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Hence it follows that, for 4, > 0, function (10.14) is, in the interval
t>1,, the unique solution of equation .(10.13) through (to,yo)lan‘d (;(.)n-
sequently its right-hand maximum solutlo.n through (ty, ¥,). Our assl\?r tl'o.n
for y, = 0 follows now from Theorem 10.1 if we let 9, > 0 tend to 0. Notice

that for y, = 0 we do not have uniqueness. . )
By TJ]georem 9.5, we get the following result. Let qo(.t).ll)e c_ontlnuc?u.\
and non-negative for ¢e[ty, o). Suppose it satisfies the initial inequality

@(te) < Yo
and the differential inequality
D_g(t) < 2Lp(t) +2M Vo (d) .
This being assumed, we have for te[ty, o)
o(t) < o(t; t, ¥o)

where w(t; ty, %,) is given by formula (10.14).

CHAPTER III

FIRST ORDER ORDINARY DIFFERENTIAL INEQUALITIES

§ 11. Basic theorems on first order ordinary differential inequalities.
In this section we give theorems generalizing Theorems 9.3 and 9.4 in
the direction that will be briefly explained here (see [22] and [61]). In
Theorem 9.3 we assumed the system of differential inequalities to be satis-
fied in the whole interval where the curve ¥ = @(f) = (@2(1); .y Palt))
was defined. This assumption will be substituted by a less restrictive
one; we will require only that for every index 4 the 4-th differential inequa-
lity be satisfied at such points t where @q(f) is greater than the i-th com-
ponent of the maximum solution. As we will see (Example 11.1,
Remark 48.1), such a weakening of assumptions is very useful in applica-
tions of the theory of ordinary differential inequalities.

TEEOREM 11.1. Suppose the right-hand sides of system (5.1) are con-
tinuous and satisfy condition W with respect to Y (see § 4) in an open
region D. Let (t,, ¥,) e D and consider the right-hand mazimum solution
Q7(t5 15, Xo) = (0 (1), ..., off () through (1, ¥,), defined in the interval
[%o, %) and reaching the boundary of D by its vight-hand extremity. Let
Y = O(t) = (g,(1), ... » @ult)) be a confinuous curve on the interval [ty )

and suppose that (¢, D(t)) e D. Write o, = min(a,, ») and

+ : .
Hi={te(ly,a) tet) > o (1)) (i=1,2,..,n).
Under these assumptions, if

(11.1) D) < ¥,

(112)  D_pdt) < aift, 8(1) for teB; (i=1,2,..,n),

+
then the sets By (i =1,2,...,n) are empty, i.e.
(11.3) D) < QM5 by, Xy)  for telly, a) .

Proof. Take a, s‘equencev'of points ¥’ such that (t,, ¥") e D, ¥, < ¥’**
<Y and ImY =¥, Let Y'(f)= {(#(®), ..., ya(t)) be a solution of

y—>00

3%
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system (8.2), passing through (¢, ¥") and continued to the boundary
of D in both directions. Take an arbitrary a e (f,, oy). By Lemma 10.1,
there is an index w, (dependmg on «) such that, for » = »,, Y’(t) exists
on [ty, a) and

(11.4) Ot t,, Yo) < Y1) < X)) in [, @),
(11.5) lim Y'(t) = @V (t; 4, X))  in [ty @)

In view of (11.5), to prove (11.3) it is sufficient to show that for
v 2 vy, we have

(11.6) O < Y0 in [t a)

Take a fixed v > »,. Since @ (t,) < ¥, < ¥' = Y'(f,), inequality (11.6)
holds, by continuity, in some interval [t,, &). Denote by a* the least upper
bound of ¥ e (f,, @) such that (11.6) is satistied in [t,, @). We have to show
that a* = a. Suppose a* < «; then, by the defuutlon of a* and by the
continuity, we have

(11.7) P < Y'(t) on [t a*),

and for at least one index j '

(11.8) B(a) < (a)

(see § 4). Heﬁce, in particular,

(119)  gfa) =yiar), @) <yl) for tell,a).

From (11.9) it follows that
" 1
(11.10) D_pi(a*) = y;."(a*) = ov,-(a*, Y (a*)) —1—; .

On the other hand, since by (11.4) we have o) (a*) <+yJ"(a*), we get
from (11.9) that wj(a*) < @;(e*) and consequently o* ¢ E;. Therefore,
by (11.2), (11.8) and by condition W, (see § 4), we have

v v 1
D_pj(a*) < o5e, D (a*)) < af(a*, Yo < o’;(a"‘, ¥ (a*)) } o

contrary to inequality (11.10). ence, o* < o iy impossible and this com-
pletes the proof.

Exampre 11.1 (see [59]). Consider a linear equation
d
& =aly+o0),

where «(f) and b(¢) are continuous, complex-valued functions on [0, a).
Put $(t) = Rea(t) and suppose that |b(t)] < o(¢), where g(4) is continuous.
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Let y(t) satisty the above equation in [0, @). Under these assumptions
we have in [0, a)
ly® < oft),
where
. i
w(t)y = |y(0 )|e\p( s (117) fexp (f dr)g(u)dﬂ .
0

Indeed, put
B={te(0,0):[yt)| > o).

For ¢t e E we have obviously ]y(t)[ >0, and consequently

ww 5 1wm
Since o
Y0y () = a(®)ly (R +b(0)y ) )
YDy (t) = m‘ty(tnumy(w )
by +b0)y (1) < 20()|y ()] ;
we get

&y <2

Thus we have shown that ¢ ¢ B implies

LO1< sy (0)] + e(t)

Now, since w(t) is the unique solution of the linear equation
&Y _
= sy +el,

satisfying the initial condition w(0) = |y(0)|, our assertion follows from
Theorem 11.1. Observe that we were able to check the differential ine-
quality only for ¢ such that |y (t)| > 0.

