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for 1, <t <y, where P(t) = (pu(t), ..., vult)) is continuous on [ty, y). This
being assumed, we have

(22.8) D) P +Q,)  for fh<t<min(y, o),
where Q,(t) is the right-hand mawimum solution through (t,, 0, ..., 0) of
the system

B oty )+ 95, sl F) (=1,3,000),

defined on [ty o).
Proof. Put

G, Y)=aft, PM)+¥) (i=1,2,..,n).

The funetions 5y(¢, ¥) are continuous and satisty condition W in
the region D.
If we write
@(t) = gi(t)—wi(t) (E=1,2,..,n),
then, by (22.7), we have

t
B0 < [, §i0), oy B0 dr (G=1,2,..,m).

)

Therefore, we see that &(t), F(t, ¥) (i=1,2,..,n) satisty all the
assumptions of Theorem 22.1 in the region D with (t,, ¥,) = (%, 0, ..., 0).
Hence we have

F(1) <Qt) for 1, <t<min(y,a),
which is equivalent with (22.8).

CHAPTER V

CAUCHY PROBLEM FOR ORDINARY DIFFERENTIAL EQUATIONS

In the present chapter we give a number of applications of results
obtained in Chapters ITIL and IV to different questions concerning the
Cauchy problem for ordinary differential equations. In particular, we
find: estimates of the solution and of its existence interval, estimates
of the difference between two solutions, estimates of the error for am
approximate solution and uniqueness eriteria. Moreover, we discuss con-
tinuous dependence of the solution on initial data and on the right-hand
sides of the equations, Chaplygin meéthod and approximation of solutions
of ordinary differential equations in a normed linear space.

§ 23. Estimates of the solution and of its existence interval. We prove
TEROREM 23.1. Consider a system of ordinary differential equations

. dy ,
(23.1) ﬁ = Jil@, Yy s ¥a)  (i=1,2,..,0).

Suppose the right-hand members fi(z, X) to be defined in the region
(23.2) lo—m) <h, |yi—dl<he (=1,2,..,n)
and to satisfy the inequalities
(23.3) [fi(e, D) < oullo—a|, [Y—To) (i=1,2,..,n),

where Yo = (Y1, ..., Yn), and oi(t, ¥u, ..., Yn) are the right-hand members of
a comparison system of type I (see § 14)

a .
(23.4) dlt‘=a,(z,y1, ey ¥n) (E=1,2,..,n).

Denote by Q(i; H) = (wy(t; H), ..., ou(t; H)) the right-hand mazimum
solution of (23.4) through (0, H) = (0,7, ..., 7s), defined in the inierval
[0, @). Suppose X (@)= (y,(®), ..., yu(x)) is a solution of system (23.1)
satisfying initial inequalities

(23.5) [Yilwo)— sl <m<he  (1=1,2,..,m)
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and reaching the boundary of (23.2) by both ewiremities (see § 7). Denote
by t; the least root of the equation in t

wi(t; H) = hs

if such a root exists in the interval (0, ay); if it dves not exist, put t; = + co.
Under these assumptions the solution Y (x) ewists in the interval

(23.6) |@— 2| < ho = min (A, ay, byy «ey tn)
and satisfies there the inequalities
(23.7) X (2)— Y| < 2(lo—ul; H) .

Proof. Let (my—a, s+ pB) be the maximal existence interval of
¥ (z) and put

D (@) = (p(®), e, 0(2)) = (Y2(@) G, -5 Yn(2) = i)
then we have, by (23.3) and (23.5),
9i(@)] = lyi(@)| = |file, Y(@)| < ollo—ml, |P@)]) (i=1,2,..,n)
in the interval (z,— a, z,+f) and
|0 (z0)] < H .

Hence, by Theorem 15.1, inequality (23.7) is satisfied in the interval

(23.8) | — @, < min(ay, a, f) .

Therefore, to complete the proof of our theorem it is enough to show
that the interval (23.6) is contained in (23.8). We may suppose that,
for instance, f < a; then we have to show that %, < 8. Suppose the
contrary, i.e. b, > 3; then the point 8 would belong to the interval (0, k)
and since wi(0; H) = #; < b, we would have, by the definition of #,
(23.9) wilf; H)<h (I=1,2,..,n).

Consider now the following compact set:
(23.10)  Jz—m| <8, |pi—wI<olf;H) (i=1,2,..,n).

By (23.9) and by the inequality § < hy < k, this compact set is (on~
tained in (23.2). On the other hand, in view of the inequalities B <t a,
B < hy < ap, the interval (23.8) is identical with |w—m,| < 8, and since
inequalities (23.7) are satistied in (23.8), we would have in particular

[Y ()~ Yo| < 2(lo—ml; H) < Q(f; H)
in the intcrval
(23.11) 0<p—ay<< B
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This means that the solution-path ¥ = ¥ (x) would be contained,
for z belonging to (23.11), in the compact set (23.10) which—as we saw—is
contained in (23.2). But this is impossible because the solution ¥ (z),
considered in (23.11), reaches the boundary of (23.2) by its right-hand
extremity (see § 7).

By an analogous argument, using Theorem 21.1 we obtain

TurEOREM 23.2. Consider a differential eguation of n-th order

(23.12) yo() = f(z, y (@), §' (@), .,y D))

Suppose its right-hand member f(x, Yo, Y1, <.y Yn—1) to be defined in
the region

(23.13) le—ml <h, ly—gii<hy (j=0,1,..,n—1)
and to satisfy the inequality
|f(t, Y)l < a(]m—mol, IY— Yul) B

where Yo = (Fo, Yuy ooy Yn—a)y A 0 (E, Yo, Y1y -y Yn—1) 8 the right-hand side
of a comparison equation (see § 20)

(23.14) YoE) = ot ¥ (1), (1), .., YY)

Denote by w(t; H) the right-hand mazimum solution of (23.14) through
(0, H) = (0, 795 M1y ooy 1)y defined in the interval [0, o). Suppose that
y(x) is a solution of equation (23.12) satisfying the initial inegualities

[y @) — sl <my<hy  (f=0,1,...,0—1)
and reaching the boundary of (23.13) by both exiremities (see § 17). Denote
by t; the least root of the equaiion in t
w(t; HY = Iy

if such a root exists in the interval (0, ap); if 4t does not exist, put t; = + oo.

Under these assumptions the solution y(x) exists in the interval

| — 2] < min (B, ay, tyy «vy tne1)
and satisfies the inequalities
|y a)— ;) < oD(|5— 2|5 H (j=0,1,..,n—1).

§ 24. Estimates of the difference between two solutions. We prove
THEOREM 24.1. Let the right-hand members of system (23.1) and of

the system

d1 ¥ .
(24.1) - = fol@, Y1y oy ¥n) (G =1,2,..,n)
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be defined in an open region D and satisfy the inequalities
(242)  Ifule, ¥)~File, D) ollo—al, [T=T) (i=1,2,..,m),

where oyt, Yy, ..., Yn) are the right-hand sides of a comparison system (23.4)
of type T (see §14). Suppose that ¥ (z) = (yu(a), ..., (:/n(a;)) and Y (x)
= (Ju(®), ..., Tulw)) are two solutions of systems (23.1) and (24.1) respectively,
defined in an interval |x—m| < y and satisfying the initial inequalities

(24.3) |¥ (20)— ¥ (20)| < H ,

where H = (01, ..., nm). Denote by Q(t; H) = (wyt; H), ..., wall; H)) the
right-hand mavimum solution of the comparison system (23.4) through (0, H)
and let it be defined in [0, a).

Under these hypotheses we have the inequalities

(24.4) | (2)— ¥ (2)| < 2(|o—al; H)
in the interval
(24.5) |2— | < min(y, a) .

Proof. In the interval |o—m,| <y put
P (2) = (pu(@), -, pa(@)) = (a(@)—Fa(®), ..., Yn(@)—Fu(@)) -
Then, by (24.2) and (24.3), we have
Ipi(@)] = lyio)—Fi@)| = |filw, Y (@)~ fule, ¥(2))]
<oille—m|, |D@)]) (=1,2,..,%),

and |D(z,)] < H.

Hence, by Theorem 15.1, inequalities (24.4) hold true in the inter-
val (24.5).

In a similar way, using Theorem 21.1 we get

TeEOREM 24.2. Let the right-hand member of equation (23.12) and
of equation

(24.6) yo(@) = (@, y(a), y'(@), ..., yo-2(a))
be defined in an open region D and satisfy the inequality
f(@, ¥)~Jl@, ¥)| < o(lo—ay, | Y- F|),

where a(t, Yo, Ya, .., Yn—) 8 the right-hand side of the COMPATISON equa-
tion (28.14). Suppose y(x) and Y(x) are two solutions of equation (23.12)
and (24.6) respectively, defined in an interval [6—mg| < y and satisfying the
initial inequalities

[y @e) G @) <ns (1 = 0,1,.,n-1).
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Denote by w(t; H) the right-hand maxvimum solution of the comparison
equation (23.14) through (0, H) = (0, 5,, Nay oory Mm—1) ond let 3t be defined
in [0, a).

