CHAPTER XIII

COMPLEX INTEGERS

§ 1. Complex integers and their morm. Associated integers. The
comples or GFaussion integers are the complex numbers a--bi, where
a,b are integers.

The theory of eomplex integers is important for two reasons, firstly
because it is interesting to see how far the properties of ordinary integers
are susceptible to generalization, and secondly because various proper-
ties of ordinary integers themselves follow most simply from those of
the wider class. The proofs of these properties obtained in another way
turn. out to be much more difficult.

An immediate consequence of the definition of arithmetical opera-
tions on complex numbers is that the sum the difference and the product
of two or more complex integers is also a complex integer.

LXERCISES. 1. Find all the possible representations of the number 0 ag the
sum of the squares of two complex integers.

Answer. 0 = (a-bi)2+ (L bF ai)?, where a, b are arbitrary rational integers,
and either both upper or both lower signs are taken.

2. Find the complex integers »-yi which are representable as sums of the
squares of two complex integers. :

Solution. In order that an integer ©--yi be the sum of the squares of two
complex integers it is necessary and sufficient that y showld be even and, in the cage
where = is of the form 4¢-+-2, y should be divisible by 4.

The condition is necessary because if

akyi = (@ bi) + (o dif?,
then '

% ==, y = 2(ab+od).

Hence, as one verifies directly, » is of the form 4442 if at least one of the
numbers g and b and at least one of the numbers ¢ and d are even. But then the num-
ber ab+ed is even, which ghows that y is divigible by 4.

The condition is also sufficient because, if & = 2+ 1 and y = 2u, then

g = (b 1w+ (u— )2,
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It o= 4t+2 and ¥y == 4u, then
2ty = (fud 14 (u— )82+ (E—u+ 14 (4 )i,
If == 4 and y == 4u, then
Ayl = (E+ 1+ ud)? +(u+ (1~ 0i)?,
finally, if © = 4 and y = 4u+42, then
@yh == (b L (e L= )4)2 (£ w4 (L u) 82,
3. Prove that a complex integer wx--yi is representable as the sum of the

gquares of three complex integers if and only if y is even.
Hint. Use exercige 2 and the identity
4424 200 = 4t 14 2ui 1%,
4. Prove that a complex integer a-+bi s 0 is the square of a complex integer
if and only if
at 402 = 2, e—q = 27,

c+a = 222 and

where ¢ is a natural number and w, ¥y arve rational integers. Prove that then
Db = (Lo,
where the signs should be identical if b > 0 and opposiie if 4 < 0.

Remark. The theorem formulated in exercise 4 may be thought of a8 a test
for verifying whether a given complex number is the square of a complex 1?1teger,
and as a method of finding the complex integral square roots of a complex integer
(in the case where such roots exist).

For a given complex number z = a-bi we denote by 2’ its con-
jugate complex number, i.e. the number 2’ = a— bi.

As an immediate consequence of the definition of the arithmetical
operations on complex numbers, we have

(1) if #=t-t+u, then 2 =t+u’,
(2) if e=t—u, then 2 =#-—u',
(3) it 2 =tu, then &' =tu'.

Cleaxly, either the numbers 2z and & are both complex in?;egers or
none of them is a complex integer. The number (2), the conjugate of
2, ig equal to 2.

The product 22’ of two conjugate numbers is called the norm of the
number 2z and denoted by N (z). We write

N(z) =2z,
Congequently, if # = a--bi (where @, b are real numbers), we have
N (2) = a>+b2.
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Therefore the norm of a complex number is always real and non-
negative, being equal to zero only if @ =b =0, ie. if 2 =0.

Moreover, the norm of a non-zero complex integer is a natural num-
ber.

The conjugates have the same norm. We say that a complex inte-
ger ¢ is divisible by a number ¢ if there exists a complex integer « such
that

(4) @ w= fat.

‘We then write ¢ e.

To establish whether a complex integer ¢ bi is divisible by a complex
number ¢-+di, not equal to 0, one has to know whether certain divisi-
bilities among rational integers hold. In fact, the formnula

a+bi  (o+bi)(e—di) acdbd
e+di ebdr 2 e

be—ad .
e d? !

implies that
ct+dila+tbi
is valid if and only if
2d? lac4-bd  and 2442 | be—ad.

For example,

34542144 Decause 34|68 and 34| —102,
1+412 because 212 and 21 —2;
on the other hand,
1—-2{+142¢ Dbecause 5+ —3.

It follows from (3) that, if ¢ |2, then ¢ | 2" and if & = fu, then
22 = lut'n’ = t'un’,
whence, by the definition of the norm of a complex number,
(5) N(z) = N{)N(u).

We express this by saying that the norm of the product of two complen
numbers 4s the product of their morms.

This theorem is easily generalized to the product of amy finite num-
ber of factors.
) B_y.(5) we also have N (t) | N(2); consequently, if a complex integer t
is & divisor of a number 2, then the norm of ¢ is a divisor of the norm of 2.

The converse, however, is not true. For example, N(1—27)
= N(142¢) but 1—2¢+14+24:
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Two complex integers, both not 0, which divide each other are called
associated.

Jonsequently, ¢ and ¢ are associated if and only if ¢ |2 and 2z |¢. We
then have N () | N(¢) and N(z) | N(¢), which, in virtue of the fact that
the norm of a non-zero complex integer iy different from zero, gives
N(t) == N(z).

Thus any two associated compley integers have equal norms (the con-
verse is falge: the numbers 1—24 and 1--24 have equal norms but are
not asggociated because, as we have learned, 1—2i1 1-24).

Now we arve going to find the associates of a given complex integer
2 0.

Let £ be associated with z; then, for a complex integer u, we have
t = zu, whence

(6) N({) = N(2) N (u).

But, since agsociates have equal norms, N(2) = N(?) and N(2) #0
because = # 0. Consequently, (6) proves that N(u) = 1.

