

CHAPTER I

MONOTONE FUNCTIONS

§ 1. Zygmund's lemma. We adopt the following terminology. A real function $\varphi(t)$ defined in an interval Δ is called *increasing* if for any two points t_1, t_2 from Δ such that

$$(1.1) t_1 < t_2$$

we have

$$\varphi(t_1) \leqslant \varphi(t_2)$$
.

If for any two points of Δ inequality (1.1) implies

$$\varphi\left(t_{1}\right)<\varphi\left(t_{2}\right)\,,$$

then $\varphi(t)$ is called *strictly increasing*. In a similar way we define a decreasing and a *strictly decreasing* function.

For a function $\varphi(t)$, defined in some neighborhood of the point t_0 , we denote by $D^+\varphi(t_0)$, $D_+\varphi(t_0)$, $D^-\varphi(t_0)$, $D_-\varphi(t_0)$, respectively, its right-hand upper, right-hand lower, left-hand upper and left-hand lower Dini's derivatives at the point t_0 , i.e.

$$\begin{split} D^+\varphi(t_0) &= \limsup_{h\to 0+} \frac{\varphi(t_0+h)-\varphi(t_0)}{h}\;,\\ D_+\varphi(t_0) &= \liminf_{h\to 0+} \frac{\varphi(t_0+h)-\varphi(t_0)}{h}\;,\\ D^-\varphi(t_0) &= \limsup_{h\to 0-} \frac{\varphi(t_0+h)-\varphi(t_0)}{h}\;,\\ D_-\varphi(t_0) &= \liminf_{h\to 0} \frac{\varphi(t_0+h)-\varphi(t_0)}{h}\;, \end{split}$$

(the values $+\infty$ and $-\infty$ being not excluded). Symbols $\varphi'_+(t_0)$ and $\varphi'_-(t_0)$ will stand for the right-hand and left-hand derivative respectively.

The inequality a > 0 will mean that either a is finite and positive or $a = +\infty$. The meaning of the inequalities $a \ge 0$, a < 0, $a \le 0$ is defined in a similar way.

To begin with we will prove the following lemma.

Zygmund's Lemma. Let $\varphi(t)$ be continuous in an interval Δ and write

$$Z_+ = \{t \in \varDelta : D_+ \varphi(t) < 0\}.$$

Suppose that the set $\varphi(\Delta - Z_+)$ (1) does not contain any interval.

Under these assumptions $\varphi(t)$ is decreasing on Δ .

Proof. Suppose the contrary; then there would exist two points $t_1, t_2 \in \Delta$ satisfying (1.1) and such that $\varphi(t_1) < \varphi(t_2)$. Since, by our assumption, the set $\varphi(\Delta - Z_+)$ does not contain the interval $(\varphi(t_1), \varphi(t_2))$, there is a point $y_0 \in (\varphi(t_1), \varphi(t_2))$ such that

$$(1.2) y_0 \notin \varphi(\Delta - Z_+).$$

By Darboux's property, the set

$$E = \{t \in (t_1, t_2) : \varphi(t) = y_0\}$$

is not empty. Let us denote by t_0 its least upper bound. Then we have $t_0 \in (t_1, t_2)$ and, by continuity,

$$\varphi(t_0) = y_0$$

and

$$(1.4) \varphi(t) > y_0 \text{for} t_0 < t < t_2.$$

Relations (1.2) and (1.3) imply that $t_0 \in \mathbb{Z}_+$ and hence, by the definition of \mathbb{Z}_+ ,

$$(1.5) D_+ \varphi(t_0) < 0.$$

On the other hand, by (1.3) and (1.4), it follows that

$$D_+\varphi(t_0)\geqslant 0$$
,

which is a contradiction with (1.5). This completes the proof.

Remark 1.1. Since (1.3) and (1.4) imply $D^+\varphi(t_0)\geqslant 0$, it is obvious that the set Z_+ in Zygmund's lemma can be replaced by the set

$$Z^+ = \{t \in \Delta : D^+ \varphi(t) < 0\}.$$

Remark 1.2. The set Z_+ can be replaced by the set

$$Z_- = \{t \in \varDelta : D_-\varphi(t) < 0\}$$

or by the corresponding set Z^- . To prove Zygmund's lemma with Z_+ replaced by Z_- or Z^- , we have only to change the above argument by taking for t_0 the greatest lower bound of E.

