CHAPTER VII

CAUCHY PROBLEM FOR FIRST ORDER PARTIAL DIFFERENTIAL
EQUATIONS

i

T -Iﬁ this chapter we d_iscuss‘ra‘:numﬁe'r! of ‘questions referring to the
Cauchy problem for systems of ‘first -order partinl differential equations
of the form

W = F(@, Yuy eoey Yy Uy ey U™, Upyy ooy ) (E=1,2, ..., m)
with initial conditions
WDy Yoy oy Yn) = pilyy, s ¥n)  {1=1,2,..,m)
and, more generally, for overdetermined systems of the form

(3 T ; 1 m i i
Uzy = [3(1y «ne\ By, Yy, ey Yy Uy ey Uy Uy vy Uy, )

((=1,2,..,m; j=1,2,..,p)
with initial data

W1y oony Bpy Y1y oens Yn) = (Y1, vy Yn) (i=1,2,..,m).

The above systems are of special hyperbolic type since each equation
contains first order derivatives of only one unknown function.

In partienlar, we will give applications of the theory of ordinary
differential inequalities to questions like: estimates of the solution and
of its domain of existence, estimates of the difference between two solu-
tions, estimates of the error for an approximate solution, uniqueness
criteria and continuous dependence of the solution on initial data and
on the right-hand sides of the system.

§ 37. Comparison theorems for systems of partial differential inequalities.

In order to simplify formulation of subsequent theorems, we first
introduce the following definition.

; A function u(X, Y) = W(Byy ooy Bpy Yoy ooy Yn) Will e called the func-
tion of class D in a pyramid

s

by
ler—& <, Wil <w~I Y |a,—3,] (k=1,2,..,n),

r r=1

)
A
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where 0 KL< + o0, 0 <y < + 00, ¥ < m‘in(ak/L), if w(X,Y) is con-
tinuous in the pyramid, possesses Stolz’s differential with regard to (X, )27’)
on its side surface and has first derivatives with respect to ¥ and Stolz’s
differential with regard to X in its interior. . ,

If, moreover, the derivatives u, (X, ¥) (4 =ﬂ1, 2, ..., 0) are contll}uous
with respect to (X, ¥) for X = Xy = (&, ..., &p), then u(X, ¥) will be
called the function of class Dy.

TusorEM 37.1. Let the functions U(s, ¥) = (u'(z, ¥), .., w" (2, ¥))
be of class D in the pyramid

(37.1)  |o—ao| <y, |Gl S@—Liz—m| (F=1,2,..,1),

where 0 <L <+too, 0<ap<+oo, y< n}cin(ak/L). Suppose the initial

inequalities
(37.2) |U (@, V)| < H,

where H = (71, ..., nn), and the differential inequalilies
3

(387.3) |k < oiljo—am|, |U|)+Lk2 [y (G=1,2 ., m)
=1 i

are satisfied in the pyramid (3T.1), where oty vy, oy Om) (1 =1,2, iz;)
are the right-hand members of a comparison system of typei I (see § 4).
Let Q(t; H) = (wy(t; H), ..., on(t; H)) be its right-hand magimum solution
z‘hrough’(o, H) and assume it to be defined in the interval [0, a).

Under these assumptions,

(37.4) |U (=, Y)| < Q(jo—]; H)

in the pyramid (37.1) for |@—m| < min(y, ). . . .
Proof. Since the assumptions of our theorem are 1nv.21xli.§t uinhzl-

the mapping é = — 2+ 2%, it is sufficient to prove (37.4) in the rig

hand pyramid

. il —L(m--’vo)
37.5) 0<La—a,<d=min(y, o) |yl < G
(37.5) < X 0 y Qo) s (k.___l,‘l,...,?‘b)-

Put, for 0 <t <4,

Wi(t) == MaXx |‘7/«1.(mo+t; Y)\ ’

YeS

M(t) = max ui(w,+1, ¥) (i=1,2...,m),
YeS;

N(t) = max (— w(we+1, Y)) ,
YeSt

J. Szarski, Differential inequalities
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114 CHAPTER VII. Cauchy problem for partial differential equations

where 8§, is the projection on (yy, ..., ) of the intersection of the pyramid
(37.5) with the plane & = @,+t. It is obvious that (37.4) in (37.5) is
equivalent with

(37.6) W) <wit; H) for te[0,8) (i=1,2.,..,m).

Now, we will prove (37.6) using the theory of ordinary differential
inequalities. By (37.2), we have

(37.7) W0)<H,

where W (t) = (W'(t), ..., W™(t)), and, by Theorem 34.1, W(t) are con-
tinuous on [0, d). By the same theorem, for every fixed j and for every
te(0,4), there is a point ¥ e 8y such that either

(37.8)  W(t) = M'(t) ='(n+1t, ¥), D_Wi(t)y<D M),
or )
(37.9)  W(t) = N'(t) = —w/(z,+1, ¥), D_Wt)<D N(t).

