CHAPTER II

MAXIMUM AND MINIMUM SOLUTION OF ORDINARY
DIFFERENTIAL EQUATIONS

§ 4. Some notations and definitions. Let ¥ = (y,, ..., ya), ¥ = (Fis ooey Un)
be two points of the n-dimensional space. We will ‘write

Y<Y it 4<% (G=1,2,..,n)
and
Y<¥ it ;<% (=1,2,..,n).

The index 4 being fixed we write

Y<Y if ;<% (=1,2,..,n) and Y= .
Let a system of functions f{(X, ¥) = fy@y, ..., By, Y1 -vv, Yn) . (f =
1,2,..,n) be defined in a region D.

-CONDITI.OEN Vi (Vo). System f(X,Y) (§=1,2,..,%) is said to
satisfy CO].JdltIOD. Vi (V.) with regard to ¥ in D if for every fixed index 4
the‘ function f«(X, Y) is inereasing (decreasing) with respect to each
variable yy, ..., ¥i1, Yis1s ..., Yn Separately.

Conbrrron W, (W.). System j(X, Y) (i=1,2,..,n) is said to

satisfy condition W, (W_) with respect to ¥ in D if for every fixed index §
the following implication holds true:

Y<T, (X,7)eD, (X,T)eD=iX,¥) <X, D)
(Y<Y, (X,Y)eD, (X,V)eD=f(X, T)>1(X, 7).

'conmw;o'zv W, (W_). System f,(X, Y) (j=1,;2,...,n) is said to
s:a,tlsfy condition W,. (W_) with respect to ¥ in D if the following implica-
tion holds true:

Y<¥, (X,0)eD, X, D)eD=fyX,1)<i(X, D)
R (=1,2,..,m)

¥<Y, (X, YeD, (X,9)eD=j(X,T)>4X, D)
(i=1,2,..,n).
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It is obvious that condition W, (W_) implies condition V., (V_) and
that for » = 1 all four conditions are trivially satisfied. It is also clear
that for n = 2 condition W.. (W_) and condition V. (V_) are equivalent.
This equivalence is—in general—no more valid for n > 2, as may be shown
by a suitable counter-example. However, the above equivalence holds
true in special regions without any restriction on the dimension. For
instance, it is easy to check the equivalence of the conditions W, (W_)
and V, (V_)in the case when the projection of the region D on the space
(1 -y Yu) Is @ parallelepipede

—co Km<Yy<h <K< +oo (j=1,2,..,n).
For Y = (i1, ..., Yu) We write
=Y = =41y s —Un) s N¥]= (3]s ey 7))
For &(t) = (pu(t), -, palt)) we write
D_d(t) = (D~ @ty ooy D (pn(t))
and similarly for D™, D. and D7.

§ 5. Definition of the maximuwm (minimum) solution. Let a system of

ordinary differential equations

dy: ;
(5.1) B — oty gy e ) (E=1,2, ., m)
be defined in a region D and let (%, ¥,) e D.

A solution () = (wy(t), ..., wn(t)) of system (5.1), passing through
the point (f,, ¥,) and defined in some interval 47 = [4,, a) (1), is called right-
hand mavimum (minimum) solution of system (5.1) in the interval 4™, passing
through the point (f,, ¥), if for every _solution Y (1) = (%(t), ..., yn(?))
of (5.1), passing through (4, ¥,).and defined in'an,interval At =T[1,, @) (1),
we have ' .

T <R (Y(W)=0e@) for tedt~AT.

We define in a similar way the left-hand mazimum (minimum)
solution passing through (f, ¥,). It is clear that the maximum (minimum)
solution in some interval, passing through a given point, is uniquely
determined (whenever it exists) in that interval. It is also evident that
if the solution of system (5.1), passing through (&, ¥,) to right (left)
is unique in some interval, then it is both right-hand (left-hand) maximum
and minimum solution in this interval.

(1) In A4+ resp. X+ stands a resp. & for a finite number or + co.
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Now, the following two propositions are easy to check.
ProposiTioN 5.1. By the mapping

{6.2) T=—t, =y (=1,2,...,n)

the right-hand mazimum (minimum) solution of system (B.1), passing
through (ty, X,), 4s transformed into the left-hand mazimum (minimum)
solution of system

: d .
(5.3) T= o=t ) (i=1,2, ),

passing through (—ty, X¥,).
PROPOSITION 5.2. By the mapping

(5.4) T=1%, m=-—y; (=1,2,..,n)

the right-hand mazimum (mintmum) solution of sysiem (5.1), passing
through (t,, X,), is transformed into the vight-hand minimum (mazimum)
solution of system
- dn; .

(5.5) T T Ty ey =) (=12, ,m),
passing through (t,, — ¥,). .

A similar proposition holds true for the left-ha.nd maximum (minimum)
solution. Sufficient conditions for the existence of the right-hand (left-
hand) maximum and minimum solution will be given in further paragraphs.

§ 6. Basic lemmas._on strong ordinary differential inequalities. We prove

Lemwma 6.1. Let the right-hand sides of system (5.1) be defined in some
open reg'ion D and satisfy in D condition W, with respect to ¥ (see § 4).
Let “(ty, Xo) e D. Assume that (2) = (put), ..., paft)) is continuous in
Ay =, a) and that the curve ¥ = O(t) lies in D. Let X (1) = (y(),

- Ya(t)) be an arbitrary solution of system (5.1), passing through (i, X,)

and defined in some interval A, = [t,, a

Under these assumptions, if

(6.1) D(ty) < ¥,
and
(62) Do) < oilt, @ult), oy onlt)  (6=1,2,...,m)

for te(ty, @), then we have the inequality
D)< Y(t) for
Proof. Since Y (t) = ¥,, by (6.1) and by the continuity, the set

tEA+ﬁZ+.