Let # == a--bi, whence «*+b%=1. Therefore, either a = +1
and b = 0, or, conversely, ¢ = 0 and b = +1. From this we conclude
that « i3 one of the four numbers 1, —1,4, —%, and 80 ¢ = 2u is one
of the four numbers

(7) g, —=2, iz, —i.

Thus we see that any asgsociate of z is one of the numbers (7). Con-
vergely, it is easy to see that each of the numbers (7) is associated with 2.
This is because 2 = (—1)(—2) = (—i)iz = ¢(—iz). Thus we arrive at

THROREM 1. Any complex infeger 2, not equal to 0, has ewactly four
associates, namely, the numbers (7).

It is clear that (since z 7 0) all the four associates are different.

In problems concerning divisibility of complex integers, associated
numbers ean. be replaced by one another. The reagon is that, if # is divis-
ible by %, then any associate of z is divisible by any associate of .

It is also clear that if z is associated with ¢, then =’ iy associated
with ¢

If two complex integers 2, and #, are divisible by i, then their sum
and their ditference are divigible by f. In fact, ;f 2, = tu and 2, == tv, then
2y 8y == t(un0).

If a complex integer z ig divisible by ¢ and ¢ is divisible by u, then
z is divigible by w. In fact, if 2 = tw and ¢ = wv, then 2 = wow.

Thig, in consequence, shows that, if ¢ is & commeon divisor of complex
integers ‘2, %y, ..., 2, and if 4y, s, ..., %, are any complex inbegers,
then t|2u;+23uy+ ... 425 Un.
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§ 2. Euclidean algorithm and the greatest common divisor of com-
plex integers. We now prove

THEOREM 2. If 2 and t + O are complew integers, then there exist com-
plex integers ¢ and v such that
(8)
and
&)
whence N (v) < N(¢).

Proof. Let
(10)

2 = ct-}r
N(r) << $N (1),

2ft = a4-yi,

where @, y are rationals. Let & and # be the integers closest to # and ”,
regpectively. Then we may write

{11) O =&+, ¥ =ty
where @, and y; are rational numbers such that
(12) ol <4, Iyl <4

Let
(13) ¢=Edei, 1 =g—ct.

It is clear that ¢, r are complex integers and that they satisfy (8). At
the same time, by (10), (11), (13), we have

T =2g—ct = (@-+yi)t—(E+ i)t = (w4 y,9)¢.
Since the norm of a product is equal to the product of the norms of the
factors, we obtain by (12)

N = N@And N ) = @+ N0,  oltod <iti=3

which proves (9) and at the same time completes the proof of the theorem.
The theorem just proved provides an algorithm similar to the Xuelid-
ean algorithm proved for rational integers.

) ‘It embodies the ordinary process for finding the greatest common
divisor of two given complex integers, z and ¢ £ 0. At firgt, by means
of theorem 2, we find the numbers ¢, . By (8), we infer that the num-
bers z and ¢ have the same commeon divisors as the numbers ¢ and 7,
Moreover, by (8), N (r) < N(i). Thus in order to find the common divi-
sors of the numbers # and ¢ it is sufficient to find the commeon divisors
of the numbers ¢ and 7, where N (r) < N (f). - S

) If # =0, then the common divisors of the numbers # and ¢ are. pre-
cisely the divisors of the number ¢. L

2
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If » % 0, then we apply the above procedure with the numbers ¢, r
in place of z,t. Thus to find the common divisors of the numbers ¢, r
we have to find the common divisors of the numbers r,r;, where
N(ry) < N(»).

If 7, # 0, we find another number r,, and so on.

The sequence r, 7y, #,, ... cannot be infinite, because the correspond-
ing sequence of nmorms ig a strictly decreasing sequence of natural num-
bers. Therefore, for some =, 7, = 0. Then the common divisors of r, ;
and 7,_. are precisely the divisors of the number »_,. Thus we reach
the conclusion that there exists a complex integer p whose divisors are
precigely the common divisors of the numbers z and 4.

This shows that two given complex integers different from zero have
at least one common divisor that is divisible by any of their common
divisors. It is a natural thing to call it the greatest common divisor of the
given. two complex integers.

Now we are going to establish the number of the greatest common
divisors of two complex integers. Let ¢ and J be the greatest common
divigors of complex integers #, . The numbers d,  are divisible each by
the other, therefore they are associated complex integers. Hence, by the-
orem 2, we obtain the following

COROLLARY. Any two complex integers different from 0 have precisely
four greatest common divisors, these being accociated with each other.

Actually, rational integers also have two greatest common divisors
which differ in the sign. They are such that each of them is divisible by
any. common divisor of the given numbers. However, if we find the num-
ber of common divisors, we do not distinguish between the divisors that
differ in the sign only. Similarly, in the case of complex integers we could
congider only one greatest common divisor of any two complex integers
identifying associated divisors. At any rate, either approach is nothing
but a more or less convenient convention.

EXAMPLES. 1. By means of the algorithm presented above we find the

greatest common divisors of the numbers 6—17¢ and 18+4. Using the successive
steps of the algorithm, we find

6—170  (6—179)(18—i) 9O1—312i _ . 01418
18—1 18+1 a2 325
6— 176 = —i(18-+0)+ (6+4),
.. 1844« (1844)(6—i) _ 91—13 _ . 1—i
v Ll T e e = 3
o - TB¥e Frl 26 )

1844 = 8(5+4)+ 38— 2,

B+i  (B+4)(3+2i)

= = 144,
38— 2i 3422 +e
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Therefore the greatest common divisors of the numbers 6-— 17¢ and 1844
are the number 3-—2¢ and the numbers associated with it, i.e. — 34-2i, 2 3¢,
—2—3i.

2. We find the greatest common divisors of the numbers 243 and 2 3i.
We have

2430 (2+88) 54120 . B—i
- - = 5 s o e
2—-3¢ 2243 13 13

9 30 = 4 (2 B4) i 1,

R Lt I L N RS
R Ty ) - 9
2o 8i = — Bfi 1)e- 1.

