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where
§(w, Y,u,Q) =g, Y,u, Q)+
‘f"[]c(wy Y, u(x, ¥), wy(z, Y))—g(:o, Y,u(x, X), up(o, Y))] .
By (44.3), (44.4), (40.14) and by the condition W, imposed on k,
we get

(448)  lg(@, T, u,Q)—F@, ¥ u,Q1<c(|m\,1u~m>+Mll_}:’l‘tqk~mz,
where
o(t, ) = G(t, 'U)+h(ta Y (), Bult)s oy ﬁn(t))

is the right-hand member of a comparison equation of type I (see §'1-L).
Denoting by w(f) its right-hand maximum solution through (0, %), defined
in an interval [0, o), we conclude, by (44.5), (44.8) and by Theorem 41.1
applied to equations (44.1) and (44.7), that inequality

w(z, ¥)—v(z, Y)| < o))
holds true in the pyramid (44.6) for |#| < min (4, 3, @p). This ig the estimate
of the error that was sought for.
§ 45. Systems with total differentials. A system with total differentials
(48.1)  ub, =X, ', . w™) (E=1,2,.,m;§=1,2,..,p)
or shortly
m
= DX, uM Ay (i=1,2,..,m)
i=1
is a particular case of the overdetermined system (39.1) dealt with in
the preceding paragraphs. Cauchy initial conditions for system (45.1)
have the form
(45.2) w(Xy=aw (1=1,2,..,m).

Now, it is clear that all theorems of §§ 41-43 hold true for the Cauchy
problem (45.1), (45.2).

CHAPTER VIII

MIXED PROBLEMS FOR SECOND ORDER PARTIAL DIFFERENTIAL
EQUATIONS OF PARABOLIC AND HYPERBOLIC TYPE

In the first paragraphs of the present chapter we deal with parabolic
solutions (see the subsequent definitions) of nonlinear systems of second
order partial differential equations of the form (see [53] and [54])

i g 1 m i i i i
U =y Bry ey By Wy ey U™y Uy eany Uy Usiy s Uiy ey Ui, )
(i=1,2,..,m)),

where the ¢th equation contains derivatives of only one unknown fune-
tion w'. We discuss a number of questions concerning mixed problems
in a region D C (f, @y, ..., %) of type O (see § 33). In particular, using
the theory of ordinary differential inequalities we treat questions referring
to mixed problems like: estimates of the solution, estimates of the dif-
ference between two solutions, uniqueness eriteria, continuous dependence
of the solution on initial and boundary values and on the nght-hand
sides of system and, finally, stability -of the solution. ‘

In the last paragraphs we derive, by means of ordinary dﬁferentlal
inequalities, energy estimates of Friedrichs-Levy type for the solution
of a system of linear hyperbolic equations (see [51])

ch: a';k( ua:jxk = 22 bd 'uq:, +2 X X)u ‘+‘f
Jk=1

(i=1,2,..,m),
=17=1 '

where the ith equation contains second derivatives of only one unknown

function .

§ 46. Ellipticity and parabolicity. To begin with, we recall the defini-
tion of a positive (negative) quadratic form and prove, for the convenience
of the reader, a lemma.

n
A real quadratic form in Ay, ..., A, D @il (s = az) is called
fik=1
positive (negative) if for arbitrary 4, ..., 1, we have
n
Z ajkljlk >0 (< 0)
jiE=1

g%
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LEnva 46.1. Let the quadratic form @(A) =D (A ey dn) = LZ;LajkMk
142

be positive and the quadratic form Y(A) = (I ey M) =, %’1 bixki Ay be

negative; then we have
n

(46.1) D apb <0
7 k=1
Proof. The form &(4) being positive we have, for suitably chosen
coefficients oy (P,¢=1,2, ..., 1),

o(d)= Y apiihe= 3 (D wakdfs
3, k=1 p=1 g=1
hence :
ap= D titge (1, =1,2,..,m)
p=1
and consequently

n n n n
(46.2) 2 a;kb,-k = 2 (2 b,-kap]-apk) = Z W(am, ooy azan) <0.
§,k=1 p=1

p=1 fjk=1

DEFINITION OF ELLIPTICITY. Let the function
fi(ti X! U! Q! R) = fl(t7 5017 b | .’En, /u'l? Loy ’u’m5 QIi ety quy 7.117 7’12, AR 7'”1;)

be defined for (i, X) belonging to a region D C (t, @1, -.., %s) and for arbi-
trary U, Q, R. Suppose that U(t, X) = (u'(t, X), ..., w"(¢, X)) is defined
and possesses first derivatives with respect to z; at a point @, X)eD.
‘Write ] ] ]

Wy = (Usyy ey Ugy) -

‘Under these assumptions, we say that the function ;l‘(t, X,U,Q,R)
is elliptic with respect to U(t, X) at the point @, X)e D if for any two
sequences of numbers R == (g, ¥, ey Tun) and B = (Fua, Fizy cors Tn)
(rjx = Trj, Ti1 = Tr;) such that the quadratic form in 1, ..., ia

n
(46.3) D) (rj—F) Ay is negative
i k=1
we have !

46.4) f(, X, U 2, kE, X), R) </, X, U@ X), vk, X), B) .

If the above property holds true for every point @, X)e D, then
we say that f'(t, X, U, Q, R) is elliptic with respect to U(t, X) in D.
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ExAamprLe 46.1. Consider the second order linear equation

n n
(46.5) W= wlt, X)tign,+ D byt, X)tig+o(t, X)u+at, X),
§ =1 i=1
where a;(t, X), bi(t, X), ¢(t, X) and d(¢, X) are dgﬁned in a region D.
Bquation (46.5) is called parabolic at a point (t, X) e D if the quadratic
form in Ay, ..o; An
n

(46.6) D) anll, X) 1 is positive .
File=1

Now, by Lemma 46.1, we conclude that the right-hand member

n

Ft, X, u, Q, B) = d(t, X)+o(t, Dyut ) bift, D+ D, anlt, Drne
j=1 J.k=1

g=

of a parabolie equation at a point (f, X) is elliptic at (Z, X) with respect
to any function u(¢, X) having first derivatives uy ab #, X).
Remark 46.1. If, in particular, f(t, X, U,Q, R) is independent
of R, then it is trivially elliptic with regard to any U(t, X).
DEFINITION OF PARABOLIC SOLUTION. Consider a system of second
order partial differential equations

i 4 1 m i i i i
(46.7)  4tf = 1l Dyy oes Tny Uy ey U™y Uiy woey Yy Uiyyy Uiy y ooy Yizg)

(i=1,2,..,m)

with right-hand sides fitt, X, U,Q, R) defined for ({, X)e D and U,Q, R
arbitrary. A solution U(t, X) = ('u,l(t, X), ..., u™t, X)) of (46.7) in D is
called parabolic at a point (f, X) e D if all the functions (¢, X, U, @, R)
(6=1,2,..,m) are elliptic with respect to U(t, X) at (t, X).

If this property holds true for every point in D, then the solution
is called parabolic in D.

According to Example 46.1 every solution of a parabolic equa-
tion (46.5) is 'a parabolic one.

Remark 46.2. In virtue of Remark 46.1, every solution of a sys-
tem (46.7) iz parabolic if its right-hand sides do not depend on sec-
ond derivatives, i.e. if it reduces to a system of first order partial dif-
ferential equations or of ordinary differential equations with param-
eters.

§ 47. Mixed problems. Before formulating the mixed problems we
are going to deal with in the present chapter, we introduce some defini-
tions and assumptions.
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DurINITION OF SETS 2 AND Z,. Consider a region D C (t, @, ..., z,)
of type O (see § 33). We denote by X the side surface of D, i.e. that part
of the boundary of .D which is contained in the open zone #, < ¢ < to+T.

A function a(?, X) being given on X we denote by JZ, the subset
of X on which a(t, X) 5 0.

' ASSUMPTIONS A. A region DT (, oy, ..., %) 0f type C (see § 33) being
given, let the functions oi(t, X) (1 =1,2,...,m) be defined on its side sur-
face X. Suppose that

(47.1) af(t,X)>0 (i=1,2,..,m).

For every (t, X) e Xy, let a direction Zi(t, X) be given, so that I is ortho-
gonal to the t-axis and some segment, with one emtremity at (¢, X), of the
straight half-line from (t, X) in the direction U is contained in the closure
of D.

Regular solutions and mixed problems. Consider a Sys-
tem (46.7) with right-hand sides (¢, X, U, Q, R) (i =1,2,..,m) defined
for (t, X)eD of type C (see § 33) and for arbitrary U,Q,R. Let the
funections oi(t, X) and directions I'(t, X) (i = 1,2, .., m), satisfying
Assumptions A, be given on the side surface X of D. A solution U(t, X)
= '(ulgt, X),...,um(t,X)) of (46.7) in D will be called regular solution
if it is continuous in the closure of D, possesses continuous derivatives
ofot, 8joxs, &*lowsoxy, and satisfies (46.7) in the interior of D. If, in addition
for every ¢ the derivative du'/dl' exists at each point (¢, X) e Zu then’
the solution is called X.-regular solution. Being given ’

1. a system (46.7) with right-hand sides f, X ,U,Q,R)
(i=1,2,..,m) defined for (¢, X)eD of type C (see § 33) and
for arbitrary U, Q, R,

- funetions af(t, X) and divections I'(t, X) (i =1,2,...,m) on the
side surface X' of D, satistying Assumptions A,

8. functions yi(t, X) on X and f'(t, X) on Ty (i =1, 2, ..., m) where

o]

(47.2) Ft, X)>00n Sy (i=1,2,.., ),

4. functions qﬂ%) .(fi =1,2,..,m) on 8, (for the definition of S,
see § 33, definition of a region of type 0O),

the first mived problem with initial values o

, ved problem ¢%(X) and boundary values

yi(t, X) consists in finding a ,-regular solution Uty X) = (u(, X), ...