Fix a j and t ¢ (0, 6) and suppose that, for instance, relations (37.8)
hold true. By Theorem 35.1, 1°, we have

° n
(37.10) DM () S umy+t, ) ~L Y |y, +1, )| .
k=1

~ On the other hand, since in view of (37.8) and of the définition of
W'(t) we have (see §4)
i
U@+t I < W),

we get, by (37.3) and by condition W, (see § 4) imposed on aift, V),
- - "
Ulto+1, ¥) oty |U(my+t, Y)) +L Y (uly(ay+t, T)|
k=1

< oift, W) +LZ D (0dy(a +1, ¥)) .
k=1

From (37.8), (37,10) and from the last inequality it foll hat th
differential inequalities ! v s that the

D_W'(t) < oft, W (1))

are satisfied for every fizeq jand te(0,d). He

2 s s 0). Hence, and by (37.7), we get
Inequalities (37.6) in virtue of the firgt comparison th ,

This completes the proof. P orem {see §14
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CoroLLARY 37.1. If under the assumplions of Theorem 37.1 inequa-
lities (37.3) are, in particular, linear

m 3
el <K D W+L D b +C  (E>0,030) (i=1,2,..,m)
i=1 k=1
(Haar’s inequalities [11]) and if n; =9 (1=1,2,...,m), then we get

6nK1mvzni(r)7 +'ﬁ%) — ’)?/_CK fO‘)' K>0,

luilw, ) <
Clo— x| + 7 for K=0.
in the pyramid (37.1). .
TrroREM 37.2. Let the funchions Uz, ¥) = (u'(z, X), ..., w"(=, X))
be of class D in the pyramid (37.1). Assume that
(37.11) U(w, X) =0

and that the inequalities
n
(87.12) || < olla—al, maxpul) +1 Y ful (1 =1,2, ., m)
k=1

are satisfied in the pyramid (37.1) for x 5 m,, where o(t,v) is the right-
hand side of @ comparison equation of type II (see § 14).

Under these hypotheses we have

U, ¥) =0

in the pyramid (37.1).

Proof. Like in Theorem 37.1, it is sufficient to prove our theorem
in the right-hand pyramid

P 0<a—2,<y, [Yp—Prl <ap—L(a—m) (k=1,2,..,m).

Put, for 0 <t <y,

W(t) = max {max [wHz,+1, Y)|},
1 YeS;
M(t) = max w'(z,+1, ¥)
O =parvlth D, G=1,2,..,m)
Ni(t) = max (—u'(go+1, ¥))..
TeS;
Identities to be proved in the pyramid P, are obviously equivalent
with

(87.13) W) =0 for te[0,7).

8%
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We will prove (37.13) using the second comparison theorem (see § 14).

By (37.11), we have
(37.14) W) =0

and, by Theorem 34.1, W (t) is continuous on [0, y). By the same theorem,
for every t e (0, y) there is an index j and a point ¥ e §; such that either

(37.15)  W(t) = M(t) = Wl (m+1, ¥), D_W(t)<D M),
or
(37.16) W) = N'(t) = —w/(m+1, ¥), D_-W(t) <D N().
Suppose, for example, that for a t ¢ (0, y) relations (37.16) hold true.
By Theorem 35.1, 1°, we have

n

(37.17) DN < —ud(m+t, ¥)— LZWW (@ +1, T)|.

=
Sinee, by (37.16),
— i@y +1, Y) = W(t) = max [}z, +1, Y)|,
!
we get from (37.12)

n

0)+L D ul(zo+1, Y.

k=1

(37.18) —ulmy+t, ¥) < aft, W

From (37.16), (37.17) and (37.18) it follows that the inequality
(37.19) D_W(t) < oft, W(t)

is satistied for any te¢(0,y). Hence, by (37.14) and by the second com-
parison theorem (see §14), we conclude that W(t) <0 in [0, y) and,
since obviously W(i) > 0, we finally obtain (37.13), which completes
the proof.

THEOREM 37.3. Let the functions Uz, ¥) = (u'(z,
be of class D, in the pyramid (37.1). Assume that

(37.20) Ulwyy Y) = Ualmo, ¥) =0,

), uw, X))

where Ug(w, ¥) = (t(w, T), ..., ug(w, X)), and that the inequalities (37.12)
are satisfied in the pymomd (37.1) for @ # @y, where a(t,v) is the right-
hand member of a comparison equation of type IIL (see § 14).

Under these assumptions we have

Uz, Y) =
in the pyramid (37.1).

Proof. Again it is sufficient to prove the theorem in the right-hand
pyramid P;. With the notations in the proof of Theorem 37. 2, identity

icm
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U(z, Y)=0 in P, is equivalent with (37.13). This time we will prove
(37.13) using the third comparison theorem (see § 14). By (37.20), we have
(87.21) W(0) =
Next, by Theorem 34.1, there is an index j such that either

(37.22) DTW(0) < DT I(0),
or
(37.23) D*W(0) < DTN (0).