Therefore the greatest common divisors of the numbers 2+ 3i and 2— 3¢ ure
the number 1 and its associates: — 1, i and —i.
3. We find the greatest common divisors of the numbers 3147 and 5--i. We
have :
3144 B1+44(5—4) _ 156—26¢ ,

= = e,

541 52412 26

Therefore the greatest common divisors of the complex integers 3144 and 51
are the number 5--7 and its associates: —5—4, — 1-+5i and 1-— 5¢.

It is easy to see that the greatest common divisors have the greatest
norm among all the common divisors of the numbers, the converse being
also true. So the greatest common divisors could also be defired as the
common divisors whose norms assuine the greatest possible values. These,
however, would make it more difficult to prove the most important
property of the greatest common divisors, namely that they are divisible
by any common divisor.

The theory of the greatest common divisors of two or more complex
integers can easily be established by considering linear forms, just as has
been done in the case of rational integers. In fact, let Gy Gyyoooy Uy, De
complex integers different from zero. Let Z be the set of non-zero num-
bers of the form

G121+ Gyt ook By Ry

where 2y, 2,...,%, are complex integers. Finally, let N De the set of
the val}ws of the norm of the numbers of Z. Clearly, N is thie set of natu-
ral numbers. Let # be the least natural number of the set . Therefore
there exists a number ¢ in Z such that N (f) = 7, which means that there
exist complex integers ¢y, fy, .., ¢, such that

(14) C‘=‘011C1+“z€2+--~+amé'm-
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‘We are going to show that each number of the set Z is divisible by £.
In fact, let 2z be any number of the set Z. Then there exist complex inte-
ZErB 2y, 8y, -0 0y &y that

(15) 2w Ry UGBt oo G B
Moreover, by theorem 2, there exist complex integers ¢ and » such that
(16) g=el4r and N <N().
It 7 0, then 7 belongs to Z because, by (14), (15) and (12),
¥ == g 08 == Oy (8 681) - g (By— Lo} o A (B — €Cm)

and, moreover, the numbers z;—c¢é;, j =1,2,...,m, are complex inte-
gers. But then, by (16), » is a number whose norm is less than the norm
n of ¢, contrary to the definition of ». Consequently r = 0, whence, by
{16), z =¢( and so (|=z. )

It is clear that each of the numbers a,,a,,..., @, belongs to the
get Z. Therefore, in virtue of what we proved above, the complex inte-
ger ¢ is a common divisor of the numbers a, @, ..., Gy.

Now let 6 be any common divisor of these numbers. Then there
exist complex integers ¢, %, ..., &y, such that a; = ;6 for any j =1,2,
.orym. Hence, by (14),

{= (it151+tzé_z+ coettnn) 8,

which shows that 6 | . From this we conclude that ¢ is a common divi-
sor of the numbers a,, @, ..., &, which is such that any common divi-
sor of these numbers divides it, At the same time we have proved that
£ is representable in form (14), where (i, &y, ..., L are complex 1r{t§gers.

Any two complex integers a, b have at least four common divisors,
1, -1, 4, —i. o

If the complex integers a, b have no more than these four divisors,
they are called relatively prime. We then write (a,d) = 1. :

It is easy to see that then there exist complex inbegers @,y which
satisfy the equation :

an aw--by = 1.

In fact, if (@, d) =1, the number { defined by (14). wi‘lzl_l a4 = ay,

b %ag, m = 2 must be one of the numbers 1, —1, ¢, —i. Oonse.,-
quently, one of the numbexs &, —¢, i, —i¢ must be equal to 1 and this
implies that for an appropriate choice of complex integers z, y'(17 ) holds.
.. On ‘the other hand, (17) implies that any common divisor of the
numbers a,b iy a divisor of the number 1, therefore the numbers a, b
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cannot possibly have any common divisor different from 1, —1, 4, —,
this being equivalent to saying that (a,d) = 1.

TuworeM 8. Two complex integers a,b are relatively prime if and
only if there ewist complew imtegers ®,y such that ax-4-by =1.

Now we consider three complex integers a,b,c¢, about which we
assume that (a,b) =1 and b|ac. We prove that then b |c.

In fact, since (a, b) = 1, by theorem 3 there exist complex integers
@,y which satisfy equation (17). This, multiplied by e, gives

(18) acw+bey = ¢.
By assumption, b | ac and, clearly, b | be for any b. Therefore (18) implies
that b|e¢, which was to be proved. Thus we have obtained

Tamormm 4. For any complew integers o, b, ¢ the relations (a,b) =1
and b|ac imply b|ec.

Another consequence of theorem 3 ig

TeeoREM 5. If (a,b) =1 and (a,c) =1, then (a,bo)=1.

Proof. If (a,b) =1 and (a,¢) =1, then there exist complex inte-
gers @,y, u, v such that ax--by =1 and aw-cv = 1. Multiplying toge-
ther these equalities we obtain a(w(au--ev)+ buy)+boyv =1, whence
(a,be) =1.

§ 3. The least comamon multiply of complex integers. Let a;, ay, ...
-+y Gy De complex integers different from zero. There are of course various
common multiples of these numbers, e.g. the one obtained by multiplying
by one another. Among them we select those for which the norm is the
least, i.e. not greater than the norm of any common multiple of these
numbers. Let » be such a common multiple of a,, ay, ..., @,. We prove
that any ecommon multiple of the numbers a;, a,, ..., a, is divisible by ».
In fact, let 2 be any common multiple of these numbers. By theo-
rem 2 there exist complex integers ¢, such that # = cy--7 and N(r)
< N(»). If r were equal to zero, then 7, being a common multiple of
@1y @y ey Gy would have a norm less than », contrary to the detini-
tion of the number ». CUonsequently = 0, and this means that there
exists atb least one common multiple of the numbers a;, @y, ...y Oy Which
is such that any common multiple of these numbers is d1ws1ble by it.
The norm of any common multiple with this property is, in fact,
not greater than the norm of any common multiple of the *numbers
Qyy gy ooy Gy 'We call it the least common 'mumple of the numbers a,.
“27 3 Qo
It is easy to' see that all the least common multiples of the num-
bers ay, ay, ..., a,, are associated and that their norm is the least among
the norms of common ‘multiples of these numbers.
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EXERCISE. Find the solution of the equations

2y tz=zayz =1
in complex integers.