<oy W'(t, X)) of (46.7) in D, satisfying the initial conditions

(47.3) Ulty, X) = ®(X) for Xe8g,,
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where @(X) = (cpl(X), s ¢"(X)), and boundary econditions, called of
first type, :

i o e O

Ait, Xyul(t, X)—d(t, l)% —yi(t, X) for (t, X)e S,

wi(t, X) = yi(t, X) for (t,X)eZ—Ja
(i=1,2,..,m).

If, in particular, oi(t, X} =0 (¢ =1, 2, ..., m), the boundary condi-
tions (47.4) are of Dirichlet’s type and the first mixed problem reduces
to the classical first Fourier’s problem. If condition (47.2) is not imposed
on pit, X), the problem described above is called second mized problem
and the boundary conditions (47.4) are called of second type.

In particular, when o'(t, X)=1, f({, X)=0 (i=1,2,..,m), the
boundary conditions (47.4) are of Neumann’s type and the second mixed
problem reduces to the classical second Fourier’s problem.

To close this paragraph, we prove a lemma which will be of use in
our subsequent considerations.

LeMMA 47.1. Suppose we are given a region D of type O (see § 33),
a function a(t, X) and a direction 1(t, X) satisfying (for m = 1) Assump-
tions A on the side surface X of D, and a function B(t, X) on Z, such that

(47.5) Bt,X)>B>0 for (i, X)eZ,.

Let the junction w(t, X) be continuous in the closure of D and possess
the derivative dw/dl on X,. Suppose that

B0, Dult, X)—alt, X) % < By(t) (< Baft)) for (1, )< Iy

u(t, X)<n@t) (<q@) for (6, X)eZ—2Z,

where (t) = 0. Denote by St (see § 33) the projection on the space (2y, ..., &)
fo the intersection of the closure of D with the plane t = t. N

Under these assumptions, if for a point (3, X)eD (t, <t<t{+1T)
we have

47.7) max u(7, X)—_:?L(T,XN)>?7(?5 (= @),
XeSy

then (t~, XY is am interior point of D.

Proof. Suppose that the assertion of our lemma is false; then
(tN, f) ¢ X and there are two possible cases to be distinguished: I (t, X)e
X, I {,X)e Z,.

In the case I we have, by (47.6),
wfl, By <qlh) (<),
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contrary to (47.7). Now in the case II we get, by (17.6)

du! ~

@18)  BEDull, H—af, DF),  <B1@ (< Ba(d).

The straight half-line from (¢, X) in the direction Ut, X) has the -

parametric equation
X =X trversi(f, X), 1>0.
By Assumptions A, some segment of this half-line, say 0 <7 < Ty,
belongs to S7. Hence the function
p(v) = u(t, X -vversi(3, ]NI))
is defined for 0 <t < 7, and attains, by (47.7), its maximum at the left-
hand extremity of this interval. Therefore,
du
479 0= <
(47.9) ?'0) =& %
Since of, X)>0 (by Assumptions A),- it follows from (47.8) and
(47.9) that
B D)l X) < By (< By(d)
and hence, by (47.5),
ut, Dy <n@ (<),
what contradicts (47.7). This completes the proof of our lemma.

§ 48, Estimates of the solution of the first mixed problem. We prove
_ THROREM 48.1. Assume the right-hand members f(t, X, U ,Q, R)
(4 =1,2, ..., m) of system (46.7) to be defined for (t, X) e D of type C (see §33)
and for arbitrary U,Q, R. Suppose that (1)

(481) [, X, U, 0,008¢nu <orlt—t, |Uf)  (6=1,2, ..., m),

where oi(t, V) are the righi-hand sides of a comparison system of type T
(see. §14). Denote by (¢ H) = (eon(t; H), .., wn(t; H)) its  right-hand
magimum solution through (0, H) = (0, Tyy wey W)y defined in an interval
[0, ay(H)). Let the functions a¥(t, X) and the directions I, X) (t=1,2,..,m)
satisfy Asswmptions A (see § 47) on the side surface X of D. Let g, X)
be defined on Ty (i=1, 2, .., m) and satisfy inequalities

(48.2) Bt X)>B >0 on =, (t=1,2,..,m).

(*) sgnx denotes 1 if > 0, and —1 if 2 < 0.
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Suppose finally that U(t, X) = (u'(t, X), ..., u™{, X)) is a parabolic
(see § 46), Z,-regular (see § 47) solution of system (46.7) in D, satisfying
initial inequalities
(48.3) (Ul D<K H  for Xef
and boundary inegqualities
i, Tyu'e, X)= e, 1) Dol < Foute—t B) for (¢, ) e 2,

(48.4)
0| < olt—ty; H)  for (4, X)e Z— Zus

' (1=1,2,..,m).
Under these assumptions inequality
(48.5) |U(t, X)| < Qt—to; H)
holds true in D for
0 <t—t, < min (T, q(H)) = 4.
Proof. Since the assumptions of our theorem are invariant under
the mapping v = t—1%,, we may assume, without loss of generality, that

1, = 0. Denoting by S7 the projection on (a, ..., #s) of the intersection
of D with the plane ¢ =1t (see § 33) put, for 0 <t < T,

Wi(t) = max |ut, )|, W) = (W(t), .., W),

XeS

M(t) = max fu,"(t, Xy (1=1,2,..,m),
XeS; )

NY#) = max (— ui(t, X)) .
XeS;

By Theorem 34.1, the functions W(t) are continuous in the interval
[0, T) and, by (48.3), we have

(48.8) W) < H.
Inequalities (48.5) are obviously equivalent with
W) <Q@ H) for O0<i<min(T,aeH))=25.

Now, in view of (48.6) and of the first comparison theoren} (see ‘§ 14.),
the last relation will be proved if we show that, for every fixed j, dif-
ferential inequality

(48.7) D_Wi(t) < osft, W(t))
holds true in the set

(48.8) E = {te(0,8): W(t)> ot; H)}.
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Tix an index j and let 7 e B; then, we have
(48.9) Wi(T) > wilt; H) .

By Theorem 34.1, there is a point X'e 87, so that either

(48.10) W@ =D =41, %), D_WDH<D M,
or
(4811) WH =N =—w3 %), D-WEH<DNG.

Suppose we have, for instance, (48.11). Then, in view of (48.2), (48.4)
and (48.9) we conclude, by Lemma 47.1, that (¢, X) is an interior point

of D. The function —u/(#, X) attains its maximum at the interior point X
and is of class (? in its neighborhood. Therefore,

(48.12) (@, X) =0
and the quadratic form in 4;, ..., 1y
n
(48.13) — D) (B, D)k is negative .
Lk=1

By Theorem 33.1, 2° we have
DN(F) < —ul(3, X);
hence, by (48.11), we get

~ ~

(4814) D_W(i)<—ult, X)= -/ (i, X, UG, X), k(T X), vkex(?, D)) ,
where we have put
wx(ty X) = (whiay(t, X), i t, X)) oy Uyt X)) -
Since, by (48.11), we have
sgnui(i, &) = —1,
it follows from (48.14), by (48.12), that
(4815) DWH <[P X, UG, D), 0, 0)—
—F(6 X, UG, %), 0, whex@, X)]+7(F, X, UG, %), 0, 0)sgnd’ () 2) .
The difference in brackets is, by the parabolicity of solution U (¢, X)

(see § 46) and by (48.13), non-positive. Hence, from (48.1) and (48.15)
we obtain

(48.16) D) < off, |0 G, D))
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But, by the definition of W(#) and by (48.11), we have (see §4)

~ 7 ~
U D <WE.

Therefore, in view of the condition W, (see § 4) imposed on functions
oi(t, V), inequality (48.18) implies that (48.7) is satistied for ¢ = 7, which
completes the proof.

Remark 48.1. Under the assumptions of Theorem 48.1 it may
happen that the differential inequality (48.7) does mot hold for any
1¢(0, 8). In this case Theorem 9.3 does not enable us to conclude on the
validity of inequality W(t) <(t; H), whereas the first comparison
theorem (see § 14)—which is a consequence of Theorem 11.1—does.

The above situation occurs in the following trivial example. Let
n=m =1 and put

flty@yu,q,7) =17, D= {ta;0<t<T,0<z<1}.
The system (46.7) reduces now to the heat equation and its right-
hand side satisfies inequality (48.1) with o(f,v) = 0. Put
at,s) =0, p,z)=1, 7 = T+
then u(t, #) = ¢+ is a solution of the heat equation, satisfying assumptions
of Theorem 48.1. But, since obviously

W (t) = max W’(t’ z)| = e+t
o<t .

we have W'(t) > 0 and inequality (48.7) does not hold for any i e (0, 6).
This remark shows the usefulness of Theorem 11.1.

