 2 sngp sngq[ det
poli g

where the operator B is almost inverse 30 the operator A, {2, ..-; %} 8
a basis of the space Za, {1y s L} 8 @ basis of the space Z ., and functionals
Ty eers Ny @A elements Yuy .oy Yr satisfy the conditions:

mile) =0y (i, =1,2,.,7+d); Lly)) = 6u (5,5, =1, 7).

Summation is extended over all permutations P = (P1s - Dria L) and
q= (s s Gran) OF numbers 1,2, ..., 7+d+k and 1,2,..,r+k re
spectively, such that

P < Pa< e < Pi5 Prpr < Prra < o S Prarid
and the same for the permutation g.
Proof. The system given above satisfies conditions (1)-(4) of a de-

L/ ERETE) 77r+d) -1

terminant system in an obvious manner, since Dy ('y v
1y e JT

_ From the first of the conditions (3.4)
(5) holds for mn=10,1, .., r—2.
fied also for n=r—1, gince

Tt remains to prove condition (5)
it follows immediately that eondition (5}
It is easily seen that this condition is satis

(3.5) D, (E“ w ’*") =0
Tyy oeny Pr
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if at least one of the points &, ..., £, ; belongs to the space B, or if at
least one of the points =y, ..., #, belongs to the space E4. The proof of
condition (5) for » > is based on the following formula:

(3.6) 2 sgupl det &p(m)]-[ det  &(wy)]

1<ii<n n+i1<i, i<ntd

= ngnq[ dot Eag)] L deb  Gfog)]= det &),

11,5 nti<i,j<ntd 1< j<ntd

where the summation is extended over all permutations p = (p,,

s Duya)
and ¢ = (g1, -y @yyq) of numbers 1,2, ..., n+d such that

D <Pe<eee<Ppny Ppp1< e <Pnya

Q1<q2<"'<Q1L7 Qn+1< "'<g'n+d,
respectively.

Hence we obtain the following equality:

.D,.+k+1 (507 51, R Er-)—d—!—k)

Loy Byy veey oy

X,

U
= D) sgnp’ sengl det &,(Bay)]D; (f”w ’ vm)
’, 0<4,9<k

Tysrs o) Dlyyr

+ ngnp ‘sgngl det & (Bag)|D, (5"’5””“’”"5"“'” )

g 0 i<k Dagsys Pagrer o1 By,

where p’, p’’', ¢ are arbitrary permutations of numbers 0,1,...,r+d+k
of the following form:

P’ = (Dos Pay ooy Doy Prsrs -3 Prrrea)s
. D= 0, Pi<e <Py Prpa<.< Pryr+ar

P = (Poy D1y s Pty Prrs s Pryria)
Dor1i=0, D<o <Pij. Ppos< oo < Prarias
9= (%) 15 s B> Tatrs voos Diir); Do < oo < o5 Qo1 < oo < Dy -

As follows from Corollary 2.3, IIT, the operator B almost inverse to the

operator A satisfies the equahty AB = I—K,, where the operator K,
is defined by the formula:

. X
K= D'lfo)ys, whete CLiy) =0y (i,j=1,2,..,17)
i=1

(sinceif x, < 0,7 = a = §,),and elements ¥, are defined by formula (1.4);
moreover, {Zi, ..., {} denotes a basis of the space Z 4+~ Henee, by formulae
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(3.5) and (3.6), we obtain

gg-A, 517 cery Srtd+k
'Dr+k+1

Doy Byyvees Tryge
&(ABuwg,) ... E(AdBxg,)

fﬂl(qun) £171(Bmﬂk) D (5171:4-17 A 'prma)
Ly

Dy s -1 Layyy

= ngnp'-sgnq

7'