.Solution. Since xyz = 1, the numbers z,y, 2 must be divisors of unity, ie.
they must be numbers of the sequence 1, —1, 4, —i. Again from zyz = 1 it fol-
lows that they cannot all be imaginary; on the other hand, the equality #+y-+2 = 1
shows that if the three of them are real, then two are equal to 1, the third being
equal to — 1, but this contradicts the zys = 1. Therefore at least one of the numbers
z,Y,2 18 xmagmm'y, but then, by -+y-+2 = 1, at least two of them are imaginary.
Thus we arrive at the final conclusion that one of the numbers , ¥, # must be i, the
others being —i and 1. We see that the only solutions of our system of equations
are @ == 1, y =4, 2 == —4 and those which can be obtained from them by permut-
ing the numbers 1, 4, ~~i. The number of solutions is thus equal to 6.

Remark. As is proved by J. W. 8. Cassels [4], the system of equations
@44y -+2 = xyz = 1 has no solutions in ordinary rational numbers z,y,# (see also
Sansone and Cassels [1]).

§ 4. Complex primes. Since any complex integer has at least the
four divisors 1, —1, 4, —¢ and, moreover, any complex integer z,
not an associate of 1, has other four divisors, namely z, —z, iz, —iz,
we see that any such complex integer has at least eight different
divisors.

The complex integers which have precisely the 8 divisors are called
primes.

In other words, a complex integer is prime if it has no divisors except
its associates, and the associates of 1, and moreover, if it is not associa-
ted with 1.

It is clear that this definition is equivalent to the following ome:

A complex integer is a prime if its norm is greater than 1 and if it
i8 not representable as the product of complex integers with norms grea-
ter than 1.

In fact, if ¢ is a complex integer, ¥ () >1 and { = uv, where N (u) >1
and N (») > 1, then the number px cannot be associated either with 1,
becausge, if it could, N(x) =1, nor with {, because then N(u) = N({),
whence, by N ({) = N(u) XN (¥), it would follow that N(») =1, con-
trary to the assumption. Consequently, ¢ has a divisor x which is not asso-
ciated with 1 or with £, and so it is not a prime.

On the other hand, if ¢ is a complex integer with N ({) >1 and if
it is not a prime, then, by definition, it has a divisor x which is not asso-
ciated either with 1 or with . We then have [ = u», where » is a com-
plex integer. ]

If N (u) =1, then u is associated with 1, contrary to the assumption
(in- fact, if. for a. complex integer a--bi we have N(a--bi) =1, then
a?4b% =1, whence, isince: a, b are rational integers, either-a = +1
and b =0, or 4 =0 and b= 41). :
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If N(») =1, then the number » is associated with 1, whence, by
{ = u», the number u is associated with ¢, contrary to the assumption.

Consequently, N (u)>1 and N(») > 1, and so the number ¢ is the
product of two complex integers with norms greater than 1.

It is clear that any complex integer which is associated or conjugated
with « prime complew integer is a prime complex integer,

TurorEM 6. Any complex integer whose norm i greater than 1 is ye-
presentable as the product of findtely many prime complen integers.

Proof. Suppose to the contrary that there is a complex. integer
with a norm n greater than 1 which is not representable as the product
of finitely many prime complex numbers. Let M be the set of the values
of the norm of all the complex integers with this property. Thus M is
a non-void set of natural numbers. Let m be the least number belong-
ing to M. Accordingly, there exists a complex integer 2 with norm m which
is not representable as the product of finitely many prime complex in-
tegers. By assumption, # is not a prime and its norm is m > 1. Conse-
quently, it is the product of two complex integers, 1 and v, with norms
greater than 1. Morcover, m == N(2) = N (u») = N ()N (v), whence it
follows that N(u) < m and N (») < m. From the definition of m we
infer that each of the mumbers u,» is vepresentable as the produaet of.
finitely prime complex integers. But this shows that also the number
# == v is representable in such a form, contrary to the definition of z.
The theorem is thus proved.

By definition any complex integer = has precisely the eight divisors

1, =1, 4, —i, =, —m,  im, — .

From this we infer that, if a comples integer A is not divisible by a prime
complex integer m, then (A, @) = 1. ‘

A natural number which is a prime complex integer is of course
2 prime (in the ordinary sense). The converse, however, is not true:
there are primes which are not prime complex integers, For example,

2=(1+)(1—4) and  N(1-+i) = N({—i) =2>1,

The numbers 144 and 1—i are prime complex integers. This fol-
lows from the fact that, if 144 = wv, then

N (N () = N (ur) = N(L+i) = 2;
$0 (in virtue of the fact that the norm of o complex integer iy a natural

number) we must have N(u) =1 or N (v) = 1, which proves that either
# or v is associated with 1. - . Bty Lt
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The nubers 144 and 1—4 are associated because 1—i = —i(L-41).
Thus we see that the number 2 iy associated with the square of a prime
complex integer.

Using theorem 4 one can easily prove that the representation of
o complex integer as a product of prime complex integers is unique apart
from the order of the primes and ambiguities of associated primes.

In this connection, we are going to characterize the prime complex
integers in the set of all complex integers.

‘We start with determining the natural numbers which, regarded
ag complex integers, are prime. Clearly, they must be ordinary primes,
and, moreover, they ghould be odd, since the number two has been shown
not to be of this sort. Thus we have to consider the primes of the form
4k--1 and 4k-+-3, where % is a natural number.

Let p be a prime of the form 4%+ 1. By theorem 9, Chapter V,
there exist natural numbers a,bd such that p = a4 b2, whence p
== (@ bi) (0 —bi) and, moreover, N(a+-bi) = a®+4b2=p >1. Thus p
isnot a prime complex integer.