By means of the mapping (5.4) we get from Theorem 11.1 the fol-
lowing theorem.

TeHEOREM 11.2. Suppose the right-hand members of system (5.1) are
continuous and satisfy condition W, with respect to Y (see § 4) in D. Let
(to, Xy) e D and consider the Mght hand  minimum  solution Q. (t; 1y, Yoh

= (0}(t), ..., &kt )) through (ty, ¥), defined in [ty; @) and reaching the
bom@dary of D by its right-hand emtrem'ity, Let ¥ = (1) = ((pl(t), vy (p,,(t))

be a continuous curve on [t,,y) and assume that (t, O(t)) e D. Put
a; = min(ay, ¥) and

Bi={tellym):pl) <oht)} (1=1,2,..,m).
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38
Under these assumptions, if
D(ty) = Xo,
D ult) = aift, (1)) for tsfi (1=1,2,..,n),
the:
o D) = Q4(t; %, To)  for  telly, a).

Using the mapping (5.2) we get, as an immediate consequence of
Theorems 11.1 and 11.2, the following theorem (see Propositions 5.1
and 6.1).

THEOREM 11.3. Suppose the right-hand sides of system (5..1) are con-
tinuous and satisfy condition W_ with respect to ¥ (see. §4) in an open
region D. Let (ty, Y,) e D and consider the left-hand mawzmﬁlmz (mm'm:um)
solution Q7(t; 1y, Yo) = (07 (1), «ory w0 (B)) (2-(t; to, Xo) = (_a)_(t), ()
through (t,, Xo), defined in the interval (Bo, to] and reaching the boundary
of D by its left-hand extremity. Let Y = &(t) = (¢1(t), ...,qa,,(t)) be con-
tinuous on (8, t,] and assume that (t, @ (1)) € D. Write f; = max (B, 8) and

Bi={te(f,to): ilt) > 07 ()} (i=1,2,..,%)
(B = {t e (s ) alt) < 0Z(D)}) .

Under these assumptions, if

D)<Y, (D(t)=7,),
and _ .
Droit) > aift, @(t) for teBi (i=1,2,..,m)
(Drgi(t) < aift, P(1)  for teBy),
then
By <O (G 1, Xo)  for  te(Puyto]
(@)= Q_(t; 4, Xy)  for  te(Br,hl).

§ 12. Necessity of condition V.. (V_) in theorems on d?'ﬂ'erenﬁal ine-
qualities. Let the right-hand members of system (5.1), with n>1, be
continuous in a parallelepipede

D:—co<La<ti<b 400, —co<H< i< b <

(i=1,2,..,n).

Since conditions W, and V. are equivalent in D (see § 4), we get from
Theorems 11.1 2nd 11.2, as a particular conclusion, the following result:

If the right-hand sides of system (5.1) satisfy condition V.. with respect
to ¥ (see § 4), then ! }

(04) B0 every point (ty, Yo) e D there is a solution QF(t; ¢, ¥,)
(Q4(8; to, Xo)) through (1, X,) such that for any solution Y (1) satisfying the
initial inequality Y (t) < ¥, (¥ (k) = T,) we have Y(f) < Q21(¢; 1y, Xo)
(Y (1) = Q+(1; to, X)) in some right-hand neighborhood of t,.
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The above result can be inverted; in fact, we have the following
theorem for an arbitrary open region D:

THEOREM 12.1. Let the right-hand sides of system (3.1), with n. > 1, be
continuous in an open region D. Then the condition V. with respect to Y is
a necessary one for the property (a.) to hold true.

Proof. It is sufficient to prove the part of theorem referring to Q7.
The part of theorem concerning Q. will follow then by the mapping (5.4).

Let the indices ¢ and j = ¢ be fixed and consider two points

(to’ o) = (to,‘jl, ’j") € D; (to’ i;) = (f07 ".71: "-717]'—-1:.%’?}1‘4-17 -";’!711.) eD

such that ¥; < g;. Let Y () be a solution throngh (7, ¥). Since Y,
= ¥ < ¥,, we have, by («.),

Yy <0t 4, Yo)

in some right-hand neighborhood of #,. In particular, Tilto) = §: = o (L),
Fi{t) < (1) in a right-hand neighborhood of #,. Hence, it follows that

ailtey ¥) = oufte, ¥ (1)) = Filte) < 0 (1) = Gi{ta, 2%t 1o, o)) = aulte, To)

and thus the proof is completed. -

By mapping (5.2) we obtain from Theorem 12.1 a similar theorem
concerning condition V. and the property:

() To every point (ty, X,)eD there is a solution Q7 (5 4, X,)
(Q-(t; ty, X)) through (o, X,) such that for any selution Y () satisfying the
indtial inequality ¥ (%) < ¥, (Y () = ¥,) we have Y(t) < Q7(t; 1y, Xy)
(Y (t) = 2_(2; ty, X,)) in some left-hand netghborhood of 1.

From the last remark and from Theorem 12.1 follows the next theorem.

THEOREM 12.2. The only systems (5.1) with right-hand members -con-
tinuous in an open region D, for which both properties (ay) and (a_) hold
true, are those of the form
(12.1) 02_,31 =oityy:) ($=1,2,..,n),

i.e. systems of independent equations, each containing only one unknown
function.

Proof. The right-hand sides of system (5.1), having both properties
{2+) and («_), satisfy necessarily conditions V. and V_. This means that
the function oy(t, ¥) is both increasing and. decreasing with respect to
the variables ¥y, ..., #i-1, Yi+1, .., ¥» and hence depends only on the
variable ;.

Less precisely, Theorem 12.2 may be summarized in the following way:

Systems (12.1) are the only ones that can be used for estimatos from
above (from below) both to right and to left from the initial point.