'Ezz,,(Bwa,,) w &, (Bgg,)

o) — 3 L) Ee) e Eomen)— 3 o) E10)
i=1 =1
5,,1(3:60) v Ep,(Bper)
~ P )
= 22|y . & (Ba,,)
’ {1 (@) o Lu(@rsr)
(@) e Ll @rar)
X[ det Ef’kﬂ(zﬂ):{
1<, 7<r 4 .
fpl(B‘”o) E:Dl(Bmf‘l) £p (Biay) . fpl(Bwk-l»r)
e P _ By o En (BTiir)
, " 'Spk(Bmo) Epk(Bwi 5) Epl( i+l & %
= ey D) VR0 ) G bl
p’ i=1 -----------------------
2 0) ) Dlaw) o blamn |
X[ adet &, ()]
1<i,j<r+d
= g‘k( 1yiEg(wi) - Z sgnp- Sgllqm[ det fp;(B%k)]X
i=0 p,g%)

fpkﬂa ey §pk+r+¢
X Dy
T G ey B0
11(;.3_17 ! e

where the simmation is extended over all permutations p = (P1, -+ Pria +z)

of numbers 1,..,7-+d+k such that 93 < oo < Prs Praa < - 1< p,hi,_ﬂ,

and all permutatlons q(‘j = (qm - q§3_ ) of nung:;ers 0, .., z—h&z :-%m-
.y k+r such that i << ¢?; ¢ < e < Gy Thus we havi

r+k

&,
= 2 —'&o)- Dy
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pleted the proof of equality (2.1) of condition (5). Equality (2.2) is proved
in an analogous manner. )

We have to prove the last part of the theorem, namely that the
determinant system {D,}* is unique if we do not take into account a con-
stant factor different from zero. As before we limit ourselves to the case
x4 < 0, i.e. to the consideration of systems {D,}*. Let {D,}" be an arbi-
trary determinant system of an operator A. We show that there exists
a constant ¢ # 0 such that

D,=c¢D, for

' n=20,1,..,
where D, are defined by formulae (3.4).

By Theorem 3.1,

Dy}t =r{D}*,  a{D} =a{D,}".
Hence

(3.7) D=0 for n=20,1,...,7—1,

and D) s 0. If one of the points #, ..., #, belongs to the subspace H,
or if one of the points &, ..., £, ; belongs to the subspace H ,, formula (3.7)
and properties (2) and (5) for n = r—1 imply D, = 0.

It is easily verified that &= E4 ®Zp, X = E4@®Zp, where B is
the almost inverse operator of A. Hence we obtain the following unique
representation:

LA Gy e By, o < Za,

& =& +E, E By, & e Zy
This decomposition yields the following identity:
@) oy ) (B )

7
Dyy ery Br &y ey @y

where

where

and an analogous identity for D,. But D, and D, are (2r- d)-linear
funetionals defined in a (27 -+ d)-dimensional space 25 %X Zg,, and skew-
symmetric with respect to variables &', ..., & ; and @', ..., o, . Hence D,
and D, differ at most by a constant factor ¢ # 0 (since D, 5 0 = D.).

If » >7, the proof will be performed by induction. Let us suppose
that D), = ¢D, for n >r. We shall prove that

&1y oens £
+d+1 1y *+=) d
(3.9) 1);+1( e = ch( ) e “).

Lyyeey By Dyy eeey Tppy

Since D, and D, are linear with respect to each of the variables,
it is sufficient to prove the last equality for the case where each of the
points &, ..., &,,, either belongs to the set E,. or is equal to one of the
POINtS 7y ees Bprpgy {May ooy 7y qt denoting a basis of the subspace Zg.

icm

§ 3. Connection between the determinant system and solutions of equations 113

In the first case property (3.9) follows from condition (2.1) for D,,, and

. D.,.. If the sequence &, ..., &,,4,, contains only Points 7y, ..., 74, then

at least one of these points must appear twice, and since D, and Dy
are skew-symmetrie, both D, and D,,, are equal to zero. M

COROLLARY 3.3. If an operator A e®By(X,E) has indes xa <0 and
if ¥4 =0, then the determinant system {Du}* for the operator A is of the
following form:

D (5” M) = 520D Dillguusy > Epmall deb_5,(Ba)]
Dyy ooy On ~ 1<i,j<n
(’I’b: 0, 1, ...) 3

where B is an almost inverse operator of the operator A, and the summation
is extended over all permutations P = (Dyy ..., Pyrq) 0f numbers 1, ..., n+d
such that p; < ... < Pnj Ppy1 < ooo < Ppia-

Equations in linear spaces
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