The factors a--bi and a--bi, however, are prime complex integers.

N(u)y>1 and N >1,

From this we conclude that the complex factors of primes of the form
4k41, where I is a natural number, are prime complex numbers.

It is easy to see that these factors are not associated with eatlch other.
In fact, the identity «--bi = a—bi is impossible, since it implies b = 0

and. p = a®. The identity a-+bi = —(a—bs) is also impossible because
it im-plies @ =0, p =0T ¢+ bi = i(a—Di), then ¢ = b and S0 p = 2a?,
which is impossible. Tinally, if a+ b = —i(a—Dbi), then ¢ = —b and

As for the primes of the form 4+ 3, where & is a non-negative ?*am’onal
integer, we show that they are prime when regarded as complex mtegers.

In fact, if a prime p = 4%--3 were a product of two complex integers
with norms greater than 1, then

p = (a+ bi)(c+di),
whence, passing to the norms,
P* = (@4 b2) (2 @),

where @?+-52 > 1 and e*{» d? > 1. Since p is a prime, this would give
P = a?-b?, but this is impossible for any prime of the form 4k+3.
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Thus we see that among the primes precisely the primes of the form
4% -3 are prime complex integers. Other prime complex integers are the
number 144 and the conjugate complex factors of the primes of the
form 4%k-1.

In virtue of what we proved above, any natural number > 1 is a
product of prime complex integers of one of the sorts we have just
listed or of their associates.

It is clear that there cannot be any other coraplex prime integers
because, if = were such a prime, then, in virtue of the uniqueness of the
decomposition of a complex integer into prime complex integers, = would
not be a complex prime divisor of any natural number. Dut wn' = N (n),
which is a contradiction.

‘We have thus proved

THEOREM 7. The complex prime integers are those of the following three
classes and their associates:

1. 1+,

2. the complex prime factors of the primes of the form 4k+1,

3. primes of the form 4%+ 3.

Here are the prime complex integers (one out of each of the four
associates) whose norms are less than 100:

144, 142, 8, 2:4£3i, 1x4i, 2450, 116i,
4450, T, 2470, 546i, 348, 548, 49

Two complex primes. whose difference is 2 are said to form a pair
of twin complex primes. For example, 44, 6-+14; 3¢, 2-+34; 34 2¢,
5+2¢5 Ti, 24 7i. There are known twin complex primes that form
arithmetical progressions of difference 2 consisting of three terms. For
example, 247, 4%, 644 or 1424, 324, B+ 2¢.

Conjecture H (Chapter III, § 8) implies that there exist infinitely

-many pairs of complex twin primes. In fact;, let fi(v) = w*— 202,
f3(@) = @*4-201-2, The polynomials f,(») and fy(») have no rational
roots and consequently they are irreducible. We also have f,(0)f5(0) = 4,
fi(1)fe(1) = 5, which shows that the condition § is satisfied. Therefore,
in view of conjecture H, there exist infinitely many natural numbers

@ such that f,(«) and f,(w) are both prime. But f, (o) = (w—1)21, "

Jo(®) = (2+1)%+1 and @ must be odd  since otherwise 2|f;(#) and
fa(@) >2, whence f,(@) would be composite. Consequently, the num-
bers f,(w) and f,(@) are both of the form 4%--1 and so the numbers
#—14i and @-+144 are prime complex integers, their difference
being equal to 2. Thus we have obtained an ‘infinite sequence of
different pairs of complex twin primes. Sugh pairs are obtained, for
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example, for » =3, 5, 15, 25, 55, ... However, there are pairs of
vomplex twin primes that are not obtained in this way, for example,
1-4+2¢, 342¢ or 3+ 8¢ and 5--8¢.

Pairg of complex twin primes have been considered by D, Shanks
{sce Shanks [3]).

§ 5. The factorization of complex integers into complex prime fac-
tors. Wo now show a method how a complex integer z can be repre-
sented ay the product of complex primes.

Let N (2) = n. Any prime factor of the number z is of course a prime
factor of its norm n = 22’. Complex prime factors of the natural number
n can easily be obtained by finding its rational prime factors. In fact,
let

(20) n = 2°pYpi...pkqfgl. .. qff,

where the p’s are primes of the form 4741 (') and the ¢'s arve primes
of the form 4¢+3. Let m; and #j, j =1,2,..., %, denote the conjugate
complex prime factors of the number p;. Let w; = a--bi and =; = a— bi;
then p; == a®+-b2. Then the factorization of » into complex prime factors
is as follows:

(21) 0 == (= 8) (L4 0 nfml B ay®. . okt gflgh2 ... gfl.

L
Since n == 22’, we see that

" . ; e PPy
(22) 2 = ¢ (Lt i) nfiniinlays. . mEagkgilgs?. .. gt

where » is one of the numbers 1, 2, 3, 4, the remaining exponents 4
Aty ALy ovy Moy Msy fiay -eoy iy being mon-negative integers. Passing to
the norms in (22), in virtue of the equalities N (n;) = p; and N (g) = 4,
we obtain

‘ ’ .
T/, A AtAy A2, AJothy, 20 2 2H,
N () = 2*ppthppth. pi g1 gy .. g™,

whence, by (21) and the fact that N (z) = », comparing the exponents
on equal primes, we obtain

11”4‘2'1 =y,
24y == By,

Equalities (28) show that all the exponents § must be even.

Thug we reach the conclugion that, if & natural number n is the norm
of a complen integer, then in the factorization of n into primes the primes
of the form 4% 3 have even exponents.

(*) Here pn does not denote the mth prime.

A= a, dot 2y = ay, vy k=

(23)

20 = fay ey 2m = Br.
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Further, equalities (23) give
A=ay = Ef, pe= 1B, vy = Ef

Thus the exponents A, uy, iay ..., gz are uniquely defined.

In order to establish the exponents A; and A, where j == 1,2,..., k,
we use another rule which can be deduced as follows.

