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CHAPTER IV

ORDINARY DIFFERENTIAL INEQUALITIES OF HIGHER ORDER
AND SOME INTEGRAL INEQUALITIES

§ 17. Preliminary remarks and definitions. Consider an ordinary differ-
ential equation of order n =2
(17.1) ym(t) = U(ty Y@,y @) -y 'y(n_l)(t)) ’

with the right-hand member ¢(¢, Yo, Y1y -r) Yn-1) continuolls iﬂn an open
region D of the space (f, Yo, Y1, -+ » Yn—1)- L&t (foy ¥o) = (fos Jos F1;s +-v) Yn—1)
and introduce Cauchy initial conditions
17.2) Yyt =4  ((=10,1,..,m—1).

Tt is a well-known fact that the Cauchy problem for equation (17.1)
with initial conditions (17.2) is equivalent to the Cauchy problem for
the system of first order differential equations

%yt_‘ =41 (1=0,1,..,n—2),
(17.3)
dyé;_l = 0(t) Yor Y1y +es Yn—1)

with initial values
(17.4) Yilty) = ?;f (j=0,1,..,n—1).

This equivalence is understood in the following sense. If y () is a solution
of problem (17.1), (17.2), then (y(t), ..., ¥n-1(t)) defined by the formulas

(17.5) yi(t) = yot)  (=0,1,..,n—1)
is a solution of problem (17.3), (17.4). Vice versa, if (ylt), ..., ¥n-a(?))

is a solution of problem (17.3), (17.4), then ¥ (f) = y,(f) is that of problem
(17.1), (17.2).

A solution of equation (17.1) is said to reach the boundary of D by
its right-hand (left-hand) emtremity if the same is true for the corresponding
solution of system (17.3) (see § 7).

By the mapping
(17.6) T=—t, n=1y,
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a function y(f) of class O™ is transformed into the function 7(r) = y(—7)
so that
(17.7) 1) = =1y (%)  ((=0,1,..,m).

Hence, the mapping (17.6) transforms equation (17.1) into
(17.8) ) = (=1)"0(=7, n(z), = 7'(2), veey (= 1) a) .

The corresponding system (17 .3) is now

d .

?1? =7 (6=0,1,..,n—2),
(17.9) i
Tt,_l =(— 1)11,0_(_7’ Moy ™ N1y wney ("“l)nmlﬂn—-l) .

CoNDITION W.. The right-hand member of equation (17.1) will be
sald to satisfy condition W, with respect to ¥ — (Yos Y1y + 3 Yn—1) in D
if the right-hand sides of the corresponding system (17.3) satisfy condi-
tion W, with regard to ¥ (see § 4). This condition obviously means
that for any two points (¢, ¥) = (% %0, «+s Yn—2y Yn) € D and (¢, Y)
= (; Jo; ey Yn2, Yn—) € D such that y; <P (1=10,1,..,2—2), we have
(17.10) olt, ¥) <olt, ¥).

Conprtion W,. If inequality (17.10) is satistied for any two points
(t Y) = (840, ., Yn-2) € D and (t, ¥) = (4, %1, .., Pp-s) € D such that
Vi<yi(j=0,1,.., #— 1), then the right-hand member of equation (17.1)
Is said to satisfy condition W. with respect to ¥ in D.

It is obvious that in this case the right-hand sides of the corresponding
system (17.3) satisfy condition W, (see §4).

ConprTroN W_. The right-hand member of equation (17.1) will be
said to satisfy condition W_ if the right-hand side of the transformed
equation (17.8) satisfies condition W..

This is equivalent to sayinNg that for any two points (¢, ¥)
=ty Yoy vy Yn—2y Yn—1) e D and (¢, ¥) = (¢, %, ..., Yn—2y Yn—) € D such that
Dy <=1 (=0,1,.,0-2)

the inequality
(=1)%(t, ¥) <(=1)"0(t, ¥)
holds true.

