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and, by Theorem 15.4,
(32.14) Ny (8 —aoll < w(2) 4
where p(0) = 0 and () is the right-hand maximum solution of
W =[G +olt, pt)]ut [20(, o) +26")]p0) +F (1) .
By Lemma 32.1, applied for
oty u,v) = 20(t, 0)0+26G )0+ F(t) +[o(t, v)+G()]u

we get p(t) = ¢(t) which, by (32.14), completes the proof.
Tt follows from the above theorem that if @, is given, then [0, a] is
determined by %, f(¢, #) and by (t, %). On the interval [0, o] we get then

oza(t) — 2ol < @ (2)

if @4(t) = @,. Hence {z,(t)} is equibounded on [0, o]. We may then evaluate
a priori the interval of equiboundedness with a special choice of constant
initial function #,(t) = z,.
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CHAPTER VI

SOME AUXILIARY THEOREMS

The theory of ordinary differential inequalities, developed in Chap-
ter IV, enables us to get estimates for functions of one variable. Now,
in the subsequent chapters we are going to deal with applications of
ordinary differential inequalities to partial differential equations. Since
solutions of partial differential equations are funetions of several variables,
we will have to associate with a given function ¢ (¢, X) = ¢ (¢, 21, ..., @)
a funeticn M (¢) of one variable only, so that ¢(f, X) < 3 (¢). In this way,
an estimate from above obtained for the function M (), by means of
ordinary differential inequalities, will yield automatically an estimate
from above for the function ¢(¢, X).

§ 33. Maximum of a continuous function of 71 variables on n-dimen-
sional planes. To begin with, we introduce the definition of a region of
special type.

Region of type C. A region D in the space of points (£, @, ..., #n)
will be called region of type C if the following conditions are satisfied:

(a) D is open, contained in the zone 1, < i < t+T1' < 4 oo, and the
intersection of the closure of D with any closed zone fo <<t <t +T
is bounded.

(b) The projection §; on the space (@, ..., #:) of the intersection of
the closure of D with the plane ¢ = %, is, for any ¢ « [%, t, +T'), non-empty.

(¢) The point (t, X) being arbitrarily fixed in the closure of D, to
every sequence t, such that f, e [%, #, - 7T') and ¢,—1, there is a sequence X,,
so that XY, eQ;, and X,-»X.

Exampres 33.1. () Let G be an open, bounded region in the space
(#1 ..., &z). Then the topologiecal product D = (1, {,+1') x G is a region
of type C. '

(B) Another example of a region of type € is a pyramid defined
by the inequalities

h<t<ty+T, jo—a<a—Lit—%) (=1, 2y, W),

where 0 <L < + o0, 0 < a; < 4 oo and T < min(ay/L).
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(y) Put
D={tX:0<t<l, 0<s<2},
Dy={tX):1<t<2, 0<<1},
D =D, uD,.
Then D is not a region of type C.
In fact, condition (c) is not satisfied, for example, at the point (1, 4).
TeEOREM 33.1. Let ¢(t, X) = ¢(t, @y, ..., &) be continuous in the
closure of a region D of type C and put

M(t) = max p(t, X)
XeS;

for  t<t<t,+T.

Then
1° For every t* e[ty, t,+T) there is a point X* ¢ Sis such that

(33.1) M) = p(t*, X*).

2° If (33.1) holds true for an interior point (t*, X*) ¢ D and if p,(t*, X*)
exists, then )

(33.2) D™ M (*) < puft*, X¥) .

3% M(t) is continuous in the interval [ty t,-~T).

Proof. Because of conditions (a) and (b), satistied by a region of
type O, §; is a non-empty, compact set for any i e[y, %, +T); hence, by
the continuity of ¢(t, X), follows 1°.

Now, let (33.1) hold true for an interior point (t*, X*) ¢ D and suppose
that @ft*, X*) exists. Choose a sequence ty, 80 that 1, <%, t,—>#* and
(33.3) D™ M(*) = lim %(”?;ﬂfm’“) .

500

The point (t*, X*) being interior we have (t,; X*) € D for v sufficiently

large and
i Py X*)—g(t*, X*
(33.4) lim ’tvﬂ_;ﬁ(_) =, X

On the other hand, by the definition of I (?)