Let k; be the greatest exponent for which pf,“/ |z, i.0. let k; be the great-
est exponent for which p?l divides both a and b, where z = a - bi. Then

Zj = Z; == Oy~

il Phim |2 Bl Plim 2

o 2 1 T2
2=k P = m
In fact, it follows from. the definition of the exponent %; that the
complex integer z/p}i cannot be divisible by #; and #; simultaneously,
because, if it could, then, since (n;, m;) == 1, it would be divisible by
mm; = p;, whence plit! | ¢, contrary to the definition of %;.

Consequently if m; | (2/p¥), then the number ¢/pji is not divisible
by ;. Hence, in view of p& = a7 @7, it follows by (22) that 1) = k;,
whence, by (23), 4; = ¢;—k;. If the nmmber z/p}y is not divisible by =,
then, as one easily sees, 4 = J; and A = o;—k;.

This completes the proof of the rule provided by (24).

Finally, the exponent » ig easily found by a simple division of 2 by
the product of the prime factors whose exponents have alveady been
defined. :

EXAMPLES. 1. Let 2 = 224-7¢. We then have

N(2) = 48449 = 533 = 1341, p; = 13 = 22482, py == 4] = 42 -5,
Consequently,

12

)
== i"n%l:n;llﬂ:g?nq

where @, = 2430, 7 = 2--3i, m, =445, @y = 4—06i. Clearly, Fy==h, = 0.
The number

gfmy = (224 Ti)H(2 4 38) = (224 74) (2— 34) /13 == 5— dd
is a complex integer, and 80 Ay == ay— 0 == 1, 2y == 0. Similarly, the quotient 2/m could
be caleulated, but it is sufficient to note that the number §-— 44 is a prime complex
integer, Hence immediately,

224 T4 = (24 $1) (5— 44)
is the required factorization.
2. Let 2 = 19--17i. We then have
¥(2) = 3614289 = 650 = 2-5%-13 = 2:p}-p,.
Consequently,

.. . o 4
7= (1+1) niln]“lnéznfzh,

;- oy Da . i : ’ .
whelerrl = 1+42¢, o= 1— 2, Ty = 2481, @, = 234, @ = 2, a, = 1.
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Since neither 5|z nor 13|z, we bave ky == by = 0. Therefore the number (19+
4 174) /(14 24) is not a complex integer, and 8o 4; = 0 and A = 2. The number
(L9 -+ 174) /(2 81) is not a complex integer either. Therefore 4y = 0 and 45 = 1. We
then have
& = A (L d) (L= 26)* (2 — 31),

where a simple division shows that » == 2. Therefore the required factorization is
194 174 = (Lo 4) (L1 28)2 (— 2+ 31).
3, et @ s+ 1041006, We may write 2= 10(1--10d) and since
10 s 205 v o d(1-F D21 26) (1 2i),

it i sulficient to find the lactorization of 1-+10¢. We have N (14 104) = 101. This
is a prime of the form 4k--1. Hence, by theorem 7, 1+ 10¢ is a prime complex inte-
ger. Therefore '

104 1003 5= — i (14 4)* (14 20) (1— 21) (1 104).

EXERCISE. Find the faetorization into prime complex integers of the complex
integers: 1474, 944, 7--9¢, 10741984, 1044, 7+ 244.

Answor., 14-Ti= —i(L--1) (14202, 94i= —i(l44)(4+50), TH0i=
(14-4) (14-26) (B— 24), 1070198 = — (1+60), 104 = 104, T-+24 = — (L+20).

§ 6. The number of complex integers with a given norm. Now
we are going to investigate the question how many there are complex
integers with norms equal to a given natural number 7.

The question is important not ouly in itself; another source of its
applicability lies in the fact that it is equivalent to the problem of find-
ing the number of the pairs of rational integers , y for which #*+y* = n.
In other words, the number z(n) of complex integers with norms equal
to «n is equal to the number of representations of the number n as the
sum of the squares of two rational integers. Therefore the function z(n)
appears to be the same as has already been investigated in Chapter XI,
§ 2

Let (20) be the factorization of the number n into primes and let
(21) be its factorization into prime complex integers. As we have already
shown (ef. § B), N(e) =n holds only in the ease where the exponerts
Biy j ==1,2,...,1 are even. Suppose that this condition is satisfied.
Then, as wo have learned, a number 2 with the norm = has a factoriza-
tion into complex primes as in (29), equalities (23) for the exponents being
satigfied, and » is one of the numbers 1, 2, 3, 4. Conversely, if 4, 4,
Koy day Maeeey Aoy Moy fhay oy -+, 4 i8 an arbitrary system of non-negative
integers which satisfy equalities (23) and » is one of the numbers 1, 2, 3, 4,
then the number #, uniquely defined by (22), has the norm n. Thus, since
the numbers A, gy, fay--., 4 are-uniquely defined by conditions (23)
the question about the number of different complex integers - whose
norms are equal to n is equivalent to the question about the number of
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Qifferent systems of nom-negative v, Ay, Ay, Asy As, ..., Ak, A that satisfy
the conditions

1<v<4, htlh=a, hth=wu, ..o hth=aq.

There are four possible values for the number »: 1,2,3, 4. For
21, A we have the following a,-+1 possibilities: 0, a;; 1, ay—1; 2, ¢y —2;
... a1, 0. Similarly, there are a,+1 possible values for A, A, and so
on. This shows that

(25) 7(n) = 4{ay+1) (a2 +1)... (o +1).

This formula has been obtained under the assumption that the
exponents on the primes of the form 4¢3 in the factorization of n into
primes are all even. Otherwise, the equation N (2) = n is not solvable
in complex integers 2, and so t(n) = 0. Thus we have proved the
following

TeEOREM 8. If ¢ natural number n is factorized into prime factors
as in (20), then the number ©(n) of the representations of n as the swin of the
squares of two rational integers is equal to 4{ay+1)(ag+1)...(ap+1) pro-
vided the exponents on the primes of the form 4143 that appear in the
factorization are even. Otherwise z(n) = 0.