= {t ty <7< min (a,@), () < Y(¢) for {, <t < t}
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%
is non-void. Denote by t* its least upper bound (*). We have to prove
that t* = min(a, @). Suppose that #* < min (a, &). Then, by the definition
of t*, we have

(6.3) Blty< T(t) for ty<t<t*

and, by the continuity, for at least one index j

(6.4) (1) < ¥ (1)
(see § ). From (6.3) and (6.4) we get, in particular,

et) < yi(t)  for <t @) = yy(1Y) .

Hence
(6.5) D_g;(t*) = yi(t*) .

On the other hand, from (6.2) and (6.4) we deduce, due to the condi-
tion W, (see §4),

D_gy(t*) < O'j(t*, (D(t*)) < Uj(i*, Y(t*)) .
Since
Z/JI([*) = Uj(t*y Y(i*)) )
it follows that
D_g;(t*) < y;(#*) ,

which gives a contradiction with (6.5). Therefore, we have t* = min («, @)
and this completes the proof of our lemma.

Remark 6.1. It is possible to construct a counter-example showing
that—in general—Lemma 6.1 is not true if the left-hand derivative in
(6.2) is replaced by the right-hand one.

Next we state two easy to check propositions.

PROPOSITION 6.1. If the right-hand sides of system (5.1) satisfy condi-
tion W (see § 4) with respect to Y, then the right-hand sides of the transformed
system (5.3) (see Proposition 5.1) satisfy condition W.. (see § 1) with regard
to Y.

By mapping (3.2) (denoting pi(v) = @i(—7)) the system of differential
inequalities (6.2) is transformed into the system

Dopls) > — =7, (@), oo wale)) (=12, .0, m).

ProposITION 6.2. If the right-hand sides of system (5.1) satisfy con-
dition W (see § 4) with respect to Y, then the right-hand sides of the trans-
formed system (5.5) (see Proposition 5.2) satisfy the same condition.

(*) By the least upper bound of a set w/v,l,gch is unbounded from above we mean - co.
BUJ 2
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)
By mapping (5.4) (putting i(v) = —@i(r)) the system of differential
inequalities (6.2) is transformed into the system

D7yifz) > ~40'1(‘F, — (7)) ers —TPn(T)) (t=1,2,...,m).

Applying mapping (5.4) we get from Lemma 6.1, by Proposition 6.2,
the following lemma:
Levma 6.2. Under the asswmptions of Lemma 6.1, if
D(ty) > X,
and
D gp(t) > 01(t7 @a(t); wons ‘Pn(t)) (I=1,2,..,n)

for tel(ty, @), then we have the inequality

O)> X)) for tedindy.

Similarly, applying mapping (5.2) and using Proposition 6.1 we
derive from Lemmas 6.1 and 6.2 the next lemma.

LeMMA 6.3. Let the right-hand sides of system (5.1) be defined in some
open region D and satisfy in D condition W_( see § 4) with respect to Y.

Let (ty, ¥o) e D. Assume that @(t) = (gy(t), ..., u(t)) is continuous in

A_ = (B, 1] () and that the curve ¥ = &(t) lies én D. et T (1) = (3a(1), ...
vy y,,(i)) be an arbitrary solution of system (5.1), passing through (t,, ¥,)
and defined in some interval A_ = (8, t,] (*).

Under these assumptions, if

Dty < Xy (D(ty) > X,)

and

D+¢i(t) > Ui(ti %.(t)i ey %(t)) (D+ @i(t) < 01(1'1 <P1(t)7 ey (pn(t)))

(i=1,2,..,n)
jor te (B, 1), then we have the inequality
o)< X(M) (D()>Y(®)

for ted_~A_.

§7. Some notions and theorems on ordinary differential equations.
Let the right-hand sides of system (5.1) be continuous in some open
region D and let @(t) = (p(t), .-, @alt)) and P(&) = (w(t), -.., valt)) be
two solutions defined on 4. = [4, a) and 4. = [{,, &) respectively. Suppose
that 4, C 4. The solution ¥() is called right-hand continuation of the
solution D (1) if

() =d(t) for ted..

() In A4_ resp. a_is B resp. Ea finite number or — oo.
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In a similar way we define the left-hand continuation of a solution.
A solution, which is both a right-hand and left-hand continuation of
another one, is called simply continuation.

A solution @(?) defined in 4, =[t,, a) is said to reach the boundary
of the open region D by its right-hand extremity if the corresponding
solution-path ¥ = &(t) is not contained in any compact subset of D.
In this case the interval [, a) is called the right-hand maximal interval
of existence of the solution ®(i).

It is obvious that for a solution &(¢) reaching the boundary of D
by its right-hand extremity there is no right-hand continuation different
from D (). )

A solution reaching the boundary of D by its left-hand extremity
and the left-hand maximal interval of existence are defined similarly.

Now the following theorem holds true (see [14], p. 135).

THEOREM 7.1. Bvery solution of system (5.1) with continuous right-
hand sides in an open region D admils at least one continuation reaching
the boundary of D by its both extremities.

The last theorem can be restated in a less precise way as follows:
Every solution can be continued to the boundary of D in both directions.