Suppose, for instance, that (37.22) holds true. Then, by Theorem 35.1,
2°, there is a point ¥, e S;, such that

W (0) < D*M(0) < @y, ¥o) -
Hence, by (37.20), it follows that
(37.24) DYW(0) <0

Now, like in Theorem 87.2, we prove that (37.19) is satisfied for

€ (0, y). Therefore, due to (37. 21 and (37.24) we conclude, by the third

compamon theorem (see § 14), that W(t) < 0 for te[0,y) and conse-
quently (37.13) holds true, which completes the proof.

Remark 37.1. By Remark 35.2, all theorems of § 37 are true
without the 1eq1.urement that ul exist in the interior of the pyramid,
provided that u; be replaced by Dini’s derivative D~ of 4 with regard to ».

Remark 37.2. All theorems of § 37 hold true if, instead of the
pyramid (37.1), we have the zone

(37.25) |6— @] < ¥, Y1y ey Yn arbitrary,

provided that the functions u Yz, ¥) be continuous and possess Stolz’s
differential in (37.25), and in Theorem 37.3 the derivatives ux(w Y) be,
in addition, continuous for o = .

Indeed, under these assumptions, all the hypotheses of theorems
in question are satisfied in any pyramid (37.1) with arbitrary finite ax,
and hence follows our remark.

§ 38. Comparison theorems for overdetermined systems of partial differen-
tial inequalities. We prove
TerorEM 38.1. Let the functions U (X, ¥) = (W'(X, X), ..., w™(X, T))
= (N ey By Yry ooy Yn)y ooey W (Eyy ey By Yrj oons yn)) be of class D (see
§ 37) in the pyramid
n
(38.1) Zlm7~5%1|<'}” lye—aul < aA“LZIWJ @y k=1a27“'7'”/)1

j=1 i=1
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where 0 KL< 4 00, 0<ap< + 00y ¥ < mm(ak/L) Suppose that the
indtial inequality
(38.2) 10X, Y)|<H,

where Xo = (& ooy p)y H = (M1, ooy ), ond the differential inequalities

(38.8)  fukyl < ool Y lan— i, IU|)+LkZ1 A

(t=1,2,..,m;j=1,2,..,p)

hold true in the pyramid (38.1), where the functions oi(t, vy, ..., Un) are the
right-hand sides of a comparison system of type I (see § 14). Let ils right-hand
magimum  solution Q(f; H) = (wy(t; H), ..., on(t; H)) through (0, H) be
defined in an interval

(38.4) 0 <t < a(H) .
Under these hypotheses we have

i

(38.3) |T(x, D) <2() lo—5l; H)
r=1
in the pyramid
D
(38.6) D |ay— iyl < min(y, a(H)) , " lys—isl < ax—L 2 |y — o)
j=1 j=1

(k=1,2,..,n).
Proof. By means of Mayer’s transformation

(38.7) X =X, +4x,
where A = (4, ..., %), we will reduce our theorem to Theorem 37.1.
For A = (/11, .oy Ap), consider the comparison system of type I

dt —Zos(lt Vg ey Um)  (=1,2,..,m),

»
where A = 21111. By Theorem 36.1 we know that Q(At; H) is its right-

hand maxmmm solution through (0, H) in the interval [0, a(H)/A). In
particular, for 1 < y(H), we have

(38.8) %I_) 1.
Suppose that

(38.9) = D' is] < min(y, o)

j=1

icm
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and put
(38.10) U@, Y; A) = U(Xy+ 4z, ¥).
It is clear that, for A = (4, ..., 4;) satisfying (38.9), ﬁ(w, Y; 4)
= @Mz, ¥; A)y ..., %@, ¥; A)) is of class D (see § 37) in the pyramid
(3811)  Jal <2, |yi—gul <m—Idle] (k=1,2,.,m),

where, by (38.9),

(38.12) r>1.

In virtue of (38.2) and (38.3) we get

1T, ¥; A <H
and

1%E] < Aos(Ael, | D)) +I2 Z e (E=1,2,..,m)

in the pyramid (38.11). Hence, by Theorem 37.1, we have
|T @, ¥; 4)| < < Q(Mal; H)
in the pyramid (38.11) for

|| < mm(z, a“gﬂ)) .
Smce, by (38. 8) and (38.12),
min (%, —alf;)) >1,
we have, putting z =1,
(38.13) T, Y; 4)] <2 H)

for A = (A, ..., Ap) satistying (38.9). Hence, if (X, ¥) is any pooint in the
pyramid (38.6) and if we set 4 = X— X, = (@— By, vy Bp— Bp), then

Me

W&, 0 =T, T T-X)| <2 o H) ,

7

i
-

what was to be proved.

