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CHAPTER X

SECOND ORDER PARTIAL DIFFERENTIAL INEQUALITIES
OF PARABOLIC TYPE

In this chapter we investigate systems of parabolic partial differential
inequalities of the form (see [55])

i T 1 m i 7 i i i
U by By cony By Wy ooy Wy Uiy wney Uy Uisyzeyy Wimyrgy =ov s Urgiry)

(i=1,2,..,m).

We also discuss maximum solution and Chaplygin’s method for
parabolic equations (see [26]).
We use here notions and assumptions introduced in Chapter VIIL.

§ 63. Strong partial differential inequalities of parabolic type. In this
section we give a generalization of the Nagumo-Westphal theorem. We
first recall assumptions introduced in § 47.

AsSUMPTIONS A. A region D C (L, %y, ..., ) of type C (see §33)
being given let the fumctions oi(t, X) (i =1,2,...,m) be defined and non-
negative on its side surface X. Denote by I the subset of X om which
d(t, X) # 0. For every (t, X) e Za, let o direction T(t, X) (i =1,2, ..., m)
be given, so that I' is orthogonal to the t-axis and some segment starting at
(¢, X) of the straight half-line from (¢, X).in the direction I is contained in
the closure of D.

A parabolic and regular or Z,-regular solution of a gystem of dif-
ferential inequalities is defined in the same way a8 it was for a system of
equations in §§ 46 and 47.

THEOREM 63.1. Assume the functions 1'(t, X,U,Q, R) = fi(t, &y, o, on,
Wy ooy Wy Gy ey Gy Piay Pagy ey Pun) (B=1,2, ..., m) to be defined for
(t, X) e D of type C (see §33) and for arbitrary U,Q, R and to satisfy
condition W with respect to U (see § 4). Let the functions ai(t, X) and the
directions U'(t, X) (i =1, 2, ..., m) salisfy Assumptions A on the side surface
of Z. Suppose B(t,X) (i=1,2, .., m) are defined and positive on Zu.

Let U(t, X) = (u'(t, X), ..., ™, X)) and V(t, X) = (v, X), ..., o™, X))
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be Zoregular (see § 47) in D and suppose-that every fumction ' is elliptic
with respect to the sequence U(t, X) (see § 46). Put

. T

F={tX)eD: UM, X)<V({t, X)} (i=1,2,..,m)
and suppose that, for every fized j, we have
(63.1) (e, X*) < f(1, X*, T (*, X*), e(t*, X*), whex(t*, X*)) ,
(63.2) oo, X¥) 1%, X*, V (1, %), okl X*), oexlit, X¥)),
whenever (1%, X*) ¢ ¢/, Suppose finally that the tnitial inequalities
(63.3) Ulty, X) < V(ty, X) for Xeb,

and boundary inequalities of first type

Ft, D, )= o', T)— e, T <0
(63.4) for  (t,X) e Za,

wit, X)—oi(t, X) <0 for (t,X)eZ~Za
(i=1,2,..,m)

hold true.

Under the above assumptions we have
(63.5) Ui, X)< Vi, X)
in D.

Proof. Since the set of points (f,, X), such that X S, is compact,
there is, by (63.3) and by the continuity, a® ({, < < % +T)~, so that (63.5)
holds true in the intersection of D with the zone %, < ¢t < t. Denote by t*
the least upper bound of such 7. We have to prove ‘that t* = to 7" Suppose

the contrary, i.e. t* < {,+7I. Then we have in D

(63.6) U, Xy<v, X) for <<t
and for some index j and some X* e S
(63.7) wl(P*, XY = vi(tx, X*) .

Indeed, by the definition of #*, inequalities
U, X)<V(t, X)

hold true in D for t, < < *. Now, for any point (t*, X) D, there is—by
property (c) of the region D of type C (see § 33)—a sequence (t,, X,) €.D;
so that 4, < t, < t* and (t,, X,)—(t*, X). Since .

U, X,) <V, X,),


Yakuza


icm

192 CHAPTER X. Second order parabolic inequalities

it follows, by the continuity, that
U, X)y<vr, X).
Thus inequalities (63.6) are proved. If (63.7) were not true, we would
have, for every X e Sy,
U, X) <V, X),

and hence, the set of points (¢*, X), such that X ¢ Spe, being compact,
Inequalities (63.5) would be true, by continuity, in D for #, <i< 1+,
where i** is some number greater than t*. But, this contradicts the defini.
tion of t*. From (63.6) and (63.7) it follows that

max [uf(t*, X)—wi(1*, X)] = wi(t*, X¥)—wd (k) X*) == 0
XeSpx

and hence, by (63.4) and by Lemma 47.1, we conclude that (%, X*) ig
an interior point of D. Moreover, by (63.6) and (63.7), we have *, X e,
and consequently inequalities (63.1) and (63.2) hold true. The difference

ui(t*, X)—oi(t*, X) is of class C2 and attains its maximum at the interior
point X*. Therefore, we have

(63.8) uk(t*, X*) = v(t*, X*)

and the quadratic form in 4, vy An

n
(63.9) D [y (1, X% — (8%, XY [0, i negative.
Lk=1

Now, from (63.1), (63.2) and (63.8) it results that
ul(t*, X¥)— o1, X*) < e, X+, U@, X*), we(t*, X*), ulpx(t*, X))~
=7t X, Ve, X%, (i, X¥), hex(tt, X4

By (63.6), (63.7) and by the condition W.. (see § 4), we get from the
last inequality

wj(1*, X*)—ol(*, X*) < 7, X*, U, X%, wx(t*, X*), ulpx(t*, X)) —
' =1, X2, U(te, X0), i, X¥), oex(th, X¥) .
Owing to the ellipticity of /' (see § 46) with regard to U(t, X) and
by (63.9), the right-hand side of the last inequality is non-positive and
consequently we have
63.10) w(*, X%)— oj(s, X <o.
On the other hand, the function

wi(t, X*)—vi(t, X*)
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of one variable t attains, by (63.6) and (68.7), its maximum at the right-
hand extremity #* of the interval [%,, t*]. Hence it follows that

w(t, X0 —o(i, T >0,

what contradiets (63.10). This completes the proof.

Remark. Theorem 63.1 as well as the next Theorem 63.2 are true
if, instead of the ellipticity with regard to U(t, X), we assume the ellipticity
with respect to V (¢, X).

Now we are going to prove a similar theorem with boundary inequal-
ities of second type, i.e. with inequalities (63.4) without the assumption
that ﬁi(t, X) be positive. Like in § 53 we will assume the existence of
sign-stabilizing factors.

