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CHAPTER I

MONOTONE FUNCTIONS

§ 1. Zygmund’s lemma. We adopt the following terminology. A real
function ¢(¢) defined in an interval A4 is called inereasing if for any two
points ¥, ¢, from 4 such that

(1.1) t <ty
we have

p(t) <o) -
If for any two points of 4 inequality (1.1) implies

o) < oll),

then @(f) is called strictly increasing. In a similar way we define a de-
creasing and a strictly decreasing function.

For a function (), defined in some neighborhood of the point %, we
denote by DTo(t), Dio(t), D e(ty), D_g(t,), respectively, its right-hand
upper, right-hand lower, left-hand upper and left-hand lower Dind’s
derivatives at the point 7,, i.e.

D ity — Timsup P H M=o ll0)
h-+0+ 1

Diglty) = limint 2o tM — (k)
h—0+ h

D™ p(tp) = limsup pllo+h)=pll)
0~ h

D (P(tl)) — ll;lblllnf(p(tu-'l_h)_ (10)
—0—
(the values oo and — oo being not excluded). Symbols ¢'t(f,) and @_(%)
will stand for the right-hand and left-hand derivative respectively.
The inequality ¢ > 0 will mean that either a is finite and positive or
@ = ~+oo. The meaning of the 1nequal1t1es a>0,a<0,a<0 is defined
in a similar way. i
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To begin with we will prove the following lemma.
ZYeMUND’s LEMMA. Let (1) be continuous in an interval A and write

Zy={ted:D,p(t)<0}.

Suppose that the set o(4d—Z.) (1) does not contain any interval.

Under these assumptions @(t) is decreasing on A.

Proof. Suppose the contrary; then there would exist two points
t1., Iy € 4 satisfying (1.1) and such that ¢(%) < ¢(t;). Since, by our assump-
tion, the set ¢(4—Z,) does not contain the interval {p(f), ¢(t)), there
is a point y, € (p(t), p(t)) such that
(1.2) Yot p(d—Z.).

By Darboux’s property, the set

B o= {te(t,t): o) = 4o}

is not empty. Let us denote by f, its least upper bound. Then we have
ty € (t;, &) and, by continuity,

(1.3) @(to) = Yo
and
(1.4) p(t) >y, for f<t<i,.

Relations (1.2) and (1.3) imply that 1, ¢ Z, and hence, by the defini-
tion of Z,,

(1.5) Dig(t) < 0.
On the other hand, by (1.3) and (1.4), it follows that
Dig(ty) =0,
which is a contradiction with (1.5). ;.Dhis completes the proof.
Remark 1.1. Since (1.3) and (1.4) imply D¥e(t,) >0, it is obvious
that the set Z. in Zygmund’s lemma ean be replaced by the set
Z¥ ={ted: DYp(t) < 0} .
Remark 1.2. The set Z, can be replaced by the set
Z_={ted: D_¢(t)< 0}

or by the corresponding set Z~. To prove Zygmund’s lemma with Z,
repl.aced by Z_ or Z~, we have only to change the above argument by
taking for #, the greatest lower bound of E.

Remark 1.3. A similar lemma holds true for increasing functions.

((1)) 4 being a subset of 4, p(4) denotes the image of 4 by means of the mapping
=)
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§ 2. A necessary and sufficient condition for a continuous function to be
monotone. As a consequence of Zygmund’s lemma we get the following
theorem.

THEOREM 2.1. Let ¢(1) be continuous in an interval A. Then a necessary
and sufficient condition for ¢(t) to be decreasing on A is that the set A—Q4,
where

Qi ={ted:Dep(t) <0},
be at most countable.

Proof. The necessity is obvious since for a decreasing function the
set 4—@Q, is empty. To prove the sufficiency of the condition, let ¢ > 0
be arbitrary and put

p(t) = p(t)—el.

We have

Diy(t) = Dyp(t)—e,
and, consequently,

Dop(ty< 0 for te@Q..

Hence it follows that for the set
Z,={ted: Dyp(l) <0}

we have Q. C Z, and consequently 4—Z. C 4—@,. Therefore, the set
A—Q.. being at most countable, the same holds true for the sets 4—2Z,
and y(4—Z,). Hence the set p(4—Z,) does not contain any interval
and, by Zygmund’s lemma, y(t) is decreasing. Now, & > 0 being arbitrary,
it follows that ¢(t) is decreasing too.

COROLLARY 2.1. Let (1) be contimuous in an interval A. Then a sufficient
condition for g(t) to be strictly decreasing on A is that the set A— P, , where

P, ={ted: Dyp(t) <0},
be at most countable.