Remark 7.1. The above continuation is, in general, not unique.
In case of uniqueness, Theorem 7.1 is an almost immediate consequence
of the next theorem (see [64]).

THEOREM 7.2. Assume the right-hand sides of system (5.1) to be con-
tinuous in an open region D. Let @ (1) be a solution defined in a bounded
interval A. =[ty, a) (4- = (B8, 1%]) and suppose that for some sequence t,
we have

}me (tw (p(tv)) = (a, ¥) [(8, Xy)]
and (a, Xo)e D [(B, X,) e D]. Then the limit

(lim D (1) = ¥,)

[ [
exists and
Q(t) f(”’ te[fo,a) (tf(ﬁ710])7
#i = { Y, Jfor t=a (t=2})

is a solution of system (5.1) in the closed imterval [ty, @] ([B, t]).

Next, for the convenience of the reader, we prove a theorem giving
a rough estimate of the interval of existence of a solution.

¢) lim 8() = (Lm py(9), .., Im g,(1).
b 0 —a
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TuroREM 7.3. Let the right-hand sides of system (5.1) be conlinuous

n a cube
Q:li—t<a, lyi—fil<e (i=1,2,.,n)

and satisfy the inequalities
(7.1) lo(t, )| <M (i=1,2,..,n).

Suppose that

o~ N u ; 3 19

(7.2} [Pl <3 (i=1,2,..,m)
and take an arbitrary solution Y (1) = (yl(i), ey yn(t)) of system (5.1),
reaching the boundary of @ by ils both extremities and passing through the
point (ty, ¥) = (toy Toy -y Jn)- Denote its mawimal inlerval of emistence
by A = (a, ) and put

3= (fg—h, ty+h),
where

. @
(7.3) h = min <a, m) .

Under these assumptions we have
(7.4) éiCc4a.

Proof. Suppose that (7.4) is not true and, for instance,
(7.5) Ty < B <ty+h.

Choose b s0 that
(7.6) p<b<tyt+h.

The solution Y (f) reaching the boundary of @ by its right-hand
extremity the solution-path ¥ = ¥ (1), te[t, ), is not contained in the
compact subset of @

th<t<b, |y—fil<ie (i=1,2,..,n).
Hence, since f < b, there is a t* ¢ (f,, f) and an index j such that
(7.7) ly5(#)— ;] > 3a.
From (7.2) and (7.7) it follows that
o~ a
(7.8) Y (") =4l > 5 -
On the other hand, there is a 7 e (f, t*) so that

(1.9) st) =T = yi(t) —s(to)l = [t~ 1ol l95(2)] = |2 — ol e, F ()]

7. Theorems on ordinary differential equations 21
Since * ¢ (&, f), we get from (7.3) and (7.5)

a
*u_ f —
t5=tol < 557 -

Hence, by (7.1) and (7.9), we have
~ a
;) —71l < 3,

which contradicts (7.8). Thus the proof is completed.

§ 8. Local existence of the right-hand maximum solution. We first
prove a theorem giving, among others, sufficient conditions for the local
existence of the right-hand maximum solution.

THROREM 8.1. Suppose that the righi-hand sides of system (5.1) are
continuous and satisfy condition W with respect to Y (see § 4) in an open
region D. Let (&, Y,) « D and take an arbitrary sequence of points (t,, Y*) e D
such that :

(8.1) Y, <Y<Y, lmY =7,.

For every positive integer v consider the system of ordinary differential
oquations

dy 1 X
(8.2) G ol )ty (=1,2,.,m)

and let X°(t) = {yi(t), .-, ya(2)) be an arbitrary solution of (8.2), passing
through (ty, X') and reaching the boundary of D by its both emtremities (such
solution exists by Theorem 17.1).

Under these asswmptions, there is a positive number h so that

1° For indices v sufficiently large Y'(t) is defined in A = [ty, to-+h)
and

Yy < Y1) for  ted.

2° The sequence X'(t) is uniformly convergent in the interval A, to
the right-hand magimum solution Q(1) = (wy(t), ..., wa(l)) of system (5.1)
in dy, passing through (i, Y,), and

Yty > Q).

B If Y =&(@) = (@m(t), ..., palt)) is an arbitrary continuous curve for
teds=[ty,t,+h), contained in D and satisfying the initial inequality

(8.3) o) < Y,
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and the differential inequalities

th<t<lo+h

(8.4)  D_gilt) < oilt, alt); - @alt))  Tor

(i=1,2,..,n),
then
(8.5) DY RE)  for tedpn Az .

Proof. There is a positive number a, 5o that the closure of the cube
Q:li—t| <a, !@/i'—@?«;|<a (1=1,2,..,1),

where Y, = (f1, -, ), is contained in D. The functions oi(t, ¥) being
continuous in @, we have for some M

m(t,Y)—{-%‘gM for (4, T)e@ (i=1,2,.,m5v=1,2,.).

Put

» = mi o

b =min 4, z57) .
Since, by (8.1), there is

R
W=yl <3 (t=1,2,..,m)

from a certain index v, on, we see, by Theorem 7.3, that Y'(1) are defined
in A, = [to, o+ }) for » >v,. In what follows, we consider only indices
» > v,. Since the right-hand sides of system (8.2) satisfy condition W,
with respect to ¥ in D and because of the inequalities

Yt) =T <Y =T,
dy;+1
dt
we have, by Lemma 6.1,
Y < Y1) for
By a similar argument we prove that the sequence Y'(t) is bounded
from below by any solution of system (5.1), passing through the point
(fo, Y,). Hence and from the last inequalities it follows that there exists
the limit
(8.6)

‘ a1
— aift, U)oy < oilty IO+, (=12, 00m),

tedy,.