§ 49. Estimates of the difference between two solutions of the first mixed
problem. Now we prove

TrEOREM 49.1. Suppose the right-hand members [(t,X,TU,Q,R)
(i =1,2,..,m) of system (46.7) and of system
(49.1) = g, By, eoey By Uy eeey W™ Uy ey Uy Uiz Yoy s 1tz

(¢i=1,2, by M)

are defined jor (1, X)eD of type O (see § 33) and for arbitrary U, Q, R.
Assume that
2) U, X, U,Q, R)—d't, X, U, Q, Rsgn(u'~)

’ < oift—1, | U~ ﬁl) (i=1,2,..,m),
where oy(t, V) are the right-hand sides of a comparism system of t?!pe I
(see § 14). Let Q(t; H) = (wy(t; H), -, omll H)) be its mg]z%hand MazEmum
solution through (0, H) = (0, %y, ..v, Nm), defined on an interval [0, ao(H))-
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Let d'(t, X), U, X) (i=1,2,..,m) salisfy Assumptions A (see §47)
and Bi(t, X) (=1,2,..,m) inequalities (48.2). Suppose, finally, that
U(t, X) = (w'(t; X), ..., w™(t, X)) is a parabolic (see § 46), Z-regular
(see § 47) solution of system (46.7) in D and V (t, X) = (v'(t, X), ..., v"(¢, X))
is a Z,-regular solution of system (49.1) in D, satisfying initial inequalities

(49.3) (Ut D)=V (1o, DI<H  for Xeb
and boundary inequalities

¢ B, XY, X)—oi(t, X)]— ot X)d_“%l"—”ﬂ < Blo(i—t,; H)
(49.4) for (¢, X)e

[, X)—v'(t, X)| < oft—ty; H)  for (1, X) e Z—Zy
(1=1,2,..,m).
Under these asswmptions we have inequalities
(49.5) U, )=V (t, X)| < Q(—1y; H)
in D for
0 < t—1p < min (T, aH)) = 6.

Proof. Like in Theorem 48.1 we assume, without loss of generality,
that #, = 0. Put, for 0 <t < 7,

Wi(t) = max |u(t, X)—o(t, D), W)= (W), .., W),
M) = max (wi(t, X)—oi(t, X))  (i=1,2,..,m),

N¥(t) = max (v'(t, X)—ul(t, X)) .

XeS;

Just like in the proof of Theorem 48.1, it is sufficient to show that
inequality (48.7) holds true in the set F defined by (48.8). Fix an index §

and let T e E’ then we have (48.9) and, by Theorem 34.1, there iy a point
X ¢ 87 such that either

(496) W) =0 =4E DG X), DWEH <D M),
or
(9.7 W@ =N =40, D) -1, X), D.WH<D NG .

Suppose we have, for msta,nee, (49.6); then, like in the proof of Theo-
rem 48.1, we conclude that (t x ) is an interior point of D. Hence we have

(49.8) we(t, X) = vi(f, %)
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and the quadratic form in 2, .., %

(49.9) N [ty @y B) =@, DN s megative.
1=l

. By Theorem 33.1, 2° we have
DM (@) < l(F, D) —od(@, X
therefore, by (49.6), we obtain
=7 X, U, X), vk, X), vkx(t, T))—
— (& X, v, ), k(G B), vk, X)) -
From the last inequality it follows, by (49.8), that

~

D_WE <[f(T, X, UG, X), vk, D), vhx(t, X)) -

~

"gj(t7
The first difference in brackets is, by the parabolicity of solution
U(t, X) (see § 46) and by (49.9), non-positive. Since, by (49.6),

Wty X) = v, X),

+/# X, UE, ), u&(t x), m(t X))
z,

we get in virtue of inequality (49.2)
D_W(D <ot UG X)-VE D)) -

From the last inequaliby if follows, like in the proof of Theorem
48.1, that (48.7) holds true for ¢ =t, which completes the proof.

Usmg the results contained in Example 46.1 we get from Theorem 49.1
the following corollary:

COROLLARY 49.1. Let the linear equation

Z gty X) gy + 2 byt X)ttgy -+ elt, X)u+dt, X)
fle=1
be parabolic (see Example 46.1) in a region D of type C (see § 33). Suppose
that
e(t, X)< 0
and
B, X)>B=0 for (t,X)ela,
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and that a(t, X), 1(t, X) satisfy Assumptions A (see § 47). This being assumed
we have, for any two Z-reqular solutions (see § 47) w(t, X) and v(t, X),
the inequality ’
lu(t, X)—o(, X)| <y dn D,
provided that
[u(le, X)—v(ly, X)| <9 for X e,

afu—o]
dl

[u(t, X)—v(i, X)| < for (3, X)e Z-Z,.

Bty X)[u(t, X)—v(t, X)]—alt, X) < By jor (4, X)e 3,

Proof. All the assumptions of Theorem 49.1 are satisfied with m = 1,
system (49.1) being identical to the above equation, and with o(f, v) = 0
and o(t; ) =n.

ExAwPLE 49.1 (see [33]). Consider a system of almost linear equa-
tions

n
(49.10) w4 = D a(X) b+ 10, X, 0, oy ™) (i=1,2, ..., m)
Lk=1

with aj(X), K(t, X, U) defined for (¢, X)eD and U arbitrary, where D
is a cylinder
D=(0, + o) x &,

and @ is a bounded region in the space (%15 «.ey ). Suppose that for every ¢
and X e & the quadratic form in 4, ..., 4 :

N

(X)) Ay J

(N

L,

S
[

1

is positive. Assume that for any positive J we have

m
(49.11)  |W(t+h, X, )=, X, ) < 2 Y o — 7| + Ri*
=1
(t=1,2,..,m).

Wherle M and ﬁ are positive constants and 0 < a1l Let U, X)
= (u (t, X), ...y w™(, X)) be a regular (see § 47) solution of system (49.10)
in D, such that for every positive & we have

(49.12) [u'(0, X)—u'(h, X)| < KW for Xed (i=1,2,..,m),

(49.13)  |Wi(t+h, X)—ui(t, X)| < KF*  for (t, X) € (0, + oo) x 06,
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where K is a positive constant and 0 < g < 1. Under these assumptions
I ptions,
for any positive h, inequalities
(49.14) [t + b, X)—'(t, X)| < K™ nf + Lf[’;n ("™ 1)
(t=1,2,..,m)
are satisfied in D. e
Indeed, fix an h > 0 and put

n
¢'t, X, U,Q,R) = D al(X)ru+hi(t+h, X, T)
Lk=
(49.15) ' (i=1,2,..,m),
vi(t, X) = w(t+h, X) (t=1,2,..,m).

Then V(t, X) = (v'(t, X), ..., v"™(t, X)) is a regular (see § 47) solution
of system (49.1) with ¢ defined by formula (49.13). If we denote by
fi(t, X, U,Q, R) the right-hand sides of system (49.10), then we can
easily check that all the assumptions of Theorem 49.1 are satisfied with

m
o, V) =M D v+ Bh* (i=1,2,..,m),
. “
dit, X)=0, A, X=1, mu=K¥ (E=1,2,..,m)),
B

wi(t; H) = K™ 4 i

(EM™_1) (1=1,2,..,m).

Therefore Theorem 49.1 yields inequalities (49.14).

The result just obtained may be summarized less precisely in the
following form: if the funections %(t, X, U) are Holderian with respect
to ¢ and Lipschitzian with respect to U, then any regular solution of sys-
tem (49.10)in D is Holderian with respect to ¢ in every bounded subdomain,
provided that it be Hélderian with regard to ¢ in the set (0, 4 o) X 8¢
and for ¢ = 0.

§ 50. Uniqueness criteria for the solution of the first mixed problem.
We prove _

THEOREM 50.1. Let the vight-hand members ['(t, X, U,Q,R) (i=1,
2, ..., m) of system (46.7) be defined for (t, X) €D of type C (see § 33) and
for arbitrary U, Q, R. Assume that
(B0.1) [f(t, X, U, Q, R)—f(t, X, U,Q, R)Isgn (u'—")

Loili—t, [U=T) (E=1,2,..,m),

where oi(t, V) are the right-hand sides of a comparison system of type I
(see § 14). Suppose that

oift,0)=0 (i=1,2,..3m)_
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and that
(50.2) 2@ 0)=0 in [0, +oo),
where Q(t; 0) is the right-hand mamimum solution of the comparison system
through the origin in the interval [0, 4-oco). Let (t.X)7 (t, X)
(i=1,2,..,m) satisfy Assumplions A (see § 47) and let f'(t, X) satisfy
inequalities :
Bt Xy>0 on Zx (i=1,2,..,m).

Under these assumptions the first mizmed problem for system (46.7)
with initial conditions (47.3) and boundary conditions (47.4) admits at most
one parabolic (see § 46), Z,-reqular (see § 47) solution in D.