Proof. Let 4— P, be at most countable. By Theorem 2.1, ¢(f) is
decreasing on 4. If it were not strictly decreasing, we would have (%)
= g(t,) for some two points #, §, such that t, < &,. Therefore, p(f) would
be constant on the interval [t;,!,] and consequently ¢'(t) =0 on [t, %],
contrary to our assumption that 4— P, is at most countable.

Remark 2.1. Due to Remark 1.2, the set @ in Theorem 2.1 can be
replaced by the set

Q.= {ted: D_p(1) <0}.

Remark 2.2. The results of this section can be summarized in a slightly
less general form as follows: if @(f) 4s continuous in an interval 4 and if
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Dio(t) <O for every ted or D_g(t) <0 for every te d, then @(t) is de-
crefzs'ing in 4. Now, if we assume that for every te 4 we have either
Dio(t) < 0or D_g(t) <0, then ¢(?) is not necessarily decreasing. Indeed,
for Weierstrass’s functions ¢(f) (a continuous function without finite
derivative at any point) we have for every ¢ either D, g(t) = —oco or
D_g(t) = —oco, and the function is not monotone.

Similar results for increasing functions follow from those concerning
decreasing functions by considering —g(t) instead of g(f).

We close this paragraph by an important theorem due to Dini.

TI?]?OREM 2.2. For ¢(t) continuous in an interval A the following two
propositions are irue: :

1° If any of its Dind’s derivatives is < a (< a)forteZC A, where A —Z
is at most countable, then for any two different points t, s from A we have

et)=g(s)

(2.1) —¥

<a (<a).
) 2° If any of its Dini’s derivatives is =8 (> B) for 1< ZC A , where A—2Z
s at smost countable, then for any two different points t,s of A we have

p(1)—p(s)
i—s =8

=>8).

Proof. S'ifwe 2° follows from 1° by taking —g(t) in place of @(t), we
prove proposition 1° Suppose then, for instance, that
(2.2) Diplt) < a
Fix s in A and put
p(t) =@{)—p(s)—at for ted.

(<a) in ZC4.

w(¢) is then continuous in 4 and, by (2.2),

Diyp(t) = Digp(t)—a<0 (<0) in Z.

Since 4—Z is at most countable, it follows, by Theorem 2.1 (Corol-
lary 2.1), that p(t) is decreasing (strictly decreasing) in 4 and consequently

P} <pls)  (w(t) <wp(s)) for

' Hgnee we get (2.1) for ¢ > 5. Since s and ¢ > s were arbitrary points
in .’che interval 4, we conclude that (2.1) holds true for any two different
points £,s of 4.
Next theorem is an immediate consequence of the preceding one.
TH:EORE‘M 23 Let o(t) be continuous in an open interval A. Assume
that one of its Dind’s derivatives is finite and continuous at tye A. Then
o'(ty) exists.

t>8.
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Proof. Suppose, for instance, that Dy (1) is finite and continuous
at t,. Put D, g(f,) = ! and take an arbitrary ¢ > 0. Then there is a 6 > 0
50 that

l—e < Dipty<l+e for te(t,—9,1+0).

Hence, by Theorem 2.2, we get
&< m—(@ <l+e for
t—1,

e >0 being arbitrary, inequality (2.3) implies the conclusion of
our theorem.

COROLLARY 2.2. For ¢(f) continuous in am open interval A assume
that one of its Dind’s derivatives is finite and continuous on A. Then ¢'(t)
ewists and is continuous on 4.

§ 3. A sufficient condition for a function to be monotone. As a further
consequence of Zygrmund’s lemma we prove the following theorem.

TaEOREM 3.1. Let ¢(t) be absolutely continuous in an interval A4 and

assume that
(3.1) @'(1) < 0 for almost every ted.

23 1- te(ta—0,tp+0),t51,.

Then @(t) is decreasing in A.
Proof. Let ¢ > 0 be arbitrary and put
p(t) = p(t)—et.
p(t) is absolutely continuous in 4 and
P(t) =¢'(t)—e
Therefore, by (3.1), we have y'(f) < 0 for almost every ¢ e 4 and hence
the set 4—Z,, where
Z,={ted:Dyy(t) <0},
is of measure 0. w(t) being absolutely continuous the set p(4—Z,) is of
measure 0 too, and consequently does not contain any interval. Hence,
by Zygmund’s lemma, (1) is decreasing in 4 and ¢ > 0 being arbitrary
the same holds true for g(t).
Remark 38.1. A similar theorem is true for increasing functions.
Remark 3.2. By an argument similar to that used in the proof of
Theorem 3.1 we show the following result: If ¢ (1) is a generalized absolutely

continuous function (see [45]) in an interval 4 and if its approzimative
derivative (see [45]) is mon-positive almost everywhere in A, then p(t) is

.decreasing in 4.

for almost every ted.
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