THEOREM 63.2. Let the assumpiions of Theorem 63.1 be satisfied with
the exception of B¢, X) (i =1, 2, «oy ) being positive. Suppose, instead,
that there ewist sign-stabilizing faclors, i.e. positive functions K'(t, X)
(i=1,2,..,m) of class C* in the closure of D, such that

B, X)>0  jor (t,X)eZs [(i=1,2,..,m),
where

¥ ; - i i 2 AE°
(@.11) P, X) = s, 1) -, DK DT for (2 X) € Za
(1=1,2,..,m).
Under these assumptions inequalities (63.5) hold true in D.
Proof. We put, like in § 33,
W, X) = wi(t, X)LE@, D), 7, X) =o', XK, X))
(t=1,2,..,m).
The new functions U(t, X) = (@\(t, X), ..., a™(t, X)), V(t,X)=
@', X), ..., 5™, X)) satisfy, by (68.3), initial inequalities
Tty, X) < Vty, X} for Xe&,
and, by Lemma 53.1 and by (63.4), boundary inequalities
A AT
B, X[, X)~%', X)-d(t, X) Md?ﬂ <0 for (t,X)eZa,
W, X)—%, X) <0 for (1, X)eZ—Zu
(7;:1,2, ...,m),
where B are defined by formulas (63.11) and are supposed positive. By
Lemma 53.2, every function 7(¢, X, U, @, R), defined by formula (53.6),

J. Szarski, Differential inequalities 13
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is elliptic with respect to U, X); moreover, ff(t, X) and '[7(15, X) are
Zyregular in D and f* satisfy condition W, with regard to U. Put

& = {(t, X) e D: ﬁ(t,X)<iV~(t, X} (6=1,2,.,m).

Fix an index § and let (1%, X*) e &; then obviously (©*, X*) e @
and, by (63.1) and (63.2), we have (see Lemma 53.2)

(e, X0 <Tir, X%, Tlor, X¥), w(er, X¥), Wexltr, X%))
W, X0) 2T, X0, T (e, 2), Wh(er, X2, Ve, X)) .

Thus T, 7,7 and B’ satisty all the assumptions of Theorem 63.1
and hence we have in D

Ui, X) <7, 1),
what implies (63.5).
We close this section by proving an analogue of Theorem 63.1 with
a different kind of non-linear boundary inequalities (see [32]).
THEOREM 63.3. Let all the assumptions of Theorem 63.1 be satisfied
with o(t, X) =1 (i =1, 2, ..., m) and with the boundary inequalities (63.4)
substituted by
ar
(63.12) o on X (i=1,2,..,m),
. ot
oty .., VM = —
@i, ’ ) ar
where the functions gi(ut, ..., ym) (t=1,2,..,m) satisfy condition W-
(see § 4).
This being assumed, inequalities (63.5) hold true in D.

- Proof. Notice that, in the proof of Theorem 63.1, boundary inequal-
%txes (63.4) were taken advantag_e of merely to show that if for some
%ndexlj and some point (#*, X*) ¢ D we have (63.6) and (63.7), then (t*, X*)
Is an interior point of D. Hence Theorem 63.3 will be proved if we show
that (63.6), (63.7) and (63.12) imply that (t*, X*) is an interior point

of D. Suppose that (t*, X*) ¢ 5. Now, from (63.6) and (63.7) it follows
that the function

Pty ..., um) <

¥(m) =/ (i*, T frverst(vr, X) — o[t X toverst(1x, X*))

~—which, by Assumption A, is defined for non-negative = sufficiently close
to zero—attains its maximum at ¢ — 0, Hence we get that

(63.13) ¥'(0) = Hw—v1]

<0.
A o,z
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On fthe other hand, inequalities (63.6) and (63.7) and condition
W- imply that

¢ (U@, X)) = ¢ (V (1, X¥) .
From the last inequality and by (63.12) we obtain

dluf —o1]

>0,
A TS

what contradicts (63.13). This contradiction completes the proof.

§ 64. Weak partial differential inequalities of parabolic type. In order
to obtain a theorem on weak inequalities we apply in the present section
methods similar to those used in § 59. In particular, we will have
to introduce more restrictive assumptions than in Theorem 63.1, which
imply (see Corollary 64.1) uniqueness of solution of the coxresponding
mixed problem.

THEOREM 64.1. Let the functions fi(t, X, U, @, R) = fi(t, &1y ..., Tn,
Uy ey UMy Gy veey Gny Ti1y Proy ooey Tun) (B =1, 2, ..., m) be defined ']‘or
(t, X) e D of type C (see § 33) and for arbitrary U,Q,R and to satisfy
condition W, with respect to U (see § 4). Suppose further that

(64.1) f(t, X, U, Q, R)—ft, X, U,Q, R) < ai(t—1t,, U—T))
(i=1,2,..,m),

whenever U > U, where oi(t, V) are the vight-hand sides of a comparison
system of type I (see § 14). As fo the comparison system we assume that

oi(t,0)=0 (i=1,2,..,m)

and that for its right-hand mazimum solution through the origin L(t; 0)
we have

(64.2) - Q(t;0)=0.

Let the functions o'(t, X) and the directions Ui, X) (i=1,2, o m)
satisfy Assumptions A (see § 63) on the side surface X of D. Suppose g‘(t, X)
is positive on Zu (i =1,2,..,m). Let U(t, X) = (u'(t, X), ..., u™(t, X))
and V(t, X) = (v'(t, X), ..., v"(t, X)) be Zregular in D (see §47) and
suppose that every fumction f'(t, X,U,Q,R) is elliptic with regard to
U(t, X) (see § 46). Assume that the initial inequality

(64.3) Ulty, X) <V, X) for Xeby
13*
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and boundary inequalities

dlut— v
av

Bl(t, X)[u'(t, X)—o'(t, X))—o(t, X) <0
(64.4) for  (t, X)e Za,

W(t, X)—o'(t, X) <0 for (4, X)eZ—Tu (i=1,2,..,m)
are satisfied. Write )

B = {t, X) e D: u'(t, X) >4, X)} (i=1,2,..,m)

and suppose that for every fimed j
(64.5)  wi(t*, X) <fi(*, X*, T(t*, X*), we(*, X*), ulex(i*, X)),
(646)  f(*, X*) >7(t*, X*, V (1%, X*), olx(t*, X*), vhx(t*, X¥),
whenever (t*, X*) ¢ B .

This being assumed, we have in D
(64.7) Ut, X)<V(t, X).