§ 18. Maximum and minimum solution of an nth order ordinary differential
equation. A solution w*(t; 4, ¥o) = w¥(t; ty, Go, ..r, Hrm1) (01 (%5 1y, X))
of equation (17.1), satisfying initial conditions (17.2) and defined in an
interval 4. = [t,, a), is called & right-hand mazimum (minimum) solution
of (17.1) through (t,, X,) if the corresponding solution of system (17.3)
with initial data (17.4) is the right-hand maximum (minimum) solution
of system (17.3) through (4, ¥,) (see § 5). This comes to saying that for
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any solution y(t) of (17.1), satisfying initial conditiong (17.2) and defined
in some interval A. = [t,, @), the inequalities

¥7(t) <[0T (8 10, To)I? (1) = Lo+t 10, To))

hold true for tedy n Ay. :

A golution (23 %y, X,) (0-(t; to, ¥,)) of equation (17.1), satisfying
(17.2) and defined in an interval 4_ = (f,1,), is called a left-hand mamimum
(minimum) solution of (L7.1) through (), ¥,) if it is transformed by the
mapping (17.6) into the right-hand maximum (minimum) solution of
the transformed equation (17.8) through (—to, Foy — 1y -y (— 1) *fnma).
This is equivalent to saying that for any solution y(?) of (17.1), satisfy-
ing (17.2) and defined in some interval A~ = (B, 1], the inequalities

(=150 < (=10~ t, T, (=150 = (= 1[0t 4, T)]7)
(j=0,1,..,0—1)

(G=0,1,..,n—1)

are true for ted_ ~ A-.

By Theorem 9.1, the following theorem is an immediate consequence
of the definition of the right-hand maximum (minimum) solution.

THEEOREM 18.1. Let the right-hand member a(t, y,, .
tion (17.1) be continuous and satisfy condition W. (see § 17) with respect
0 ¥ = (Ygy ooy Yn—1) ih an open region D. Then through every (ty, ¥,) e D
there is the right-hand mawimum (minimum) solution of (17.1), reaching
the boundary of D by its right-hand extremity (see § 17).

Now, from Theorem 18.1 we deduce, by the definition of the left-
hand maximum {minimum) solution and by the definition of condition W_-
(see § 17), the next theorem.

THEOREM 18.2. If the right-hand side of equation (17.1) is continuous
and satisfies condition W_ (see § 17) with respect to Y in an open region D,
then through every (ty, Yo) € D there is the lefi-hand mazimum (minimum)
solution of (17.1), reaching the boundary of D by its left-hand ewtremity
(see §17).

vy Yn—1) Of equa-

§ 19. Basic theorems on nth order ordinary differential inequalities.
We start with the following general remark. Consider an mth order
differential inequality of the form

(19.1) D_g=3(1) < ot @ (), @'(1); -eep g=0(2))
with initial inequalities
(19.2) P <G5 (F=0,1,..

where @(t) is of class "% It is clear that if ¢(¢) is a solution of (19.1)
and (19.2), then (yt), ..., n—a(?)), defined by the formulas

(19.3) o) = @t)  (j=0,1,..,0-1),

,n—1),

icm
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is a solution of the system

dos(t) .
(19.4) —‘*=%'+1(t) (71:0:17---7n_‘2)7
D_ Pn—a(t U(t; @olt ) ‘Pn—l(t))
with initial inequa.htles
(19.5) plt) <9, (7=0,1,...,0—1).

Following this remark and the definitions and results of §§ 17, 18
we get the next theorem, by Theorems 9.3 and 9.4 applied to the
system (19.4).

TaEOREM 19.1. Let the right-hand member o(t, Yo, ..., Yn1) of equa-
tion (17.1) be continuous and satisfy condition W with respect to
Y = (Yo5 .oy Yn—1) (see §17) in an open region D. Let (t,, ¥o) = (ty, fo, .--

,ynal)el) and consider the right-hand mazimum (minimum) -solution
w+(t toy Xo) (@04(%5 8y, X)) (see § 18) of (17.1) ) through (ty, Y,), defined in
the interval Ay = [ty, a) and reaching the boundary of D by its right-hand
ewtremzty see § 17). Suppose that @(t) is of class O™ on the interval

=[t, @) and that (¢, (1), ¢'(1), ..., go=3(t)) € D.
Under these assumptions, if

{19.6) Pt <g;  (@MG)=F) (G=0,1,..,n—1)
and
(19.7)  D_gt=0(t) < olt, p(t), ¢'(1), ..., g==(2))
(D7gm0(t) = ot, p(1), '(2), - p@D()  im Ay,
then
o) <[ (61, T (671) = [+t 1, T)I?) (7 =0,1, ..., n—1)

fortedy ~ 4,
The derivative D_ in the differential inequality (19.7) can be sub-
stituted by any of the three remaining Dini’s derivatives.