Yakuza


40 CHAPTER III. First order ordinary differential ineqnalities

§ 13. Some variants of theorems on differential inequalities. To begin
with we will show that Theorem 11.1 holds true if the derivative D_
in (11.2) is replaced by D™ or D, or DY, We do it for D, for instance.
Obviously it is sufficient to prove that if (11.2) is satisfied with DV instead

of D_, then it is satisfied with D_ too. Suppose then that
+
(13.1)  Droun) <oift, () for tel; (i=1,2,..,n).

The set fh is open and, therefore, is the union of a sequence (finite
or infinite) of open intervals. Take any of these intervals, say Aj, and
consider the Picard’s transform W(1) = (i(t), ..., wa(t)} of @(1), defined
by the formula

t

—f oilz, D (7)) dv

where 7, is fixed in 47. By (13.1) and (13.2), we have
Diyi(t) = D) —oift, D)) <O for ted]
(i=1,2,..,

(13.2) wi(l) = pa(?) (t=1,2,..,n),

nyv=1,2,..).

Hence, wi(t) being continuous in the interval A7, we get, by Theo-
rem 2.1, that wi(t) is decreasing in 47. Therefore,

0> D_wi(t) = D_o(t) — ouft, (t)) in 47

(F=1,2,..,mv=1,2,..),
what was to be proved.

By a similar argument we show that Theorems 11.2 and 11.3 hold
true with any of the four Dini’s derivatives appearing in the system of
differential inequalities.

All theorems of this chapter will be formulated, from now on, with
the D derivative; but, due to the preceding remarks, they will be true
with any of the four remaining derivatives, and in our subsequent con-
siderations we will remember this fact without pointing it explicitly.

Applying Picard’s transform (13.2) we obtain, by the argument
used in our preceding remarks, the following theorem.

TeeoREM 13.1. Theorems 11.1, 11.2 and 11.3 are true if the corre-
sponding differential inequalities are supposed to be satisfied in the sets
E;— Cy, where C;C E; is an arbitrary countable set.

A much stronger result is obtained if we additionally assume that
D(t) is absolutely continuous. In fact, we have the following theorem.

THEOREM 13.2. Under the assumptions of Theorem 11.1, let ®(t)
= (pu(t), ..., @ult)) be absolutely continuous in [ty, ). This being assumed if

O(t) < X,
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and
N +
(13.3) gilt) < auft, D(t)) almost everywhere in By (i=1,2, .., n),
then

D(1) <Q+(t' by Xo)  in [t @)

Proof. In view of Theorem 11.1, it is sufficient to show that (13.3)
unphes (11 2). Like in our considerations at the beginning of this paragraph,

let Ei UA“ where 47 are open intervals, and introduce the Picard’s

transfmm (13 2). The function yy(t) is absolutely continuous in 4% because
50 is @it). By (13.3), we have yi(t) = i(t) (t)—o3(t, D(t)) < O almost every-

where in 4;. Hence, by Theorem 3.1, the function yi(t) is decreasing
in 47, and therefore

D_gu(t)— ouft, (1))

what was to be proved.

Similar theorems, corresponding to Theorems 11.2
stated in an obvious way.

Using Remark 3.2, we show similarly that Theorem 13.2 holds true

if @(¢) is a generalized absolutely continnous function and (13.3) is satisfied

with @i(t) substituted by the approximative derivative of p(t) (see [22]
and [507).

=D_p(t) <0 In 47 (»=1,2,.),

and 11.3, can be

§ 14. Comparison systems. In this section we introduce systems of
first order ordinary differential equations having some special properties.
These systems, called comparison systems, will be used in applications
of the theory of differential inequalities.

A system of differential equations
d:l/i
ﬁt_ ) 1./")
will be called comparison system of type I if its right-hand sides are con-
tinuous and non-negative and satisfy condition W. with respect to ¥
(see § 4) in the closed region

(14.1) = oi{t, Yy, ... (1=1,2,..,n)

Q:t=0,y:=>0 (i=1,2,..,n).
ExamprE 14.1. The linear system
dy .
e Zau Oy +but)  (=1,2,..,n),

4,7 =1
with a;(t), bi(t) continuous and non-negative for >
system of type I.

Since the region ¢ is not open, we are not able here to apply directly
the results of § 9 on the maximum solution of system (14.1). Nevertheless,

0, is a comparison

we will show that the following proposition holds true:
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PROPOSITION 14.1. Through every point (0, H) = (0,51, ..., 7n) € @
there is the right-hand mazimum solution of the comparison system of type I,
which will be denoted by 2(t; H) = (wy(t; H), ..., walt; H)) and its masimal
anterval of existence by A(H) = [0, ay(H)). Moreover, we hove either ay(H)
= + o0, or a(H) is finite and ()

}im 12(t; H)| = + 0.

Proof. It is easy to see that there exists an extension &;(t, ¥) of
oyt, ¥), so that &(t, ¥) are continuous and non-negative and satisty
condition W, with respect to ¥ in the whole space of points (¢, ¥). Now,
by Theorem 9.1, applied to the extended system
dys
dt
there is the right-hand maximum solution 2(¢; H) of (14.2) in an interval
A(H), passing through (0, H) and reaching the boundary of the space
by its right-hand extremity. For this solution, since &(¢, ¥) are non-
negative and since Q(0; H) = H >0, we have (i H) >0 in 4(H).
Hence, (t, 2(t; H)) e@ for teA(H), and consequently Q(¢; H) is the
solution of the original system (14.1) with required properties. The existence

of the limit )
PﬂVZWMHW

1=1

{(14.2) =3¢(t7yi7---;yn) (t=1,2,..,m),

follows from the fact that wi(t; H) are increasing functions since
ai(t, ¥) = 0.

Remark 14.1. Taking advantage of the extended system (14.2)
we can prove that Theorem 10.1 holds true for a comparison system of
type I.

Using the extended system (14.2) we derive from Theorem 11.1 the
next theorem.