- and . :
sufficiently large we have by (381), for v

(33.5) M ()= M) _g(ty, X*)—g(t*, X¥)

1, —1* o= 1,—1* .

From (33.3), (33.4) and (33.5) follows (33.2) and thus 2° is

Next, fix te[t),%+7T) and take an arbitrar
se
such that ¢,—»t. v eduence h

proved.

elty, to+1)
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To prove 3° it is sufficient to show that there is a subsequence Ty,
such that . :

(33.6) M(t,) M),

By 1° there are X, e §j, and X e §; such that

(33.7) M) =ot,X,), ME)=gt, X).

By condition (a), there exists a subsequence f,,l‘ such that f,#—>f €f;.
Hence, by the continuity of ¢(t, X), we get

(33.8) 9lt,, X, ) >0 (t, X) .

In view of (33.7) and (33.8), relation (33.6) will be proved if we show
that

(33.9)

p(t, X) = M) .
By condition (¢), since (¢, X) e D and ty, =1, there is a sequence X,P
such that X, e S’"p and X, —X. Because of continuity we have, by (33.7),

(33.10) Dlis,y X))t X) = M (D).
Further, by the definition of M (f) and by (33.7), we get
Pt X,) < M(t,) = glty,, X))
Hence, from (33.8) and (33.10) it follows that
M) <o, X).

The last inequality together with the obvious inequality (by the
definition of M (1)) N
M) = e(t, X)

yields (33.9), which completes the proof.

Remark 33.1. Condition (¢c) is essential for the continuity of func-
tion M(¢) in Theorem 33.1. Indeed, take for D the region from the
Example 33.1, (y) and put

for 0<t<2,0<2<]1,

for 0<i<1l,1<<e<2.

tp(t,w)={mgl

Then ¢(¢, #) is continuous in the closure of D, but M (t) is discon-
tinuous for ¢{ =1 gince obviously we have M(#) =1 for 0 <t <1 and
M(t)=0 for 1<t <2

Remark 33.2. It is easily seen that if in point 2° of Theorem 33.1
the derivative gi(t*, X*) does not exist, then (33.2) holds true with ¢
replaced by Dini’s derivative D~ with respect to .
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§ 34. Maximum of the absolute value of functions of 741 variables on
5 dimensional planes. We prove .

THEOREM 34.1. Let the functions ¢(t, X) (1 =1, 2,
in the closure of a region D of type C (see § 33). Put

-y k) be continuous

W(t) = max {max |‘pl(t7 X)'} ’
1 XeS;

() = max g, X)
XeS;

1=1,2,..,k),

N;(t):glﬁg}f (—@lt, X)) (@=1,2,..,k).
Under these assumptions the function W (t) is continuous on the interval

[toy to-+T') and for every t e [t, t,+1T) there is an indew j and a point X ¢ §;
such that either

(34.1) W(t) = Myft) = ps(t, X), D W(5) < D™,
or
(34.2) W) =N0) = —out, X), D W) <D Ni1).

Relations (34.1) or (34.2) are true with D™ replaced by D™.

Proof. Continuity of W(t) follows from Theorem 33.1, 3°. Fix
a tety, t,+T) and take a sequence ¢, such that t, <1, {,—¢ and

D™W(t) = hmw .

#—>00 ty—1

(34.3)

Obviously, for every » there is an index §, and i ¢
et j» and a point X, € 8y, suchA

(34'4) W(t") = ij(t,) = ‘Pi,.(tw Xv) E]
or
(34.5) W(t.) = Ny (b) = —¢;,(t, X,) .

) It is clear ‘c:hat for 'mﬁ%litely many indices » we have either (34.4)
with the same index, say j, or (34.5). Taking, if necessary, a suitable
subsequence we may suppose that, for instance,

(34.8) W(t) = Ms(t,) = ¢s(t,, X,)  for »=1,2,..
Further taking, if necessary, another subse
he quence we ma;
(by condition (a) of a region of type ) that v Hppee
(834.7) X,»Xeh.
By (34.6), (34.7) and by the continui q
o gl , ( ) y the continuity of W (1), M;(t) and ¢;(t, X),

(34.8) W) = My(t) = gi(t, X).
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On the other hand, from (34.3), (34.6) and (34.8) it follows that

Wt)— W) M{ty) — M (1)

DW(t) = lim = = lim =X < D7) -

tv‘t Y00

The last inequality together with (34.8) gives (34£.1). For D" the
proof is quite similar.