Under these assumptions we have the inequalities

[y 2)—~§@)| < 0N lz—ay); H)  (j=0,1,...,n—1)

wn the interval
[ — | < min(y, a) .

§ 25. Uniqueness criteria. Continuous dependence of the solution of Cauchy
problem on the initial values and on the right-hand sides. As an immediate
consequence of Theorem 24.1 we obtain the following uniqueness eri-
terion:

THEOREM 25.1. Let the righi-hand members of system (23.1) be defined
in an open region D, containing the point (w0, Yo), and satisfy the inequalities

(251)  Ifle, X)~fi(w, V)| < ollo—a|, |[T—F) (i=1,2,..,n),

where oi(t, Yy, ..., Ya) are the right-hand sides of @ comparison system of type T
(see § 14). Suppose that

011, 0,...,0)=0 (i=1,2,..,mn)
and that
QEB)y=0 for 0<K<i<+o0,

where Q(t) = (wl(t), vy 0n(t)) is the right-hand mavimum solution of the
comparison system through the origin.

Under these assumptions system (23.1) admits at most ome solution
through (2, X,) in D.

Proof. Let Y (z) = (y:(®), ..., yn(#)) and YY) = @), ...\ Yal@)) be
two solutions of system (23.1), defined in some interval |o—a,| <  and
such that -

Y(m)= Y(m) = X,.

Then, by Theorem 24.1 (systems (23.1) and (24.1) are now identical)
and by our assumptions, we have

1Y (2)— ¥ (@)| < Q(lo—a]) = 0
and consequently :
Y (5) = f(m) for |z—am| <y.

Remark 25.1. In particular, the comparison system with

"
ity Yyy o 9n) =K Dy;  (E>0)
i=1


Yakuza


icm

74 CHAPTER V. Cauchy problem for ordinary differential equations

satisties all the assumptions of Theorem 25.1 and in this case i.nequalit'ie&
(25.1) mean that the right-hand members of system (23.1) satisfy a Lip-
schitz condition with respect to Y. ‘

Remark 25.2. What concerns uniqueness of the solution for m’> %y,
ie. to right from the initial point, condition (25.1) can be substituted
by an essentially weaker one, viz.

@) [fiw, )=z, T)Isgn @i~ 70) < ow—ay, Y= X])
t=1,2,.,n).

In this case the proof of uniqueness is achieved in. the following way.
Let yi(x) and Ji(e) (i =1,2,..,n) be two solutions issued from (2, ¥o)
and defined in some interval 0 <a—, < y. Put for 0 {1 <y

@ilt) = gz +)—TFalwo+1)]  (E=1,2,..,n).
Since @i(0) = |ylwe)—Fi(m)] = 0 (¢ = 1, 2, ..., n), it suffices, by The-
orem 11.1, to show that
(ii) pilt) < O'i(t: Pi(t)y ooy ‘p%(t))
for ¢ in the set Bom 1e (0, 7} ol) > 0.
Now, if T e By, then we have
gilt) = [yalero -+ 1) —Tulo + £)]sgm (Yol + 1) —Felwo +7)

in some neighborhood of 7 and consequently we get

~

() = [yi(mo+ 1) — Fi(wo+1)T5n (yala + 1) — Pila + 7)) -
From the last relation and from (i) we obtain (ii) for ¢ =14.
From this remark it follows, in particular, that for one equation

%=7(m:y)7‘

with f(z, y) decreasing with respect to y, we have uniqueness to right
from the initial point. Indeed, under this assumption equation

dy _

at
can be taken for a comparison one.

By Theorem 24.2, we get the next theorem.

THEOREM 253.2. Let the right-hand member of equation (23.12) be defined
in an open region D, containing the point (o, Yo, Y1y .oy Y1), and satisfy
the inequality

[f(z, V) =1z, V)l < o(lo—a), |[Y-T]),
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where o(by Yoy Yoy ooy Yn_1) s the right-hand side of a COMParison equation
(see § 20). Suppose that

o(t,0,...,0)=0
and that T

w(t)=0 for 0<t< + o0,
where w(t) is the right-hand mazimum solution of the comparison equation,
satisfying the initial conditions
0f0) =0 (j=0,1,..,2—1).
Under these hypotheses equation (23.12) admits at most one solution
satisfying the initial conditions
YNw) =9 (G=0,1,...,n—1).

Next we will show that under the hypotheses of Theorem 25.1 the

solution of system (23.1) depends continuously on the initial point and
on the right-hand sides.

THEOREM 25.3. Let the righi-hand sides filw, ¥) (=1,2,..,n) o
system (23.1) be continuous in an open region D and satisfy the assumptions
of Theorem 25.1. Let ¥ (z) = (yul2), ..., y,,(:v)) be the solution of system (23.1)
through (o, Yo) e D and assume it to be defined in an interval [2— | < a.
Suppose that the right-hand members?;(m, Y)(¢=1,2,..,n)of system (24.1)
are continuous in D and let ?(w; Y= (;171(50; 17), ey U5 f’)) be any

solution of system (24.1) through (z,, ¥) ¢ D, continued to the boundary of D
in both directions (see § 7).

Under these assumptions we have the following propositions:

1. To every positive y < a there is a positive & such that if ]f’— Yol <6
and

(25.2) fde, Y)~Filw, T) <6 (i=1,2,..,n)),
then the solution ¥ (z; ¥) of system (24.1) is defined in the interval
(25.3) [—a| <y .
2. To every &> 0 there is a positive 8, < & such that inequalities
Tilw; T)—yila)l <& (i=1,2,..,n)
are satisfied in the interval (25.3) whenever
Y=Y <6, e, V)—Tile, T)| <6, (i=1,2...,n).

Proof. For u > 0 consider the comparison system

(25.4) %fjt—’ =oilt, V)+u (1=1,2,..,m)
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and let Q(t; H, u) = (oyft; H, p), ..., oalt; H, u)) be its right-hand maxi-
mum solution through (0, H)= (0, %, ..., 7). Since-in view of our
assumptions—~there is 2(t; 0, 0) = Q(t) = 0 for 0 <t < + oo, we conclude,
by Theorem 10.1, that for any positive y < a

1° there is a positive & such that 2(f; H, p) is defined in the interval
[0, y] whenever u <6, 0 << (1=1,2,..,0),

20 lim Q(t; H, ) = 0 uniformly in [0, y].

Suppose (25.2) holds true with the above 4. By (25.1) and (25.2),
we have for any two points (z, Y), (z, ¥) eD
(25.5) |, T)—Fiw, D) < Ifslw, T)—file, D)+ i@, T)—Fio, D)
<Sofle—a, |[T—~F)+8 (6=1,2,..,0).
Suppose that
(25.6) 1¥— Tl < &
then, putting 7 = |§;—%:| we have
- (25.7) 0<

m=P—gl<d (E=1,2,..,n).

Denote by (a,—&, #,+ ) the maximal existence interval of ¥(z; 7).

We may assume that, for instance, 0 < f <&. Let f; and ¥ satisfy (25.2)
and (25.6). By (25.7), we have

[Fil@o; D) —gelan)l = Fi—ful = m<8 (i=1,2,..,m).
Hence, by (25.5) and by Theorem 24.1, we get

(25.8) ¥ (@; ¥)— Y (0)] < Q(lz—ul; H, 6)
in the interval
(25.9) |#— | < min(y, B).

By 2° we may assume that § was chosen small enough, so that the
compact set

(25.10) lo—a| <y, [Y-X(@)|<Q(o—a; H,?)

be contained in the region D. In order to prove assertion 1 of our theorem,
i~t is sufficient to show that f; and ¥ satisfying (25.2) and (25.6) we have
£ >y. Suppose the contrary, ie. F< y; then, by (25.8), the solution
path ¥ = ¥ (z; ¥) would be contained in the compact get (25.10) for
0 <#—a, < B, which is impossible since ¥ (x; ¥) reaches the boundary
of D by its right-hand extremity, Thus, assertion 1 is proved.

Now, take an arbitrary & > 0. By 2° there is a positive &, < & such
that for 0 <m<é, (=1, 2, <., ®) we have

(2511) ot H,8)<e in 0<t<y (i=1,2,..,n).