Remark 1.3. A similar lemma holds true for increasing functions.

§ 2. A necessary and sufficient condition for a continuous function to be monotone. As a consequence of Zygmund's lemma we get the following theorem.

THEOREM 2.1. Let $\varphi(t)$ be continuous in an interval Δ . Then a necessary and sufficient condition for $\varphi(t)$ to be decreasing on Δ is that the set $\Delta - Q_+$, where

$$Q_{+} = \{t \in \Delta : D_{+}\varphi(t) \leqslant 0\},\,$$

be at most countable.

Proof. The necessity is obvious since for a decreasing function the set $\Delta - Q_+$ is empty. To prove the sufficiency of the condition, let $\varepsilon > 0$ be arbitrary and put

$$\psi(t) = \varphi(t) - \varepsilon t.$$

We have

$$D_+\psi(t)=D_+\varphi(t)-\varepsilon\;,$$

and, consequently,

$$D_{\perp}w(t) < 0$$
 for $t \in Q_{\perp}$.

Hence it follows that for the set

$$Z_+ = \{t \in \Delta : D_+ \psi(t) < 0\}$$

we have $Q_+ \subset Z_+$ and consequently $\Delta - Z_+ \subset \Delta - Q_+$. Therefore, the set $\Delta - Q_+$ being at most countable, the same holds true for the sets $\Delta - Z_+$ and $\psi(\Delta - Z_+)$. Hence the set $\psi(\Delta - Z_+)$ does not contain any interval and, by Zygmund's lemma, $\psi(t)$ is decreasing. Now, $\varepsilon > 0$ being arbitrary, it follows that $\varphi(t)$ is decreasing too.

COROLLARY 2.1. Let $\varphi(t)$ be continuous in an interval Δ . Then a sufficient condition for $\varphi(t)$ to be strictly decreasing on Δ is that the set $\Delta - P_+$, where

$$P_+ = \{t \in \Delta : D_+ \varphi(t) < 0\},\,$$

be at most countable.

Proof. Let $\Delta - P_+$ be at most countable. By Theorem 2.1, $\varphi(t)$ is decreasing on Δ . If it were not strictly decreasing, we would have $\varphi(t_1) = \varphi(t_2)$ for some two points t_1 , t_2 such that $t_1 < t_2$. Therefore, $\varphi(t)$ would be constant on the interval $[t_1, t_2]$ and consequently $\varphi'(t) \equiv 0$ on $[t_1, t_2]$, contrary to our assumption that $\Delta - P_+$ is at most countable.

Remark 2.1. Due to Remark 1.2, the set Q_{+} in Theorem 2.1 can be replaced by the set

$$Q_- = \{t \in \Delta : D_-\varphi(t) \leqslant 0\}.$$

Remark 2.2. The results of this section can be summarized in a slightly less general form as follows: if $\varphi(t)$ is continuous in an interval Δ and if

⁽¹⁾ A being a subset of Δ , $\varphi(A)$ denotes the image of A by means of the mapping $y=\varphi(t)$.

 $D_+\varphi(t)\leqslant 0$ for every $t\in \Delta$ or $D_-\varphi(t)\leqslant 0$ for every $t\in \Delta$, then $\varphi(t)$ is decreasing in Δ . Now, if we assume that for every $t\in \Delta$ we have either $D_+^-\varphi(t)\leqslant 0$ or $D_-\varphi(t)\leqslant 0$, then $\varphi(t)$ is not necessarily decreasing. Indeed, for Weierstrass's functions $\varphi(t)$ (a continuous function without finite derivative at any point) we have for every t either $D_+\varphi(t)=-\infty$ or $D_-\varphi(t)=-\infty$, and the function is not monotone.

Similar results for increasing functions follow from those concerning decreasing functions by considering $-\varphi(t)$ instead of $\varphi(t)$.

We close this paragraph by an important theorem due to Dini.