The theorem obtained in Chapter XI, §1, in a different way is
an immediate consequence of theorem 8.

In particular, if » is a prime of the formy 4¢+ 1, then v(n) = 8, whence,
immediately, theorem 9 of Chapter V follows.

Now let f(k) be a function defined as follows:

0 if his even,
(26) fhy =4{+1 if his of the form 441,
—1 if h ig of the form 4¢--3.

It is easy to see that for any rational integers a, b

f(ab) = f(a)f(b).

Hence, if
n = h{vhg?...hik

is the factorization of » into prime factors, then, as is easy to see,

D F@) = (FQ)+F () +F B+ A FED). .. (FL)+F ). +F(RE)).

ajn :
According to (26) we have

f@) =) +f@)+F2)+... +f(29) = 1.

tcm
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If A o= 44--1, then

FOOFHR) 7D+ . +F(h) = 1.
It b o= 4143, then

(27) SO L) FF AN+ o A f (1) = T L L (1) = =

Iu virtue of the formula for »' f(d) we have
d|n

) H(d) = (a+1) (ay+1).. (ap+1).

dm

whence, by theorem 8,

(28) () =4 > f(d),

an

provided all prime factors of # of the form 4¢43 have even exponents in
the factorization of n into primes. Otherwise, by (27),

D@ = o,

am

which, by theorem 8, shows that equality (28) is valid. Consequently
it is valid for any n. This can be formulated in the following theorem of
Jacobi.

THEOREM 9. The number of representations of a natural number
as the sum of the squares of two rational integers is equal to the difference
between the number of the prime divisors of the form 4i--1 of n and the num-
ber of divisors of the form 4&i-+3 of n, multiplied by four.

In fact, in (28) the summand -1 appears as many times as there
are prime divisors of the form 4¢41 of number n; the summand —I1
appears as many times as there are prime divisors of the form di--3
of number «.

By (28) we obtain

(29) %ﬁ‘r(n) =§f(7c) [—Z—]
T el k=1 :

W )
Sinee the swmmands f(d) appear in the sum D 2 f(d) as many times

n=1 d|n

. 4 .
as there are numbers # < s for which d|n, ie. [74_] times.

Elementary theory of numbers 28
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In virtue of formula (6) of Chapter XI, § 2, we have

[2] va L
N e = Y e,
T =1 I=0
whence
vz [V 2
(30) D va=w1= i [—,ﬂ—]
k=0 Fo=al
and so
- —— & @ @O @
[Vol+ Vo—1214 [Va—2]+... = H —[g] +H—H s

where the sequence of summands on the left-hand side breaks up at the
last positive torm ungder the sign of square root, and that on the right-hand
side breaks up at the last fraction for which the numerator is not less than
the denominator,

This is known under the name of Liouville’s identity.

In particnlar, for # = 10, we have

[VI01+ [V9]+ [V61+ [V1] = [31—[21-+[2]—[2% +13,

‘whence, indeed, 3434241 =10—3+2—141.
Liouville’s identity implies Jacobi’s theorem the other way round.
It is worth-while to mention that, by inequalites of Chapter XI,
§2, Liouville’s identity implies Leibniz’s expansion of the number r:

in an elementary way.
. -What is astonishing in this expansion is the réle of the congecutive
odd numbers that appear in the denominators of the summands of the
expansion. The ancients used to say “Numero impari deus gaudet”.
In a purely arithmetical way we have obtained a formula for the most
important geometric constant: the ratio of the circumference of a circle
to its diameter; the formula which is simply a series of reciprocals of
the consecutive odd natural numbers equipped with alternating signs.
Another formula for = built up of the consecutive odd numbers is

that due to Euler, .
2 1

: 1
FTu et

1 1+1 »
8 g Tt e
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This formula .can also be obtained in an elementary way. Of the other
formulae for the number = that are proved in analysis we mention here
the following:

Wallis’s formula

and the formula of Brouncker

52|

|2

72|
|2

+]3;—[+...

4 1 8

§ 7. Jacobi’s four-square theorem. Now we are going to prove
a theorem of Jacobi that concerns the representations of a number ag
the sum of four squares.

At first we consider the case where the natural number n ig of the
form n = 4u. Let

(31) du = g4 Y2222
be a representation of 4% as the sum of four odd squares.
It i clear, that, since z,y,z,? are odd,

(32) +y* =2u'  and 2242 = 2u",

where %’ and «'* are odd natural numbers. Tn view of (81) and (32) we
have

(33) 2 = w4’

On the other hand, if w is an odd number and 2w — a?-- b2, then
the numbers a, b are odd. The reason is that if @, b were both even, then
2w would be divisible by 4, contrary to the assumption that w is odd.

Tf one of the numbers a, b were odd, the other being even, then the num-

ber 2w would be odd, which is clearly falge.

Thus wo sce that, in order to find all the representations of the num-
ber 4u as the sum of four odd squares, it is snfficient to find all possible
representations of 2u as sums of two odd numbers u’ and w', and then
to find the representations of either of the numbers w'y u'"” a8 the sum of
two squares.

Denote by 0(4u) the number of all possible representations of the
number 4u a+ the sum of four odd squares.
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For any pair of two fixed odd numbers »' and »'* that satisfy equa-
lity (33), by (28) and the equality 7(2m) = =(m), m = 1,2, ..., which
follows from (25), the number of all corresponding representations
of the number 4% as the sum of four squares of odd numbers is

w(2u) v (2u") = 16 D' f(@) D' f(d").

arw ariu’

Hence, the total number of such representations is

oigu) =16 3 (D) - M far),

WU =2 AW ariw

(34)

where the summation in the first sum extends all over the pairs «’, u,
of natural numbers that satigfy (33). Since any divisor of an odd num-
ber is odd, by (26), we have
\ N 1
D@y =y (—1)

e &

1 3
§(d 1)

and similarly
1
% 1 7 E(d”—l)
N f@ny = 3'(~1)
@ dr

This applied to (34) gives

(35) 0 =16 (> (-;)li‘d"l)- 3.