=N
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-1
-3

Suppose that
1¥—Y, <6, o, Y)=Tilw, T) < &

then by an argument similar to that used in the proof of assertion 1 we
eonclude, by (25.11), that :

(i=1,2,..,n);

[Yi(w; X)—yu(@)] < ollo—ag; H, ) <e (i=1,2,..,n)
in the interval (25.3). This completes the proof of assertion 2.

What concerns an nth order ordinary differential equation we have
the following )

THEOREM 25.4. Let the right-hand member f(z, Yo, Y1y -y Yn—-1) Of
equation (23.12) be continuoud in an open region D and satisfy the assump-
tions of Theorem 25.2. Let y(«) be the solution of equation (23.12) satisfying
nttial conditions

YN w) =9; (F=10,1,..,n-1)
and assume it to be defined in am interval |w— ] < a. Suppose that the
right-hand side ;fw(m, Yoy Y1y +ory Yn—1) Of equation (24.6) is conmtimuous in D
and let §(v; ¥) be any solution of equation (24.6), satisfying initial conditions

§@; ¥)=F; (1=0,1,..,n-1)
and continued to the boundary of D in both directions (see § 17).
Under these assumptions the following propositions hold true:
1. To every positive y < a there is a positive 8 such that if
Fi—gil <8 (=0,1,.,0-1), [|f(e, V)—T(@, V)| <38,
then the solution ¥ (x; Y) of equation (24.6) is defined in the interval
@] < .
2. To every ¢ > 0 there is a positive 8, < 6 such that the inequalities
[70(@; 1) ~ya) <e (j=0,1,..,n-1)
are satisfied in the interval |w— x| <y whenever
[Fi—gil <& (G =0,1,.,n=1), |f{z, T)=F(a, T)| < é.
Now, we are going to prove Kamke’s (see [14], p. 139) uniqueness
-eriterion which is more general than the one contained in ‘Theorem 25.1.
This time the much weaker assumptions will not assure, in general, the
continuous dependence of the solution on the initial point.
THEOREM 25.5. Let the right-hand members foz, Y) (i=1,2,..,n)
of system (23.1) be defined in an open region D, containing the point (z,, ¥,),
and satisfy the inequality

©512) Y\, V) —fdo, D <ollo—al, 3 lws=Fl) for o+,
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where o(t,y) is the right-hand side of a comparison equation of type III
(see §14). Then system (23.1) admits at most one solution through (wy, ¥,)
in D.

Proof. Suppose ¥ (z) = (i
are two solutions of system (2
satisfying initial conditions

(25.13) Y (1) =

Ya(@), -y Yu(®)) and V(@) = (i(2), .., Tal@))
3.1), defined in an interval |z—a,| < y and

Yiw)=7,.

Since the assumptions of our theorem are invariant under the mapping
& = —p+2g,, it is sufficient to prove that

(25.14) D lym) (@) = 0

im1
in the interval

(25.15) 0<a—m<y.
Put
k3
o() = ' Iydan+ 1) —Filwo-+ )]
for -
(25.16) 0<<i<y.

The function ¢(f) is continuous in the interval (25.16) and, by (25.13),
there is

(25.17) p(0)=0.
Further we have
(25.18) .D+(P( ) < 2 i) — Jl(wo)] = Z ey, o)—’fi(mn’ Y| =0.

12), we get for 0 <t <y

(2519) D_p(t) < ) 19i(@o+1)—Ti(zo+ )|

= > lfdleott, T(oo + ) ~Filos+1, Flao+0)| < o1, (1) -

From (25.17), (25.18) and (25.19

) it follows, by the third comparison
theorem (see § 14), that

P(t) <0

%n the interval (25.16). But, since ¢(t) > 0, we conclude that ¢(t) =
in (25.16) and consequenﬂy (25.14) is satisfied in the interval (25. 5)

icm
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Remark 25.3. If the comparison equation of type III is, in particular,
equation (B) from Example 14.2, then Theorem 25.5 gives Osgood’s uni-
queness criterion. Similarly, Theorem 25.5 contains, as a particular case,
Nagumo’s eriterion if the comparison equation is that of the Example 14.3.

Remark 25.4. In view of the Remark 14.3, Theorem 25.5 would
be false if property («;) of the comparison equation of type ITT were re-
placed by the essentially weaker property (,). Indeed, if we put

¢'(w)
——y for x>0,y>=0
Ha,y) = o@)” =
0 elsewhere ,
then for the equation
(25.20) ‘ZJ =f(a

and for the comparison equation (14.13) the assumption (25.12) of Theorem
25.5 is satisfied at the point (0, 0). However, there are two different solu-
tions of (25.20) through the origin, viz. y () = ¢(z) and ¥(x) = 0. In the
above counter-example the right-hand member f(z, ¥) of (25.20) was dis-
continuons for # = 0. It is possible to construct a similar example with
f(z, y) continuous in the whole plane [56].

Remark 25.5. In the case of one equation with a continuous right-
hand side Kamke’s uniqueness criterion is only apparently more general
than the criterion of Theorem 25.1. Indeed, the following result, due
to C. Olech [37], is true.

Let the function f(z,y) be continuous in the neighborhood of the
point (z,, y,) and satisfy there the inequality

If (2, y)—1f (@, §)| < o(lo—al, ly—71) @ F @

where o (¢, y) is the right-hand side of a comparison equation of type IIL;
then f(z, y) also satisfies an inequality

7 (z, y)—1 (@, P <G(lo—l, ly—F1),
where &(t, y) is the right-hand side of a comparison equation of type I
(see § 14) satisfying assumptions of Theorem 25.1.

Remark 25.6. Due to Theorem 15.4 it is easy to check that Theo-
rems 24.1, 25.1 and 25.5 arve true for a system (23.1) with # being a real
varviable, y; (¢ =1,2,..,%) being vectors in a linear normed space £,
fi(z, ¥) being vector-valued functions with values in £ and the absolute
value being substituted by the norm in £.

§ 26. Estimates of the error of an approximate solution. In this section
we describe a general method by which we can evaluate the error when,
instead of the solution of a given (“difficult to solve”) system, the
solution of an approximate (‘“easy to solve”) one is taken (see [607]).

for
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Let the 1"ight-hand members of the (“difficult to solve’) system

be continuous in an open region D containing the point

(26.1) = fu(@, Y1y +ey Yn) =1,2,..,n)

(29, Ty)

= (@, ff1y -v; §n)- Denote by ¥ (z) = (1:(@), ..., yu(®)} & solution of sys-
tem (26.1) through (z,, Y,). Suppose that the inequalities
(26.2) [fala, )| < Gi(lo—am|, [Y—Do])  (E=1,2,.., )

hold true, Fi(t, ¥, ..., Yn) being the right-hand sides of a comparison
system of type I (see § 14). Let 2(t) = (@(1), ..., (1)) be its right-hand
maximum solution through the origin. Consider the approximate (‘‘easy
to solve’) system

dys

dr

with right-hand sides continuous in D and let ¥(») = #u(@), ..., Fnl))
be its solution through (w,, ¥,) in the interval |z—a,] < p. Assume that

(26.4)  |gi(z, Y¥)— gi(=, )

where G,(t, 41, ..., ¥u) are the right-hand members of a comparison system
of type I (see §14). Suppose finally that the following limitation of the
difference between the right-hand sides of the given system (26.1) and
of the approximate one (26.3) is known

(265)  Ifde, V)—gi(o, ¥)| < hallo— a0, [T — )
where the functions hi(t, ¥, ...,
to Y (see §4).

Under all these assumptions we are able to evaluate the difference

between the solution ¥ (), which is sought for, and the approximate
one Y( )- We do it in two steps.

I step. Estimate of the solution and of ils emistence interval. In view
of (26.2) we evaluate, by Theorem 23.1, the existence interval

(26.3)

= gi®, Y1y ey ¥n)  (E=1,2,..,n)

<élje—aml, |T-F) (i=1,2,..,n),

(t=1,2,..,n),

¥a) satisfy condition W, with respect

(26.6) |2 — | < Iy
of Y(x) and Y (x) itself
(26.7) 1Y (@)~ Xo| < D(jo—a,))

3

in the interval (26.6).

IT step. Bvaluation of the error. Solution Y (2) of system (26.1)
satisfies obviously the system

d

(26.8) DT,y s ) (G=1,2, .., ),
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where
Oiz, ¥) = gula, ¥)+ [fi(m, Y () — gile, Y@)] (i=1,2,..,n).
By (26.4), (26.5), (26.7) and by the condition W, (satistied by hy),
we get
(26.9)  |gale, ¥)—File, T oi|— o], | X — 1’[ (1=1,2,..,n8),

where for oi(¢, 41, ..., ¥u) We can take any functions satisfying inequalities

s Un) + haft, (1))

and being right-hand sides of a comparison system of type L. Denoting
by Q1) = (wy(t)y ony wn(t)) its right-hand maximum solution through the
origin, defined in an interval [0, o), we conclude, by (26.9) and by Theo-
rem 24.1 applied to system (26.3) and (26.8), that

|Y (2)— ¥ ()]

(26.10)  o4(t, Y1y vy Yn) = éi(t; Yy e (t=1,2,..,m)

(26.11)

in the interval

< L(lz— )

|6— 5| < min (g, v, o) .