THEOREM 38.2. Let the functions U(X, ¥) = (u(X, ¥), .., w"(X, 1)
be of class D (see § 37) in the pyramid (38.1). Swuppose that

(38.14) ‘ U(X,, ¥)=0
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and
) n
(38.15)  |uby| < o X lor—til, mlaxwll) +L Xkl for X X,
r=1 k=1

(1=1,2,..,m; j=1,2,..,p)

in the pyramid (38.1), where a(t, v) is the right-hand member of a comparison
equation of type II (see § 14).

Under these assumptions we have
(38.16)

in the pyramid (38.1).

U(X,Y)=0

Proof. Like in the proof of Theorem 38.1 we introduce Mayer’s
transformation (38.7) and we define U(z, ¥; 4) by formula (38.10),
for an arbitrary veector A = (4, ..., 4,) satisftying

»

0<i=D <.

i=1

Then U(x, ¥; 4) = (@@, X5 4), .o, @@, ¥; 4)) is of class D
(see § 37) in the pyramid (38.11) and inequality (38.12) is satisfied. In
view of (38.14) and (38.15) we obtain

(38.17)

T, ¥; 4=0
and

»
|Ta) < Ao (M), m?xml|)+m Z [l for w0 (i=1,2,..,m),
k=1

in the pyl_"amid (38.11). Since, by our assumptions and by Theorem 36.2,
Aa(lt,'v) ig—for any 1 > 0—the right—hand member of a comparison
equation of type II, we conclude, by Theorem 37 .2, that

U, ¥; ) =0,

for A satisfying (38.17), in the pyramid (38.11). Because of (38.12), we
have in particular
T,y A=o0.
Hence, if (X, Y) is any point in the pyramid (38.1) such that X s X,
and if we set A= X—X,, then

U, Y)=TU@, ¥; X-X,) =0,

which completes the proof, since for X — X, the last identity hol ¥
by (30t o y holds true

icm
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In a similar way, using Theorems 36.3 and 37.3 we obtain
THEOREM 38.3. Let the functions U(X, Y) = (u'(X, ¥), ..., W™ (X, )
be of class D, (see § 37) in the pyramid (38.1). Suppose that

U(XO) Y):‘ Uw;(Xo; Y)=O (j:1727"~7p)’
M

where Uy, = (Uigy ..., Ugy) and that inequalities (38.15) hold true in the
pyramid (38.1) with o(t, v) being the right-hand side of a comparison equa-
tion of type III (see § 14). Then we have (38.16) in the pyramid (38.1).

Remark 38.1. All theorems of § 38 remain true if, in place of the
pyramid (38.1), we have the zone

P
(38.18) 2 |%—@s| <y, Yy ..y Yn arbitrary,
=1

provided that the functions 4 (X, ¥) be continuous and possess Stolz’s
differential in (38.18). and in Theorem 38.3 the derivatives ug(X, ¥) be,
in addition, continuous for X = X,. This remark is a consequence of the
argument used in Remark 37.2.
§ 39. Estimates of the solution. Since a system
Wl = Uy Yuy ooy Yy Uy ey Wy s ey Ug) (E=1,2, .y m)
is a particular case, for p =1, of the overdetermined system

i i 1 m i i
Uy == F1(@yy ey Tpy Yiy ooy Yms B g ooy Uy Uppy ooy Uy,)
(i=1,2,...,m;j=1,2,

(39.1)
ey )y
where the ¢th equation contains derivatives of w' only, we consider in
subsequent sections systems (39.1). We will give first some estimates
of solutions of system (39.1).

TuroREM 39.1. Let the right-hand members

f;(Xa Y, U: Q) = ﬂi:(mh wory Bpy Y1y o'y Uns 7"1! ] '“’m: Gus -5 Gn)
(t=1,2,..,m;j=1,2,..,p)

of system (39.1) be defined in a region whose projection on the space (L1, .., &p,
Yuy ooy Yu) contains the pyramid

2

”
(30.2) Mla—id <, [e—inl <a—I D) |m—&l (k=1,2,..
=1

Pl

’,n)f

where 0 KL< + o0, 0 <ty < + 00, ¥ llliﬂ(ak/L)~ Suppose that

7n "
(39.3) |fiX,Y,U,Q)< 01(2 {p— &l |U|)+LEZ1 [l
re=1 =1

(1=1,2,u,m; j=1,2,..,D),
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where oi(ly Vyy -, 'm) ore the right-hand sides of a comparison system of
type T (see §14). Let Qt; H) = (wn(t; H), ...y omlt; H)} be ?lts right-hand
magimum solution through (0, H) = (0, %1y ) 7m) defined in an interval
[0, ap). Tet TU(X,Y) = (w(X,X),...,u™(X, X)) be a solution of system (39.1),
of class D in the pyramid (39.2) (see § 37) and satisfying initial inequality
(39.4) |U(Xy, ¥)|<H.

This being assumed, we have

in the pyramid

¥4 ¥4
(39.6) N lo—@l<min(y, a), |pe—ixl <a—L D) lo—al
— =1

r=1
(k=1,2,..,n).

Proof. By (39.3) and (39.4), the solution U(X, Y) satisfies all the
assumptions of Theorem 38.1 and, hence, inequalities (39.5) hold true
in the pyramid (39.6).