Remark 19.1. We want now to explain why in Theorem 19.1 the
apparently strong assumption on ¢ (#) to be of class ¢"in A, is an essen-

tial one. To this purpose, let ug first introduce the following notation for
an arbitrary function @(1) in A,:

D%(1) = p(t)
DI 1)

teZ+,
teLT‘

for

=D_(D9(1))  for

whenever D?p(1) is finite in 4, . We might now consider, instead of (19.7),
the differential inequality

(198) DY) <oft, p(t), DV (1), .., D2 V() i A,
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with initial inequalities

(19.9) DVt < (1=0,1,..,0—1)

for a function having all derivatives DY (j =0,1, ..., n—1) finite in A
It is evident that if ¢(¢) is a solution of (19.8) and (19.9), having the above
regularity, then (py?), ..., @o-a(t)), defined by the formulas

gi(t) = D ()

is a solution of the system
D_oift) = %+1(t) (t=0,1,..

< oty @olt); ey Pualt))

sy —1),

,n—2),

19.10
( ) D_paaft

with the initial inequalities (19.5). Hence it follows that the appalently
stronger variant of Theorem 19.1 with (19.7) replaced by (19.8) is equiv-
alent with Theorem 9.3 for system (19.9). But for the validity of Theo-
rem 9.3 it is essential to assume @;(t) (j = 0,1, ..., n—1) to be continnous
in A 1, . Thus, the continuity of the derivatives DVp(t) (j = 0,1, ..., n—1)
in A, is essential for the above variant of Theorem 19.1; but by Corol-
lary 2.2, continuity of D% (z) implies that of ¢¢)z). In this way we are
led to that regularity of ¢(f) which was required in Theorem 19.1.

Now, notice that if we apply the mapping (17.6) and put y(z) = ¢(—7),
then the initial inequalities (19.6) are transformed into

(=1 —t) < (~DY[(—1Y 4]  (G=0,1,..,n—1)
and the differential inequality (19.7) into
(= 1" D" ) < (—1((= 10 (—7, p(x), —9/(7), ooy (= 1)" " ()] .

Hence, applying the mapping (17.6) we get, by the definitions and
results of §§ 17, 18 the next theorem from Theorem 19.1.

THEOREM 19.2. Leét the right-hand member of equation (17.1) be com-
tinuous and satisfy condition W_ with respect to ¥ (see § 17) in an open
region D. Let (ty, ¥o) € D and consider the left-hand mazimum (minimum)
solution w=(t; ty, Yo) (w-(%; t, Xo)) (see §18) of (17.1) through (ty, ¥,),
defined in the interval A_ = (8, t,] and reaching the boundary of D by its
left-hand extremity. Suppose that ¢ (1) is of class €™ in the interval A = (f, t,]
and that (t, ¢(t), ¢'(t), ..., p== (1)) € D.

Under these assumptions, if

(~1Yot) < (-1 (=1Ye”(te) > (~1V4)

(i=0,1,..,n-1)

=N
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and
(=1"D7 ") < (= 1) (t, p(2), (1), .., ¢ (1))
(=1 )n-D-)-‘P(nhl)( 1) = (—1) "(ty ®(t), ¢'(t), ey (P(n 1)(t))) i
then
(=160 < (1[0 to, TP (= 1/6"(0) > (— 1) [o- (& 10, T)IP)
- (y=0,1,...,n-—1)
for A~ A_
Theorem 19.2 is true with any of the remaining Dini’s derivatives

instead of DT (D).