Inequalities (26.11) give the evaluation of the error that was sought for.

Exampre 26.1. To illustrate the procedure described above, let us
consider the case when the approximate system (26.3) is linear, its right-
hand sides being Taylor’s expansions up to order one of the right-hand
members of the given system (26.1). .

Agsume then that the right-hand sides f(z, ¥) of system (26.1)
are of class C?® in the cube

(26.12) ol <h, lyl<h (¢=1,2,..,n),
and let (z,, ¥,) = (0,0, ..., 0). Suppose that we have
(2613)  £(0,0,.,0)=0, Il Ifil 4, Ifaal, feul, lfoml <B

in the cube (26.12); then we get in (26.12)

ful& ’U“Z fw(fz-' f'/J'l

(@, X)| = |fi(=, X)=11(0, 0)| =

n
< Al + ) lwil) -
7=1
Hence, for 6i(f, ¥) in (26.2) we can take

=A(t+_§:w) (@

7=1

1,2,..,n).

J. Szarski, Differential inequalities


Yakuza


82 CHAPTER V. Cauchy problem for ordinary differential equations

The unique solution through the origin of the comparison system with
the above right-hand sides is

~ 1 R
@4(t) = oY) (endt—1—ndt) (i=1,2,..,n).
Since
~ 1 1)2 3
wi(t) = (’I’L;; ) (7?/54-!” +.} < %Atzendt ,

the unique root #; of the equation in ¢, @,(t) = h, is not less than that of the
equation }.A#en4! = h. The root of the last equation is, by its turn, not

less than
= min (h, l/% e*"—“‘/z) .

6 (¢=1,2,..,n) and, by Theorem 23.1, the
-y ¥n(®)) of system (26.1) through the origin

Hence we have #; >
solution ¥ () = (yy(2), ..
exists in the interval
(26.14) |2| < 6
and satisfies there the inequalities
(26.15)

Write

[Y:(@)| < Bl2l) < §A|aftenth  (1=1,2,..,n).

Jo=120,0,..,0), fi,=F(0,0,..,0)

and take for the right-hand sides of the approximate system (26.3)

y M)

n
0o, ) =ofst Y yifs, (5=1,2,..
j=1
By (26.13), we have then

n
<4 Dy~
F=1

and consequently for &; in (26.4) we can choose

=AZZ/¢

i=1

By Taylor’s formula and by (26.13), we get

%(m% +§ yjéa_z_j)(z)ff(f, E)] < %B(]m{ +§; [y,[)z .

|9z, X)—gi(a, )] (i=1,2,..,n),

(26.16) éi(t, ¥) (i=1,2,..,n).

(=, ¥)~g'(e, T)| =
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Hence, for h(z, ¥) in (26.5) we can put

Wia, 1) =1B(1+ X y) (i=1,2,.,m).
ji=1

Since in the interval (26.14) we have

(t ¢ t)) ( + tZenAt)z < 1 B (1 + :)"f Ahe'nAh)ztE

we can choose for o4(t, ¥) in (26.10) (see (26.16))

oft, ¥) = 00+4 Yy, (i=1,2,..,n),
j=1

where .
C = {B(1+3n Ahendh)?

Now, the only solution through the origin of the comparison systemv
with the right-hand members o4(t, ¥), defined above, is

wy(t) = (—,’?g—)g [e"‘“—l—nAt— (n;ilt)“‘]
= mAy [(n;i]tﬁ (nf!t)‘-!-...] < gtﬂe’”’ﬂ (i=1,2,..,n).
Therefore, we get finally
@) =) < L japerael (i=1,2,...,m)

in the interval (26.14), where 7;(z) (i =1, 2, ..., #) is the solution through
the origin of the approximate (in our case linear) system (26.3).

§ 27. Stability of the solution. We give here a stability criterion
which is an immediate consequence of Theorem 23.1.

THEEOREM 27.1. Let the right-hand sides of system (26.1) be cont'muous
in the region

Gy S@< + oo, Wf|<h

(G=1,2,.,n).

Suppose that fy2z,0,..,0)=0 (i=1,2, , 'n,) and

(27.1) |fe(z, X)) o
where oy(t, Y) are the mght-hand members of a comparison system pj.type I
(see §14). Assume that o4t,0,.:,0)=0 (i=1,2,..,n) and that the

null solution of the comparison system is stable (see [T], p. 314).
Under these assumptions the null solution of system (26.1) is stable.

6*

Solo—m, |Y)) (E=1,2,..,n),
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Proof. In view of the stability of the null solution of the comparison
system, there is an hy<< b such that whenever

(t=1,2,..,n),

then any solution w(t) of the comparison system, starting from the point
(0, H) = (0, %1, <., 7n), is defined in the interval [0, + co) and satisfies
the inequalities wi(t) <h (1 =1, 2, n). Hence, by (27.1) and by Th.eo-
rem 23.1, any solution of system (26 1) through a point (z,, Y) exists

0 y<hy

in the interval [z, +oo), whenever Y= Y1y +es Yn) satisfies the ine-
qualities N )
el <hy (1=1,2,..,n).
Moreover, for any such solution Y (v; ¥)= (pu(z; ¥), ..., yalw; 17))
inequalities
(27.2) |7 (@ )] < 2(a—a0; 1))

hold true, where Q(#; H) is the right-hand maximum solution of the
comparison system through (0, H). From (27.2) and from the assumptions
on the comparison system follows the conclusion of our theorem.

By the same argument we prove the next theorem.

TEEOREM 27.2. If, under the hypotheses of Theorem 27.1, we additionally
assume that the right-hand sides oi(t, ¥) of the comparison system do not
depend on t, then the null solution of system (26.1) is uniformly stable.

§ 28. Differential inequalities in the complex domain. In this section
we will obtain an analogue of Theorem 15.1 in the case when g2)
(E=1,2,...,n) are holomorphic functions of the complex variable #
in a dlBk [z~zo] <.

In order to apply here the theory of differential inequalities in the

real domain, we will have to consider real functions
Mty = ‘ ma!-xt|q>k(z)| for 0<t<y.
1Z—%|=

Therefore, we first prove a lemma on Dini’s derivatives D. My(t).
LeMMA 28.1. Let ¢(z) be holomorphic in the disk

(281) ]z_zoi <y
and put
A(t) = Jhax p(a) - for 0<t<y.
-2
Then, to every t e (0, y) there is a 3 such that
(28.2) B—al=t,
(28.3) M) =@,
(28.4) D_M()<|¢'@G).
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Proof. There exists, obviously, a 3 satisfying (28.2) and (28.3). Let
3 = &+ 1ef, ‘

where ¢ is the imaginary unit, and take a sequence i,, 0 < t, < ¥, 80 that
t, < t, t,—t and

(28.5) lim 1{_(”_”_“;_[(9 —D_M).
Put
v =2%+het (v=1,2,..).

Since, by the definition of M (3), there is

M(t) = lpG)l ,
we get, by (28.3),
y) — Mt —_
(28.6) M(ttf_tM(t)= (t_ltm)l\l(i‘ﬁyp(sl
lle@)—le®)] _lpG)—¢B) _ |eB)—¢()
STRST ST ey “ =3 l

Because of 3,—+3, relations (28.5) and (28.6) imply (28.4).