FirsT COMPARISON THEOREM. A comparison system (14.1) of type I being
given, let (0; H)e @ and denote by Q(t; H) = (ey(t; H), ..., wa(t; H)) its
right-hand maximum solution through (0, H), defined in [0, a,). Let ®(t)
= (@u(8), .., @ult)) e continuous and non-negative in some interval [0, y).
Put ¢ = min(ay, y) and

Bi= {t € (0, o) : @a(t) > yft; H)}
Under these assumptions, if
P0)<H,

(1=1,2,..,n).

n
(*) For a point 4 = (a,, ..., a,), |4| denotes ]/2 al.
im
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and
D_gi(t) < aift, o) for teB; (i=1,2, ey ),
then
Dty <R H) for tel0,q).

For n =1 we introduce two special types of comparison equations;
but, first we prove a lemma.

Lemma 14.1. Let the right-hand side of the differential equation

(14.3) d—i’ =o(t,y)

be continuous and non-negative in the reqion

Q:t>0,y>=0
and suppose that

(14.4) o(t,0)=0.

Under these assumptions, for every point (ty, y,) € @ there is the left-
hand minimum solution o_(t; 1y, yo) through (ty, y,), and its maximal in-
terval of existence is (0,1,]. Moreover, we have

w_(t; 4,,0)=0.

Proof. We consider the auxiliary equation

(14.5) W_zu,m),
where
E(t,y):{a(t’y) for t>0,y>0,
0 for t>0, y<o.

By (14.4), the right-hand side of equation (14.5) is continuous in
the open half-plane ¢ > 0. Hence, by Remark 9.1, there is the left-hand
miminum solution w_(3; 4, ¥,) of (14.5) through (%, %,), reaching the
boundary of the positive half-plane by its left-hand extremity. Denote
its existence interval by (8, f,]. We will show that

1% w_(t; 1, 5o) = 0 for te (B, 1],

2° pg=0.

To prove 1°, observe that the unique solution of (14.5) issued from
a point (t*, y*), where y* < 0, i3 () = y* < 0. Hence it follows that 1°
holds true since w_(t; 1y, %) = ¥, = 0. Now, we must have f = 0; other-
wise, sinee w’(t; %y, %) > 0 and by 1° the solution path y = @_(t; 1, Yo)
would be contained in the compact subset 0 < g <t <y, 0<y <y,
of the positive half-plane, which is impossible because w_(t; %y, Yo) reaches
the boundary of the positive half-plane by its left-hand extremity. From 1°
and 2° it follows that w-_(f; %y, ¥,) is the left-hand minimum solution of
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the original equation (14.3) with required properties; w_(t; {,, 0) = 0 is
obvious.

Equation (14.3) with the right-hand member continuous and non-
negative for ¢ > 0, ¥ > 0, and satisfying (14.4), will be called comparison.
equation of type IL if y () = 0 is in every interval (0, ) the only solution
satistying the condition

limy(t) = 0.
=0

Exavrie 14.2. We give three examples of comparison equations of
type II: .

dy

() i a(t)y with a(t) > 0 continuous for ¢ = 0;
' . )
®) % — () with o(y) >0 for y >0, ¢(0) =0, j‘li = + oo
dt ¥ ;oW
dy _
(y) 77 = [lntfy.

SECOND COMPARISON THEOREM. Let a comparison equation (14.3)
of type 11 be given and let @(t) be continuous in an interval [0, a) and satisfy
the condition
(14.6)

Write

P(0) <0.

F=1{te(0,a): ) >0}

and suppose that

(14.7) D_p(t)<olt,p(t)) for teB.
Under these assumptions
pt) <0 in  [0,q).

Proof. Buppose that for some %, ¢ (0, «) we have

) =y > 0.

By Lemma 14.1, the left-hand minimum solution of (14.3) w_(1; &y, %),
issued from (%, ¥,), is defined in (0,1,]. Since ¢(0) <0 and e(ty) =0,

there is the first ¢, to left from %), such that () = 0. We have obviously

t, =0 and

0<o(t) for t<t<t,.

Hence, applying Theorem 9.6 (compare Remark 9.3) to equation (14.3)
(considered in the open region t >0, y > 0) we see, by (14.7), that
(14.8)

0< o (54, 5) <plt) for H<t<gt,.
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If # = 0, then from (14.6) and (14.8) it follows that

(14.9) lim o_(; 1y, ) = 0.

If 4 > 0, then since ¢(#) = 0, we have (i &, Yo) = 0, by (14.8);
hence, by Lemma 14.1, we get w_(t; t,, Yo) = w-(t;1,0)=0for 0 <t < ty
and, consequently, (14.9) holds true in this case too. Therefore, w_(t; t,, y,)
would be a solution of (14.3) tending to zero as 1 goes to zero and different
from y(t) = 0 since w_(iy; 4, %) = 17, > 0. But, this is impossible in view
of the definition of a comparison equation of tiype II. This contradiction
-completes the proof.

Remark 14.2. A comparison equation (14.3) of type II is not—in
:general—one of type I, because o(t, y) is not supposed to be continuous
for ¢ = 0. If o(t, ¥) is continuous for ¢ = 0, then the second comparison
‘theorem is a corollary of the first one.

Equation (14.3) with the right-hand side continuous and non-negative
for >0, y >0, and satisfying (14.4), will be ealled COMPATison equation
-of type IIT if the following property holds true:

(en) In every interval (0, y) the function y(t) =0 is the only solution

. -satisfying the conditions ;
(14.10) limy (t) = e 240 — g
-0 - 1

A comparison equation of type IT is obviously one of type III too.
But, a comparison equation of type IIT may not be one of type IL. This
ds shown by the following example.

Example 14.3. Let

dy _y
a1

The general solution of this equation is ¥ = Ot (C = const) and
‘hence the equation is of type III, but not of type II.

THIRD COMPARISON THEOREM. Let a comparison equation (14.3) of type
IIT be given and let p(t) be continuous in an interval [0, o) and satisfy the
-conditions
(14.11)

Pt

p(0)< 0, DTp(0)<0.
Bo={te(0,a): p()> 0}
and suppose that

Dogt)y<olt,p()) for teH.