Proof. Since the assumptions of our theorem are invariant under

the mapping v = t—1,, we may assume, without loss of generality, that
% = 0. Put, for 0 <t < T,

Mi(t) = max [, X)—o'(t, X)],  BH(t) = max (0, M¥(2))
(i=1,2,..,m)),
M) = (H'@), ..., ) .

It is clear that the assertion of our theorem is equivalent with the
inequality

(64.8) Mty<o on [0,T).

‘We are going to prove relation (64.8) by means of the first comparison
theorem (‘see § 1~4) By (64.3), we have #M(0) < 0 and, by Theorem 33.1,
the functions M'(t) are continnous on [0, T). Therefore, writing

F=te,m: >0 (i=1,2,.,m),

inequality (64.8) will be proved by the first comparison th ’ ]
if we show that P  theorem (see §14)

D_J"W"(t)ga,(t,zit(t)) for tef.

Now, fix an index j and let t* ¢ #. By Theorem 33 i i
. 1, th
X* ¢ 8;« such that : v > there 18 apomt

(64.9) M) = (1, X6)—of (1, X%y,

§ 64. Wealk partial differential inequalities of parabolic type 197
Since, by the assumption that t* ¢ B, inequality M’(t*) > 0 holds
true, we have obviously
(64.10) Wiy = My, DTIP(t*) = D™ (1)
and consequently, by (64.9),

- (64.11) () = wl@*, ) =o' (t*, X*) > 0.

From the last inequality and from (64.4) it follows, by Lemma 47.1,
that (t*, X*) is an interior point of D. Hence, the function «/(t*, X)—
—ol(t*, X) attaining, by (64.9), its maximum at the interior point X*,
we have relations (63.8) and (63.9). By Theorem 33.1 and by (64.10),
we have moreover

(64.12) D_ F %) < wl(ee, X*)—nj(t*, X*) .

Tnequality (64.11) implies that (*, X*) eF and consequently,
by (64.5), (64.6) and (63.8), we get

(64.13)  wf(rr, X*)—oi(t*, X*)
< fi(er, X*, U, X*), wk(t*, X*), wkx(t*, X*)—
—(x, X%, V (%, X%), (1, X¥), vkx(t*, X¥)) .
Observe that, by the definition of M(t) and by (64.11), (see §4)
U(t*, X*) éV(t*, X+ @Y .

By the last inequalities and by condition W.. (see § 4), it follows
from (64.12) and (64.13)

(64.14) D_ Iy < [f (¢, X*, U(t*, X*), uk(t*, X*), wex(t*, X*))—
—f(t*, X*, U+, X*), uk(t*, X*), vex(tt, X4)]+
[P, X,V (e, X+ (1), (e, X2, oex(tt, X¥)—
— (e, X%, (e, X*), et X¥), olex(t*, X)) -
The first difference in brackets is—owing to (83.9) and to ellipticity

of # with regard to U(t, X)—non-positive. To the second difference we
apply inequality (64.1) and finally we obtain

(64.15) D_JH () < osft*, B () -

Thus we have shown that inequality (64.15) holds true for any
e B ; but, this completes the proof.
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Ag an immediate consequence of Theorem 64.1 we obtain the fol-
lowing corollaries.

CoROLLARY 64.1 (Uniqueness criterion). Suppose that the right-hand
sides of the system of differential equations

(64.16) uf =14, X, U, ul, ukx) (G=1,2,.,m)

satisfy all the assumptions of Theorem 64.1. T'hen the first mized problem,
(see § 47) for system (64.16) admits in D at most one parabolic, X -regular
(see §§ 46, 47) solution.

COROLLARY 64.2 (Maximum principle). Let the functions f'(t, X , U,
Q,R) (i =1,2,..,m) satisfy all the hypotheses of Theorem 64.1. Assume
that for U = 0 we have

fi(t’X, U,0,0)<0  (i=1,2,..,m).

Suppose U(t, X) = (u'(t, X), ..., u™(t, X)) to be a o-regular (see § 47)
and parabolic (see § 46) solution of the system of differential inequalities

"l«igfi(t’X: U,ugz,%_ggx) (t=1,2,..,m)
in D and to satisfy initial inequalities
Ulty, X) < M = (Mg, oo, ) Jor X eS,,

where my are non-negative constants, and boundary inequalities

i i i dut ;
ﬁ(t,X)u(t,X)—a‘(t,X)d—?;smiﬂ‘(t,X) jor (¢, X)e S,
ui(t, X) < my for (t, X)eZ— Eu
(i=1,2,..,m,

where o', 1" satisfy Assumptions A (see § 63) and f' are positive.
Under these assumptions we have in D

Ui, X)< M.
Proof. sz check immediately that U(¢, X) and Vi, X)=M
= const > 0 satisfy all the assumptions of Theorem 64.1.

. Remar]'z 64.2 (*). Theorem 64.1 can be derived from Theorem 63.1
without having recourse to the first comparison theorem (see § 14). In

(*) This remark is due to P. Besala. Simil

cular cases, by K. Nickel (see [36]). ar arguments were used, in some parti-
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this case we use arguments similar to those applied in the proof of Re-
mark 59.1.

The theorem to be proved now involves somewhat less restrictive as-
sumptions under which the first comparison theorem (see § 14), used in
the proof of Theorem 64.1, cannot be taken advantage of, whereas the sec-
ond comparison theorem (see § 14) is applicable.

THEOREM 64.2. Under the assumptions of Theorem 64.1 with inequal-
ities (64.1) replaced by

(64~17) fi(t1 ‘Y7 U7 Qa R)—fi(i, Xa ﬁr Q: R) < O'(t"to; ln?X(ul—”FLl))

for U = U and t > ty, where o(t,y) is the right-hand side of a comparison
equation of type LI (see § 14), inequality (64.7) holds true in D.

Proof. Like in the proof of Theorem 64.1, we assume that f, = 0.
Pus, for 0 <t < T,

W(t) = m@xﬁ(t) ,

where JI(f) were introduced in the proof of Theorem 64.1. It is obvious
that inequality (64.7) is equivalent with

~

(64.18) Wi <0 on [0,T).

Tnequality (64.18) will be proved by means of the second comparison
theorem (see § 14). By (64.3), we have

W(0) <0 .

and, by Theorem 33.1, the function W (t) is continuous on [0, T). There-
fore, writing
B ={te(0, T): W(t)>0},

inequality (64.18) will be proved, by the second comparison theorem
(see § 14), if we show that

D_W()<olt, W) for telH.