THEOREM 2.2. For $\varphi(t)$ continuous in an interval Δ the following two propositions are true:

1° If any of its Dini's derivatives is $\leq a \ (< a)$ for $t \in Z \subset A$, where A = Z is at most countable, then for any two different points t, s from A we have

(2.1)
$$\frac{\varphi(t) - \varphi(s)}{t - s} \leqslant a \quad (< a).$$

2° If any of its Dini's derivatives is $\geqslant \beta$ (> β) for $t \in \mathbb{Z} \subset \Delta$, where $\Delta - \mathbb{Z}$ is at most countable, then for any two different points t, s of Δ we have

$$\frac{\varphi(t) - \varphi(s)}{t - s} \geqslant \beta \quad (> \beta) .$$

Proof. Since 2° follows from 1° by taking $-\varphi(t)$ in place of $\varphi(t)$, we prove proposition 1°. Suppose then, for instance, that

$$(2.2) D_{+}\varphi(t) \leqslant \alpha \quad (<\alpha) \quad \text{in} \quad Z \subset \Delta.$$

Fix s in Δ and put

$$\psi(t) = \varphi(t) - \varphi(s) - at$$
 for $t \in \Delta$.

 $\psi(t)$ is then continuous in Δ and, by (2.2),

$$D_+\psi(t) = D_+\varphi(t) - a \leqslant 0 \quad (<0) \quad \text{in} \quad Z.$$

Since $\Delta - Z$ is at most countable, it follows, by Theorem 2.1 (Corollary 2.1), that $\psi(t)$ is decreasing (strictly decreasing) in Δ and consequently

$$\psi(t) \leqslant \psi(s) \quad (\psi(t) < \psi(s)) \quad \text{for} \quad t > s$$
.

Hence we get (2.1) for t > s. Since s and t > s were arbitrary points in the interval Δ , we conclude that (2.1) holds true for any two different points t, s of Δ .

Next theorem is an immediate consequence of the preceding one. Theorem 2.3. Let $\varphi(t)$ be continuous in an open interval Δ . Assume that one of its Dini's derivatives is finite and continuous at $t_0 \in \Delta$. Then $\varphi'(t_0)$ exists.

Proof. Suppose, for instance, that $D_+\varphi(t)$ is finite and continuous at t_0 . Put $D_+\varphi(t_0)=l$ and take an arbitrary $\varepsilon>0$. Then there is a $\delta>0$ so that

$$l-\varepsilon < D_+\varphi(t) < l+\varepsilon$$
 for $t \in (t_0-\delta, t_0+\delta)$.

Hence, by Theorem 2.2, we get

$$(2.3) l-\varepsilon < \frac{\varphi(t)-\varphi(t_0)}{t-t_0} < l+\varepsilon \text{for} t \epsilon (t_0-\delta,t_0+\delta), t \neq t_0.$$

 $\varepsilon > 0$ being arbitrary, inequality (2.3) implies the conclusion of our theorem.

COROLLARY 2.2. For $\varphi(t)$ continuous in an open interval Δ assume that one of its Dini's derivatives is finite and continuous on Δ . Then $\varphi'(t)$ exists and is continuous on Δ .

§ 3. A sufficient condition for a function to be monotone. As a further consequence of Zygmund's lemma we prove the following theorem.

Theorem 3.1. Let $\varphi(t)$ be absolutely continuous in an interval Δ and assume that

(3.1)
$$\varphi'(t) \leqslant 0 \text{ for almost every } t \in \Lambda$$
.

Then $\varphi(t)$ is decreasing in Δ .

Proof. Let $\varepsilon > 0$ be arbitrary and put

$$\psi(t) = \varphi(t) - \varepsilon t.$$

 $\psi(t)$ is absolutely continuous in Δ and

$$w'(t) = \varphi'(t) - \varepsilon$$
 for almost every $t \in \Delta$.

Therefore, by (3.1), we have $\psi'(t) < 0$ for almost every $t \in \Delta$ and hence the set $\Delta - Z_+$, where

$$Z_+ = \{t \in \Delta : D_+ \psi(t) < 0\},\,$$

is of measure 0. $\psi(t)$ being absolutely continuous the set $\psi(A-Z_+)$ is of measure 0 too, and consequently does not contain any interval. Hence, by Zygmund's lemma, $\psi(t)$ is decreasing in Δ and $\varepsilon > 0$ being arbitrary the same holds true for $\varphi(t)$.

Remark 3.1. A similar theorem is true for increasing functions.

Remark 3.2. By an argument similar to that used in the proof of Theorem 3.1 we show the following result: If $\varphi(t)$ is a generalized absolutely continuous function (see [45]) in an interval Δ and if its approximative derivative (see [45]) is non-positive almost everywhere in Δ , then $\varphi(t)$ is decreasing in Δ .