Hm Y'(8) = Q@) for tedy

and, by a standard argument, we get that Q(1) is a solution of system (5.1),
passing through (4, ¥,) and that the convergence in (8.6) is uniform.
By (8.3) and (8.4), we have

Dty < Y

icm
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and
1 =~ .
D_gu(t) < aift, Qi(t))w{—; for fy<t<ty+h (1=1,2,..,2).
Hence, by Lemma 6.1,

(8.7) D)< T') for tedym dj.

From (8.6) and (8.7) follows (8.3). In particular, (8.5) holds true
for @(t) being an arbitrary solution of system (5.1), passing through
(tyy Yo). Therefore, 2(¢) is the right-hand maximum solution through
(toy ¥,) of system (5.1) in the interval 4. Thus the proof of 1° 2° and 3°
is completed.

§ 9. Global existence of the maximum and minimum solution. Now
we prove

THEOREM 9.1. Assume the right-hand sides of system (5.1) to be con-
tinuous and to satisfy condition W, with respect to Y (see § 4) in an open
region D. Then, through every point (ty, Y¥,) € D there exists the right-hand
maximum and the right-hand minimum solution reaching the boundary
of D by its right-hand extremity. :

Proof. We first prove the part of theorem concerning the right-hand
maximum solution. By Theorem 8.1, for (t,, ¥,)e.D there is a posi-
tive %, so that the right-hand maximum solution through (1, ¥,) exists
in the interval A; = [t,, {,+h). Denote by h, the least upper bound of
sach numbers ». Now notice that if we have the right-hand maximum
solution in some interval 45, then its restriction to any interval 4, where
I < R, is the right-hand maximum solution in 4. Hence it follows that
for every positive h < T, there is the right-hand maximum solution in Ay,
say 5(t). Next, we conclude that if 0 < 7y < hy < hy, then—by the uni-
queness (see § 5)—the right-hand maximum solution in 4, is the right-
hand continuation (see § 7) of the one defined in A,,. Now, fort e[t,, &+ &)
choose h 80 that ¢ < f,+h < ty+hy and put

(9.1) Q1) = Qult) .

By our preceding remark, the value of (1) is independent of the
choice of h. Hence, formula (9.1) defines a function in the interval
Ang = [fo, to+ ho)- It is clear that 2(t) is the right-hand maximum solution
through (%, ¥,) in 4p,. Next, we will prove that () reaches the boundary
of D by its right-hand extremity. Indeed, if it were not so, the correspond-
ing solution-path ¥ = () would be contained in some compact subset
of D (see § 7). Therefore, there would exist a sequence 1, (t, < t, < 5 hq),
so that

lim (t,, 2(t)) = (to+ho, ) eD.

»—>00


Yakuza


24 CHAPTER II. Maximum and minimum solutions

Hence, by Theorem 7.2, we would have

Iim (5, Q1) = (fo+ho, T)
t—ty+ho
and o i iy
~ t oY € dpy s
2 = { ¥ for t=1+h

would be a solution of (5.1) in the closed interval [t 10+h,,]~ Since
(to+To, ¥) e D, we can apply Theorem 8.1 to the point (f-+he, X) and
hence we get that there is a positive f, so that the right-hand maximum
solution through (ty+he, ¥) exists in the interval [ty hg, to-+ T+ ).
Denote it by Q(t). Then Q*(t) defined by the formula

() for
Q) for

t e Ay, ,
te[fy+hoy lotTo+ )

is clearly a solution of system (5. 1), passing through (f,, Y,) and defined
in the interval Ap,3% = [y to+ o +7).

We will prove now that:

() £%(t) is the right-hand maximum solution through (%, ¥,) in the
interval Ap,7-

To prove («), we have to show that if ¥ (¢) is an arbitrary solution
through (t,, ¥,) defined in some interval 4y = [4, {,+5), then

(9.2) YY) <) for tedym Ay

Inequality (9.2) is. true if h < b, becanse Q*(t) = Q(1) in 4, and
£(t) is the right-hand maximum solution through (¢, ¥o) in Ap,. If b > By,
then, by the preceding argllment we have (9.2) in 4;, and, by continuity,

Y (ty+ho) < ¥ty +hy) = (to—l—ho) Hence, due to the definition of Q( )
and by Theorem 8.1, 3° it follows that

= OHt)  for  teltoho, ot h) A [ty o, lot T+ h)

which completes the proof of (x). But, proposition («) contradicts the
definition of 7, and consequently the first part of Theorem 9.1 is proved.
Now applying the mapping (5.4) and using Proposition 5.2 and Proposi-
tion 6.2 we get the second part of our theorem, concerning the minimum
solution, as an immediate consequence of the first part.

THEOREM 9.2. Assume the right-hand sides of system (5.1) to be con-
tinuous and to satisfy condition W_. with respect to ¥ (see § 4) in an open
region D. Then, through every point (t,, Y,) e D there is the left-hand maximum
and the left-hand minimum solution reaching the boundary of D by its left-
hand extremity.

Q%(t) = {

Y1) <8

Proof. Theorem 9.2 follows from Theorem 9.1 by applying the
mapping (5.2) and by Proposition 5.1 and 6.1.

icm
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Remark 9.1. In case n = 1, i.e. when system (5.1) reduces to a single
equation, both conditions W, and W_ are trivially satisfied (see § 4).
Hence we have the following result: For a single first order differential
equation with a vight-hand side continuous in an open region D there is,
through every point (ty, ¥,) e D, the right-hand (lefi-hand) maximum and
minimum solution reaching the boundary of D by its right-hand (left-hand)
extrematy.