THEOREM 28.1. Suppose that D (2) = (py(2), ..., pu(2)) is holomorphic in
the disk (28.1) and satisfies initial inequality

(28.7) |9 ()| < H
where H = (11, ..., 7a), a8 well as differential inequalities
(28.8) loi(@)l < oulle—zl, [P(D)])  (*=1,2,..,n)

% (28.1), where ow(ty Yy, ..
sysiem of type I (see § 14).
Under these hypotheses we have

, Un) are the right-hand sides of a comparison

(28.9) |2(2)| < 2(|z—2l; H
in the disk
(28.10) [#—2| < min(y, o(H)) ,

where Q(t; H) = (wy(t; H), ..., wa(t; H)) is the right-hand mavimum solution
through (0, H) of the comparison system in the interval [0, ay(H)).
Proof. Put

My(t) = xmxti«pk(z)] M) = (Ms(t), ..., Ma(t))

50| =

(k=1,2,..,2),
for 0 <t < y. The functions My(t) are continuous and satisfy, by (28.7),
initial inequalities

(28.11) MO)<H.
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By Lemma 28.1, for any te(0,y) there is & 3 such that

(28.12) l3e—2ol =1, M) =|p(3x), D-Mxlt) < lgi(3e)l
) (F=1,2,..,n).
Hence, by (28.8), we have
(28.18) D Mx(t) < |pk(36)l < on(lge—2ol, [PGa)) (B =1,2,..,9).
Further, by the definition of Mx(t) and by (28.12), the following
inequalities hold true (see § 4):
k
192G < M) (k=1,2,..,n).
Therefore, in view of condition W, (see § 4), we have
(28.14)  oxllzr—=l,19GR)|) <oxlt, () (k=1,2,..,).
Inequalities (28.13) and (28.14) imply
(28.15) D_Myt) < oxlt, M(t) (k=1,2,..,n)

in the interval (0, y). From (28.11) and (28 15) it follows, by Theorem 9.3,
that

(28.16) M@t) < 2@ H)

in the interval 0 <t< min (y, a(H)); but inequalities (28.16) are equiv-
alent with (28.9) in the disk (28.10), which completes the proof.

§ 29. Estimates of the solution and of its radius of comvergence for
differential equations in the complex domain. This paragraph deals with
an analogue of Theorem 23.1 in the complex domain (see [58]). To start
with, we state an analogwe of Theorem 7.3, which is easily proved by
the method of successive appreximations.

TuEOREM 29.1. Let the right-hand sides of the system

d
(29.1) (Z—.: =fK2, #1y ey 2n)  (B=1,2,..,m)

be analytic functions of n-+1 compler variables (¢, 2y, ..., 2) in the domain
(29.2) =30l <k, lm—Sl<h (k=1,2,..,m)

and suppose that in (29.2)

(29.3) fle, 2 <M (k=1,2,..,n).

Under these assumptions the unigue solution Z(z) = ((2); .., 2a(2))
of system (29.1), satisfying initial conditions

(29.4) B =3 (k=1,2,..,n),
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is holomorphic in the disk
" . k'
(29.5) [8—3| < mm(h, ZIT) .
THEOREM 29.2. Suppose that the right-hand members Tu(2, 21y oery 20)

of system (29.1) are analytic functions in the complex domain
D: |s—z| <7, ox—2l<rs (bh=1,2,..,n)

and satisfy the inequalities

(29.6) 6z, 2)| < oulle—20l, |Z—2Z,)) (B=1,2,..,n),

where Zy = (&1, .., %) and ox(l, Y1, .., yn) are the right-hand sides of
a comparison system of type I (see § 14). Denote by 2(t; H) = (a)l(t; H), ..
very p(t; H )) its right-hand maximumn solution through (0, H) = (0,715 ceey )y
defined in the interval [0, af(H)). Suppose that Z(z) = (21(8)y vy 2n(2)) 45
a solution of system (29.1) satisfying initial inequality

(29.7) 1Z(20)—Z,)| <H< R,
where B = (ry, ..., 7). Denote by tx the least root of the equation in ¢
wr(t; H) = 7%

if such a root ewists in the interval (0, ay); if it does not ewist, put tx = + oo.
Under these hypotheses the solution Z(z) is holomorphic in the disk

(29.8) |2—2y] <79 =min(r, g, ty, ..., tn)

and satisfies there the inequalities

(29.9) |Z(2)— Z,| < Q(lz—#; H) .
Proof. Let
(29.10) le—ml<y<r

be the largest disk in which the solution Z(z) is holomorphic and put
P(2) = (‘pl(z)7 ey ‘Pn(z)) = (21(2)—51, ey zn(z)—é’n) .

The function @(2) is holomorphic in the disk (29.10) and, by (29.7),

satisfies initial inequality (28.7). By (29.6), we have in (29.10)
lpk(2)] = [2k(2)] = |fale, Z(a))] < onllo—2ol, | Z(e)—Zo)
=0k(]~—z0[,|¢z[) (k=1,2,..,n).

Hence, by Theorem 28.1, inequalities (28.9) are satisfied in the

disk (28.10) and consequently inequalities (29.9) hold true in the

disk (28.10). Therefore, to complete the proof it remains to show that
7o < y. Suppose the contrary is true, i.e. 7, > y; then ye(0, o) and, by
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the definition of tx, we have wi(y; H) < 7% (k=1,2, .., 7). Choose ¢', b
and b’ so that
(29.11) y <y <o,
(29.12) oy, ) <b<¥d <mpy (k=1,2,...,%)
and consider the compact domain
Dy le—g| <y, los—2kl <V (B=1,2,..,n).
Obviously D, C D and there is an M such that

(29.13) s, D<M in Dy, (h=1,2,..,0).
Put
_ . b —b
(29.14) » 7»:15—”, =g

and choose ¢ >0 such that
(29.15) o<y, y—g<min(h,ﬂ—) .
M
Let 3 =2,+yef be an arbitrary point of the circle |[2—g2| =y

and pub 3, = 2+ 06%, 3x = 2x(30) (k =1, 2, ..., n). Since inequalities (29.9)
hold true in the disk (28.10) and since ¢ < y < «;, we have, by (29.12),

(29.18) - |3n— 2l = lex(30) — &l < or([30—2; H)
=or{e; H) < op(y; H) Kb (k=1,2,..,5).
Consider the domain
Dy fo—3l <h, |se—8l <W (k=1,2,..,9),

with 7 and A’ defined by formulas (29.14). We claim that D, C D;,. Indeed,
by (20.11), (29.12), (29.15) and (29.16), we have

2=l <h=|z—2z] <|g—3]+|30—2%l <h+o

'Y“?’ !
+D<7’A7’+y=y;ry<y,,

o — 3l < B’ = 20— &l < [2e—3a] -+ [§—5n| < B L1

Therefore, by (29.13),

Ife(2, 2)| <A in D,

and, by Theorem 29.1, the unique solution y
L 291, we(®) (k=1,2,..,n) of
system (29.1), satistying initial conditions ( o)

(29.17) V) =8k =23  (k=1,2,..,n),
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is holomorphic in the disk (29.5). We claim that the last disk contains
the point 3 = &+ ye**. Indeed, by (29.15),

13
[3— 30| = y— ¢ < min|h, M)

but, in view of (29.17) and of the uniqueness of the solution of the Oauehy
problem, we have

pi(e) = exfe) (k=1,2,..,n)

in the intersection of the disk (29.5) and (29.10). That means that (e}
is the analytic continuation of #x(z) in the neighborhood of the point
3 = % +ye. Hence, 3 being an arbitrary point of the circle |z—z|
=y, it follows that Z(z) is holomorphic in a larger disk than (29.10),
contrary to the definition of the disk (29.10). This contradiction completes
the proof of the inequality 7, < y.

§ 30. Estimates of the difference between two solutions in the complex
domain. Here we prove an analogue of Theorem 24.1.

TaEOREM 30.1. Let the right-hand sides of system (29.1) and of system

dzk ~

(30.1) =Tule, 21y ey tm)  (B=1,2,...,1)

be analytic in an open region D and satisfy the inequalities
(30.2)  Ifal(2, Z)—Talz, D) < oxlle—2l,1Z—2])  (k=1,2,.., %),

where ox(t, Y) are the right-hand members of @ oompamson system oj type I
(see § 14). Suppose Z(2) = {.(2), .- » 2n(2)) and Z(z) = (B#), ..., Zule)) are
two solutions of system (29.1) and (30 1) respectively, holomorphw in a disk
le—2,| < y and satisfying the indtial inequalily

(30.3) |Z (@)~ Z(z)| < H,

where H = (ny, .., 7). Let Q(t; H) = (wy(t; H), ..., on(t; H)) be the right-
hand magimum solution of the comparison system through (0, H), defined
in the interval [0, a,).

Under these assumptions we have

(30.4) |Z(2)—Z ()] < Q(12—2; H)
in the disk
(80.5) |2 — 2| < min(y, a) .

Proof. Put in the disk [¢—2,| < ¥

B(2) = (p(2), - pule)) = (&) —(2)5 ) #n(2) —Zn(2));
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then, by (30.2) and (30.3), we have

lpi(e)] = |24(2)~Zi(e)] = |f2(2, Z(2) —fales Z(2) | < orlle—sol, |B(2)))

(k=1,2,..,n)
and
|2(x)| < H.

Hence, by Theorem 28.1, inequalities (30.4) hold true in the disk
(30.5).

To close this section we make the following remark. All the results
of § 26 are valid for systems (29.1) of ordinary differential equations in
the complex domain. Indeed, in our considerations in § 26 we used only
Theorems 23.1 and 24.1, while their analogues in the complex domain,
viz. Theorems 29.2 and 30.1, have just been proved in § 29 and § 30.