§ 40. Estimate of the existence domain of the solution. In the present
section we restrict ourselves to the Cauchy problem for one egmation

(40.1) Uy = F(Ly Yuy cony Yy Uy Uyyy ovy Yy,)

with the initial data

(40.2) U(Boy Y15 ey Yn) = @Y1y oy Yu) -

‘We will discuss here briefly—without insisting on detailed computa-
tions—how the existence domain of the solution of the above problem
may be evaluated. As for details omifted here we refer to T. Wazewski's
paper [57]. Using the theory of ordinary differential inequalities we will
construct the solution by means of the Cauchy characteristics.

Suppose that the right-hand member f(x, ¥, %, Q) = f(®, Y1, - ) Yn,
Uy Gy -y gn) and the initial function ¢(yy, ..., ys) ave of class C2 in the
cube
(40.3)

and

lol<b, lyl<b, [ul<b, l@l<d (bk=1,2,..,n)

@0y .y 0) = (0, .., 0) =0 (k=1,2,..,n).
A‘Asgume further that f and ¢ together with their first and second
derivatives are bounded by a constant M in the cube (40.3).
Under these assumptions, there are two numbers a(b,n, M)

and 6(b,n, M) (which can be effectively evaluated, for instance

icm
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a=b/dn(M+1), &= b[(n+1)(IM +b+1)P) depending only on b, n, M
so that the solution of problem (40.1), (40.2) exists and is of class €' in the
pyramid

(40.4) |2] < 8(b, m, M), iyk|<a(b7%,M)—M|wl (F=1,2,..,n).

We will indicate the way of proving this statement. Consider the
characteristic equations

ds
l "&%Ig =—fal®, X, u,Q),
dar .
405) | G =fulo, Y, 0, Q4 G, T, 0,Q)  (=1,2,.,m),
du i <
l = fle, ¥, u,Q)— Z Qife®, Xy u,Q),
=
and let
(40.6) Yr = Yu(@, My ey )y o= D@y N1y ey M)y 8 = WDy Ny ey )

(k=1,2,..,n)
be the solution of system (40.5), satisfying the initial conditions
T0, ) =i, Tl0, ) =gulE), TO,H)=0@ (k=1,2,.
where H = (9, ..., 7a) I8 any point from the cube

(B=1,2,..,m).

LN,

Il < B

Now, Cauchy’s method consists in solving, with respect t0 1y .5 7a,
the system of equations

(40.7) Yo = Prly Ty ey i) (B=1,25.0 n),

thus finding the inverse mapping

(40.8) M = k(@ Y1s o0y Yn) (B =1,2,..,n),

and in making the substitution

(0.9)  u(@, Yuy e, Yn) = % (2, Ta(@, Yrs oovs Yn)y woes Ml Y1y oo Yn)) -
. Tf the mapping (40.7) is one-to-one and of class (' in some domain
(40.10) <8, |ml<e (k=1,2,..,n)
with the Jacobian
(40.11) D(Frs s Tn)

D(nyy ooy 1)

and if the domain D C (#, ¥1,.., Ya) is the image of (40.10') by means
of the mapping (40.7), then the function w(®, Yiy -y Yu), defined by for-
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mula (40.9), is the solution of the problem (40.1), (40.2), of class C! in D.
Therefore, in order to prove our statement concernmg the existence of
the solution in the pyramid (40.4), it is sufficient to find a cube (40.10)
such that

1° The mapping (40.7) is one-to-one and of class C' in (40.10) with
the Jacobian satisfying (40.11).

29 The domain D contains the pyramid (40.4).

Now, this is achieved in several steps.

I. By Theorem 23.1, we evaluate the interval [#] < by, in which
the functions (40.6) exist for [nx| <b (k=1,2,...,n), and the functions
themselves, thus obtaining estimates of the form

(4012)  [Flz, H)| H)| < Brllel), 2 (z, H)| <

(k=1,2,

v (l2l)

ey M) .

< allel),  [qule,

Under our assumptions on f(z, ¥, u,Q) we may choose for the
corresponding comparison system a linear one, whose solution is a(t),
Br(t)y y(O) (B=1,2, .., %) .

II. The functions (40.6) are of class (' and their derivatives with
respect to 7 satisfy a linear system of ordinary differential equations.
Applying Theorem 23.1 to this system (for the comparison system may
be chosen a linear one) and remembering that %(0, H) = n; and hence

(0, H)
ang
we find 6(b,n, M) and c(b, n, M), so that inequalities

(e, H) s | 1
&1 kj "

=6ki (k;j=172)---777'):

(40.13)

hold true in cube (40.10). With such choice of § and ¢ point 1° iy achieved.

III. Point 2° which consists in finding a(b, n, M), is achieved by
any method allowing to evaluate the existence domain of the inverse
mapping (40.8).