Now, suppose that t* ¢ B. Obviously there is an index §, so that
(see the proof of Theorem 34.1)

(64.19) ) = Wary, D_Wer) <D ().
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Since * ¢ , we have, by (64.19), ’(¢*) > 0, and hence relations (64.10)
and (64.11) are satisfied. Therefore, like in the proof of Theorem 64.1,
we get inequality (64.13) and consequently, by (64.19), we have

DW() < [f, X, U, %), wklt*, X*), wex(t*, X¥))—
”"fi(t*, X*y U(t*7 X*)l ’Maf‘x(t*, X*)y ”&x(t*, X*))] -+
F[f e, T, V(2 X0+ BL(), (e, ¥, ole(t*, X)) —
— 1, X, V (1%, X%), (0¥, X), ves(t, )] .

The first difference in brackets is—Ilike in the preceding proof—non-
positive, whereas to the second difference we apply inequality (64.17)
and get -

DWW < oftr, W),
what was to be proved.

The next corollary is an immediate consequence of Theorem 64.9.

CoroLLARY 64.3 (Uniqueness criterion). If the right-hand sides of the
system of equations (64.16) satisfy all the assumptions of Theorem 64.2,
then the first mized problem (see § 47) for the above system admits in D
at most one parabolic, Z-reqular solution (see §§ 46,47).

Remark 64.3. Unlike Theorem 64.1, Theorem 64.2 cannot be derived
from Theorem 63.1 without having recourse to the second comparison theo-
rem. This depends on the fact that the right-hand side of a comparison equa-
tion of type IL (see § 14), appearing in inequality (64.17), is not supposed to
be continuous for t = 0, and consequently Theorem 10.1 can not be applied
to its solutions issued from the points (0, s).

We turn now to analogues of Theorems 64.1 and 64.2 in the case of
boundary inequalities of second type, i.e. when (¢, X) (¢ = 1,2,..,m)
are not supposed to be pesitive. Like in Theorem 63.2 we will have to
assume, instead, the existence of sign-stabilizing factors (see § 53).

TEworEM 64.3. Let the functions fi(t, X, U,Q,R) (i = 1,2, ..., m) be
defined for (¢, X)e D of type C (see §33) and for arbitrary U,Q, R and
satisfy condition W with respect to U (see § 4). Suppose that, whenever
U > U, the inequalitios
(64.20) .f(taX; UerR)"“fw(ty Xy ﬁ)Q7E)

" o o
S oill—t, U“ﬁ)+7‘(t“’o; 2 (5=l ‘|‘)_, M‘chwm-[)]
7 Tile
G=1, 2,..,m)
hold true, where oy(t, yy, ..., ym), T(t, y) are continuous, mon-negative and
tnereasing in all variables for ¢ > 0, ¥y20, ¥320 (j=1,2,..,m) and
satisfy identities

ot, 0) =7(t,0) =0 (i=1,2,..,m).
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Suppose further that the right-hand mezimum solution through the
origin of the comparison system

% = 0y(ty Ypy oy Yu) (b, yo) +y: (E=1,2,..,m)

is identically zero. Let the functions o(t, X) and the directions U(t, X)
(i=1,2,..,m) satisfy Assumptions A (see.§ 63) on the side sy*rface of D
Suppose that fit, X) is defined on Zu (i =1',?, sy M) (wz?hout bfn:n,g
necessarily positive), and there exist sign-stabilizing factors, i.e. positive
functions K, X) (i=1,2,..,m) of class C* in the closure of D, so that

B, X) >0 for (4, X)eZa (i=1,2,..,m),
where ﬁi are given by formulas (63.11). Assume, moreover, that
0<p<E(,X)< M, |K| K, | Eopl < M .

Let, finally, Ui, X) = (W't, X), ..., w"(t, X)) and V{1, X) = [W}{t, X),
ey 0", X)) satisfy assumptions of Theorem 64.1. This being assumed,
inequality )

(64.21) U, X) <V, X)
holds true in D.
Proof. Like in the proof of Theorem 63.2, we put

wi(t, X) = w¥(t, DK@, D1, ¥, X) =o', DIEE, X))
(i=1,2,..,m)

and check that the new functions are Z,-regular in D and satisfy, by (64.3),
initial inequalities

~ o~

Ty, Xy <V(ty, X) for Xeby,

and, by (64.4) and by Lemma 53.1, boundary inequalities

~ ; . . Al —vt L
Bit, X[k, X) 3¢, X)]—a'(t, X)——E—o_w.——:| <0 for (1, X)eZs,
W, X)—ve, X) <0 for (X)) eI—Zu
(i=1,2,..,m),
where F are defined by formula (63.11) and are supposed positive. By
Lemma 53.2, all functions 7‘(& X,U,Q,R), defined by formula (53.6),

are elliptic with respect to U(t, X) and satisfy, by (64.20) and by
Lemma 53.3, inequalities

Y, X, U,Q, R)-F(t, X, U,Q, B) <&(t—t, U-U)
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whenever U > U, where G(t, ¥y, ..., ¥m) are given by formulas (63.11);
moreover, by Lemma 53.4, o;(¢, X) are the right-hand sides of a comparison
system of type I (see §14) and satisfy the assumptions of Theorem 64.1,
The functions 7° satisfy condition W, with respect to U. Put
B =, X)eD: W', X) > %, X)) (1=1,2,..,m).
Fix an index j§ and let (t*, X*) ¢ B'; then, obviously, (t*, X*) ¢ ®
(see Theorem 64.1) and hence, by (64.5) and (64.6), we have (see
Lemma 53.2)

(e, X) <7, X+, T(er, X%, k(i X*), Wes(t*, X¥)
Tler, T ST, X, T, X0, Bhir, X%), Tea(vr, X))

Thus we see that %i, 7, 7‘ and ;Nﬁ’i satisfy all the hypotheses of Theorem 64.1
" and, therefore, we have in D

o~

. U, X <P, X)
what implies (64.21).
In a similar way we derive from Theorem 64.2 the next theorem.

THEOREM 64.4. Let the assumptions of Theorem 64.3 hold true with
inequalities (64.20) substituted by

fi(t; Xy U; Qy R)-—fi(t’ X, U, Q, R-) < O'(t——to, mlaX(ul——ﬂ‘)) +
+f(t—tm 2 It~ +2 lm~mt) (t=1,2,..
i 7.k

for U=T and t>1,, where a(tyy) and =(t,y) are continuous, mon~
negative functions, increasing in oll variables for >0,y >0, such that
o, y)+T(t, y)+y s the right-hand side of a comparison equation of
type IT (see § 14). This being supposed, inequality (64.21) is satisfied in D.

We close this section by deriving from Theorem 64.1 (resp. 64.2)
a theorem [5] involving in thesis absolute value estimates.