Proof. Suppose that
Ult, X) = (@(t, D), o, ", D)),V X) = (02, X), oy 0" (1, X))
are two such solutions. Then they satisfy all the assumptions of Theo-
rem 49.1 with ' =f, ni=B"'=0 (i=1,2,..,m) and a(0) = + oo.
Therefore, we have
U, X)—V(t, X)| <Q(t—1,; 0)
in D and hence, by (50.2), it follows that
' Ui, X)=v(t, X)
in D, what was to be proved. )

THEOREM 50.2. Let the right-hand sides fi¢,X,U,Q,R) (i=1,
2y oy m) of system (46.7) be defined for (t, X) e D of type C (see § 33) and
for arbitrary U, Q, R. Assume that, for t>t,,

(50.3) Ui(tﬁ X, U,q, R)_fi(tf X, l~77 Q, R)]Sgn(ui‘"%i)

a(t—1,, max |6 —w),

where o(t, v) is the right-hand side of a comparison equation of type IL
(see §14). Let do'(t, X), P, X) (i=1, 2, ..., m) satisfy Assumptions A
(see § 47) and let (1, X) satisfy mequal@tws

Fit, X)>0o0n Zg (i=1,2,..,m).

Under these assumptions the first mimed problem for system (46.7)
with dnitial conditions (47.3) and boundary conditions (47.4) admits at
most one parabolic (see § 46), Z-reqular (see § 47) solution in D.

Proof. Suppose that U(t, X) = (u'(f, X), ..., w™(t, X)) and V(t, X)

= (v'(t, X), -3 ¥"(¢, X)) are two such solutions. Like in Theorem 48.1
we assume, without loss of generality, that %, — 0. Then we have

(50.4) U0, X)=V(0,X) for Xe&,,
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and
d[w—vf]
d g
(50.5) for  (t, X)e Ty,
wit, X)—ol(t, X) =0 for (t,X)eZ~ Iy

(1=1,2,..,m).

Bit, X)[a'(t, X)—0o(t, X)]—d(t, X)

Put, for 0 <1< T,
Mt = max (u(t, X)—o'(t, X)),

NeSy
Nty = max (o', X)—w't, X)) (1=1,2,..,m),
XeS
W (t) = max {max |u'(t, X)—v'(t, X)[}.
i XeS;

The assertion of our theorem is equivalent with
50.6) Wt)=0 for 0<t<T.
Now, by Theorem 34.1, W(t) is continuous in the interval [0, T')
and, by (50.4), we have
W(0)=0.
Hence, by the second comparison theorem (see §14), identity (50.6)
will be proved if we show that the differential inequality
(50.7) - D_W (1) < oft, W(t))
is satisfied in the set
H=1{c(0,T): W(t)>0}.
Let Te¢ B; then we have
(50.8) W@ >0.
By Theorem 34.1, there.is an index j and a point X ¢ 87 such that
either
(650.9) W@ =0 = D-vT %), DWEH<D WG,
or
(50.10) W@ =N@1) =T, X) -G, X), D-WE <D NE.
Suppose we have, for instance, (50.9); then, in view of (50.5), (50.8)
and (50.9) we conclude, by Lemma 47.1, that (t, X) is an interior point
of D. Hence, relations (49.8) and (49.9) hold true, By Theorem 33.1, 2°,
we have :
D™ M) < ul(F, X)—l(T, X) .

J. Szarski, Differential inequalities 10
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Therefore, proceeding further like in the proof of Theorem 49.1
and using (49.8) and (50.9) we get

(P31 )

W) <[ (5 &, U 2, i, B, odeall,
—1(5, f,{U(Z, Xy, (@, X)), vx(T, f)}] +

+IFE X, U ), vk, X), vhx(t, X)) —
~7(E %LV(F, ), ulx(t, X), viex(7, 3))]

The first difference in the brackets is, by the parabolicity of solution
U(t, X) (see § 46) and by (49.9), non-positive. Since, by (50.8) and (50.9),
we have

u(t, X) > oi(f, X),

L

inequality (50.3) applied to the second difference in brackets yields
D_W () < o(t, max|ul(t, £)—oi(f, X)) .
1

In view of the obvious relation (see (50.9))

~

W (@) = max|wi(f, -t D),

the last inequality is equivalent with (30.7), which completes the proof.

Remark 50.1. The uniqueness criterion contained in Theorem 50.2
is more general than that of Theorem 50.1. This depends on the fact
that the right-hand sides of a comparison system of type I (see § 14)
are supposed to be continuous for ¢ =0, while the right-hand side of
a comparison equation of type IL is not. Thus, for instance, the uniqueness
of the solution of the first mixed problem for the equation

e = |In(t—1)|u+h(t, X, ux, uxy)

is a consequence of Theorem 50.2 (see Example 14.2, (v)), whereas it is
not one of Theorem 50.1.

Remark 50.2. It easily follows from the proof of Theorem 50.2
that if we knew that W.(0) = 0, then we would obtain a still more general
uniqueness eriterion with o(t, v) in (50.3) being the right-hand side of
a comparison equation of type ITI (see § 14). But, to get relation W..(0) =0,
we would have to require that the solutions U(t, X) and V (¢, X) satisfy
system (46.7) for ¢ = 0. Therefore, such a criterion would be useful only

in particular cases since usually parabolic equations are not satisfied on
the lower base of the domain D.
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Remark 50.3. In the proofs of Theorems 48.1, 49.1, 50.1 and 50.2
we used, as an essential argument, the following very well known pro-
position: if a function ¢ (X) = ¢ (2, ..., #,) is of class (2 in the neighborhood
of the point X, and if it attains local maximum at that point, then

px(Xy) =0

and the quadratic form in 4, ..., 4

n

2 Payan{ Xo) Ay A

Lk=1
is negative. On the other hand, if the function ¢(X) were even of class 0,
nothing could be inferred on the behavior of its higher derivatives at X,
from the fact that it attains local extremum at X,. This explains why
general theorems of the types discussed in §§ 48-50 cannot be expected
to hold true for equations of higher order than 2.

Remark 50.4. In the particular case, when the right-hand sides
of system (46.7) and (49.1) respectively do not depend on second deriva-
tives, Theorems 48.1, 49.1, 50.1 and 50.2 concern systems of first order
partial differential equations. Now, the question arises how these theorems
are related with analogous theorems of Chapter VIIL. In Chapter VII we
have more restrictive assumptions on the domain D and on the regularity
of the right-hand sides of system, viz. the domain D is a pyramid and the
right-hand sides of the system satisfy a Lipschitz condition with regard
to the first derivatives of unknown functions (the pyramid depending
on the Lipschitz constant); on the other hand, in Chapter VIII we impose
boundary conditions for the solution on the side surface of D which are
superfluous in theorems of Chapter VII.

§ 51. Continuous dependence of the solution of the first mixed problem
on initial and boundary values and on the right-hand sides of system. We
now prove

THEOREM 51.1. Let the right-hand sides f(t,X,U,Q,R) and
g, X,U,Q,R) (i=1,2,..,m) of system (46.7) and (49.1) respectively
be defined for (t, X) e D of type € with T < + oo (see § 33) and for arbitrary
U,Q, R. Suppose f* to satisfy assumptions of Theorem 50.1. Let o(t, X),
t,X) (i=1,2,..,m) satisfy Assumptions A (see §47) and f(t, X)
inequalities

Fit, X)>B >0 for (t,X)eZu (1=1,2,.0,m).

Suppose finally that U(t, X) = (u'(t, X), ..., w™(t, X)) is a parabolic

(see § 46), T,-reqular (see § 47) solution of system (46.7) in D and V (¢, X)
’ g ‘ {

= [v'(t, X), ..., v™(t, X)) is a Zregular solution of system (49.1) in D.

' 10%
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Under these assumptions, to every & >0 there is a 6 >0 such that
whenever we have

(51.1)  |ft, X, U,Q,R)—¢'(t, X, U,Q,R)| < & (i=1,2,..,m),
(51.2) |Uty, X)=V (tg, X)|< 4 for Xe8y,

Iﬁi(t’ X)[ui(t, X)—o(t, X)]—o'(t, X) %ﬂ <6
. Jor (1, X)e Ly,
o [ui(t, X)—vi(t, X)| <6 for (1, X)e Z— Ty

(t=1,2,..,m),
where A = (6, ..., 8), then inequality
(51.4) U, X)—=V (¢, X)| < B
holds true in D, where E = (¢, ..., &).

Proof. In view of Theorem 10.1, to every ¢ > 0 there is a 6, >0
such that the right-hand maximum solution Q(¢; H, 8,) of the comparison
system

d .
Eyf =0Ult, Yuy ey Ym)+6  (i=1,2, ..., m)

(concerning oi(t, ¥) see the assumptions of Theorem 50.1), passing through

(0, H) = (0, 11y ..., 7m), is defined in the interval [0, T) and satisfies
inequality

(51.5) QU H,6)<B for 0<t< T,
provided that
(51.6) O<H<LY,,

where 4; = (8, ..., 6,). Let inequalities (61.1)-(51.3) hold true with
8 = min (4, B') > 0;

then, by (51.2) and (51.3), inequalities (49.3) and (49.4) of Theorem 49.1

are satisfied with »; = ¢, (i =1, 3, <y m). On the other hand, by (50.1)
and (51.1) we have

[f'(t, X, U, @, R)—¢'tt, X, U, Q, R)]sgn (v~ 7)) < oilt—ty, (U= T|)+6,

(t=1,2,..,m).
Hence, by Theorem 49.1, we get

(81.7) UG, X)=V(t, X)| <Qt; 4,,6) in D.

From (51.5) and (51.7) follows (51.4), what was to be proved.
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§ 52. Stability of the solution of the first mixed problem. Let the
right-hand sides of system (46.7) be defined for (¢, X) ¢ D of type O with
T = + oo (see §33) and for arbitrary U, @, R, and satisfy identities

(52.1) fi(t,X,0,0,0)EO (i=1,2,..,m).