Remark 9.2. In case # = 2 condition W, (W.) in Theorem 9.1
(Theorem 9.2) can be substituted by the equivalent condition V. (V_})
(see § 4). However, in case # > 2 condition W, in Theorem 9.1 cannot
be replaced by the essentially weaker condition V. Indeed, it is possible
to construct a suitable counter-example (see [60]) showing that for a sys-
tem of three equations, with right-hand sides continuous and satisfying
condition V4 in an open region D, it may happen that the right-hand
maximum solution—which exists locally—cannot be continued so as to
reach the boundary of D by its right-hand extremity.

The theorem we are going to prove mext is a generalization of 3%
in Theorem 8.1, which was of local character.

THEOREM 9.3. Assume the right-hand sides of system (5.1) to be con-
tinwous and to satisfy condition W with respect o Y (see § <) in an open
region D. Let (t,, X,) ¢ D and denote by Q1(t) the right-hand mamimum
solution through (t,, X,), reaching the boundary of D by its right-hand extre-
mity. Let 4 = [y, ay) be its existence interval.

Under these assumptions, if ¥ = (1) = (@u(t), ..., palt)) is an arbitrary
continuous curve for 1 e A = [ty, %), contained in D and satisfying the instial
inequality

D(t) < X,

and the differential inequalities

Doty < aift, (D), .y galt))  for fh<i<@m ((=1,2,..,0),
then
(9.3) Dt)y<t() jor tednd.

Proof. By 3° of Theorem 8.1, inequality (9.3) holds true in the
interval [f,, a) for some a >, and sufficiently close to #,. Let a* be the
least upper bound of such numbers a. We have to show that
a* = min(ay, d). Suppose that a* < min(ay, G); then o*ed n A and
since—by the definition of a*—(9.3) holds in [#,, a*), we have by continuity

B (a*) < Q% (a*).

Hence we can apply 3° of Theorem 8.1 to the point {a*, Q*(a*)) and—
noticing that Q*(t) is the right-hand maximum solution through (a*, 2+(a*))
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in the interval [a*, ao)—we get that inequality (9.3) holds in some interval
{a*, a**), where a** < min(ay, &) is sufficiently close to a*. Therefore,
inequality (9.3) is satistied in [f, a**), contrary to the definition of a*,
since a** > a*. This contradiction completes the proof.

Remark. For # > 2 condition W, in Theorem 9.3 cannot be sub-
stituted by the weaker condition V. (see §4). Indeed, the subsequent
counter-example (see [60]) shows that with the condition V. it may occur
that inequality (9.3) does not hold in any right-hand neighborhood of .

Let D= Dy, D,C(t, ¥y, ..., Yn), Where

Dy:—co<t<4o0, it+ys<l, —co<Ys<+oo,
Dy:—co<t<+oo, (1—3) +(—3 <1, —co< Y <+oo,
and put
1 in D,

ai(t,yl,yz,y3)={ 1 in D
- 2

(i=1,2,3).
It is easy to check that the functions o; (i =1, 2, 3), thus defined,
satisty in D condition V.. Now, for ¢t) =0 (¢ =1, 2,3) we have
pi(0)<3 (1=1,2), @m0)<0
and

Pilt) < ailt, pu(t), wat), @u(1))  for =0

The unique solution of the system

(i=1,2,3).

d’y i

i oi(ty Y1, Y2, ¥3)  {E=1,2,3),

passing through (0, 3, 3, 0), and consequently its right-hand maximum
solution through (0, 3, 3, 0) is obviously

0ff)=3—t (1=1,2), wi@)=—tfort=0.
However, we have

@s(t) > i (1) for 1>0.

It is also possible to construet a similar example with D and its
intersections by planes ¢ = const being connected.

By mapping (5.4) and by Propositions 5.2 and 6.2 we get from Theo-
rem 9.3 the following one:

THEOREM 9.4. Under the assumptions of Theorem 9.3 denote by Q.(t)
the right-hand mimimum solution through (t,, ¥,), reaching the boundary
of D by ils right-hand extremity. Let 2 = [t,, ay) be the existence interval
of Q.(1). This being assumed, if ¥ = () = (@a(t)y +ns q)n(t)) is an arbitrary
continuous curve for t e 4 = [ty,d,), contained in D and satisfying the initial
inequality

B(to) = Yo,
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and the differential inequalities

D™ei(t) = O'i(t: @1(2)5 oo ‘Pn(t)) for fi<t<@ (i=1,2,..,m),
then
D) =Q.) for ted~d.

Using the mapping (5.2) and Propositions 5.1 and 6.1 it is easy to
derive from the above theorems similar theorems concerning the situation
to the left from the initial point.

Since in the case of a single equation conditions W. and W_ are
trivially satistied, we get—as corollaries of the above theorems—the
following two theorems.

THEOREM 9.5. Assume the right-hand side of equation
(94) W oty
{0 be continuous in an open vegion D. Let (ty, yo) € D and denote by »™(t)
(wy(t)) the right-hand macimum (minimum) solution through (ty, Yo),
reaching the boundary of D by its right-hand extremity, and defined in the
interval Ay = [ty, a). Let y = @(t) be a continuous curve for teZ+ = [ty Go),
contained in D and satisfying the initial inequality

olt) <Y (@(t) = Yo)

and the differential inequality

Do) <oft,pt) (Do =olt,e@)) for <1<,
Under these assumptions we have
pl) <o®(t) (pM) > i) for tedinds.