Observe that, since for the function «(, ¥) defined by formula (40.9)
we have

Uy (2, ¥) = Ek(:v, iz, ¥), ...
from (40.12) we get the estimates
(40.14)  |u(z, X)| <y(la)), luy (@, X)| < B(lw)  (k=1,2,..,n).

We close this paragraph with the following remark. Using the above
resul.ts concerning one equation (40.1) with one unknown function it is
possible to construct the solution and to evaluate its existence domain

JTE, X)) (k=1,2,..,0),
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for a non-overdetermined system by means of successive approximations
(see [52]). The last result enables us to do the same for an overdetermined
gystem (39.1) by means of Mayer’s transformation (38.7); this time, we
have to require that the right-hand sides of system (39.1) satisfy com-
patibility conditions (see [52]).

§ 41. Estimates of the difference between two solutions.

THrOREM 41.1. Let the right-hand members of system (39.1) and of
system

y i 1 1 i
('11-1) Uy = gi(wla yYny Uy eeey '”/m7 'ulyu

(i=1,2,..,

; i
» By Y1y - vy )

m; j=1,2,..,p)
be defined in a veyion, whose projection on the space of points (¥,
Yuy ey Yu) cOntaing the pyramid (39.2), and satisfy the inequalities

» L ‘
(g;!mr—for\, (-7 +LkZ |ge— il

(i=1,2

ey Ty

!f?L(Xy Y, U, Q)”g}(Xy Y, U, §)| < 03
yeymy f=1,2,..,0),
where oy(t, vy, ..., Vm) are the right-hand sides of a comparison. system of
type I (see §14). Denote by Q(t; H) = (w(t; H), ..., wn(t; H)) s right-
hand maximum solution through (0, H) = (0, 7y, ..., nm), defined in the
interval [0, a,). Suppose that U(X, ¥)= (ul(X, Y), .., WX, X)) and
V(X,¥)= (X, X), .., ™X, X)) are two solutions of syslem (39.1)
and (41.1) wspe(twely, of class D in the pyramid (39.2) (see § 37) and
satisfying initial inequality

(41.2) [U(Xy, X))V (X, V)| < H

Under these assumptions we have

(41.3) |U(X, Y)-V (X, (2‘|m, B; H)
Fa=1
in the pyramid (39.6).
Proof. If we put U(X,Y)= U(X, ¥)—V(X,Y), then T(X,Y)

satisfies all the assumptions of Theorem 38.1 and hence (41.3) holds true.
., § 42, Uniqueness criteria. The next theorem is an immediate con-
clusion from Theorem 41.1.

THEOREM 42.1. Let the right-hand members of system (39.1) be defined
in a region, whose projection on the SPACE (Lyy ., Bpy Y1y -y Yn) cONLRinG
the pyramid (39.2), and satisfy inequalities

(42.1) |fUX, Y, U,Q)—f(X,¥,T,Q)

» "
<(:'-‘(2“1:"_'59"'7 IU— ij') +L2[4k'_a’k| (E=1,2,..,m; i=1,2, D)y
r=1 k=1
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where oi(t, D1y ..., Un) are the vight-hand sides of a comparison system of
type I (see § 14). Suppose that

(42.2) ai(t,0)=0 (i=1,2,..,m)
and that
(42.3) Qty=0 for 0<ti< + o0,

where R(t) is the right-hand mazimum solution of the comparison system
through the origin.

Under these assumptions, Cauchy problem for system (39.1) with initial
data

(42.4) U(X,, Y) = &(Y)

admits at most one solution of class D (see § 37) in the pyramid (39.2).

Proof. For two solutions, satisfying the same initial conditions (42.4),
relations (41.2) hold true with H = 0; hence, by (41.3) and (42.3), their
difference is identically zero.

Remark 42.1. In particular, for oi(t, V) = K 3 v; (K > 0), inequa-
j=1
lities (42.1) mean that the right-hand sides of system (39.1) satisty a Lip-
schitz condition with regard to U.
Next we will prove uniqueness criteria of Kamke’s type.
THEOREM 42.2. Let the right-hand members of system (39.1) be defined

in @ region, whose projection on thé space (Byy ..., Tp, Yy -, Yn) CONIAINS
the pyramid (39.2), and satisfy inequalities

(425) |f(X,Y,U,Q)—fi(X, ¥, T,q)

P n
<o Y lar =), maxiu'~41) +2 Y 14—l
r=1 k=1
(t=1,2,..,m; §=1,2,..,p),
where o(t, v} is the right-hand side of a comparison equation of type II (of
type IIT) (see § 14).

This being assumed, Cauchy problem for system (39.1) with initial
data (42.4) admits at most ome solution of class D (of class D,) n the
pyramid (39.2) (see § 37).