§ 20. Comparison equation of order n. Equation (17.1) will be called
comparison equation of order n if the corresponding system (17.3) is a com-
parison system of type I (see § 14), i.e. if its right-hand side (3, ¥,, 41, -..

-y ¥n—1) 1S non-megative and continuous and satisfies condition W.
(see § 17) with respect to ¥ in

Q:120, 920 (j=0,1,..,0—1).
Proposition 14.1 implies the following result:

Through every point (0, H) = (0,7, N1, -, h1) there is the right-
hand mazimum solution of a comparison equatwn of order n which we denote
by w(t; H) and its emistence interval by A(H) = [0, ay(H)).

Moreover, we have either ay(H) = +oo, or ay(H) is finite and

lim

tay

Z[wmt HP= +oo.
=0

CoMPARISON THEOREM. A comparison equation (17.1) being given,
let p(t) be of class C"" in am interval A = [0, y) and suppose that ¢)t) = 0

(1=0,1,...,n—1). Under these assumptions, if
#D(0) < s (j=0,1,..,2-1)
and
D_g=1(t) < ‘T(t; @)y ey 'Pm_l)(t)) in 4,
then
gt < ot H)  (j=0,1,...,n—1)

forte A(H) n 4, where o(t; H) is the right-hand mazimum solution of (17.1)
through the point (0, H) = (0, %, %1y «ry Gn-1)-
This theorem is an immediate consequence of Theorem 19.1.

§ 21. Absolute valve estimates. Let a comparison equation (17.1) of
order m (see § 20) be given and consider for a function ¢(x) of class ¢™*
the differential inequality

(21.1) |D_ g =0()| < of|w—m|, 9 (@)1, .., lg®= )]} -
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It is clear that if g(«) is a solution of (21.1), then ((po(w)', ey q)n_l(_‘m))
defined by the formulas @j(z) = ¢P®) (j=0,1,..,n—1) is a solution
of the system

1o ‘%‘{: gl (= 0,1,.,n—2),

| D | < (0|, |@o]y vy IPn=1]) -

By this remark, the next theorem follows from Theorem 15.1.
THEOREM 21.1. Let a comparison equation (17.1) (see § 20) be given
and assume p(x) to be of class € in the interval |@— m,| < y. Suppose that

@) <mp (G =0,1, .., n—1)
and

[D- g @) < olm— o]y l@(@)], |97(@)], ooy P D)) for |o—aml<y.
Under these assumptions we have the inequalities
lgN(@)| < M (|o—wol; H) (j=0,1,...,n—1)

for |w—umo| < min (y, ay(H)), where o(t; H) is the right-hand mazimum
solution of (17.1) through (0, H) = (0, 7, ..., fln—1), defined in the interval
[0, oy(H)).

Next, from Theorem 15.2 we derive the following

THEOREM 21.2. Under the assumptions of Theorem 21.1 suppose addi-
tionally that the right-hand member o(t, Yo, Yy .., Yu—1) Of the comparison
equation (17.1) satisfies condition W,. (i.e. increases with respect to all varia-
bles y;) and that

Pwe) = 75> 0 (pNm) = —my<0) (j=0,1,..,n—1).
This being assumed we have

PN@) = 20— 0Nlo—ao|; H)  (¢N@) < — 27+ 0)|2— |5 H))

(7=0,1,..,n—-1)
in the interval [o— x| < min (y, alH)).

As an immediate corollary of Theorem 21.2 we obtain the next
theorem.

THEOREM 21.3. Under the assumptions of Theorem 21.2 suppose that
u>Nz0 (—m<—T<0) (j=0,1,..,n—1)
Denote by 1; the least root of the equation in t
(21.3) 25— oWt H) =7 (=254 oD(t; H) = —5)

if such a root exists in the interval 0 < t < ay; if it does not ewist, put t; = -+ oo,
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Under these hypotheses we have
@) >0 (o)< —F) (=0,1,..,n—1)
in the interval |o— x| < min(y, ay, ty, t,, ey bpma)-
ExAmprE 21.1. Let ¢(z) be of class ' in the interval
(21.4) [o—a] < y.
Suppose that ¢(z) satisfies the initial inequalities
@)l <oy o' (@) < my
and the differential inequality
1D-¢'(@) <alg'(@)]  (a>0).
The comparison equation of second order is here
¥(1) = ay'(t)
and its unique solution, satisfying the initial conditions