THEOREM 9.6. Suppose the right-hand side of equation (9.4) to be con-
tinuous in an open region D. Let (ty, y;) e D and denote by o~ (1) (w-(1))
the left-hand mazimum (minimum) solution through (to, Yo), reaching the
boundary of D by its left-hand extremity and defined in an interval
A_ = (B, to]. Let y = (1) be a continuous curve for i e A_ = (B, t], contained
in D and satisfying the initial inequality

plty) <yo  (plt) = o)

and the differential inequality

~

Dret) = ot 0(t) (Die@t) <oft, @) Jor F<i<t.
Under these asswmptions we have
)y <o (®) (p)>w_(t) for ted-n~d_.
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Remark 9.3. We will see in § 13 that Theorems 9.3-9.6 hold true:
with any of the four Dini’s derivatives.

Examrere 9.1. Let ¢(f) be continuous in [t, d) and suppose that
¢(f) <y, and

D_o(t) <a®ypt)+b(t) for te(ly, @),

where a(t) and b(t) are continuous in some open interval 4 containing ..
Here equation (9.4) has the form

dy _

=0y,
and its unique solution through (¢,, 1) is

t a

o (t; 14, Yo) = €xp (] a(z )dr){q/ﬁ— fb ezp( fa,(r)dr)da} .

) to
Hence, by Theorem 9.3, we have

a

¢ '
() < exp (fa(r)dz){yo—i— f b(o)yexp (~ f a(T)CZT) du} for ted ~[ty,d).

1o fo {y
Examere 9.2. Consider a system of -differential equations

d .
(9.5) =ty s s va) (=12, .,m)

with right-hand sides continuous in the region

n

D:0<t< + o0, 2g/f§<h2

i=1
and satisfying the inequality
(9.6) 22@1#“ Yiy eomy Yn) < —c Y’ Vi,
g==1 i-=1

where ¢ is a positive constant. Under these assumptions every solution
of gystem (9.5) exists in an infinite interval and tends to zero as f goes.
to 4 co.

Indeed, let yi(t) (1 =1,2,..,n) be a solution of (9.5) starting at
some ?, > 0 and let [t,, ¥) be its right-hand maximal interval of existence..
Consider the function

p(t) = 2 [y{)F,

]
-

i
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Afor which we have

= 2 [ya(to)* < 12
i=1
and, by (9.6),

= 22./1 Dyit) = 2 v fi(i (1), - ~a'.7/7z(i>)

i:

<—c¢ j [0 = —cp(t)

i=1
in the interval [ty, y). Hence, putting 4, = p(%,) we have, by Theorem 9.3,
{9.7) (1) S ype~ = for  tel[ty,y).
Since y, < k2, it follows that

= D WP <p<®
i=1

-on the interval [%,, y). Hence we must have y = -+ oo, because otherwise
the solution would not reach the boundary of the region D by its right-
hand extremity. On the other hand, from .(9.7) it follows that the solution
tends to zero as ¢-— - oco.

§ 10. Continuity of the maximum and minimum solution on the initial
point and on the right-hand sides of system. We begin this section by
proving a lemma generalizing parts 1° and 2° of Theorem 8.1, which were
of local character.

Lemva 10.1. Under the assumptions of Theorem 8.1 let £2(t) be, in the
interval [, ap), the right-hand mazimum solution through (t,, ¥), reaching
the boundary of D by iis right-hand extremity (such solution ewists by Theo-
rem 9.1). Then, for every a e (ty, a) there is an indexw v, such that

1° for v = v, XY'(3) emists in the interval [1,, a) and
Q) < T < T'),
2° im Y°(t) = Q(t) uniformly in [t, o).
Frco <

Proof. By Theorem 8.1, the set of numbers a e (4, ¢), such that 1°
and 2° hold true for some »,, is non-void. Let a* be its least upper hound.
We have to show that a* = g,. Suppose that o* < a, and consider the
point (g, 2(a*)) e D. Let Q* be a cube centered at (a*,Q(a*) such
that Q* is contained in D. By the continuity, there is a positive M such
that

(10.1)

oyt Y)—{—%’ <M (@E=1,2,.,n;v=1,2,..)
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for (¢, ¥) e @*. Choose o** and a >0 so that

(10.2) ty < a* < a*,

(10.3)
and that the cube
Q: [l—a**| <a, [yi—ola*)] <a

o*— o** < min (a, ﬁ) =l

(i=1,2,..,m)
be contained in @* Such a choice is obviously possible. Since @ C Q*,
inequalities (10.1) hold true in @ and since a** < a*, 1° and 2° are satisfied
in [f,, «**] for some »,. Hence, in particular,

lim Y*(a**) = 2(a*),

v—r00

Qe < Y o) < Y(a**)  for  v> 1,
and consequently we see, by the choice of 1 (compare (10.3)) and by the
proof of Theorem 8.1 applied to the point (a**, 2(a**)), that 1° and 2°
are satisfied in the interval [o**, a**-+h) for indices » sufficiently large.
Therefore, 1° and 2° hold true in the interval [t, a**+h) from a certain »
on. But, in view of the definition of a*, this is impossible because, by (10.3),
a* < o**-h. This contradiction completes the proof.