Under these assumptions

et) <0 din [0, a).
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Proof. We proceed just like in the proof of the second comparison
theorem and find that if the thesis were not true, then for some %, ¢ (0, a)
and 0<1t <t we would have ¢@(f,)=0 and (14.8) with y, = @(f).
Hence, if #, = 0, it would follow from (14.8) and (14.11) that

ot o, %) _ 4
- .

(14.12) limw_(; ,, ¥,) = lim
0

t—0
If t, > 0, then—1like in the proof of the second comparison theorem—
we have w_(f; ;%) = 0 for 0 <t<t and consequently (14.12) would
hold in this case too. Therefore, w_(t; ty, ¥,) would be a solution satisfying
conditions (14£.10) and different from y(t) =0 (because w-—(to; o, %o)
= 9, > 0), contrary to the definition of a comparison equation of type IIL
Remark 14.3. It is obvious that property (o) in the definition
of the comparison equation of type ILL implies the following one:
(es) In every interval (0, y) the function y(t) =0 is the only solution of
(14.3) satisfying the conditions

limy (f) = limy'(#) = 0 . '
=0 =0

Now we will construct an example showing that

1° property (o) is essentially weaker than property («,),

2° if property («;) is replaced by property (o,), then the third com-
parison theorem is—in general—false.

Indeed, let ¢(f) be differentiable for ¢ > 0 and satisfy the conditions

1) ¢(0) =0, @(t) >0 for t >0,

2) ¢4(0) =0, ¢'(t) =0 for t>0,

3) ¢'(t) is continuous for ¢ > 0,

4) limg'(f) does not exist.

0

It is not difficult to construct such a function. Consider the linear
equation '
dy _ ¢'(t)
(14.13) &= e

Its right-hand side is comtinuous and non-negative for ¢ >0, y > 0
and its general solution is ¥ = Op(t). Hence, by 1) and 2), every solution
of (14.13) satisfies conditions (14.10) and consequently equation (14.13)
does not have property (e,). On the other hand, by 4), property («;) holds
true. Moreover, the function ¢(f) satisfies, with respect to equation (14.13),
all the assumptions of the third comparison theorem and, by 1), is not < 0.

§ 15. Absolute value estimates. This section deals with a theorem

that enables us to obtain estimates of absolute value of functions both '

to right and to left from the-initial point.
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Before stating the theorem we first pr siti ini
_ Bed prove a proposition on Dini’s
derivatives of the absolute value of a function. P M

PROPOSITION 15.1. For o function ¢(t)
of 1, we have the inequalities
(15.1) D_jp(t)] < |D_p(t),
(15.2) Dilo(t)] < [Dsp(ty)] -

Proof. We prove, for instance, (15.1). Let 1, b
5.1). » be a sequence s
that ¢, < &, t,—+1t, and ’ ! ¢ ek

defined in the neighborhood

(153) 1mZW =l _ 5 o0 () =)

oo bty T, 2 D-le()]
Since
eb)—g(t) | _ [le®)I=le(@)l]  {lpit) — o) _ lp () — lp(t)]

t,—1, t,—1, !

inequality (15.1) follows from (15.3).
THEOREM 15.1. Let a comparison system (14.1) of type I (see §14) be given

and let @ (z) = (py(z), s @a()) be continuous in the interval |z— .|
Assume that (1) ol <y
(15.4) |9 (z)| < H,
where H = (ny, ..., 14) and put

B = {z: [g—a| < min (y, a(H)) , |pi(@)] > wil|lz— |5 H)}
(t=1,2,..,m),
where Q(t; H) = (wy(t; H), ..., walt; H)) is the right-hand maximum solu-

tion of the comparison system through (0, H), defined in the interval [0, ao(H))
Suppose finally that

(18.5) | D_gifa)l < oil|w—m|, |B@)]) for @eBi (i=1,2,..,n).
This being assumed, we have
(15.6)

2@ <Q(a—ml; H) for |o—z| < min (v, a(H)) .

Proqf. Since the assumptions of our theorem are invariant under
the mapping & = —» 4 2, (}), it is enough to prove (15.6) for the interval

0 < z—m < min(y, gp) .

(*) For the definition of the symbol I, see § 4.
. (*) It should be remarked that the mapping &= —x+ 2, transforms the deriva-
thfB D- in (15.5) into D*; however, Theorem 15.1 is true with D- substituted by D*.
This explains how the invariance of assumptions is to be understood.
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For this purpose, pub
pilt) = |@almo+1)!
W= {1 0 <t < min(y, a), pdt) > wlt; )}

for 0<t<y (i=1,2,..,n)),

(3=1,2,..,m).

Then wi(t) are continuous in [0, ) and, by (15.4),
)< H.
Moreover, in view of Proposition 15.1 we have, by (15.5),
D_wpilt) < aift, P (1)) tel;
Hence, by the first comparison theorem, we get
(15.8) W) < Q(t; H)
From (15.8) follows (15.6) in the interval (15.7), what completes

the proof.