Proof. For two such solutions U(X, ¥) = (u(X, ¥), ..., w™(X, X))
and V(X, Y) = (v'(X, Y),..,o™(X, Y)), put T(X,Y)= U(X,Y)—

~1 ~m,
~V(X, Y)= (X, X), .., 37X, Y)). Then we have

(42.6) U(X,, Y)= U(X,, ¥)—V(X,, ¥) = 0

icm
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and, by (42.5),

Y4 n
) < o X 1ar— o), max i) +2 3 i,
r=1 k=1
(t=1,2,..,m; §=1,2,..,p).
Further, by (42.6),

Umg(Xo; Y)= V?Ik(XO) Y) (k=1,2, ey M)

and hence, Writing w§ = (u,, ..., Uy,), vk = (v}, ..., 0},), we get ub(X,, ¥)
= v7(X,, ¥) and consequently

Taf Koy X) = i ( Xy, T)— 02 Xy, )
= f;"(XD) Y: U(‘Xoy Y): 'u/qi'(xoz Y))'_f}(XD’ Y: V(Xm Y); 7)1.1'(;1’0’ Y)) =0
(t=1,2,..,m; §=1,2,..,p).

Therefore, we see that U(X, Y) satisties all the assumptions of
Theorem 38.2 (of Theorem 38.3) and hence we have

T(X,Y)=0
in the pyramid (39.2), what was to be proved.

Remark 42.2. If, in particular, ¢(?, v) in Theorem 42.2 is the right-
hand member of the equation (B) from Example 14.2 or of the equation
from Example 14.3, we get uniqueness criteria of Osgood’s and Nagumo’s
type.

§ 43. Continuous dependence of the solution on initial data and on right-hand
sides of system. We now prove

THROREM 43.1. Let the right-hand members fiX, X, U, Q) of sys-
tem (39.1) satisfy assumptions of Theorem 42.1 in a region D. Suppose that
the right-hand sides gi(X, ¥,V ,Q) of sysiem (41.1) are defined in D. Let
U(X, Y) = (W'(X, X), .., w"(X, Y)) be the solution of system (89.1), of
class D (see § 37) and satisfying initial conditions (42.4) in the pyramid (39.2),
and V(X,Y) = (v*(X, X), ..., o™X, Y)) be a similar solution of sys-

tem (41.1) with initial data
(43.1) V(X,, ¥) = ¥(T).

Under these assumptions, to every s >0, there is a 6 > 0 such that if

43.2) |fi(X,Y,U,Q)—gi(X,Y,U,Q)|<?
(E=1,2,.,m; j=1,2,..,p)
in D and
|8(Y)—¥(Y)|< 4,

(43.3)
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where A = (3, ..., 0), then we have
{43.4) |U(X, ¥)-V(X, Y)|< E,

where B = (&, ..., &), in the pyramid (39.2).

Proof. Due to Theorem 10.1, to ¢ > 0 we can choose & > 0, so that
the right-hand maximum solution Q(¢; H, 6) = (y(t; H, 8), ..., wom(t; H, )
of the comparison system

(l%‘ = 0illy Vyy ey Tm) 0 (I=1,2, ;M)

passing through (0, H) = (0, 71, -5 7m), be defined in the interval [0, y)
and satisfy inequalities

{43.5) Qu; H, )< B for 0<t<y,
provided that
{43.6) 0 H<24.

Suppose that (43.2) and (43.3) hold true with the above chosen 6;
then, by (43.3), we have

|U (X, Y)=V (X, V)| < H
with some H satisfying (43.6) and, bj; (42.1) and (43.2), we get

)I

// \

(X, ¥, U,Q)—gi(X, X, U,

‘M‘ <

n
— &, U= D) +0 42 D) 10—
k=1 .
(i=1,..,m i=1,2,..,p)
in the region D. Hence, by Theorem 41.1, inequality

ge

(43.7) U(X, 1)-7(X, T)| < 2
r=1
holds true in the pyramid (39.2). From (43.5) and (43.7) follows (43.4).

Remark 43.1. All theorems of §§ 39-43 arve true if, in place of the
pyramid (39.2), we have the zone

|2~ |5 H 6)

v
(43.8) D 1@ =& < ¥, Yy ., yu arbitrary,
r=1
provided that the solution be continuous and possess Stolz’s differential
in (43.8) and in Theorem 42.2 their derivatives with respect to z; be,
in addition, continuous for X = X,. This remark is an immediate con-
sequence of Remark 38.1. :
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§ 44. Estimate of the error of an approximate solution. In this section,
like in § 40, we restrict ourselves to the Cauchy problem for equation (40. 1)
with initial conditions (40.2). We will indicate a procedure by which we
can evaluate the error when, instead of the solution of a given (“difficult
to solve”) problem (40.1), (40.2), the solution of an approximate (“easy
to solve’) omne is taken.