Let us denote by 27(t 1, ¥,) the right-hand maximum solution
through (f,, ¥,), reaching the boundary of D by its right-hand extremity
and let 47 (t,, Y,) be its existence interval. We define in a similar obvious
way the SymbO]-S ‘Q+(t§ toy Yo): -Q_(t; to: Yo)a ‘Q—(t§ 107 Y0)7 A+(toy Yo)y
A (te, To), A(ty, o).

We will show the right-hand sided (left-hand sided) continuity of
QF(t; by, Yo) (Q4(2; 1y, ¥y)) on the initial point (%, X,), i.e. we will prove

lim Q+(t§ t, ¥) = Q+(t§ toy Xo) 5

¥Y—Yo

Il,im Q4(t; 1, X) = Q425 1, Xo) .
Y=Y, <1y

<Y

More generally and more precisely we have the following theorem.

THEOREM 10.1. Let the right-hand sides of system (5.1) be continuous
and satisfy condition W with respect to X (see § 4) in an open region D.
Let (ty, Xo) € D. Consider the right-hand maeximum (minimum) solution
O (t; 4, o) (2404 1, X)) through (t,, Y,), reaching the boundary of D by
its right-hand extremity and let A (ty, Xo) (4.(ty, X)) be its existence interval.
For E = (&, ...,¢en), where &=0 (e<0) (¢=1,2,..,n), denote by
Q%5 1, ¥, B) (Q:(t; b, Y, B)) the right-hand mazimum (minimum)
solution through (t,, X) of the system
(10.4) %: oty Yiy ey Yu) +e1 (i=1,2, ...
reaching the boundary of D by its right-hand extremity and defined in the
interval 4% (ty, ¥, E) (A+(ty, ¥, B)). Then,
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1° To every aed*(y, Yo) (44(ty, To) there is a 8(a)> 0 such that
QF (45 t, Y, B) (Q4(8; 1y, Y, B)) is defined in [ty, a), whenever 0 < & < 6 (a)
(—8(a) ea<0) (6=1,2,...,%) and

Y=Yl <é(a) (), X<Y (X,=1).

2° We have uniformly in [, a)

lim Q% 4, ¥, B) = Q% (t; 4, ¥,)
=¥, E—0
¥2¥o, E=0
(lim Qi(ht, ¥, ) = Q,(t; 1, Xo) -
¥->¥o, im0
T<¥o <0
Proof. We first prove the part of theorem concerning the right-
hand maximum solution. Take a sequence of points ¥’, so that

(ty ¥)eD, Y,<Y"<¥, lInY=71,,
and let Y’(¢) be a solution of system (8.2), passing through (f,, ¥”) and
continued to the boundary of D in both directions. For fixed a ¢ 47 (f, ¥,)

there is, by Lemma 10.1, an index », such that ¥™(t) exists in [t,, o] and
T(t) > 2F(t; 1, Xy) -

Because of the uniform convergence of X’(t) to QF(t; ty, ¥o) in [ty, ] we

can assume that v, is chosen sufficiently large so that the compact set
(10.5) {(t; Z) : telty, al, 275 1y, Yo) < Z < X(0)}

be contained in D. On the other hand, since ¥, < X, there is a 6(a) > 0
such that if

(108) Y, <Y, |¥-Y|<d(a), 0<e<ile (i=1,2,..,7),
then
(10.7) Y < ¥, 0<ei<;1— (G=1,2,.,n).

()

Let ¥ and e; satisfy (10.6). Then, since ¥, < ¥, we have by Theo-
rem 9.3, applied to the point (f,, ¥) and to system (10.4),

(10.8) Q%L 1, o) <2t ty, Y, B) for teltya)ndT(h, ¥,E).

In view of the inequalities

dw?(t; t, ¥, B)

; 1
> = oift, Q7 (t; 1o, ¥, B)) +e0 < ault, 2t 1, X, E) +5

() For two points 4 and B, |4A— B| denotes their Euclidean distance.
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and of (10.7) we get, by Lemma 6.1 applied to the point ({, ¥™), and
to system (8.2),

{10.9)  QT(t;4,Y, B) < X™() telt,a)~ AT, ¥, B) .

From (10.8) and (10.9) it follows that [%, a) C 4% (4, ¥, B). Indeed,
otherwise we would have A¥(f, ¥, B)C[t, «) and the solution-path
corresponding to QV(t; 4, ¥, B) would be contained in the compact
subset (10.5) of D, which is impossible, since Q%(; t,, ¥, ) reaches the
boundary of D by its right-hand extremity. Thus we have proved 1°

Now, to prove 2° let ¢ be an arbitrary positive number. Since, by
Lemma 10.1,

for

lim Y°(¢) = Q% (t; 10, Yo)

v—>00

uniformly on [f, a), there is a »; such that

{10.10) 1Y) — Q7 (55 1, To)l<e for telty,a).

Because of the inequality ¥, << ¥, there exists a positive & () < §(a)
such that

Y<¥™, 0<e¢<vl (i=1,2,..,n),
1
whenever
(1011) Y, <Y, |¥Y-Y<d(e), O0<e<d(e) (1=1,2,..,m).

Let Y and & satisfy (10.11); then, by the same argument as in the
first part of the proof, we conclude that

{10.12) 2%t 1, ¥o) < QT(t5 4, ¥, B) < Y1) for telty,.
From (10.10) and (10.12) follows
|~Q+(i§ t, ¥, E)’“-Q+(t5 By, Yo)l<e in [t a)

for Y and e; satisfying (10.11). This completes the proof of 2°. Applying
the mapping (5.4) we obtain that part of our theorein which refers to the
right-hand minimum selution as an immediate consequence of the just
proved result referring to the right-hand maximum solution.