TaroREM 64.5. Let ft, X, U,Q, B), o'(t, X), It, X) and Fit, X)
(6=1,2,..,m) satisfy all the assumptions of Theorem 64.1 (resp. 64.2)
and suppose additionally that

(64.22) ji(ty.X,—U,—Q’—R)z—fi(t,X, U,Q,R) (=1,2,..,m).

Let U(t, X) and V(t, X) 20 be Z,regular in D (see § 47) and satisfy
imitial inequalities

{64.23) 1Tty X)) < V(ty, X)

icm
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and boundary inequalities
] y dut i ; dvt
B, Dyu'te, X)—ollt, X) 2z | < Bt Do, X)— o'ty X)

for (1, X)e Zy,
lui(t, X)| <vi(t, X) for (4, X)e Z—Zu
(1=1,2,..,m).

(64.24)

Suppose that all the functions fit, X, U, Q, R) are elliptic with regard

to U(t, X) (see § 47). Put
B = {(t, X) e D: |W't, X)| > o, X))  (6=1,2,...,m)

and assume that, for every fimed §,

(64.25)  ad(tr, X*) = [ (¥, X*, U(*, X*), wklt*, X*), vkx(t*, X¥) ,
(64.26)  wl(t*, X*) = f/(t*, X*), V(t*, X¥), vk(t*, X*), vkx(t*, X*)

whenever (1%, X*) ¢ B/, This being supposed, inequalily

(64.27) [T X<V, X)
is satisfied in D.
Proof. If we put
L= (¢, X) e D: Wiy, X) >0/t X)) (1=1,2,..,m),

i : “j
then, since v'(t, X) = 0, it is obvious that (t*, X*) B, 1mphfes (t"‘., X‘;);Zl‘g
and hence, by the assumptions of our theorem, (¢*, X*) e B, implies ‘(7 X .X;
and (64.26). Therefore, owing to (64.23) and (64.24), U(t, X) and V (¢, :
satisfy all the assumptions of Theorem 64.1 (resp. 64.2) and consequently
we have in D
(64.28)

Now, if we pub

B = {(t, X) e D:—'(t, X) > u(t, X)}

Ui, X))V, X).

(i=1,2,..,m),

. Y .
then—Ilike in the preceding case—we chgc]; ’oh?,t (t*,;g;) eEa (1_:3]11)2]166)8
(#*, X*) ¢ B and consequently (t*, X*)  BL implies (64.25) an .
But, from (64.22) and (64.26) it follows thab
(64.29) —uoj(*, X*) < fj(t*, X, —V(*, X*), olg(t*, X¥), — oex(t*, X*)) -

Thus we see that (&*, X*)eHL implies (64.25) and (64.31?). Eﬁﬁféﬁ
owing to (64.23) and (64.24), —V (t, X) and U (t, X) satisty all the a P
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tions of Theorem 64.1 (vesp. 64.2) (with U(t, X) replaced by —TV (¢, X)
and V{t, X) by U(t, X)). Therefore, we have in D

U, X) > -V, X)

what together with (64.28) gives (64.27).
Remark. A theorem similar to Theorem 64.5 can be derived from
Theorems 64.3 and 64.4.

§ 65. Parabolic differential inequalities in unbounded regions. We ave
going to prove in this section an analogue of Theorem 64.1 in the case
when D is an unbounded region specified below (see [3]).

DEFINITION OF THE REGION OF TYPE (* A region . in the space
of points (t, @, ..., ¥,) will be called region of type C* if following con-
ditions are satisfied:

(a) D is open and contained in the zone t, <t < f)+1' < + oo,

(B) For any t,1 <t <t,+7T, the intersection o, of the closure
of D with the plane ¢ =1, is non-void and unbounded.

(y) For any i, o, (see (B)) iz idemtical with the intersection of the
plane ¢ = ¢, with the closure of that part of D which is contained in the
zone fy << 4.

Like in the case of a region of type C (see § 47), we denote by X that
part of the boundary of D which is contained in the open zome f, <
<t+T.

Since we will have to impose certain bounds on the growth at infinity
of the functions involved, we introduce the following definition:

DEFINITION OF THE CLASS F,. Two positive constants M and K
being given, a function ¢(, X), defined in a region of type 0O, is said
to be of class By(M, K) it

(65.1) lp(t; X)| < Mexix?,

w
where |X| = l/ 121’ ;. A function ¢(t, X) is said to be of class F, if theve
exist some positive constants M and K, so that (65.1) holds true.
We are able now to formulate and prove the following theorem:
TEROREM 65.1. Let the functions fi(t, X, U,Q,R) (i =1,2,..,m)
be deﬁned for (t', X) e D of type O* and for arbitrary U, Q, R, and satisfy
condition W with respect to U (see § 4). Suppose further that inequalities

(65.2) [fC, X, U,Q, B)—1't, X, T, §, B)sgn (v~ )
<Zo 2 traFal + I+ L) 3 10—+ @GP +) 3 w71
t T

Lk

(6=1,2,..,m)

cm
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hold true, where Ly (s =0,1,2,3,4) are positive constants. Let U(t, X)
= (W, X), oy 0™, X)) and V(1 X) = (02, X), ..., o"(t, X)) be regular
(see § 47) and of class By in D and satisfy initial inequality

(65.3) Uty, X) <V (l, X)  for
and boundary inequalities of first type
(65.4) Ui, X))V, X) for

Suppose all the functions 1t, X, U,Q, R) are elliptic with respect
10 U(t, X) (see § 46). Put

B o= {(t, X) e D: w'(t, X) > o'(t, X)}

(toy X) € o,

(t, X)e 2.

(1=1,2,..,m)
and assume that, for every fiwed j, whenever (t*, X*) eI, we have
(65.5)  al(tr, X¥) < (¢, ¥, U(x, X%), wke(t*, %), whex(t*, X)),
@5.6) o, X#) = Pl X#, Ve, X%, oltr, X2, oex(tt, T4) .
Under oll these assumptions we have in D

(65.7) Ult, X) <V, X).

Proof. Let U4, X) and V(t, X) be of class Ey(M, K), ie.

(65.8) lit, XY, [vi(t, X)| < MeKIXE (i =1,2,..,m).