§ 31. Chaplygin method for ordinary differential equations. We consider
the differential equation

(31.1) w' = (¢, u)
with the initial condition
(31.2) %(0) = uy ,

where f(f, u) is continuous for 0 <t < o and arbitvary w. Suppose that
fu(ty ) 15 continuous in (¢, u). Given an arbitrary continuous function
(1), te[0, a], we write down the equation

W =1 (t, p(0) +fult, p(1) (u—p (1) = 8(t, u; ) -

The right-hand side of this equation is a linear approximation of
that of (31.1). This is nothing else but the analogue of Newton’s method
known for numerical equations. Like in this classical case, we need some
a priori bounds for solutions. To begin with we introduce the following
definition:

DErFINITION, Let the function ¢(t) (w(t)) be differentiable in the
interval [0, e]. We say that ¢(t) (p(t)) is a lower (upper) function if
PO <7t o)y 0, al (¥'(8) = 1{t, (1)), P(0) = o ((0) = o).

Notice now that if f,(t, u) is continuous, then the Cauchy problem
(31.1), (31.2) has the uniqueness property. Denote its unigue solution
by u(t). It follows then from Theorem 9.5 and from the classical conti-

nuation procedure (see Theorem 7.1) that the following proposition
holds true:

PRCEPOSITION 31.1. Let. 7ty w), fult, w) be continuous and suppose that
there exist an upper function y(t) and a lower one ®(t). Then the unique

solution w(t) of (31.1), (31.2) exisis all over the interval [0, o] and @(t)
<u{t) <yp() for 0t < a

(31.3)
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ExAMPLE. Suppose that

—Alu|—B<f(t,u)< Alu/+B.

We can take ¢(t) as the solution of

w =—Alu—B, @(0)=14
and ¢(f) as the solution of
W= Alul+B, p(0)=1u,.

Besides the linear approximation of type (31.3) we can approximate
equation (31.1) by the equation

Ht, o) —1(t, v()
TR0

provided that ¢(t) < u(t). If @(f) = p(t), then we put
3ty us 0, ) = F(t, p (@) +1ult, p(0) (u—(®) -

We say that the couple (¢, v) is admissible if ¢ (t) is a lower function
and y(t) is an upper function. '

Tn what follows we deal with the method originated by Chaplygin
in [6] and developed by Lusin [20]. The first theorem is the following one:

TEEOREM 31.1. Suppose that the couple (p,y) is admissible. Let f(t, w)
and fu(t, u) be continuous and suppose that fu(t, w) increases inﬁu.

Define now: (1) = the solution of w' = 8(t, u; @) such that p(0) = 1,

P() = the solution of w' = 6(t, u; @, y) such that P(0) = vq.

Then (7,%) is an admissible couple and

w = 3(t, u; ¢, ) = f{t; o(t) (u—g(2))

p(t) <P <ul) <FO <p(t) for 0<i<a.

Proof. The functions ,y ave the solutions of linear equations.
Hence they are defined all over the interval [0, a]. We have ¢'(f) < f(t, qz(t))
=0(t, p(t); ¢), @(0) = 1w, =H(0) and (1) = 8(t, 7(t); ¢). It follows then
from Theorem 9.5 that

(31.4) p(t) <p() -

On the other hand, the function f(t,w) is convex in «. Hence
F0) = 8t #(1); 9) = 1(t, () +ult, ¢ () PO — () <F{t,7(0)- We see
that 7(f) is a lower function and consequently, by Proposition 31.1,
(1) < u(t).

Notice now that

(t,w(t) @, 9) =1t w(®) -
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But p(t) is an upper function. Hence v'(t) > f(t, »(1)) and conse-
quently _
p(t) =8, p(t); 5 9) -

Since v (0) = p(0) = %y, Theorem 9.5 applies and we get () < p(t).
Observe that (¢, p(1); ¢,v) = F{t, (1)) = ¢'(t) and ¢(0) = #(0). By Theo-
rem 9.5, we get therefore ¢(f) <<p(f). Thlb last inequality together with
the convexmy of f(t, w) in u proves that ¥'(f) = 6(t P); @,w) =1, Bt )
i.e. p(t) is an upper function. It follows then that w(t) < %(¢) which com-
pletes the proof.

The above theorem defines the transformation (@, w)—(g,%). We
denote this transformation by ¢ and thus get (g, ) = 0(p, »). Moreover,
Theorem 31.1 shows that ¢ maps admissible couples on admissible ones.
If we start with an admissible couple (¢, y,), then the sequence (@n11,¥n+1)
= C(@s,yn) is well defined. It consists of admissible couples or more
precisely the following conditions hold true:

(81.5) #a(0) = u(0) = yu(0) = 5, ,
(3L.6) Palt) <F{t, palt))

(3L.7) ¥alt) = 7 {t, val®)

(31.8) Palt) < Praa(t) < () < P (t) < yul?)
(31.9) Palt) = (¢, ealt); @us)

(31.10) Clt) = 8(t, Yal®); Pact, Yana) -

The sequence (ps, yn) is called the Ohaplygin sequence.
Next we prove

TEEOREM 31.2. Under the assumptions of Theorem 31.1, if (p, Py

is an admissible couple, the Chaplygin sequence
(Pos o) = (@,9), (@nr1, Y1) = 0(997“ "Pﬂ)‘

18 uniformly convergent to w(t) on [0, a].

Proof. Tt follows from (31.8) that the sequences {pa(t)} and {pa(t)}
are uniformly bounded on [0, a]. Let

max {Jeu(?)], [wa()} S K < + oo

for n =0,1,2,..., 0 <t< q; then

lom(®)]

L1 na®)]+{fults gnaal®)] (100 + [ gmat)]) ,
vt < [f(

1{t @aal0) |+ |ult, On(1)| (1en®)] + | na(t)]) 5
where

Pr-1(t) < Ou(t) < ppa(?) .
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Write
R =max{ sup |f(, w), sup Ifu(ty u)[};
o<i<a, [u|<K 0<i<a, ju|l<K
then

lga()l < B+2RE,  Wyi(t)] < R-+2RK

and consequently gn(f) and ya(t) are equicontinuous on [0, «]. But, these
sequences are equibounded on [0, «]. By Arzela’s theorem both of them
have uniformly convergent subsequences. Since both are monotonic,
they must be uniformly convergent. We will show that both limit fune-
tions are equal to the unique solution #(f) of the problem (31.1), (31.2).
Indeed, we have

Pult)—1 (b5 pas(1))| € Rigalt) = paa(t)] -
Hence

(P'n. —f f ) %— )(ZT‘ Rf ‘(Pn(T)“?%Lv]_(‘E)}(ZT .
0
The right-hand side of the last inequality tends to zero. It follows
that lim ¢, is the (unique) solution of problem (31.1), (31.2) and con-
N~>00
sequently w(t) = lim gn(?)-
N=+o0
Write v () = lim pa(2). It follows from (31.10) and from the definition
N0

of § that
|9a(t)—1 (85 @n-a(t))| < Blnlt) — gn—s(D)] -

The integration and the equalities yu(0) = %, = ¢n(0) give us

¢ ¢
() — uo—f (5, @na(r)) d‘rl < Rf 1pn(t) — @ra(7)}d7 .

The limit passage in this inequality and the fact that u(t) = %%(t)
satisfies t
u(t) = wo—}-f flo, u(z))dr
imply that ’ .
fo(t)—u()] < B o) —u(x)idr.

By theorem on integral inequalities (see § 22), we get o (t)—u(t)] =0,
ie. o(f) = u(t), as was to be proved.