By mapping (5.2) we derive from Theorem 10.1 the following theorem:

TEEOREM 10.2. Let the vight-hand sides of system (5.1) be continuous
and satisfy condition W_ with respect to Y- (see § 4) in an open vegion D.
Consider the left-hand mamimum (minimum) solution - Q7 (t; by, Xo)
{Q_(t; 1y, X,)) through (4, Y,) ¢ D, reaching the bounddry of D by its lefi-
hand extremity and defined in the interval A (ty, Yo) (A (ty, X,)). For
E=(ggy ., )y, where e<0 (aa20) (1=1,2,..,m), denote, by

Q74 4, Y, B) (2-(t; 1y, Y, B)) the left-hand maximum (minimum) solution
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th»rougi.L (to, ¥) of s.g/stem (10.4), reaching the boundary of D by its left-hand
extremity and defined in the interval A ", Y, B) (A_(1,, lY, E)). Then

1° To every BeA™(t,, Yo) (A_(ty, Xy)) there i
~ ~\loy Xo)) there is a 6(B) > 0 such that
Q7(t; 4, Y, B) (Q-(t; 1, ¥, B)) is defined in (B, ], whenever
=Y <6(f), ¥<Y (V,>7),

OB <e <0 (0<a<sp) (i=1,2,.., .

2° We have uniformly in (B, 1]

lim

Y“"Yn.l'l—»l)g<(t; to’ 1‘" E) = ‘Q_(t; iD: :YO) H
T2 1o, B0
g 2l 0 T ) = 0.t 1, 7))
Y<¥o,E>0

We close this section by the following example (see [4]).
Exampre. Consider the differential equation

dy
(10.13) 7 o(t,y),
where
O‘(tr 3/) = { 2L}/+2J[]/;j for Y = 0 ]
0 for y<0;

L >0, M >0 are some constants.

We w.ill prove that for each point (%, v,), where Yo = 0, the right-
hand maximum solution of (10.13) through (t,, %) is

M

(10.14) xz

By

o (t; ty, yo) = []/?7‘;671(5‘30).}_ (gl(l—fo)_l)]

Suppose first that y, > 0; then, since a(t, y) >0, we have for any
solution y(2) of (10.13) through (t,, 7,)
YO Zyo>0 for tx=t,.

’.I‘here.fore, putting « () = 'y (), we find that u(t) satisfies, for ¢ > ¢,
the linear equation

du
= Lu 2
and consequently is of the form
w(t) = Yy, ekt~to +%(el(’*’°)—1) . -

J. Szarski, Differential inequalities
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Hence it follows that, for 4, > 0, function (10.14) is, in the interval
t>1,, the unique solution of equation .(10.13) through (to,yo)lan‘d (;(.)n-
sequently its right-hand maximum solutlo.n through (ty, ¥,). Our assl\?r tl'o.n
for y, = 0 follows now from Theorem 10.1 if we let 9, > 0 tend to 0. Notice

that for y, = 0 we do not have uniqueness. . )
By TJ]georem 9.5, we get the following result. Let qo(.t).ll)e c_ontlnuc?u.\
and non-negative for ¢e[ty, o). Suppose it satisfies the initial inequality

@(te) < Yo
and the differential inequality
D_g(t) < 2Lp(t) +2M Vo (d) .
This being assumed, we have for te[ty, o)
o(t) < o(t; t, ¥o)

where w(t; ty, %,) is given by formula (10.14).

CHAPTER III

FIRST ORDER ORDINARY DIFFERENTIAL INEQUALITIES

§ 11. Basic theorems on first order ordinary differential inequalities.
In this section we give theorems generalizing Theorems 9.3 and 9.4 in
the direction that will be briefly explained here (see [22] and [61]). In
Theorem 9.3 we assumed the system of differential inequalities to be satis-
fied in the whole interval where the curve ¥ = @(f) = (@2(1); .y Palt))
was defined. This assumption will be substituted by a less restrictive
one; we will require only that for every index 4 the 4-th differential inequa-
lity be satisfied at such points t where @q(f) is greater than the i-th com-
ponent of the maximum solution. As we will see (Example 11.1,
Remark 48.1), such a weakening of assumptions is very useful in applica-
tions of the theory of ordinary differential inequalities.

TEEOREM 11.1. Suppose the right-hand sides of system (5.1) are con-
tinuous and satisfy condition W with respect to Y (see § 4) in an open
region D. Let (t,, ¥,) e D and consider the right-hand mazimum solution
Q7(t5 15, Xo) = (0 (1), ..., off () through (1, ¥,), defined in the interval
[%o, %) and reaching the boundary of D by its vight-hand extremity. Let
Y = O(t) = (g,(1), ... » @ult)) be a confinuous curve on the interval [ty )

and suppose that (¢, D(t)) e D. Write o, = min(a,, ») and

+ : .
Hi={te(ly,a) tet) > o (1)) (i=1,2,..,n).
Under these assumptions, if

(11.1) D) < ¥,

(112)  D_pdt) < aift, 8(1) for teB; (i=1,2,..,n),

+
then the sets By (i =1,2,...,n) are empty, i.e.
(11.3) D) < QM5 by, Xy)  for telly, a) .

Proof. Take a, s‘equencev'of points ¥’ such that (t,, ¥") e D, ¥, < ¥’**
<Y and ImY =¥, Let Y'(f)= {(#(®), ..., ya(t)) be a solution of

y—>00

3%
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