If @ (w) = H >0 (—H < 0), then it is useful to have some better
estimate of @(z) from below (from above) in the neighborhood of .
Such an estimate is given in the following theorem:

THROREM 15.2. Under the assumptions of Theorem 15.1 suppose addi-
tionally that the right-hand members of the comparison system satisfy con-
dition Wy (i.e. are increasing with respect to all variables y;). Assume that

for (E=1,2,..,%).

for 0 <t<min(y, «)-

{15.9) O(w)=H>0 (D) =—H<0),
and
(15.10) | D-git)l < ai(|w—mol, |B(2)])  for  |@—m| < min(y, o)

(1=1,2,..,1).
This being supposed, we have
(15.11)  B(2) > 2H—Q(lo—wl; H)  (P(a) < —2H +Q(jz—aol; H))
in the interval
{15.12)

Proof. We restrict ourselves to the case P(x,) = H > 0. Like in
Theorem 15.1 it is sufficient to prove (15.11) in the interval (15.7). By
Theorem 15.1, the inequalities

|®(2)] < 2(x— x5 H)

|&— @} < min(y, «) -

hold true in the interval (15.7). Hence, by (15.10) and by condition V\—Dr,

we get in (15.7)

(15.13)
Put

D_w(t)>—ﬂt(m‘1'uyg(w—moi H)) (i=1,2,..,m).

ei(@)—2ni +ode—xe; H) (i=1,2,..,0).

pi()
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The functions yi(«) are eontinuous in (15.7 ) and, by (15.13), we have
D-vilw) = D_g() + wilw—zy; H) = D_pi() + oi{w—,, 2) >0
(i=1,2,..,n).
and. sines Plod = 0 by 15 e o iy e fatervl (157
O(2) > 2H—Q(2—my; H)
in (15.7), what was to be proved.

As an immediate corollary of Theorem 15.2 we get the next theorem.
THEOREM 15.8. Under the assumptions of Theorem 15.2 suppose that

(15.14) H>Hz0 (-H<-H<0),

where H = (7, ..., 7,). Denote by 1; the least root of the equation in t
(15.15)

p—odt; H) =7 (=2 +ot; H) = —7)

if such a 700t exists in the interval 0 < t < ag; if it does not exist, put t; = +
This being assumed, we have

Q.

(15.16) O(z)>H (Bw)<—H)
in the interval
(15.17) |o— 2| < min(y, ag, 5, ...y ts) .

. Proof. Since 29— wy(0; H) = ;> 7;, we have, by the definition
2]

(15.18) 2pi—odt; H) > % (i=1,2,..,n0) .
in the interval
0 <t<min(y, ay, fyy wey ) -

Hence, by (15.11), we obtain (15.16) in the interval (15.1.7).
ExAMPLE. Let @ix) ({=1,2,..,n) be continuous in the interval
(15.19) le—m] < y

and satisfy differential inequalities

Do)l S K ) lgs) +L  (i=1,2,..,n; E>0; L>0).
j=1
The comparison gystem is here of the form
dy‘ n
w K 7; y+L (¢

J. Szarski, Differential inequalities 4

=1,2,..,n)
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and its unique solution through the point (0,7, .-, Nu) 18
s+ Lt for K=0 (i=1,2,..,n),
= L L r K>0.
Y1 ‘(’ii"}‘ﬁ)enm“ﬁff for
. [
Hence, if |pi(@)] < (i =1,2,...,n), then, by Theorem 15.1,
71 +L|w— | for E=0 (i=1,2,..,%),
' L
lpefer)| < ( L\ kol L tor K >0
Gy nkK
i=1,2,..
in the interval (15.19). If, moreover, gim)=7:>0 (1=1,2,.., n),

then, by Theorem 15.2,

ni— Lo — | for K=0 (=1,2,..,n),
i~ — %

pi(w) =

. L )
gm_(m_i_%’%)gnklx—xol -}-m for K>0.
Tet £ >0 and o) =i > =0 (6=1,2,..,n). Equation (15.15)
is now

2771-—(77«7—1-;1?)6"”—1—%% =
and its only root is L
(15.20) te= 1+ = [m+57) |-
Therefore, by Theorem 15.3, we have
‘ pil2) >N (1=1,2,..,%)

in the interval |@—m,| < min(y,t, ...,1:), where t; are given by for-

15.20). ] ) .
mlﬂaN(ow le)t @(1) be a vector-valued function of the real variable t, its
values be’long'ing to a normed linear space £ with the norm | |. Suppose

(1) is strongly differentiable at a point #. Then, using the properties
of the norm we check that

(15.21) | Dl dll] < Il o)l -

For vector-valued functions we can prove the following theorem.

THEOREM 15.4. Let a comparison system (14.1) t?f type I (see § 14;
be given and let pi(@) (E=1,2, .., n) {76 strongly continuous veotor-v:;lqie
Junctions of the real variable © on the interval |@—m| < y. Assume tha

)i <me (=1,2,..,n)
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and put
Bi={o:a—al < win(y, ao(H)), [lpi()] > wfjo—z,); H))

(t=1,2,.,n),

where Q(t; H) = (wn(t; H), ..., wn(t; H))

of the comparison system, issued from

in [0, ay(H)). Suppose finally that yi(z)

18 the right-hand mazimum solution
(0, H) = (0, 9y, ..., 7n) and defined
18 strongly differentiable in &; and

(o) < G¢(|£17——£00[, 21691 P ”Wﬂ(w)”) for @By (i=1,2,..,m).

This being assumed, we have

o)l < olle—a); H)  for 2= < min(y, a(H)) (i=1,2,...,0).

Proof. If we put
?i@) = lpd@)l  (i=1,2,..,0)

and use (15.21), then all assumptions of Theorem 15.1 are satisfied.

Exavere. Suppose the real funetions w(z),

oy Yr(®) ave differen-
tiable on the interval [z — %y < y and satisfy the

following initial inequality
%
]/ 2 e <1,
and differential inequality

k k
]/2 [vie)P < Kl/E p@F+L  (K>0,L>0)

1=1

in the interval |#— ;) < y. Then we have

_—
L Lo
]/2 [y2) < (77+K—)em“”*1m—E in|e—m<y.
i=1

Indeed, the sequence of functions (@), ..., yu(z) can be considered
a8 a vector-valued function ¥(z) with values in the Euclidean space.
The above initial and differential inequalities can now be rewritten in

the form .
@)l <7, |¥@I|<E|¥@)|+L,

where || || is the Buclidean norm. Hence, by Theorem 15.4 (in our case
we have n = 1), we get in the interval |B— 0] < v

1#(@) < (|lz—2l; 7) ,

4%
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where w(f; %) is the unique solution through (0, n) of the linear equation
ay
—= = Ky+L.