. y0)=mn, y'@)=mn,
18

o(t) = B (e —1) 47,
By Theorem 21.1, we have in the interval (21.4)
Ip(@) < B(eked—1) £, lpf(0)] < meskei.
If, moreover, we assume that
P@) =m>0, ¢a)=n>0,
then, by Theorem 21.2,

/]

P(@) > me—-(etl=l—1),  ¢'(z) > 20 — sy enlo—al

in the interval (21.4). Suppose finally that #, > %, > 0, > = 0.
Equations (21.3) have now the form

770‘"% (e"—1) =10, 2mp—mned="7.

Their only solutions are respectively

_1 a (1o~ o) _1 7~
t“‘ah‘(:“”_n;'—)’ =2l 1482
Hence, by Theorem 21.3, we have

@) >, ¢@)>nh
in the interval |z — x| < min(y, %, t,).

J. Szarski, Differential inequalities ! 5
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§ 22. Some integral inequalities. Integral inequalities we are going
to deal with in this section are closely related with first order ordinary
differential inequalities. This will be made clear by the proposition we
prove first.

PROPOSITION 22.1. Let ity Yy oy ¥n) (8 =1,2, ..., m) be continuous
in an open region D and let (t, Xo) = (toy Y1y +vy Yn) € D. Suppose that
O(t) = (pa(f); oy pult)) 45 continuous in an interval [ty,y) and thet
(t, (D(t)) e D. Under these assumptions, if

(22.1) D(t) < ¥y,

and )

(222)  D_gu(t) < oalt, ga(t), vy al®))  Jor  f <<y
i=1,2,..,m),

then

, ,
(22.3)  @t) < 1‘7f+f oufT, pu(7); s pa(r)dr  for B <t<y
o G=1,2,..,1).

Proof. Consider the Picard’s transform of & (i)
i
pilt) = i) — [ oifr, ale), oy @al@) e (E=1,2, ., m).
fo
The function vyi(t) is continuous in [4, ) and, by (22.2), we have

Doyit) = Do) — 0ilt, ¢alt), -, palt)) <O

Hence, by Remark 2.1, y;(t) is decreasing and since, by (22.1), there
is pi(ty) < 9:, we obtain

wit) <will) <% on [ty ),

which is equivalent to (22.3).

By Proposition 22.1, inequalities (22.1) and (22.2) imply integral
inequalities (22.3); but, obviously, (22.3) does not imply (22.2).

Now we know, by Theorem 9.3, that under the assumptions of Prop-
osition 22.1, provided that oi(t, Y) satisfy condition W, (see § 4), from
the inequalities (22.1) and (22.2) result the inequalities

(22.4) D) < Q5 1,, ¥y) - for & <t < min(y, ),

where Q(¢; 4, ¥,) iz the right-hand maximum solution of (5.1) through
(toy X,), defined in [#y, ap)-

Next, we will prove that (22.4) is also a consequence of the essen-
tially weaker (than (22.1) and (22.2)) inequalities (22.3), provided that
the condition W, be substituted by the stronger condition W.F (see § 4).
In fact, we have the following theorem (see [39] and [65]):
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TEROREM 22.1. Let oi(t, Yy ...) ¥n) (6 = 1,2,..,7m) be continuous in
the open region D = {(t, X):a<t<b,¥ arbitrary} and satisfy condition W,
(see§4). Let (1, Xo) = (lo; 1 --r, §n) € D. Suppose that G (t) = (@a2); <., @al2)
is continuous in anm interval [1,, y) and that (t, &(t)) ¢ D. Under these assump-

tions, if
t
(22.5) ¢i(t)<y°f+fw(f,tm(1), co@a@)dr for <t < o
o

e (i=1,2,..,n),

(22.6) D) <R3 4, ¥y)  for {<t<min(y,aq),

where Q(t; 1, ¥o) 45 the right-hand mazimum solution of (5.1) through
(toy Xo), defined on [t,, ap).