§ 35. Maximum of a continuous function of several variables on plane
sections of a pyramid. Here we get stronger results than those of Theo-
rem 33.1, taking for the region D a pyramid and imposing stronger regula-
rity requirements on the funetion o(t, X).

TarorEM 35.1. Let ¢(t, X) be continuous in the pyramid
(i=1,2...,n),

(35.1) |2i—&d] < ag—L{t—1)

where 0 KL < 4 oo, 0 << ar< + o0 and I'< min (ay/L). Put
i

h<t<t+T,

M) =max g(t, X) for t,<t<{(+T,

XeSt .
where Sy, is the projection on (@1, ..., &) of the intersection of the pyramid
(83.1) with the plane t =1t,.

Under these assumptions,
1° For every 1€ (ty, to+T') there is a point X ¢ 87 such that

~ ~

(35.2) @) =@, X)

and the following implication holds true: if either

I (&, X) is an interior point of the pyramid and the derivatives lt, X),
on(t, X) (1 =1,2,..,n) exist,

~ oy

or

. (1, X)is a point on the side ¢ surface of the pyramid and g (t, X) possesses
Stolz’s differential at (t, X),

then

DM@ <oll, H—L Y lgalt, |-

=1

(35.3)

20 If, moreover, @it, X) ewisits for fp <t <t-+e and is confinuous
with respect to (¢, X) for ¢ =1, then there is a point X, e Sy such that

(35.4) D* M (1) < @ultey Xo) -

Proof. By Theorem 33.1, 1° there is a point X 87 such that (35.2)
holds true. Suppose first that Iis true. Then, ¢(t, X) attaining its maximum
at the interior point X and possessing there first order derivatives, wehave
(i =1,2,,n).

(35.5) Palt, X) =0
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On the other hand, by Theorem 33.1, 2°, we get

(35.6) DM@ < et X).

Relations (35.5) and (35.6) imply (35.3).

Suppose now -that IT holds true; then, changing—if necessary—the
numbering of variables, we may assume that

Byp—p = —L(“to) P=1,2,..,%),
(35.7) By — g = — g+ L({T—1,) (@=F%+1, .., k+1),
[ Br—,] < ar—L(t—1) (r=%k+1+1, ..., n).
Introduce the mapping
al@i— &) .
t=1, ni=m. (’b=1,2,...,’)b),

which transforms the pyramid (35.1) into the parallelepipede

(35.8) L<ti<t+T, |ml<ar (i=1,2,..,n).

Put in (35.8)

p(, H) = p(, 71y ..., M)
o, —L(t—1 S — —
—(p(t ib'l—rnl( 1—L( o)), , “+77 (an L(t to))) .
& an
Then

M) = mai_xy’(t) H),

HeS;

wherfe 8§, is the projection on (M1y -+ 7m) of the intersection of the paral-
lelepipede (35.8) with the plane ¢ =1,. Write

~ as(Ti— 04) R
P = =1,2,.. .
v ai—L(G—1,) (@ 12y 0y M)

Then, by (35.7), we have

(35.9) =0, Tp=—ag, [F|<a,.
By our assumption that IT holds true, #(t, X) possesses Stolz’s dif-
ferential at the point (t x). Therefore, y,(f, H) = 1p¢( s MLy een

exists
and ) 77n)

n

w(t, B) = o, X)L

=1

_‘Pz‘{(t i) y
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whence, by (35.9),
(35. 10)

w, B) = o 1)— LZ Peulf, T)+ LZ%q(t %)- Z i, X

By an argument similar to that used in the proof of Theorem 33.1,
2° we get
(35.11)

D <nd, H).