The last inequality is nothing else but the inequality that was to
be proved. ‘

§ 16. Infinite systems of ordinary differential inequalitieg and systems
satisfying Carathéodory’s conditions. This paragraph deals with ffmalogu.es
of Theorems 9.1 and 9.3 for countable systems of first order differemtial
equations and inequalities. o

! The method of proving Theorems 9.1 and 9.3 for both fm'lte and
infinite systems, due to W. Mlak and C. Olech, which we use.h.ere is baged
on the validity of Theorems 9.1 and 9.5 for a single differential equation
resp. inequality (see [30]). o

We also discuss Theorems 9.1 and 9.3 for systems satisfying Cara-
théodory’s conditions. ) . . .

Oonsider a finite or countable system of ordinary differential equations

(16.1) B oty gy oy ) (i =1,2, ).

By a solution of system (16.1) we mean a sequence of differentiable
funetions () (i = 1,2, ...) in some interval 4 satisfying (16.1) oforut ed.
The right-hand maximum solution of (16.1) through a point (¢, ¥, §2, ..)
is defined in a similar way like that of a finite system of differential equa-
tions.

° s()oneerning the right-hand sides of system (16.1) we introduce the
following assumptions:

ASSUMPTIONS HL. The functions oi(t, Yy, Y, -..) (6 =1, 2, ...) are defined
and boundéd in the region
D:a<t<b, Y, Ya, .. arbitrary.

For every fized i, the function oit, Yy, ¥s,. ..) is increasing in the variables
Yy ooy Yim1y Yit1y ooy and 8 continuous in D in the following sense: for any
point  (tyy Xo) = (fo, 1, Joy ) € Dy if Ty, yu—>gn (B =1,2,..), then
oift, Xy oilty, Xo).

THEOREM 16.1. Let the right-hand sides of system (16.1) satisfy Assump-
tions H and (ty, Xo) = (to, Y1, Y2, ...) be an arbitrary point of D. Then

1° there i8 the right-hand mazimum solution w(t) (i=1,2,...) of (16.1)
through (t,, X,) in the interval

(16.2) Lh<t<h,
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2° for amy sequence B (1) = (py(2), galt), ) of continwous fumetions in
the interval (16.2), such that

(16.3) pill) <y (i=1,2,..),
(16.4) - Dogeft) < Ui(t; Pu(t), @ot), ) (i=1,2,.)
in the interval 1, < t < b, we have

(16.5) ei(t) S welt) (1=1,2,..)
in the interval (16.2).

Proof. Denote by ¥ the family of sequences of continuous functions
in the interval (16.2). Take an arbitrary sequence @ (1) = (), 2alt), ) € F
and put
oit, y; D) = Ui(t’ @t} ooy 9ialt), Y5 @ira(t), )
in the region
D*:t,<t<b, y arbitrary .

The function oy(t, y; @) is obviously continuous in D*. Hence, by
Theorem 9.1 (see Remark 9.1), there is the right-hand maximum solution
of the single equation

(16.6) Y oty 0)
through the point (4, ;), reaching the boundary of D* by its right-hand
extremity. We denote it by wi(t; @) and we claim that it exists in the
interval (16.2). Indeed, the right-hand side of equation (16.6) it bounded
and hence every solution of (16.6) is bounded in every bounded subinterval
of (16.2). Therefore, if wi(¢, y; @) did not exist in the whole interval (16.2),
it would be bounded and consequently it would not reach the boundary
of D* by its right-hand extremity. Now, denote by &, the subfamily of F,
consisting of sequences satisfying (16.3) and (16.4). This family is not
empty since, for instance, the sequence gi(t) = §; +pi(t—1,) (6 = 1,2, ...),
where )

m= inf oy, Y),

T)eD

belongs obviously to F;. Let &() be an arbitrary sequence in F,; then,
by (16.4), we have

Dogift) < ault, pi(t); D)

in the interval (16.2). Hence, by Theorem 9.5 applied to the single equa~
tion (16.6), it follows that for every fixed 4

(16.7) Pi(t) < ouft; D)

in the interval (16.2). Since the function oy(t, y; ) is bounded in D+,
uniformly with respect to @ e F;, it follows that for every i the family
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of functions ws(t; @) is bounded from above at every point % e[, b)
and equicontinuous in this interval. Hence
wi(t) = sup wi(t; P)
2ed,

exists in the interval (16.2) and is a continuous function. Moreover, it
satisties obviously the initial condition

wi(ty) = ?;i .

By (16.7), inequalities (16.5) hold true for any sequence @ (1)« F;.
Hence points 1° and 2° of our theorem will be proved if we show that
o) (£ =1, 2, ...)is a solution of system (16.1). To go this, we first observe
that for two sequences @ (f)= (py(t) , ga(1), ...) ¢ F and B (£) = (@a(t), Fa(t), ...) € F
such that

(16.8) ei)) <@) (E=1,2,..)
we have
(16.9) wit; D) S wilt; B)  (i=1,2,..)

in the interval (16.2). Indeed, by (16.8) and by the monotonicity con-
ditions imposed on the functions oy(t, Y¥), we get

dwi(t; D)

& = Gi(ta wi(t; P); ¢) = W(t; 1t)y ooy 9ia(B); @ity P),y Piral?), )

< O'i(t: Fult); oy Pialt), wilt; D), Bria(t), ) = ‘”(t7 wi(t; P); @) )
Hence, wi(t; 5) being the right-hand maximum solution of

@{' = 04, ¥; 5)

through (fy, ), we obtain (16.9Lby Theorem 9.5. In particular, if @(¢)
is any sequence in F; and B(1) = Q) = (w(t), wy(t), ...), it follows
from (16.5) and (16.9) that

wi(t; D) S wilt; Q) for DPeF; (1=1,2,...).
Therefore,

(16.10) wi(t) = sup wilf; D) Swilt; ) (1=1,2,..)