Let o(t, X), U(t, X) (i = 1,2, ..., m) satisfy Assumptions A (see § 47)

and f(t, X) inequalities |
Bit, Xy>B">0 for (,X)eZs (i=1,2,..,m).

Owing to assumption (52.1), V (¢, X) =0 is a Z,regular (see §47)
solution of the first mixed problem (47.3), (47.4), with &(X) = P(t, X) =0,
for system (46.7).

DEFINITION OF STABILITY. Put F = (e,..,¢) and 4 =(d,..., d).
We say (under the above hypotheses) that the null solution of system (46.7)
is stable if to every & > 0 there is a é > 0 such that flor every Zu-;egulam
(see § 47) and parabolic (see § 46) solution U (t, X) = (w'(t, X), ..., w™(t, X))
of system (46.7) in D we have
(52.2) U, X)|<®E in D,
whenever

U, X)j <4 for XeSy,

gf(t,X)qf(t,X)—af(t,X)% <6 for (t,X)eZu,
(52.3)

|wit, X)| <& for (3, X)eX—Zy
| (i=1,2,..,m).
Now, we can prove the following

THEOREM 52.1. Under the assumptions introduced ai the beginning of
this paragraph suppose that
(52.4) {4, X, U, 0,0)senu’ < olt—1t,|U])  (E=1,2,..,m),
where oy(t, V) are the right-hand sides of a comparison system of type I
(see § 14). Assume that

ot,0) =0 (i=1,2,..,m)

and that the null solution of the comparison sysiem is stable (see [7], p. 314).
Then the null solution of system (46.7) is stable too.

Proof. The null solution of the comparison system being stable,
to &> 0 there is a 6; > 0 such that whenever

‘L 0 H<A1 (Al = (61, vy 51)) y
then W

(52.5) Qi HY<B for 0<t<-+oo,
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where Q(t; H) is the right-hand maximum solution of the comparison
system through (0, H) = (0, %y, ..., 7m). Put

8 = min (4, B'6,) > 0

and suppose that inequalities (52.3) hold true with the above 4. Then,
by (52.3) and (52.4), all the assumptions of Theorem 48.1 are satisfied
with #; =6, (i=1,2,..,m) and V(t, X) = 0. Hence, by Theorem 48.1,
we geb

(52.6) U X)) < 4,) in  D.

Inequality (52.2) follows now from (52.5) and (52.6).
ExamprE. Let the comparison system be a linear one of the form

a - .
(52.7) G=2 iy G=1,2,..,m),
k=1

where ax(f) >0 are continuous for ¢ > 0. Suppose that for

p(t) = max Ja(?)]
‘we have "

[ edt< +co.
0

Tt is well known that under these assumptions the null solution of
system (52.7) is a stable one. Hence, if system (46.7) satisfies hypotheses
of Theorem 52.1 with inequalities (52.4) of the form

£t X, 7, 0, 0)sgna’ < 3 au(t) uf],
k=1

then the null solution of (46.7) is stable.

§ 53. Preliminary remarks and lemmas referring to the second mixed
problem. We are going now to discuss the second mixed problem for
Systems of the form (46.7). We recall (see § 47) that the second mixed
problem consists in determining a X, regular solution (see § 47) of (46.7)
satisfying initial conditions (47.3) and boundary conditions (47.4), where
F'(¢, X) are functions which—unlike in the first mixed problem—are
not supposed to be positive for (t, X) e Zy. Tn order to get analogues of
theorems concerning the first mixed problem, we will have to impose
Some more restrictive conditions on the right-hand sides of system
féf6j7 ) and, moreover, we will assume the existence of adequai:e gign-stab-
ilizing factors. More precisely, we will Suppose that there exist functions
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K"(t, X) (i =1,2,..,m), such that new unknown functions defined by
formulas . T

~ - wH(t, A .

uit, Xy = E@,:_Xj (t=1,2,..,m)
satisty Doundary conditions (47.4) with new coefficients 'Ei(t,- xX), Wh.ich
are positive for (t, X) e Zu. In the case of one linear parabolic equation
the introduction of the above sign-stabilizing factors is due to M. Krzy-
satiski [18]. We will establish certain suificient conditions referring to
the domain D, the coefficients o'(t, X) and §'(, X) and to the direetions
1(t, X) which imply the existence of the above factors. ‘

In what follows we suppose that a region D of type O (see §‘33),
directions I(t, X), and functions a'(t, X), p'(t, X) (i =1,2, ..., m) defined
on the side surface X of D respectively on Zs are given, where of(t, X),
I'(t, X) satisty Assumptions A (see § 47). N 2

o Let the functions K'(t, X) (i =1, 2, ..., m) be p(’)nsmve and of class 01
in the closure of D and let U(t, X) = (u'(t, X), ..., u™(t, X)) be Z-regular
(see §47) in D. Under these assumptions we have the following easy
to check

Lemma 53.1. Define U(t, X) = (@X(t, X), ..., W(t, X)) by the formulas
(53.1) alt, X) = u'(t, DK, X (E=1,2,..,m);
then we have the following propositions:

o dud i PO ida?f‘] - i=1,2,...,m), where
fpi_ 0W —d' == for (1, X)e Zu (i=1,2,...,Mm),
1° ﬂ W a (lli K I:ﬁ w a (u‘a f !

~ _1dKi,tXu
(832) Bt X) = p(t, X)— o, MK, DT for (D) e Bt
G=1,2,.,m.
90 If U(t, X) satisfies initial conditions (47.3) and boundary cm.zd'itfimw
(47.4), then
(33.3)  Wilty, X) = g{X) Ky, D] for XeSy (E=1,2,0m),
and i 1
7 : _
Bt e, X)— e, 1) = v, DK, D]
for (8, X) e Zas
(83.4) Wit, X) = o'ty HIEW DT for (G X) e E— e
‘ (=1,2,.,m),

where B'(t, X) are given by formulas (53.2).
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The above lemma justifies the following definition.

DEFINITION OF BIGN-STABILIZING FACTORS. Functions XK', X)
(t=1,2,..,m), which ar> positive and of lass C? in the closure of I,
will be called sign-stabilizing factors if there exist constants B (i =1,
2,.., m) such that

Fit, X)y>B' >0 for (4, X)els (i=1,2,..,m),

where B¢, X) are defined by formulas (53.2).
Remark 53.1. The existence of sign-stabilizing factors is trivial if
we assume that for the original coefficients (¢, X) we have

Ft,X)>B'>0 for (4, X)eZe (i=1,2,..,m).

Indeed, in that case K'(t, X)=1 (i=1,2,..,m) are obviously
sign-stabilizing factors. On the other hand, we will see in § 54 that sign-
stabilizing factors may exist also in the case when ﬂf(t, X) take on values
which are non-positive. Hence, it follows that the existence of sign-
stabilizing factors is an essentially less restrective condition imposed on
£'(t, X) than the above inequalities, and that sign-stabilizing factors can
be of service in the treatment of the second mixed problem.

Next we state, without proofs, three easy to check lemmas.

Lesva 53.2. If U(t, X) = (u'(t, X), ..., w"(t, X)) is a S,eregular
(see § 47) and parabolic (see § 46) solution of system (4£6.7) in D, then
U, X) = (@'(t, X), oy Wty X)) defined by (53.1) is o Seregular and
parabolic solution of the transformed system

(33.5) A=T0,X,2,d,dkx) (i=1,2,..,m),
where
(53.6) 7't,X,%,Q,R)
=K', D[ (6, X, 2Kt X), .., K1, X), QK(t, X)+
+ 2Bty X), oy 1 K2, X) + g KL (2, X) + g Kty X) 4
+ 8K (t, X), ) =K, X)) G=1,2,..,m).

Lmnnea 53.3. Let the functions K'(t, X) (i = 1,2, ..., m) be of class C*
in the closure of D and satisfy inequalities
(53.7) O<pu<EWX)<H, KK, KL, < I
put

M=nn+1)iT.

Suppose the functions 0u(ts Y1y ovy Yum), wt,y) i=1,2,

' ! vy m) to be
CONEINUOUS, non-negative and increasing in all vars

ables for t >0, y >0,
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=0 (t=1,2,..,m). Assume finally that the right-hand sides of
systems (46.7) and (49.1) satisfy inequalities

53.8) [f(t, X, U, @, R)—g't, X, U, @, R)]sgn(u'~a)
< ou(t—1, IU—U()+T¢(t—io, D le—ul+ )
i 1,k

(1=1,2,..,m).

Under these assumptions the right-hand sides of the transformed
system (53.8) and of the system

(53.9) A=, X, 2,4, dhy) (B=1,2,..,m),
obtwined by transformaiion (53.6) from system (49.1), satisfy inequalities
(33.10)  [Fi¢, X, U, @, B)-§'(t, X, U, Q, B)]sgn(u'—u)
LGt—1,|T-T)) (=1,2,..,m),
where y .
. 1[ (1 , ]
(B3:1) T, 3h, ey ) = [of(gt, Wy, s Mym)Jm(_M_t, My;)—{-Myi]

(i=1,2,..,m).