Proof. Put
i .
MD=%+jmh%mpq%mMr (i=1,2,..,n).

Then, by (22.3) and by condition W, , we have
Bilt) = aift, u(t), .., oalt) < aifty Bu(D), ..., Balt))  for tH<t<y
(1=1,2,..,n).
Moreover, Bi(t,)) = ¥;; therefore, by Theorem 9.3, we get
Bilt) < wilt; 1y, X)) for f<t< min(y, @) (¢=1,2,..,n),

whence follows (22.6), since gi(t) < Bift) (i =1, 2, o, ). :

As a corollary of Theorem 22.1 we obtain immediately the following
known result (see [10]).

f&ssume @(t) to be continuous on an interval [%, y) and to satisfy
the integral inequality
t
o) <y+ [ alm)p()dr,
to

where a(t) is continunous and non-negative for f, <¢ < y. Then
t

@(t) < yoexp (f a(':)clr) for f<t<y.
ty

) Remark. One can show (see [39]) that in Theorem 22.1 condition W,
is essential.

From Theorem 22.1 we derive the following corollary:
COROLLARY 22.1. Under the assumptions of Theorem 22.1 suppose that

¢
22.1)  @ult) <wilt) + [ aifr, ox), oo pal))dr (i =1,2, ..., m)
)

5*
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for 1, <t <y, where P(t) = (pu(t), ..., vult)) is continuous on [ty, y). This
being assumed, we have

(22.8) D) P +Q,)  for fh<t<min(y, o),
where Q,(t) is the right-hand mawimum solution through (t,, 0, ..., 0) of
the system

B oty )+ 95, sl F) (=1,3,000),

defined on [ty o).
Proof. Put

G, Y)=aft, PM)+¥) (i=1,2,..,n).

The funetions 5y(¢, ¥) are continuous and satisty condition W in
the region D.
If we write
@(t) = gi(t)—wi(t) (E=1,2,..,n),
then, by (22.7), we have

t
B0 < [, §i0), oy B0 dr (G=1,2,..,m).

)

Therefore, we see that &(t), F(t, ¥) (i=1,2,..,n) satisty all the
assumptions of Theorem 22.1 in the region D with (t,, ¥,) = (%, 0, ..., 0).
Hence we have

F(1) <Qt) for 1, <t<min(y,a),
which is equivalent with (22.8).

CHAPTER V

CAUCHY PROBLEM FOR ORDINARY DIFFERENTIAL EQUATIONS

In the present chapter we give a number of applications of results
obtained in Chapters ITIL and IV to different questions concerning the
Cauchy problem for ordinary differential equations. In particular, we
find: estimates of the solution and of its existence interval, estimates
of the difference between two solutions, estimates of the error for am
approximate solution and uniqueness eriteria. Moreover, we discuss con-
tinuous dependence of the solution on initial data and on the right-hand
sides of the equations, Chaplygin meéthod and approximation of solutions
of ordinary differential equations in a normed linear space.

§ 23. Estimates of the solution and of its existence interval. We prove
TEROREM 23.1. Consider a system of ordinary differential equations

. dy ,
(23.1) ﬁ = Jil@, Yy s ¥a)  (i=1,2,..,0).

Suppose the right-hand members fi(z, X) to be defined in the region
(23.2) lo—m) <h, |yi—dl<he (=1,2,..,n)
and to satisfy the inequalities
(23.3) [fi(e, D) < oullo—a|, [Y—To) (i=1,2,..,n),

where Yo = (Y1, ..., Yn), and oi(t, ¥u, ..., Yn) are the right-hand members of
a comparison system of type I (see § 14)

a .
(23.4) dlt‘=a,(z,y1, ey ¥n) (E=1,2,..,n).

Denote by Q(i; H) = (wy(t; H), ..., ou(t; H)) the right-hand mazimum
solution of (23.4) through (0, H) = (0,7, ..., 7s), defined in the inierval
[0, @). Suppose X (@)= (y,(®), ..., yu(x)) is a solution of system (23.1)
satisfying initial inequalities

(23.5) [Yilwo)— sl <m<he  (1=1,2,..,m)
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