We introduce the growth damping factor

(K1) | X ]
H(t, X) = exp [f;—/r(t_—to) 4+t ,
‘where

v = 4[2n (K +1)(Lo+DLy) +mLy+11,

m.Lg

(65.9) i = 40K+ 1) Do +20(L+ L)+ gy

and pew functions
(e, X) = o, X)EE DT, B, X) =, DIEE DT
(E=1,2,.,m).
Obviously, (65.7) is equivalent with
(65.10) Te, X<V, X)

; LI 3 .
in D. Now, we will prove first that (65.10) holds true in D", D" denoting
the intersection of D with the closed zone

(65.11) <t <hh+h
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where

65.12 1

(65.12) T ou

For any set B, denote by Ey the intersection of E, of the zone (65.11)

and of the cylinder |X| < . It is clear that, in order to prove (65.10) in D",
it suffices to show that, for any ¢ > 0, there is a 7, > 0, so that inequalities
(65.13) ut, X) =7, X)) <e (5=1,2, ..., m)
are satisfied in D}, whenever r > ,. Let s be an arbitrary positive number;
there is a positive 7, such that r >, implies
2Mexp K| X2 .

2 ~
USSR )

ex;

P{l—w—m

for (¢, X) e OF, where " denotes the intersection of the surface |X| =
with the zone (65.11). We will prove that inequalities (65.13) hold true
in D} for r > 75, With 7, chosen above. Let » > 7y; there is an index § and
a point (#*, X*) e D!, so that

T, T (1, X*) = max {max [, X)—3t, X))} .
D}

(65.14) [H(t, X)I'2MexpK|X[ =

Suppose that inequalities (65.13) are not true in Dl then, we would
have

(65.15) W, T*)—F(0*, X*) > e > 0.
We claim that (t*, X*) e D). Indeed, we have
D= Dl (o)t o St o1

hOWing to (65.3)-and (65.15), the point (t*, X*) does not belong to
(01)r - By (65.4) and (65.15), it does not belong to X either. Finally, by
(65.8) and (65.14), we have for (t, X)e O

Wit T, 1) < AR IT <,
eXp{m—i-Wt{

and consequently, because of (65.15), the point (**, X*) is not in O
Therefore, we must have (t*, X*) e DI, Then, by (65.15), (#*, X e B
and hence inequalities (65.5) and (65.6) are satisfied. Since the function
of one variable t, %/(t, X*)-Bi(t, X*), attains for = #* it maximum in
the interval f, <t < *, we have

(65.16) (e, X% (1, X)) > 0.

cm
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Similarly, the function of the point X, F7(r*, X)—%i(t*, X), attaining
its maximum at the interior point X* we get that the quadratic form
in Ay ey da

n

(65.17) D e, X*) =W, X114y is nogative
Ul=l

and

(65.18) ﬁik(t*’ *X*) :‘N;Ic(t*’ X*) (k= 1,2, ey M)

Now, substituting in (65.5) and (65.6)
W=TH, o=%H (i=1,2,..,m)
and subtracting (65.6) from (65.5) we obtain at the point (*, X*)
(65.19) (% —%)H + @ - H,
<[P+, X, T, X0 H, Q%, BY)—~f(*, X*, U, X H, @7, B"¥)] +
+[f e, X*, Uger, X H, Q", B*¥) (1, X*, ¥ (r, X0 H, Q", BF)] ,
where
Q" = (WL, (1%, XXV H (%, X*) -+ (1%, X*) Hy,(t*, X*))2er
Q7 = (B (t*, X*)H(1*, X*) +5(t*, X*) Heplt*, X)}im :
and similarly at the point (#*, X*)
B = (W H 4k oy + 0y By + 6 Hoy Yoemn
B = (0 H %0 Hay + ¥ Hay +V HogFotmn
B = (0 H -+ Hay + 0 Hy + 0 B Hoes -

By the ellipticity of f'(t, X, U,Q,R) with respect to U(t, X)
= U(t, X)H (see § 46) and by (65.17), the first difference in the brackets
on the right-hand side of inequality (65.19) is mon-positive. As to the
second difference in brackets we rewrite it in the form

7 pb
(65.20) [f'(t*, X%, T+, X% H, QF, B™) —f(1*, X*, W(t*, XV H, @', B')] +
+ []ﬂ’(t*? 'X*7 W(t*v X#)H7 Qﬁy Rﬁ) '_ff(t*a X*i V(t*r X*)H; Qgi Rﬁ)l ’
where

Wit, X) = (wl(‘t, X), ) w™(t, X)) , wl(t7 X) = m]-_n[;al(i, X), El(t, X)]
T=1,2,..,m).
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Since, by (65.15) (see § 4),
Wk, X0 <V, X%,

‘the second difference (65.20) is non-positive, by the condition W.. with
respect to U (see § 4). To the first difference (65.20) we apply inequal-
ity (65.2). Taking advantage of (65.18) and remembering that, by the
definition of W(t, X) and by (65.15),
[T, %) —wl(t*, X*)| = T, X*)—whex, X*)
< max [0, F(t*, X*)—T(t*, X%)]
<@, T, X%)

we finally get from (65.2) and (65.19)

(65.21)  [al(t*, X*)—Bj(e*, X*)]H < [W (¢, X*)—%(t*, X*)] F[H]
where

'PIH] = I, ZFHWIHIA 1X| +Ly) Z [H gy} +m(Lg) X [* -+ L,) H— Hy
Lk=1 k=1

Computing the derivatives of H (¢, X) we find that

(4E+1PL, O 2(E +1)nl,
PEIS B\g == ; ol + Lt T

2(E +1) N S p(E+1)|Xp
iy B T D o+ (X + Ty~ AECEDE )

E=1
Since in D} we have, by (65.12),
(65.22) F<1—pt—4) <1,

and since, obviously,

loaf <1X], X < 1XP4,
we get further

H mL.
FIH] < m{(K+1) |X|2[4 (K A1) Lyn? +2 (L, +Ly)n +—K+31 _.”] +
I (E+ D)2 B+ L) +mI]— o1~ wlt—F]
Hence, by (65.9) and (65.22), it follows that

FIH] < —4H
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and consequently, by (65.15) and (65.21),
() X%)=B(*, X%) < — d[@ (1, X =¥, X[ < 0,

which contradicts (65.16). This contradiction completes the proof of
inequalities (65.7) in D", where % iy given by formulas (65.9) and (65.12).
In particular, we have inequalities (65.7) in the intersection of the closure
of D* with the plane ¢ = ¢, +h; but, sinee this intersection is—by prop-
erty (v) of the region of type C*—identical with ay,.;, we have (65.7)
for (1, X) € 1p41. Therefore, we can repeat our argument starting from
the plane # = 4 --h, instead of the plane ¢ = ¢,, and thus obtain inequali-
ties (65.7) in the intersection of D with the zone

o+ h <t <ty +2h.

In this way we prove inequalities (65.7) in any point of D after a finite
number of steps.

As an immediate consequence of Theorem 65.1 we obtain the fol-
lowing uniqueness criterion.