LEvma 53.4, Let oy, Y1y ooy Ym) and wlt, y) (=1,2,...,m) :s'atisfy
assumptions of Lemma 53.3 and define Gi(t, ¥, .-, '_ym) by formula (53.11).
Consider two sysiems of ordinary differential equations

(312) W ot g, oy ) Frilly ) FYs (=132, )

and
(Zflj i

(53.13) W=?y“@-(t,y1,...,y,,,) (i=1,2,..,m).

Under the above assumptions we have the following propositions:

1° Boih systems are comparison systems of type T (see § 14).

20 If Q(t; H) is the right-hand mamimum solution of system (53.12)
through (0, H) = (0, 9y, ., nm) defined on [0, -+ oo), then

(53.14) i 1) =

Q %[t; Mg,y ey l‘f?;m)
18 the right-hand maximum solution of system (53.13) through (0, H) defined

on [0, + oo).

§ 54. Sufficient conditions for the existence of sign-stabil?zing {atct(;s;.
It is important to know whether the domain D, the.functlons Of( s ta:
f(t, X) and the directions I(t, X) being given the existence of sign-s
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bilizing factors Ki(t, X) (see § 53), satisfying inequalities (53.7), is guaran-
teed.

We will consider a particular case when the construction of sign-
stabilizing factors can be easily achieved. Let D be a cylinder whose axis
is parallel to the -axis and whose basis is a bounded domain G in the
plane ¢ = 0. Assume the boundary G of @ to be a surface given by the
equation G(X) = 0, where G(X) is of class (* in the closure of &. Suppose
that _

|G (X)), |62 (X)), |Gaa(X) < N for Xel,

grad*@G(X) >0 for Xeo@.
Let o'(t, X)=1 and Y, X)>b° (6=1,2,..,m), where b are

some negative constants. Assume finally the directions li(t,X) to be
chosen so that

m .
D G (Xyeos(lt, X), m) =TT >0 for (4, X)eZ (i=1,2,..,m).
i=1

A simple computation shows that under these assumptions the

fanctions
K, X) = ¢ (1=1,2,..,m),

1—¥b
V—_'Intax T )7

are sign-stabilizing factors with B' = 1 (i = 1,2, ..., m), satisfying inequa-
lities (53.7) with

where

p=e", i = eN(yN +1)2,

§ 55. Analogues of theorems in §§ 48-52 in case of the second mixed
problem. Using lemmas of the preceding section we will derive from
theorems contained in §§ 48-52 the following results for the second mixed
problem: estimates of the solution, estimates of the difference between
two solutions, uniqueness criteria, continuous dependence of the solution
on initial and boundary values and on the right-hand sides of system
and, finally, a stability criterion.

In what follows we will assume, without stating it explicitly in each
theorem that

(2) the right-hand sides of systems to be considered are defined for
{t, X) e D of type C (see §33) and for arbitrary U, @, R,

() functions of(t, X) and directions l{t, X) (i = 1, 2, ..., m) satisty-
ing Assumptions A‘ (see § 47) are given on the side surface X of D, as
well as funetions gt, X) on Zu (i = 1,2,..,m).
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THROREM B5.1. Suppose that the right-hand sides of system (46.7)
satisfy inequalities

@51) fi(t, X, U, Q, R)sgnu’ < oilt—ty, IUD+u(i—u, g+ Irl)
7 ik

(i=1,2,..,m),
where ou(ty Yo, -vy Ym) ond Ti(t, ) are continuous, non-negative and increasing
in oll variables for t = 0,y =0, y1 =0 (i =1,2, .., m). Denote by Q(t; H)
= (wy(t; H), ooy 0m(l; H ) the right-hand mazimum solution of system (53.12)
through (0, H) = (0, 0y, .o, 7m) and assume it to be defined on [0, + co).
Suppose there exist sign-stabilizing faciors (see § 53) K, X)(i=1,2,..,m)
satisfying inequalities
(55.2) 0<p< K@, X) <3, |, K, Kol < I

(1=1,2,..,m; J,k=1,2,..,1)
and some constants B' such that
(553) B, X)>B =0 for (t,X)eZs (i=1,2,.,m),
where -
(35.4)  F(t, X) = g0, X)—a(t, DK, X = Jor (5 T) e 2t

(t=1,2,..,m).

Let U(t, X) = (u'(t, X), ..., (2, X)) be a parabolic (see .§.46)Z Zu—a-eg.u-
lar (see § 47) solution of system (46.7) in D, satisfying initial inequality
(55.5) [Ty, )| <H for Xe8,
and bound‘owy inequalities

dut

Bitt, X)ui(t, X)— d'(t, X)—

o QB{%wi(jl{(t—f:g);%H) for (¢, X)e Zu,
IA .

(55.6)
]w'(t,X)l:’«;—%wf(%(t——-to);f}[ﬂ) for (t, X)e S—Za (i=1,2,.,m),

where M = n(n —'rvl)JlT . . .
Under the above assumptions we have i D

, ] o
(85.7) U@, X)| éﬂ(%{(i—to); —/;H)-

Proof. Put
(55.8) Wi, X) = u'(t, )KL, X7 (=152 my .
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By Lemma 53.2, U(t, X)= (@'(t, X), .., ¥™(t, X)) is a Z,-regular
and parabolic solution of the transformed system (53.5) and, by Lemma
53.1, inequalities (55.2), (55.5) and (55.6) imply

(55.9) 19 (o, X)| <% for  XeS,,

and

- ~F i dat| i 1 M g

|ﬁ t, X)w'(t, X)—d'(t, X) —il—i— < B = J—(t~to); £H for (t, X)e Xyu

| dr Mo\u H ’
(55.10)

- 1 (M M : "

@', X)) <ﬂm.¢(; (t—to); —EH) for (4, X)eT—Ta (i=1,2,..,m),
where B(t, X) are given by formula (55.4). From (53.6), (55.1) and (55.2)
it follows that the right-hand sides of the transformed system (53.5)

satisfy inequalities

(33.11)  Fi(t, X, U, 0, 0)sgne’ < Fft—1,, |U])  (6=1,2,..,m),
where

. N [ [
(5512) 3l Yy U) =3 [ai(?t, Myy, s Jl[ym) +ri(%[t, Myt) +Jl[y¢]

(t=1,2,..,m).
From (55.3), (55.9), (55.10) and (53.11) we infer that for the transfor-

med system (53.5) and its solution ﬁ(t , X) all the hypotheses of Theo-
rem 48.1 are satisfied. Hence, we have in D

(55.13) [T, X< ﬁ(t—t.,; 1—:) )

where {(t; H) is the right-hand maximum solution of system (53.13)
through (0, H). But, by Lemma 53.4, we have, for 0 <t < + oo,

xx 3 1 (M

55.14 Q(t; = 0=t M

( ) ) (t; H) MQ(,ut’ MH).

. Relations (55.2), (55.8), (55.13) and (85.14) imyply inequalities (55.7)
in D, what completes the proof.

) TEEOREM 55.2. Let the right-hand members of systems (46.7) and (49.1)
satisfy inequalities

[fi(t: X, U,q, R)""g{(t, X, ﬁ; Q; R)]Sgn(ui-—iii)
< olt—to, |U=T)+nift=ty, X lgy—l+ ) fras—7el),
i ik

where o'g-(t, Ii) and ?fgtzy) satisfy assumptions of Theorem B55.1. Suppose
there ewist s'bgazi-smbahzmg factors (see § 53) satisfying inequalities (55.2)
and constants B', such that inequalities (35.3), with Bi(t, X) defined by (55.4),

5
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Told true. Assume that U(t, X) = (uX(t, X), ..., w"(t, X)) 4s a parabolic
(see § 46), Toregqular (see § 47 ) solution of system (46.7) in D and V (1, X)
= (', X), ey O™, X)) i 0 Zpregular solution of system (49.1) in D,
their difference satisfying indtial inequalities (55.5) and boundary inequa-
lities (55.6).

Under these assumptions the inequality

- M M
UG, )=V, )| < 2 X (-t )
W t
nolds true in D, where Q(t; H) is the vight-hand mazimum solution of sys-
tem (53.12) through (0, H) = (0, %y, ..y 1m)-
Proof. Proceeding like in the proof of Theorem 55.1, we put (55.8) and

(55.15) W, X) = o', X)[E, D) (5=1,2,...,m)

and we check (using Lemmas 53.1-53.3) that for the tra;nsformed 8ys-
tems (53.8) and (53.9) and their solutions U(t, X) and V(f, X) all the
assumptions of Theorem 49.1 ave satisfied. Hence, applying Theorem 49.1
and using Lemma 53.4, we get the assertion of our theorem.
THEOREM 55.3. Let the right-hand sides of system (46.7) satisfy the

inequalities
[f(t, X, U,Q, R)—f(t, X, U, @, R)Jsgn ('~ 7)
< aili—te, [U=TD =t 3 lw=0l+ )
7 (i=1,2,.,m),
where o4(t, X), Tlt, y) satisfy assumptions of Theorem 55.1. Suppose that

oi(t, 0) = 74(t, 0) =0 (6=1,2,..,m)
and that
Q(t; 0) == in [0, + ©0),

where Q(t; 0) 48 the right-hand maximum solution oq‘ ‘sg{ste‘m (58.12), issued
from the origin. Assume, finally, there exist sz‘gaio,-stabmlzzmg.factors.(§ee § ?3),
satisfying inequalities (55.2), and constants B! such that inequalities (55.3)
hold true. i

Under these assumptions the second mized problem for system ('46.4)
with initial conditions (47.3) and boundary conditions ’(47.4.1) admits -at
most one parabolic (see § 46), Z-regular (see § 47) solution in D,.