Following Lusin we will prove

THEOREM 31.3. Suppose that fuu(t, u) exists, is bounded and fuu(t, w) =0
in D = {(t, u): 0 <1< a, goft) < w < wolt)}-
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Let (py, ¥o) be an admissible couple and write

-1
" 2HaeKe’

where K = sup [f,(t, w)|, H = sup|fuult, w)|.
D D
Assume that 0 < y(t)—@o(t) < 0. Then, for the Chaplygin sequence

31.11) [pa(t) —pa(t)] < ;g

and consequently, by (31.8),

() —pal) < 39y () =yl < 29

Proof. (31.11) holds for » = 0. Let it hold for some n. It follows
from the definition of gni1,¥s+a that

Praa(t) —@raa(t) = fult, D) (’l’n+1(t) — pnga()) +
+1ulty 2) (Pas1(t) — @u() = Fult, @alt)) (Pasa(t) —@a(t) ,

where
(31.13) Pat) < p < yalt) .
On the other hand,
(31.14) Fulty D) —fults pu(t)) = Fuults @) (0 —a(t)) ,

where @u(t) < ¢ < p. But
Fult, DI <K,  |fuult, ) <H
It follows from (31.13) and from (31.14) that
(8115)  [ynsa(t)— @rsa(t)]
: < K | t1() = enaa®)] + H D — @u(t) | @n1(t) — pu ()] .
But [p—@n(t)] < |yalt) —@a(t)| by (31.13). Notice that
Pu(t) < @raa(t) < u(?) < yn(t);
hence
[Pn+1(t) — @alt)] < ]'I’n(t)—%(m
It follows from (31.13) and from the above inequalities that
fpnaa(t)— @) < K [pnpa(t) ~ gnaa(t)| + H [9n(t)— @u(t)[2
We have assumed that

[oat)—gn8 < 2 .
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We obtain, therefore,
! ‘J 0
[9nt+1(8) — P ()] < K [9n41(8) — @nsa(D)| +H22n+1

and consequently, by Theorem 15.1 when applied t0 9p41(t) —@ni1(t),

¢
2202
[#n41(E) — @uia()] < { i S)HZZ"—Hd
b
Now
2202 22
D rRCIYY : PIY T P
and

t

[ ext-ods < aeke .
0

We get, therefore,
i HgeKa2? 2C
¥n1() = Pni()] < grpmagmagrn = pwm ) q.e.d.

Let us consider now the system

(31.16) Yi=filt, Yry oy ¥n)  (=1,2,..,m)
together with initial conditions
(31.17) R ()

We assume that fi(t, ¥y, ..., s) are defined on [0, a]x B". In the
vector form (31.16) and (31.17) may be written as

(31.18) Y =FY), Y0 =
The vector-valued function @ (i) is called lower if
o0)=Y, OWH<FE ) ® on [0,d.

The definition of an upper function is obvious. ‘
Suppose now that f; have continuous derivatives 8fi/dy; (4,§ =1,
2,..,n). We write down a linear system in the vector form

(31.19) = F(t, T(t) +F,(t, P(0) (T—P(2) (1) = 60, T3 9),

where ¥, stands for the matrix {8f,/9y;} and ¥(t) is continuous vector-
valued function.
Let us introduce the following condition:

(31.20)  F(t, U)+F,(t, U)(V-U)<F(t,V) for V=TU.

(1) For the meaning of the inequality sign, see § 4.
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Suppose now that fi satisfy condition W (see § 4) and let the solu-
tion Y () of (31.18) exist all over [0, o]. It follows from Theorem 9.3 that
if @ (1) is lower, then @ (t) <Y (1) on [0, a]. On the other hand, given a vector
funetion ¥(t), continunous on [0, o], we can find a unique solution Y’(t)
of (31.19) such that F(0) = ¥. The system (81.19) is linear. Hence ¥ (1)
exists on the whole interval [0, o]. We have thus the transformation
Y, formally ¥ = ((¥). The question is whether ¥ is lower function
if ¥ is a lower one. We will prove

TrEOREM 31.4. Suppose that f; are of class C* and satisfy condition W
and let Y () be the solution of (31.18) ewisting on [0, a]. Let I (¢, ¥) satisfy
{31.20) and let ®(t) be lower. Then ¥ = C(P) s lower and

OH<EH ST on [0,a].

Proof. Notice that since f; satisfy condition W., then &fydy; = 0
for ¢ #j. It follows then that the right-hand sides of system (31:19)
satisfy condition W..

We have:

W) = Gl Pl 9), P <Pl W) = G, D0); B, B(0) = P(0).

But G(t,Y; @) satisfies condition W,. By Theorem 9.3 we get,
therefore, @ (1) < ¥(?) and consequently, by (31.20),

(1) = G{t, Y(t); D) <F(t, P(1) .

Hence, ¥(t) is lower what implies ¥(t) < Y (2).
The above theorem shows that the sequence

By=B, By = 0(Py)

is well defined on [0, ] and @u(t) < Ppa(f) < Y (2). This is the Chaplygin
sequence for a system of ordinary dﬁferentlal equations. It is easy to check
that @n(t) tends uniformly to Y () on [0, a].

§ 32. Approximation of solutions of an ordinary differential equation in
a Banach space. Preceding sections concerned scalar differential equa-
tions. We could get some estimates for absolute values by using differential
inequalities.” It is of some interest to comsider equation of form (31.1)
from the purely metric point of view. What we have in mind is the discus-
sion of problem (31.1), (31.3) in Banach space, without any relation of
semi-order, which i the case of scalar equations.

To be more precise, we consider the equation

(32.1) @ =1(t, v),

where « and f (¢, #) take on the values in a Banach space F, the derivative 2’
being taken in the strong sense.
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We add the initial condition
(32.2) 2(0) = x,.

The elements of # will be denoted by w, y, ... The functions of the
real variable ¢ ‘with values in B are denoted by »(2), y(t), -5 N2l stands
for the norm of #. We will work under the assumption that f(t o) is defined
for 0 <1< o and arbitrary ». In what follows we suppose that for every
fixed ¢ the function / (¢, #) is Fréchet differentiable in @ to f,(t, #) (see [21],
D. 300). f4(t, @) is a linear, bounded operator mapping F into F. We
assume that f,(¢, 2) is strongly continuous in (¢, #), i.e. if t,—t, s~z
(strongly), then

falts, @) e —1folt, @)z
strongly for every # e H. Next we introduce the assuniption:
(32.3)  There is a function w(t, 4) > 0, continuous for 0 <t < o, u >0,
increasing in « and such that ||fo(t, 2)— 7., ¥)| < 0(t, lle—wll).

Suppose now that the function x(t) is continous on [0, «] and write
the equation

(32.4) @' = f(ta mo(t)) +fz(t7 mo(t)) (w_wo(t))
and
(32.5) ' ©(0) = a, .

Notice that f.(t, #) being continuous, the condition (32.3) implies that
(¢, ) satisfies locally the Lipschitz condition in 2. Moreover, we assume
that f(¢, ) is continuous in (¢, ). It follows then that (32.1), (32.2) is
locally solvable (see [21], p. 291). By the same token (32.4), (32.5) has
a unique solution x(t), which by the linearity of (32.4) exists all over
the interval [0, a]. Hence to every @,(-) e Og[0, a] () there corresponds
an'z(-) e Cgl0, af via the equation (32.4). Like in § 31 we have the trans-
formation O defined by ® = Oz, and the sequence

Dpg1 = Oy

is well defined. Tt consists of functions wn(-)e Cx[0, o] and satisfying
the relations

(32.6) 2n(0) = @, ,
(32.7) Bnaa(t) = F(t, on(t)) +Falt) 2n(1) (Bn42(t) — @a(2)) -

We first prove ‘

TrEOREM 32.1. Let f(t, ) satisfy (32.3) and suppose that [lwa(t)l]
SM< +oofor 0<t<a (n=0,1,2,..). Then {ma(t)} is uniformly
convergent on [0, of fo the solution x(t) of (32.1), (32.2).

(t) 040, o] denotes here the space of H-valued functions strongly continuous
on [0, a].

J. Szarski, Differential inequalities 7
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Proot. Tt follows from the continuity of fo(t, 6) and from the Banach-

Steinhaus principle that
?‘11? ”fw(t; 6)” =N< + o0.
0,a.

The difference za(f) = @y4a(f) — @a(t) satisties the equation
(32.8)  #(t) = fz:(t; wn(t)) 2n(t) +f (ty x%(t))'“fw(ty mn»«r(i)) K"nwl(t)""f(t, wn”l(t))

and
(32.9) (0) = 0.