COROLLARY 65.1. Let the right-hand sides of the system of differential
equations (64.16) satisfy all the assumptions of Theorem 65.1 for (t, X) e D
of type C* and for arbitrary U, @, R. Then the first Fourier’s problem (see § 47)
for system (64.16) admits in D at most one parabolic, reqular (see §§ 46,
47) solution of class H,.

Remark. In particular, when D of type C* is the half-space ¢ > f,,
then 2 is empty and the first Fourier’s problem reduces to the so-called
reduced Cauchy problem. This problem consists in finding a regular and
parabolic solution in the half-space > t,, satisfying a given initial con--
dition for t = #,. In this case Corollary 65.1 gives a uniqueness eriterion
for the solution of the reduced Cauchy problem.

§ 66. The Chaplygin method for parabolic equations. This section deals
with the Chaplygin method for the equation :

2
(66.1) =m0,
We congider here the first Fourier’s problem (see § 47). We assume
always that (t,s) ¢ {(¢, 2): 0 <1< T, a < <b}=R. The interior of B
iy denoted by R°, the boundary by oR. I' stands here for the plane set
composed of points (0, #) with o < # <) and (¢, a), (¢, ) With 0 <t< T.
By a regular fumetion in R we mean a function « which is continuous
on R, continuously differentiable in ¢ to dufot and twice in @ to &*u/oz®
for 0<t< T, we(a,b).

J. Szarski, Differential inequalities 14
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Theorem 64.1 implies

Lemva 66.1. If w(t,x), o(f, ) are vegular in R and 0f(t, x, u)ou
is conlinuous and

ouw _ *u
(66.2) ) '\g%‘g’!‘f(t;w}u(taw))y
. o _ W
(66.3) 5 25 Tt @, 0t )

on R® and w(t, ») < o(t,®) on I', then w(t, @) < v(t, ) on R.

If u (v) satisfies (66.2) ((66.3)), then u (v) iy called a lower (upper)
function. Let f(t, z,u) be diffeventiable in % to f,(t, », u). Assume that
f(t, @, w) and fu(t, #,u) are continuous and locally Holder continuous
(exponent < 1) in all variables for ¢ > 0. Suppose now that the function
w(t,») is Holder continuous in R. Then the composite Ffunctions
F(ts @y u(t, @), fult, @, w(t, ) ave locally Holder continuous. It is a classi-
cal result that there is a unique solution z(f,z) of the equation

oy 0%

(66.4) = =22 +f( @, ult, @) Hhult, @, ult, ) (2—ult, 2))

with the boundary condition
(66.5) g=¢ on I,

where p i3 continuous on I'. The functions f, p being fixed, the function 2
is uniquely determined by u. Hence, we have here the transformation law
%%, in symbols & = Cu. We form the sequence

Zy=U, fpt1 = CO2p
which is .the Chaplygin sequence for equation (66.1) with boundary data
(66.5). First we will prove
. THEOREM 66.1. Suppose that u(t, x) is lower and vo(t, @) upper and
let (¢, @, u) be continuously differentiable in w to fult, @, u). We assume
that f(t, @, u), fu(t, 2, u) are éontinuous and locally Holder continuous for

t>0. Let @ be continuous on I' and suppose that u, < @ KL v on I
If fult, ®, w) increases in u, then the Chaplygin sequence

B =y, Bpir= C2y
salisfies the following conditions:

L Py Py
(66.6) - B = - THE @5 2) +fulty B, 20) (2ns1—2m)
o Oz, _ %
(66.7) —aTnéa—:v—;—l—H(t,m,zn),
(66.8) tw=¢ on I,
(66.9) Ug K2 1 <99 on R,
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Proof. The fact that 2, is well defined is a consequence of the previous
discussion and of the regularity of u,. Conditions (66.6) and (66.8) follow
from the definition of the Chaplygin sequence. Suppose now that (66.7)
holds for @ = k. Consider the equation

s o
(66.10) 7 T @R,
where
(66'11) g(t, o, 2) = /('67 @y 2x) + fult, @, 2) (2—2%) -

The solution of (66.10) with the boundary condition z = ¢ on I' is
Zp1. Hence ‘ "
Prit o 78t
o = ot

But ¢(t, &, #) = f(t, @, #) and consequently, by the inductive assumption

_Jrg(t’ @y zk+1) M

ey . 8%
il
at ax?

+9(t, z, 7) -

The last two inequalities and Lemma 66.1 imply that
(66.12) or(t, 2) < 2palt,2) in R,

Formula (66.12) and the convexity of f(¢, #, ) in » imply

1(t, @, 2x) +fult, 2, ) (B —2x) < f(8, @, Zr41)

which Dby (66.6) proves (66.7) for n=k+1. (66.7) being .proved for
arbitrary 1, the above reasoning proves (66.12) for any k. This completes
the proof.

COROLLARY. The assumptions of Theorem 66.1 imply that the solution
2(t, ) of (66.1), (66.5) ewists and by Lemma 66.1

wo(t, ) < 2(8, 2) < ooty ) on  R.
Tt follows then from Lemma 66.1 that z(t, #) is the unique solution
of the considered boundary value problem. One can prove under our

assumptions that {#;} is compaet in sup norm and by its mon.otsonicitsy
it must be uniformly convergent. Simple limit passages show that 7111_yrr°1°z,, = 2.

Tor other extensions of the Chaplygin method for parabelic equations,
see [26]. ) }

The Lusin type [20] estimates for {2} are given in the following
theorem. .

THREOREM 66.2. Let iy, vy, | satisfy the assumptions of Theorem 66.1
and suppose that

[fult, @, @) —fult, @, W) < oty [G—ul)
for wut, ») < W, % < wolt, @).
14*
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It is assumed that o(t, u) > 0 is continuous for 0 <t < T, u = 0 and
increases in u. Let

max {wt, #)—ut, #)} < 7ll),
a<z<h

ot T,

and define
¢

Tppa(f) = f U953, 4(8)) Ta(s) ds ,
0

where

K =suplfu(t, s, u)|, (,2)eR, uy<n<<r,.

Then |2a(t, ) —2(t, 2)| < (f) on R.
The proof for the above theorem is modelled after the proof of Theo-

rem 32.2. Tnstead of Theorem 9.5 for ordinary differential inequalities
one applies Theorem 64.1 of § 64.

§ 67. Maximum solution of the parabolic equation. We will use in
this section notation and definitions of § 66. Theorem 63.1 implies
LemMA 67.1. Let the regular functions uyt, @), vo(t, z) satisfy

aun(<)62uo
'ﬁg 5m—z‘|"g(t’ #, uolt, m)) ’

vy &) o2
—é—tg > gﬁ'}—g(t: &, 7)0“7 w))
on R and uyt, x) < o,(t, 1) on I'. Then uyt, z) < v(t, ) on R.