Now, consider the function of one variable

@&, Byy oors Bpiy Lpy Tpt1y vy Tn)

in the interval
[Zp—ap ‘(".Il(’t\"' to)y @p+ap—L(I—1,)] -

Since this function attains its maximum at the right-hand extremity
&, = #p+ap—L({—1,) of the interval, we have

(35.12) Puslly X) > 0

In a similar way we obtain
‘?’zq(?’ X )<0,

From (35.10), (35.11), (35.12) and (35.13) follows (35.3). Thus part 1°
of our theorem is proved.

Suppose now that ¢; is continuous for ¢ =1,. Take a sequence 1,,
1, > 1y, t,—1, such that

{35.13) oty ) =0.

o M (1) — M (fo)

(35.14) —

DM (t) =1
and leb M (1) = p(ty, X,), where X, ¢S,

@ (ts, Xo)— (b, X,)
1,1,

Then we have

Mt)— M)
ty—1y

(35.15) = gt X)),

where f, < 7, < t,. We may suppose—taking, if necessary, a gsubsequence—
that (3, X,)—>(ty, X,), where X,e 8. Then, by the continuity of ¢
for t =1,, we get

(35.16) Lim gy, X,) = oulte, Xo) -

Relations (35.14), (35.15) and (35.16) imply (35.4).

Remark 33.1. It is not difficult to comstruct a counter-example
showing that continuity of ¢ at t, is essential for part 2° of Theorem 33.1.


Yakuza


110 CHAPTER VI. Some auxiliary theorems

Remark 35.2. It is easy to check that if (t X) is an interior point
of the pyramid and q);(i X ) does not exist, then (35.3) holds true with
(p,(t X) replaced by Dini’s derivative D™ of ¢ with respect to t.

§ 36. Comparison systems with right-hand sides depending on parameters,
To close the present chapter we prove rather special theorems which
will be needed in Chapter VII.

THEOREM 36.1. Let the functions oi(t, V) = ou(t, v1, ..., ¥) (1 =1, 2, ...
-.., m) be the right-hand members of a comparison system of type I (see § 14).
Denote by  Q(t; H) = (oyt; H), ..., om(t; H)) its  right-hand mazimum
solution through (0, H) = (0, 7y, ..., 1m) in the interval [0, a(H)). Consider,
for an arbitrary 1> 0, the comparison system of type I

d'm

By G =dadt, vy ey ) (i=1,2, ., m).

inder these hypotheses, Q(it; H) is the right-hand mazimum solution
of system S(1) through (0, H) in the interval

(36.1) 0<t< “"&H—) .
Proof. Observe that if V(i) = (v(),..., va(t)} is any solution of

system §(1) through (0, H) in an interval [0, y), then V(2) = (vy(21), ...

., (M)} is obviously & solution of system S (4) through (0, H) in the
interval [0, y/2). In particular, Q(i; H) is a solution of system §(4)
through (0, H) in the interval (36.1). Hence, the theorem will be proved
if we show that for any solution ¥ (1) of system S (1) through (0, H), defined
in an interval [0, %), we have

(36.2) Vo <Quu H) for  0<t<min(y, o)) .

For 1 = 0 it is trivial. Now let >0 and let 7(t) be any such solution;
then V(i) = V(#2) is a solution of system §(1) through (0, H), defined
in the interval [0, 7). Hence we have

V() <Q; H) for 0<t<min (A7, ao(H)) ,
which is equivalent with (36.2).

TEEOREM 36.2. Let o(t,v) be the right-hand side of a cCOMParison
equation of type II (see §14). Then, for any A >0, the equation

(386.3) gt = Ao (4t, v)

is a comparison equation of type II.
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Proof. Let ¥(f) be any solution of (36.3) satisfying the condition
lim%(#) =0.

10

Then, obviously, v(t) = F(#/2) is a solution of the comparison equation

of type IL
dv

F =0o(t,v)

and satisfies condition lim v(¢) = 0. Hence, »(f) = 0 and consequently

-0
#(t) = 0, which completes the proof.
In a similar way we prove
TEEOREM 36.3. Let o(t,v) be the right-hand member of a COMParison
equation of type III (see § 14). Then, for any 1> 0, equation (36.3) is & com~
parison equation of type IIL
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