We need the estimate of
Hf(t: wﬂ(t)) _fa:(ty wn—l(t)) zn—-l(t)"‘f(ty mn—-l(”))“ -

To do this, notice that by the classical results of the theory of Banach
spaces there exists a linear, continuous functional & with norm [|§} <1
such that

L = &[f{t, 2a(t) = 1{t, Bna(t)) = olts Tna(t)) 2u-a(?)]
= [#{t, @u() =7 {t5 @ns(8)) = folts B-s(0)) 2na(0)]| -
Consider the real function
9 (x) = &f{t, Ba(t) +7{@alt) = a-a(t))) -
By mean value theorem, there is 7 ¢ (0, 1) such that
P(1) = p(0) = &fult, Bus(t) +120—s(t)) 2nalt) .
We apply now (32.3) and thus get
L = &[falts ast) + 12n-1(t)) 2na(t) — fult; Ea-1(t)) 20=1(t)]

< Wfelts @a-a(t) + m2a(0) — falty Buma () || I20ma(D]

< oft, 7l fen-a (O] -
But w(t, u) increases in %. Hence

@ty nlt-2(Dl) < o(f, llzn-1($)l])

and consequently
L < oft, lltaa(dl) llzaa) -

The above estimates show that (32.3) implies
(32.10)  [[£{t, 4a(®) ~Talt, Baa() 5nslt)—F {2, a(t) |

< w(t: ”zn—l(t)“) #n—a (B -
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Moreover,
(32.11) K = N +max w(t, M) < + oo.
10,q]

It follows from (32.8) and (32.10) that
e < K ll2n(®)]l 4 0 (¢, 120 -1(0)]]) [ 2u-a(D)]
and consequently, by (32.9) and by Theorem 15.4,
[
len(®)ll < [ €5¢=90(s, {120 (5)]) l2ns(s)1ds -
0
But ||z,(f)]] < 2M; hence,

len(t)l| < 231

( _Ft)11.~ 1

et (=12,

where

F = Rexp(Ra), R = max(K,max o(t,2M)).
[0,a]

We infer, by completeness of B, that {#,(t)} is uniformly convergent
on [0, a] to a certain Hmit y(t). By (32.6), (32.7),

t
Basalt) = o[ [F(5, nls)) +Fuls , @u(s)) (Bns1(8)— wa(s)) ] ds -
[1]

The limit passage gives us

t
y(t) = ao+ [ fls, y(s)ds,
0

which, by uniqueness of (32.1), (32.2), proves that y(f) = #(t), q.e.d.
The Lusin estimates can be generalized as follows:

THEOREM 32.2. Suppose ithat the assumptions of Theorem 32.1 hold
true and suppose that

lz@)—z @I <wi(t), 0<t<a.
We define

t

Wnea(t) = f K= (s, w0n($)) w(s)ds ,

with
K= sup lI7=(2, 9)|§+I{;afw(i, M) .

Then ||ea(t)— ()] < walt).
Proof. Let gu(t) = |lwa(t) —2(t)|. We have
#'(1) = f{t, 2(1))

Vid
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and, by (32.7), ‘
[n(t)— 2 (8] = falt, n-a(t)) [@a(t) — 2 ()] +
falty na(D) [2(8) = Bna (O] 4+ [F (£ tna(®) — 1 (2, 2(1)] -
Condition (32.3) implies that (see the proof of (32.10))
D_palt) < Ea(t) + @ (t; Pralt)) Pralt)
Notice that g(0) = 0. Hence (see Example 9.1)

¢
en(t) < f eBlt=8)g (s, (p“ml(S)) Pn—1(8)ds .
: A
Now, an easy induction and the monotonicity of w(f, w) in » proves
our assertion. ' )
Remark. If o = Qu (@ = const), then

20

Vll“’%(‘t)“‘a‘ﬂ(t)” Sowm

B Py 1
w(t) < 9Qaexp(Qa)

The function «; may be chosen in many ways, by using the a priori
estimates (see [28]). The most simple choice is w, = 2M.

The question of boundedness plays an essential role in Theorem 32.1.
‘We will give a certain method of evaluation of the interval of equibounded-
ness for the sequence {#,(t)}. We start with a lemma which is due to T. Wa-
zewskd.

Lemma 32.1. Suppose that the function o(t, w,v) >0 4s continuous
for 0 <t< a5 u,v>0. We assume that o(t, u, v) tnereases in v. Suppose

~ that for =0 the right-hand maximum solution w(t, n) (w(0, n) =n) of
the equation
w = o(t,u,u)

exists on [0, a]. Under the above assumptions the right-hand maximum
solution w(t,n) (W(0,7n) =n) of the equation
w o= yp(t,u) = oft, u, w(t, 7))
exists on [0, a] and
Blt, ) = w(t, 7).

Proof. The maximum solution %(t, ) exists in a right-hand neigh-
borhood of zero. Suppose that

(32.12) w(t, n) < B(t, )
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for some ¢ within the common part of the existence intervals of considered
maximum solutions. The monotonicity of o(f, %, ) in » implies then
(32.13) w'(ty ) = G(ty w(t, n),wlt, 77)) < U(t; Wty ), w(t, "l))

for such ¢. Hence, (32.12) implies (32.13) what, by Theorem 11.1, proves
that %(t, ) <w(t,n) in the common existence interval. On the other
hand, w(t, n) exists on [0, a], o(¢, u, v) > 0 and W(f, n) can be continued
to the boundary (see § 9). It follows then that % (f, n) exists all over the
interval [0, a]. Previous arguments apply and we conclude that (%, 7)
<w(t, n) on [0, a] Notice now that w'(t, n) = o(t, w(t, n), w(t, n)) =
y(t, w(t, n)). Hence w(t,n) <%(t, n) and consequently
w(t,n) =w(,n on [0,q,

which completes the proof.
Suppose now that the functions F(t) and G(f) are continuous on the
interval [0, a] and

IF (s 2l SE @), Ilfalt, @)l < G(E)  om [0,4a].
Let us take the equation
w = 3G({t)u+3o(t, uw)u+F(t)

and denote by ¢(f) its right-hand maximum solution such that ¢(0) = 0.
Let us assume that ¢(?) exists on the interval [0, «]. Next we prove the
following theorem:

THEOREM 32.3. Let (32.3) be satisfied and suppose that «(f) e Cx[0, ] and
(0) =2, |={d)—al<e().
Suppose that y(t) satisfies
= 1{t, w(0) +falt, 2 () (y () — (1) ,
('/(0) = %o -
Then ||y () —2oll < @(8) on [0, al.
Proof. We have

[y () —a] = £ (t, 2(1) +falt, o(0) [y () — @] +Talt, & (1) (20— (1)]
and
[[Folts @(0)) (v (1) — 2) | < [6(1) + o (t, 9 )]y ()=l
(e, @ (8)) (me— (1)) +1(2; 2(8)) | < 200 (1, @(1)) 9 (1) + 26 (D)p (D) +F(2) -
Hence,
Iy (6)— eI}l < [G(8) + e (2, p ()] 1y (8)—oll +
+20(t, p(t) @ (1) +26@)p(t) +F(t) on [0, a]


Yakuza


102 CHAPTER V. Cauchy problem for ordinary differential equations

and, by Theorem 15.4,
(32.14) Ny (8 —aoll < w(2) 4
where p(0) = 0 and () is the right-hand maximum solution of
W =[G +olt, pt)]ut [20(, o) +26")]p0) +F (1) .
By Lemma 32.1, applied for
oty u,v) = 20(t, 0)0+26G )0+ F(t) +[o(t, v)+G()]u

we get p(t) = ¢(t) which, by (32.14), completes the proof.
Tt follows from the above theorem that if @, is given, then [0, a] is
determined by %, f(¢, #) and by (t, %). On the interval [0, o] we get then

oza(t) — 2ol < @ (2)

if @4(t) = @,. Hence {z,(t)} is equibounded on [0, o]. We may then evaluate
a priori the interval of equiboundedness with a special choice of constant
initial function #,(t) = z,.
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CHAPTER VI

SOME AUXILIARY THEOREMS

The theory of ordinary differential inequalities, developed in Chap-
ter IV, enables us to get estimates for functions of one variable. Now,
in the subsequent chapters we are going to deal with applications of
ordinary differential inequalities to partial differential equations. Since
solutions of partial differential equations are funetions of several variables,
we will have to associate with a given function ¢ (¢, X) = ¢ (¢, 21, ..., @)
a funeticn M (¢) of one variable only, so that ¢(f, X) < 3 (¢). In this way,
an estimate from above obtained for the function M (), by means of
ordinary differential inequalities, will yield automatically an estimate
from above for the function ¢(¢, X).

§ 33. Maximum of a continuous function of 71 variables on n-dimen-
sional planes. To begin with, we introduce the definition of a region of
special type.

Region of type C. A region D in the space of points (£, @, ..., #n)
will be called region of type C if the following conditions are satisfied:

(a) D is open, contained in the zone 1, < i < t+T1' < 4 oo, and the
intersection of the closure of D with any closed zone fo <<t <t +T
is bounded.

(b) The projection §; on the space (@, ..., #:) of the intersection of
the closure of D with the plane ¢ = %, is, for any ¢ « [%, t, +T'), non-empty.

(¢) The point (t, X) being arbitrarily fixed in the closure of D, to
every sequence t, such that f, e [%, #, - 7T') and ¢,—1, there is a sequence X,,
so that XY, eQ;, and X,-»X.

Exampres 33.1. () Let G be an open, bounded region in the space
(#1 ..., &z). Then the topologiecal product D = (1, {,+1') x G is a region
of type C. '

(B) Another example of a region of type € is a pyramid defined
by the inequalities

h<t<ty+T, jo—a<a—Lit—%) (=1, 2y, W),

where 0 <L < + o0, 0 < a; < 4 oo and T < min(ay/L).
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