Proof. Since two solutions of the problem satisfy assumptions of
Theorem 55.2 with f' = g¢' and 7= B' =0, our theorem follows from
Theorem 55.2.
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THEOREM 55.4. Assume the right-hand sides of system (46.7) to satisfy
the inequalities

(55.16) [fi(ty X, 0,9, R)“f(t: X, U0,q, R)]Sgn“"i*‘ﬁi)
< ot—to, max |u/ 7)) +v(t—ty, X lg—+ Y |7 — Tl
: 7 ) 7ik

for  t>t  (i=1,2,..,m),

where o(t, y) and ©(t,y) are continuous, non-negative and inereasing in all
variables for t >0, y > 0. Suppose that

(85.17) %% =o(t,y)-+r(t,y) +y

s a comparison equation of type IL (see § 14). Assume, finally, there emist
sign-stabilizing faclors (see § 53), satisfying inequalities (565.2), and con-
stants B, such that inequalities (35.3) hold true.

Under these assumptions the second mized problem for system (46.7)
with initial conditions (47.3) and boundary conditions (47.4) admits at most
one parabolic (see § 46), Z,-regular (see § 47) solution in D.

Proof. It is obvious that it suffices to prove uniqueness of the corre-
sponding problem for the transformed system (53.6) obtained from the
given system (46.7) by the mapping (85.8). Now, in view of (55.16), it
is easy to check that the right-hand sides of the transformed system
satisfy the inequalities

[, X, U, 9, R)-Ft, X,T,q, E)lsgn(u'—7)
<O(—t, max|v' —%|) for t> ty (t=1,2,..,m),
where !

u
Equation (55.17) heing a comparison one of type IT it is not difficult

to check that the same i3 true for the equation
dy

m=;(t,'l).

The above remarks and inequalities (53.3) imply that for the trans-
fgr}ned system (53.5) and the transformed initial and boundary con-
ditions (53.3) and (53.4) all the assumptions of Theorem 50.2 ave satisfied.
This completes the proof.
. THEOREM 53.5. Let the right-hand sides of system
two_w oy.‘ Th.eorem 55.3. Assume there ewist sign-stabilizing factors (see § 53),
satisfying inequalities (85.2), and constants B* such that inequalities
(55.18) B, X)>B'>0 jor (t,X)e . (i=1,2,..,m)
hold true.

~ 1 p ;
Fhy) = [( L My) +r(ﬂ7"z, My) +My] .

(46.7) satisfy assump-
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Under these assumptions the parabolic and Zy-regular solution of the
second miwed problem for system (46.7) depends continuously (in the s.mse
specified in Theorem B1.1) on initial and boundary values and on the right-
hand stdes of system.

Proof. Applying our standard procedure we check that. for the
transformed problem obtained from the original one by the mapping (55.8)
all the hypotheses of Theorem 51.1 are satisfied. Thus, our theorem follows
from Theorem 51.1. ) .

* In a similar way, from Theorem 52.1 we derive the following

THEOREM 55.6. Let the right-hand sides of system (46.7) satisfy ine-
qualities

fit, X, U, Q, Rysgoui’ < oslt—to, |U]) +ilt—1t, 2 lasl + Zk Irsel)
(G=1,2,..,m),
where oi(t, Y) and vi(t, y) satisfy assumptions of Theorem 55.1. Suppose that
fit, X,0,0,0) = oift, 0) =71, 0) =0 (i=1,2,..,m)
and that the null solution of system

%? = 6y(l, Y1y -y Ym) + ety Yo) Y1 (=1,2,..,m)

is stable. Asswme the ewistence of sign-stabilizing Zactors (see § 53), Ts;}f:sf;ﬁ:g

inequalities (55.2) and such that 'inequalities. (55.18) hold true. ﬁm?ﬂon 0{;

assumed the null solution of system (46.7) is stable (for the de 1

stability, see § 52). ' ‘
§ 56. Energy estimates for solutions of hy.perbolic equatl‘ons. In this

section we consider a system of linear equations of the form

(56.1) Hu]= D aiu(X)tkm

I feml
kil
- i Z B, + ) X H1(E) (=125 )
i=17=1 I=1

where the ith equation involves second derivatives of zl;lydaiidatggg; ;113,)

The coefficients of equations (56.1) are supposed to be de: e e

Before we define D more precisely, we recall the folllovv;ng oint X ¢ D
The differential operator HTu] isi called hyperbolic aos?tilw)re i ome

if n—1 eigenvalues of the matrix (a7u(X)); ;y,..,n 87 P

is negative.
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Let G(X) be of class (* in the neighborhood of a point X, e D angd
suppose that grad*@(X) > 0 and G(X,) = 0. Let us write :

(56.2) ATE = D 4l X) 6y (X) Gy (X) .

dhe=1

The operator H' being hyperbolic at the point X, we say that the
orientation with respect to H* of the surface ~ defined by the equation
G(X)=0is at the point X,:

(=) characteristio if ATGH,_g, = 0,

(B) space-like if ATG, 4 < 0,

(y) time-like if ATGT—g, > 0.

We introduce now following assumptions concerning the region D
in the space (@, ..., as) and the coefficienty of system (56.1).

ASSUMPTIONS B. (a) D is open, contained in the zone 0 < n < b < + oo,
and the intersection of D with any closed zome 0 St <t+Hh< b is
non-empty and bounded.

(b) IT; demoting the intersection of D with the plane op =1t and p(X)
being an arbitrary continuous fumction in D, the function

v(t) = [ v(@, .., ea)do ()
11z
is continuous on [0, b).

(¢) aj(X) are of dass ¢, WHX), YX) and F(X) are bounded and
integrable in D and
g n~—1
(36.3) u D < X G D)< M N B (i=1,2,..,m)

r=1 J.k=1
for X ¢ D and arbitrary 1, ooy Any where M and p are positive constants (2).
. (d)._The side surface X of D, i.e. that part of the boundary of D which
8 contained in the open zone 0 << gy < b, is composed of two (n—1)-dimen-
sional surfaces X% qnd IT (one of them may be empty).

(o) 25 is the union of o Jinite number of surfaces of class C* whose
orientation, with respect to every operator H', is characteristic or space-like
at every point; moreover, we have

COS(7l, ) <0 on 59
where 7 denoles the interior orthogonal direction.

)

) [ds, {J do, [[] av denote (n— 2)-dimensional, (n— 1)-dimensional and n-dimen-
sional integrals respectively.

(*) It is easy to check that the left-hand inequality (56.3) implies hyperholicity
of the operator HY,
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1y =% is the union of a finite number of surfaces of class O' whose
orientation, with respect lo every operator H, is time-like at each point and

7
co8 (%, o) >0 on X7

morcover, S denoting the intersection of =T with the plane z =t and p(X)
being an arbitrary continuous function in D, the function

#(1) = fap(ml, vy Xn)ds
is continuous on [0, b).

TEROREM 56.1. Suppose the Assumptions B to hold true, a@d let the
functions w(X) = i@y, ..., &) (E=1,2,..,m) be 1of class (;': wn D :mtd
of class C* in the closure of D. Assume U(X) = (u (X)) oy w™( X)) to sal-
isfy system (56.1) in D. For 0 <t < b, put

m n—1 . , X ) - i
By = [[ D[ D dhui, e, — ah(ud,) +(Pdo.
Iy el flemsl

Under the above assumplions we have in the interval [0,D)

(56.4) DYE(@) <LE({#)+4(t),
where ‘
m Nn—1

665) g0 = [ D[ Y aud,s+]cos (m, an)ds+] f 2 (ffae,
ZEP i=1 f,k=1

. T . e
and (Yo, ..y Yn—1) are suitably chosen local coordinates on X™; L"L«? @ tpo;;az,uzg
constant depending on u (see (56.3)) and on the bounds of coefficients b;,

and of the first derivatives of ajy, but independent of the solution U(X).
Proof. It can easily be checked that

3
3 . .
"‘fﬁf__§aaiu*1__
OH U uh, = 2 S Wi Uy Uy, = 2 Bwj( 1Yy Yo )

F kw1 k=1 .
13 : i
2 1 dat ; Oy i i
A 3 B aajk i i ik u‘; ‘ll;!
—_ §1 'E_ (a:i,ku;ju:%)mz } e Uggy, Wy, + "_—65% s Wy
o, 7 fl=1
fmt dik=1

Hence multiplying the equation

m n m ;
S D L

=1 j=1

J. Szarski, Differential inequalities =

11
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by 2ui, we obtain in D the identity

n

N
(56.6) 2 2 5‘% (abpul,ul ) — Z 5% (0, ) = Of b+ Fifu],
jk=1 k=1
where Fi is a quadratic form in 4, .., w» and their first devivatives.
The coefficients of F% are polynomials of b7, ¢ and of the first derivatives
of aiy.
For 0 <t< b and » >0 and for any set B in the space (2, ..., z,),
let us denote by X, the intersection of B with the zone 5w, < t+h.
Integrating identity (56.6) over the region. .y and applying Green-
Gauss theorem we get

7

n
(86.7) ff [2 Z aptil, vl 008 (7, 15) — 2 @ Uy U, €O (7 mﬂ)]dcr

D did=1 =1

= —[ [ Firul+ 2%t v .