Let the right-hand member f(z, ¥, u, Q) of equation (40.1) and the
initial funetion ¢(Y) satisfy assumptions introduced in § 40.
Consider the approximate (‘“‘easy to solve”) equation

(44.1) Uy = (B Yuy ooy Yny Uy Uyyg ony Uhyy,)
with ¢(z, ¥, u, @) defined in the cube (40.3) and the approximate initial
condition
(44.2) (0, Y) =9(X).
Suppose that

(443)  |g(@, T, u,Q)—g(@, T, %, Q) <&l ju—a)+M D |¢e—Til
k=1

where &(t, v) is the right-hand side of a comparison equation of type I
(see § 14). Let v(2, Y) be a solution of the approximate problem (44.1),
(44.2) in a pyramid
o} <&, |ml<@—Mp| (k=1,2,..,n).
Suppose finally that the limitation
(44.4) [flo, Xy u,Q)—g(x, X, w, Q)| < h(lal, |ul, |Q])

is known, where h(t, v, ¢, ..., ¢s) satisfies condition W, with respect to
(V5 @1y oy gn) (see § 14), and
(44.5) lo(X)—w»(X)] <.

Under these hypotheses we can evaluate the difference between the
solution u (2, ¥) of problem (40.1), (40.2), which is sought for, and the
approximate one o(w, ¥). We do it in two steps.

I step. Estimate of the solution and of its existence domain. Following
the results of § 40 we evaluate the pyramid (40.4), in which u(», ¥) is
of class (", and find the functions y(#) and Pi(t) for which inequalities
(40.14) hold true. The functions « (@, ¥) and v(m Y) are then both defined
in the pyramid
(44.6) || <min(6,3), |y <min(e,d)— M|z (HF=1,2,..,7).

II step. Evaluation of the ervor. Solution u(wz, ¥) satisties obviously
the equation
(44.7) Uy = G, Ty Uy Uyyy oery Uy

7. Szarski, Differential inequalities 9
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where
§(w, Y,u,Q) =g, Y,u, Q)+
‘f"[]c(wy Y, u(x, ¥), wy(z, Y))—g(:o, Y,u(x, X), up(o, Y))] .
By (44.3), (44.4), (40.14) and by the condition W, imposed on k,
we get

(448)  lg(@, T, u,Q)—F@, ¥ u,Q1<c(|m\,1u~m>+Mll_}:’l‘tqk~mz,
where
o(t, ) = G(t, 'U)+h(ta Y (), Bult)s oy ﬁn(t))

is the right-hand member of a comparison equation of type I (see §'1-L).
Denoting by w(f) its right-hand maximum solution through (0, %), defined
in an interval [0, o), we conclude, by (44.5), (44.8) and by Theorem 41.1
applied to equations (44.1) and (44.7), that inequality

w(z, ¥)—v(z, Y)| < o))
holds true in the pyramid (44.6) for |#| < min (4, 3, @p). This ig the estimate
of the error that was sought for.
§ 45. Systems with total differentials. A system with total differentials
(48.1)  ub, =X, ', . w™) (E=1,2,.,m;§=1,2,..,p)
or shortly
m
= DX, uM Ay (i=1,2,..,m)
i=1
is a particular case of the overdetermined system (39.1) dealt with in
the preceding paragraphs. Cauchy initial conditions for system (45.1)
have the form
(45.2) w(Xy=aw (1=1,2,..,m).

Now, it is clear that all theorems of §§ 41-43 hold true for the Cauchy
problem (45.1), (45.2).

CHAPTER VIII

MIXED PROBLEMS FOR SECOND ORDER PARTIAL DIFFERENTIAL
EQUATIONS OF PARABOLIC AND HYPERBOLIC TYPE

In the first paragraphs of the present chapter we deal with parabolic
solutions (see the subsequent definitions) of nonlinear systems of second
order partial differential equations of the form (see [53] and [54])

i g 1 m i i i i
U =y Bry ey By Wy ey U™y Uy eany Uy Usiy s Uiy ey Ui, )
(i=1,2,..,m)),

where the ¢th equation contains derivatives of only one unknown fune-
tion w'. We discuss a number of questions concerning mixed problems
in a region D C (f, @y, ..., %) of type O (see § 33). In particular, using
the theory of ordinary differential inequalities we treat questions referring
to mixed problems like: estimates of the solution, estimates of the dif-
ference between two solutions, uniqueness eriteria, continuous dependence
of the solution on initial and boundary values and on the nght-hand
sides of system and, finally, stability -of the solution. ‘

In the last paragraphs we derive, by means of ordinary dﬁferentlal
inequalities, energy estimates of Friedrichs-Levy type for the solution
of a system of linear hyperbolic equations (see [51])

ch: a';k( ua:jxk = 22 bd 'uq:, +2 X X)u ‘+‘f
Jk=1

(i=1,2,..,m),
=17=1 '

where the ith equation contains second derivatives of only one unknown

function .

§ 46. Ellipticity and parabolicity. To begin with, we recall the defini-
tion of a positive (negative) quadratic form and prove, for the convenience
of the reader, a lemma.

n
A real quadratic form in Ay, ..., A, D @il (s = az) is called
fik=1
positive (negative) if for arbitrary 4, ..., 1, we have
n
Z ajkljlk >0 (< 0)
jiE=1
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