Pey
and consequently, putting 2(t) = (w,(t; ), wyt; L), ..}, we get

(16.11) olt; ) < a(t; B)  (i=1,2,..).
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On the other hand, we have

dwi(t; Q
(16.12) % = ot wil; Q); Q)

= o1{t, @)y -y 0iall), 04(t; D), W1a(d), .01 -
Hence, by (16.10) and by the monotonicity conditions, we conclude
that

dowi(t; Q ;
dt, )gﬂ’t(t7 oty ), oq(t; Q), ) (6=1,2,..).

The last inequalities, together with the relations
wilfy; Q) =4 (i=1,2,..),
mean that the sequence D(t) satisfies (16.3) and (16.4) and consequently
belongs to F,. Hence it follows that
(16.13) wil; B) < sup oty B) = wilt)  (i=1,2,..).

ded,
Inequalities (16.10), (16.11) and (16.13) imply that
o) = wi(t; Q) (=1, 2,..)

in the interval (16.2) and econsequently, by (16.12), it follows that
oit) (i=1,2,..) is a solution of system (16.1) in the interval (16.2),
what was to be proved.

We introduce now Carathéodory’s conditions. We say that the right-
hand sides of the finite or countable system (16.1), defined in the region

D:a<t<b, 4,9, .. arbitrary,
satisfy Carathéodory’s conditions if
(o) for every fixed i, oi(t, ¥y, Ys, ...) (i = 1,2, ...) are continuous in
the variables ¥, ¥,, ... (in the sense specified in Assumptions H),
(B) for fixed i, ysy..., ou(t, ¥) ({=1,2,..) are measurable in t
and there exist functions mt) (¢ =1,2,..), Lebesgue integrable on
every bounded subinterval of (a,d), such that

foi(t, X< myt)  (i=1,2,..).

By a solution of system (16.1), satisfying Carathéodory’s conditions,
we ean a sequence of functions y(f) (4 =1, 2, ...) which are absolutely
continuous on some interval A and satisfy (16.1) almost everywhere on 4.

It is a well-known theorem, due to Carathéodory (see for instance 71,
that under the above conditions in case of a single equation there is a solution
of (16.1) through every point (t,, ¥y) e D, defined on the interval (a, b).

The right-hand maximum solution is defined as usually. Now we
have the following theorem.
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THEOREM 16.2. Let the right-hand sides of the finite or countable
system (16.1) satisfy Carathéodory’s conditions in the region D. Suppose
that, jor every fized i, the function o4, ¥) is increasing in the variables
Uiy oovy Yicty Yisay ooy and L6t (4, Xo) = (b, d1y 42y ) € D. Under the above
assumptions the following propositions hold true:

10 there is the right-hand mazimum solution wi(t) (i =1,2,...) of (16.1)
through (t,, Yo) in the interval (16.2), 1

2 for any sequence (qol(t),cpg(t), ) of absolutely contimuous functions
on (16.2), satisfying initial inequalities

oty <¥:  (I=1,2,..)
and differential inequalities

‘Pé(.t) < Gi(ta AU P5{1), ) (¢=1, 2, )
almost everywhere on the interval t, <t < b, we have
o) <wit) (6=1,2,..) on (16.2).

Proof. It is sufficient to prove Theorem 16.2 in the case when the
system (16.1) reduces to a single equation with one unknown function.
Indeed, it is not difficult to check that adequately modified arguments
used in the proof of Theqrem 16.1 permit to derive the validity od Theo-
rem 16.2 from its validity in the case of one equation.

Let us then consider one equation

dy
(16.14) =ty

and assume its right-hand side to satisfy Carathéodory’s conditions in
the region
D: a<t<b,y arbitrary .

Let (2, ¥o) e D. What concerns the existence of the right-hand maxi-
mum solution w(t) of (16.14) through (%), ¥,) on the interval (16.2) we
refer to (7] and we restrict ourselves to the proof of point 2°. Let ¢(?)
be an absolutely continuous function on (16.2) and suppose that

(16.15) P (b)) < Yo,

(16.16) @'(t) < oft, (1)) almost everywhere on (4, b) .
We have to prove that

(16.17) p(t) <w() on  [t;d).
To this purpose, consider an auxiliary equation

dy

(16.18) F

=T(ta")1
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‘where
olt,y)  for y

=
T(t =
D= ole) for y<

It may be fﬂ%eeked that the right-hand side of (16.18) satisfies Cara-
thé.odory.’s conditions. Denote by y (t) a solution of (16.18) through (£, ¥,)
defined in the interval [%,,5). We will show that

(16.19) M) <y() on [f,0).

Suppose the contrary, i.e. ¢(f,) > y(f) for some 1y € (£, b). Then,

since, by (16.18), ¢(f) <y, = y(f,), there would exist a Lty <t <1y,
such that

(16.20) pl) =y(#),
(16.21) et)>y(t) on (f,1).

On the other hand, by (16.16) and (16.21) and by the definition of
7(¢,y), we have almost everywhere in the interval (1, s 1)

?

0 —y'(t) < oft, p(0) —7(t, ¥ (1)) = oft, p(t)) —oft, p(t) = 0.

Hene.e, both functions ¢(¢) and y(t) being absolutely econtinuous,
the function ¢(t)—y(t) is, by Theorem 3.1, decreasing on the interval
[t %] and consequently we have, by (16.20),

p) <y on (4,1),

W]:.la/t contradiets (16.21). Thus inequality (16.19) is proved. But, from
this mgqua.lity and from the definition of =(¢, %) it follows that y(f) is
a solution of the equation (16.14) through (7, ¥,). Hence, w(f) being its
right-hand maximum solution through (4, ¥,), we get

Yty <o) on  [t,?).

The last inequality together with (16.19) implies (16.17).
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