) RSuppose that the functions u(t, «), ¢(t, &, 2) and ¢ (¢, %) are continuous
in K,

Q@={{t,2,2): (t,2) R, 2 arbitrary}
and I" respectively. We define

t ————

r(t, 2) =511/?;ff fw_(#

. "f T
Let ¢(t, #) be the solution of the equation 2,
on I We put

_(o—gp
)g(’:i &y u(r, f))‘dfth‘ .

= % Such that ¢ =gp—r

at
v{t, z) = q(t, @) +r(t, )
and denote by T'(u; g, ¢) the transformation u—>v. Hence v = 7'
One can prove [26] that if u,
=0 = T(u; g, p) on R.
If wun, gu, pn are bounded in sup norm,

(u; ¢, @)
% gn 39 Pn e, then vy = T'(un; gn, gu) =

then {v,} is compact.

icm
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If g(t,#,2) is continuous in (¢, #,2) and Holder continuous in z
and 2, then the solution z of the equation

z2=1T(24, )
is a regular solution of
o o
(67.1) 5= 5 T 3,2),
(67.2) e=¢ on IQ).

The following theorem is due to Prodi [41]:

THEOREM 67.1. Let uy(t, %), vo(t, 2) satisfy the assumptions of Lemma 67.1
and 1y < @ < vy on I" where @ is continuous on I'. It is supposed that ¢(t, z, 2)
is econtinuous in @ and Holder continuous in @ and 2. Then the problem (67.1),
(67.2) has at least one regular solution.

We say that the regular solution (¢, 2) of (67.1), (67.2) is a mazimum
solution (mindmum solution) of that problem, if for every other solution
of the problem v (¢, #) the inequality o(f, #) < wu(t, ) (v(t, ) > u(t, 2))
holds in R.

Next we prove

2

THEOREM 67.2. Let uy, vy, ¢, @ satisfy the assumptions of theorem 67.1.
Then (67.1), (67.2) has o mawimum solution %(t, ) and a minimum one
u(t, z).

If w(t, ) is regular in B and

o P ou _ Pu

a§%+g(1,w,u(t,x)} (E>§£2+g(t’x’u(t’w))) in R
and
w(ty®) Splty@)  (ull,2) =9(t,0) on T,
then
wlt, o) <u(t, ) (u(t,s)>ul,2) on R.

Proof. We start with the following definition:

gty z, u(t, o) i 2 < uft,2),
Gty @, 2) =1 g(t, ,2) i wll, ) <z < vt @)
glt, @, vift, @) i 2> vt, 2) .
The function g* is bounded and if suplg*| < M and sup lpl < K,
then the functions %, = — Mti— K, % = Mi-+K satisty a,ssumptlons* qf
lemma 67.1 with %, = %, Bo = ¥, § = ¢*. It is easy to check that ¢" 18

(1) For references, see [26].
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Halder continuous in @ and 2. Applying the theorem of Prodi we get that
there iy a solution 2, of the problem
% % 1
5{’—@"}'9 (t:w5”)+ﬁ:
(67.3) .
g=0 +?ﬁ on I'

for n sufficiently large. By Lemma 67.1

(674) Bpp1 < &y in R.
Obviously
(67.5) = Ten; ¢+ 5, b 1) .
7 n

Hence {z,} is compact. (67.4) implies then that =, 2. By a limit

passage in (67.5) we get 2z = T'(2; g*, ). It follows then that 2(t, @) is
a solution of the problem '

oz %
7 = pre +g*(t, @, 2) 3
z2=¢ on I'

But
g*(tv @y Up(2, 39))
g*(t, z, vy(2, m))

= g(t: @, (2, w)) ’
= g(t, z, 0t m)) .

Hence the triples (u, 2, g*), (v, 2, g*) satisfy the assumptions of
Lemma 67.1 and consequently

(t, @) < 2(t,®) < vo(t,®) in R.
It follows then from the definition of g* that
g*(t! z, Z(t, CG)) = g(t5 &z, z(i: .’L‘)) .

This proves that z is a solution of (67.1), (67.2).
We will now prove that if a regular function w satisfies

Tou _ Pu
ﬁSa—aﬁv‘-g(t,m,u(t,m)) in Ry
u(t, ») <g(t,#) on I,

?;hen u(t, 2) < 2(t, ). This being proved we
is the maximum solution and
assertion follows.

: get the conclusion that 2(t, z)
simultaneously the second part of the

icm
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Suppose that w(f, #) satisfies the above inequalities and let wu(t, x)
= #(t, X) for a point (¢, ») ¢ R. Lemma 67.1 implies
wolt, @) < 2mlt, ), u(l, ) < vt, ).
Hence, at (t, ),
Uty @) < u(t, o) = 2m(t, x) < vy(t, %)
and by definition of ¢*
g*(ty @, 2lt, ) = g(t, ©, 2(t, )
It follows then that at (¢, o)

at  (t,z).

ou  d*u 1
7 <7 + gty o, u(t, 2)) +5
and
o2y _ Oy

"aT = 5‘&5 +g(t’miz"(t7w))+,’]_,';-

By Theorem 63.1 we conclude therefore that (¢, s) < 2s(f, ) in R,
which by a limit passage proves that (¢, x) < 2(t, #), g.e.d. The proof
for the minimum solution is quite similar and can be omitted.

The following example (see [31]) shows that the assumptions of The-
orem 67.2 do not imply the uniqueness of problem (67.1), (67.2). Moreover,
it shows that it can really happen that

a(t, @) 5 u(t, 2) -
ExAMPLE. We put in the definition of E:

i1
T=£, a=—g, b='2‘
and define g by
—Veostwo—wi+u i |u| <cosw,
g(t,m,u)={ “ if  |u| > cosm.

It is eas¥ to prove (see [31]) that g satisties locally Holder conditions
in # and % with an exponent . On the other hand, the functions

y(t, %) = —3et+1,

satisty the inequalities of lemma 67.1 with the above defined g. Notice
now that the functions 2 = cos® - cost, z, = cos satisty the same boundary
conditions on I" and both are solutions of the equation & = zm—’rg(.t , &y %)
in R. Moreover, u, < 2 = % < ¥, on I'. Hence, all the agsumptions of
Theorem 67.2 are satistied for ¢ = #; = 2, on I, but there are two diﬁ?erent
solutions 2, # 2, of the same problem. It follows then that the maximum
solution % is different from minimum solution u.

Vo(t, @) = 3¢—1
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