De\
In virtue of the assumptions (d), (e) and (f), the set
(56.8) 5Dt,h =l v il v th g EESL
is the union of & finite number of surfaces, each of which can be described
analytically by an equation of the form

G(@yy.yan) =0,

with @ of class (' and G;, # 0 in the neighborhood of the respective
surface. Introducing new independent variables
Y= @5 (j=1,2,..‘,77/-—1), ?/%ZG(wli"wwn)

and using formulas

u;:' = ,“’flj_{_u;'/nGﬂ‘] (=1,2,..,n—1), “in = uinGrn ’

G, CO8(T, @) = GoyCOS (T, ) (5 = 1,2,..,n-1)
on the corresponding surface, the expression under the sign of integral
on the left-hand side of (56.7) can be written in the form

-1

[4 @104, 3 i i, [eos (7, au),

7ik=1

where A'6] is defined by formula (56.2). Hence, by (56.8) and in view
of the fact that on IT;,s we have G(X) = @p—(t+h) and cos (7, an) = —1,
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while on IT; there is G(X)=w,—t and €08 (%, w) = 1, formula (56.7)
can be rewritten in the following way:

n—1 n—1
©69)  [[[ Y abud, b~ aintuddo— [ [ 3 byt — a1 ) o

Iy §ok=1 oy jk=1

n—1
= .U [ Z a?k“;j“fm-‘Ai[GJ(uﬂ,.)“’]cos(ﬁ, @) do +

S k=1
i

n—1
+ fT f [LZI ajruly iy, — AT (uh, ] cos (7, a)do—
=T ik=

“t,h

—[[] (Fira) +of'ut,)aw
Di,n

Since we have —2]"'7,02,, < (ji)2+(u§;")2, ATE] <0 on Z% (space-like
or characteristic orientation), A7G]>0 on Z.‘fh (time-like orientation),
and, by (c), (e), (£),

n—-1

i1 0
2 Wity Uy, 2 0
Jk=1

008 (7, @) < 0 on Z%, cos(R, &) >0 on I,

formula (56.9) yields the following inequality:

n—1 n—1
(8610)  [f[ X afendyut,—aintud ) lao—[ [ | 3 afuiul, —abated, lao
en  1,k=1 Iy §k=1
n—1
< ff[z a?ku}}j'zzf}k]cos(ﬁ, xn)da—e—fff (ji)qu;-{-ffflﬂg[u]dv,
ST k=1 Di,n De,n

th

where F} is a quadratic form with properties analogous to those of Fy.
Now, integrating the identity
., 8 ..
2 1,1 — I\2
U Uy, —mﬂ(u)

over the region Dy, and applying, once more, Green-Gauss theorem we
obtain i

[ wiydo— [ [ (uipdo

ytn I

= ff (u¥)2cos (7, wn)da—{—ff (w)2cos (7, mn)do-—{—szf il dv ,
8 T

D
Zth Zin

11*
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whence
3611) [ (wydo— [ [ (wpdo
1

itn
< _U (u*cos (7, w,,)da-{—fff L) - (ud ) 1dw
T D

Adding inequalities (56.10) and (56.11) and then summing over 4

we get
n n—1

(6612) B+m—Bm<[[ D] bty b+ ('] co8 (7, @) do+

o i=1 k=1

+fff,2(1"’)261@%—}1;”21«’:;[14](1«;,

Dep i=1 e =1

where FL i§ another quadratic form similar to F.. Inequality (56.12)
devided by i > 0 gives in the limit, when & goes to zero following-a suitable

sequence,
m n—1

(3613) DE@M < [ X[ D ahud,ub, +(w)]cos (@, mm)ds +
o i=1 k=1
“i

m m

+[[ 3 (ffae+f] D Fiuldo .

Iy i=1 Iy i=1
m
Observe that D Fi[u] is a quadratic form in w!, ..., w™ and in their
4=1

first Qerivatives, its coefficients being polynomials of b}, ¢* and of the
first derivatives of aj;. Hence, it is obvious that

(36.14) Z‘ Filu] < M, Zm' [2 (i, + (u")z] ,
i=1 i=1 j=1

Wherfa_M1 is a positive constant depending only on the bounds of the
coefficients of system (56.1) and of the first derivatives of af}k. From (56.3)
and (56.14) it follows that

m M’ m n—1
> B <2 D[ D) et il — abatul o+ Y]
= Sl k=1

where u, = min(1, x), whence

(56.15) | £ f gf’g[u]dcr g%E(t).

.
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Putting
-2k
'’

we obtain from (56.13) and (56.15) differential inequality (56.4) with L
having the required properties.

THEOREM 56.2. Under the assumptions of Theorem 56.1 we have the
enerqy estimate, for 0 <t < b,

(56.16) f f Zm: [Zn’ (‘u:;,)2+(w')2]da
o =1 1 )

§=
n

<[ [[{ X s+ e+ f oy (x) i) ,
o 0

j=1
where
n—1 m

g(r) = fz [ 2 W, 0, +(u“')2]cos(ﬁ, @) ds +ff Z (fYdo .

T i=1 dk=1 o, i=1
Proof. From Theorem 56.1 it follows, by Theorem 9.5 (see Ex-
ample 9.1) that, for 0 <t < b,

t
B(t) < 2B (0) + [ eZrg(x) ]

Hence, by (86.3) and by the definition of E(z), we get (56.16).

We recall that under the Assumptions B the mixed problem for
system (56.1) in the region D consists in finding a solution U (X)
= (u{X), ..., w™(X)) of system (56.1), of class C* in D and of class O*
in the closure of D, satisfying initial conditions

U(X) = B(X), UgX)=0(X) for Xell,
and boundary conditions
U(X)=W®(X) for XeZ'.

In the case when X7 is empty, the above problem reduces to the
Cauchy problem.

The energy estimate (56.16) implies uniqueness of the solution of the
mixed problem. Indeed, to show this, it is sufficient to prove that U(X) =0
is the only solution of the homogeneous problem, i.e. of the problem
with @y(X) = &(X) = P(X) = f(X) = 0. Now, let U(X) be a solution
of the homogeneous problem and observe that in the variables ¥y, ..., ¥n
the surface X7 is described by the equation ys = 0 (see the proof of Theo-
rem 56.1). Hence it follows that U(X) being identically zero on =T the
first derivatives Uy, (j =1, 2, ..., n—1) vanish on 27, Since the same is
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true for U and U, (k =1, 2, ..., ) on I, the right-hand side of inequa-
lity (56.16) is zero. Hence it follows that U(X) =0 on II, for every
0 <t<b and consequently U(X) =0 in D.

CoROLLARY B86.1. Theorems 56.1 and 56.2 remain true if U(x)
= (X)), ..., w™(X)) is supposed to satisfy—instead of system (56.1)—the
following system of differential inequalities

n

(6.17) | X ahu(Dyud] < D) D BN )+ 3 1650 o+ 1))
ik=1 =1

1=1§=1
(l=1,2,..,m).
Proof. Let ¢ be an arbitrary positive number and put for U(X)
satisfying inequalities (56.17)

(X)) U (X))

T

(5618) (X)) = - phet .
& 2 W) ey X)) + 2 165 o) 4+ 170) e

It follows from (56.17) that
(56.19) X)) <1 (i=1,2,.,m).

On the other hand, (56.18) implies that
n . m n m
(3620) V' af(Dpudys, = 3 DB Iy, + N5 X T ),
F k=1 1=1j=1 1=1
where

W) = &'(X) 1B X) sgnoi (X)
(56.21) THX) = (X) |4 X)) sgn (X)),
Te(X) = (D)X 5] .

Thu's we see that U(X) satisfies a System (56.20) for which the
fa,ss_um_ptmns of TNI.lleorem 56.1 are satisfied. Moreo ver, by (66.19) and (56.21),
16 i3 clear that &7 and 3" have the same bounds ag b} and ¢". Hence it
follows, by Theorem 56.1 and 56.2, that the differential inequality (56.4)

and the enerNgiy estimate (56.16) hold true with f* in the formula (56.5)
replaced by f;; but, since ¢ > 0 is arbitrary and

]im}f:]i’
&0

we get in the limit (56.4) and (56.16) what was to be proved.
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Remark. Corollary 56.1 is more convenient in applications than
Theorem 56.2. Let us consider, for example, an almost linear system

g

i e 1 1 m 1 1 m m
(6.22) Wl X) Uiy, = Wy X, Wy ooy W™y Uiy vy Uz vy Uiy ony Ugy)

it

Fk=1

(i=1,2,..,m).

By Corollary 56.1, we get the following uniqueness criterion: if the
right-hand sides of system (56.22) satisfy a Lipschitz condition with
Tespect t0 4y vy W™, Unyy weny Uy, ooey Uiy, oony Uiy, then the mixed problem
for system (56.22) admits at most one solution. Indeed, under the a})oye
assumptions, the difference of two solutions of system (56.22) ‘samsﬁes
a system (56.17) of differential inequalities with f* = 0. Hence the dlﬁer.en.ce
of two solutions, having the same initial and boundary values, satisfies
the energy.estimate (56.16) with the right-hand side identically zero;
but, this implies the vanishing of the above difference what was to be

proved.


Yakuza