W =2 A arwe

The product of the sums in brackets can be expressed as the sum of prod-
ucts according to the rule

P q n g

R
_S_, “mEbn = (ty+ ayt ...+ ap) (014 Dot - By) = Z E Gy
na=1 n=1 Me=al =1

Thus (35) gives

bdu) =16 ' 3

WU =2 AU

In virtue of the identity
H&—1)+3(d"—1) = Hd'—a")+d" -1

and since 4"’ as a divisor of an odd number is odd, we have

1 . 71 v
(36) . (\__1)2('1 Dby d7=1)

ar

e

S@-13 @1

(—1) = (-
Thus (36) turns into

}{\d:,_ an

1 . N‘
(37) B(du) —16 Y g9

[\

> ¥

WA =2 dT A
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For any pair of odd natural numbers %' and »' that satisty (33)
and for any pair of divisors ¢’ and d”, we denote the corresponding com-
plementary divisors by &', 6". We then have

(38) wo=d'e, w' =8,

Accordingly, by (33), we have

(39) 2u = d'6'+d'"d",

where ¢’ and ¢ as divisors of odd numbers are odd. Consequently, to

each summand of the sum (87) corresponds the unique system of four
odd natural numbers

(40) a, a, &, ¥,

which satisfy equality (39). It is clear that, conversely, since the first

two of the indices @', d'’, §’, 6" that define the summand are given and

the other two are defined by (38), the unique summand of the sum (37)

corresponds to any system of natural numbers (40) which satisfy (39).
Therefore we may write

O(du) =16 D

a8 @78 =2u

La-an

(41) (—1)
where the summation on the right-hand side extends all over the systems
(40) consisting of four odd numbers that satisfy (39).

Now we divide the summands of (41) into two classes, the first con-
sisting of the summands for which @' = d' and the second of those for
whichd = d".

Given an odd natural number d, we are going to caleculate the sum
of the summands of (41) for which @' = d"" = d. As follows from (39),
d is a divisor of the number 2« and, being odd, it must be a divisor of u.
We then have u = dd, whenece by (39)

20 = §-+0".

This shows that the number of the summands of (41) for which
d' = d'" = d is equal to the number of representations of 246 ag the sum of
two natural numbers, this being equal to J. But since any such sum-
mand is equal to 41, the sum of the summands is equal to & = u/d.

From this we infer that the sum of the summands that belong to
the firgt clags is

ﬁde = o(u).

a|u dju

The summands that belong to the second class are again divided into
two groups, the first consisting of the summands for which 4’ > d”, the
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second of those for which d’ > d'. To each summand defined by a system
of the first group corresponds the unique summand of the second group
defined by the system d’, d”, &', " and vice versa. Therefore it iy suffi-
cient to caleulate the sum of the summands that belong to the first group
and multiply it by 2.

Let

dli
(42) b= [d' d]

To any summand of the first group defined by systein (40) corres-
ponds a summand defined by the system

(43) dyy 4y, Oy, Oy
where
dy =0+ (9-F1)(8'+8"), dy= 64 +d"),
o, =d"—9(d'—d"), Oy = (9+1)(d'—d")—d".

First of all we show that system (43) defined by formulae (44) indeed
defines a summand of the first group. Since ¢ is an integer and the num-
bers of (40) are odd, the numbers 6’4 6" and d'—d'’ are even. Hence,
by (44), we see that the numbers of (43) are odd integers.

By (42), the number ¥ is non-negative since, for the summands of
the first group, @’ > d'’'. Consequently, by (44), the numbers d, and d,
are positive. Moreover, by . (42),

dl! dl!
—_— < —_
a'—d' 1<’9\dfw__du’
which, multiplied by d'—d” >0, gives
d/l__('di dl/) < ﬁ(‘dl dll < d!/.
This, by (44), shows that é, = 0 and J,> 0. But the number §,, being
odd, cannot be equal to zero, consequently 6, > 0.

Thus we see that the four numbers of (43) are odd and positive.
Further, by (44), we find

(44)

(45) dy—dy = 6"+ 3"
This shows that d, > d,. Moreover,
(46) bt 8y = d'—d",

whence, by (45) and the identity

d1 61"’ dz 0y = d1(51+ 62) - (dl - dz) 62:
weé obtain

Ay 01+ dsdy = dy (@' —d")— (8 +58") 8,

we obtain
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Hence, in virtue of (44), we have
Oy dydy = &' (d'— ')+ (8 + 8")d"",

which, by (39), gives
dy 01+ dy by = 2u.

From this we conclude that system (43) indeed defines a sunmand of
the first group.

System (43) is different from system (40). This is because of the
fact that, if the two systems were identical, then Dy (43) we would have
d'—d" = §'+ 48", whence, by (39)

Qu = (d'—d") ' + (8" 8")d" = (6'+6")(6'+d")
and g0, since the numbers 8’4 and ¢'-+d'’ are even, 2w would be
divisible by 4, contrary to the assumption that « is odd.

To find the numbers (40) we solve the equations (44), whence, by
(45 and (46) we obtain

=@y — (9+1)(d;—dy) = dy—F(dy—ds), A" = 6;-+F(0;4 0y).
Hence, by (45) and (46),
8" = dy—dy— 6" == (1) (dy—dp) — dy,
@' =8+ 06y+d" = 8+ (9+1)(8,+ 85)
In virtue of formulae (44) and (42) we obtain
d é &'+ 8" &
@ = [dl—fdz] =[ e )] :[6'+ 5 M] =

because & is an integer and &'/(d'-+ §') is a proper fraction. Thus, finally,

A" = 0+ (D +1)(01+ 80);, 47 = 6;+D.(8;+ ),
8" = dy— (@1 —da), 8" = (Oy+1) (dy— ) — .

Comparing formulae (47) and (48) with formulae (42) and (44) we come
to the conclugion that systems (43) and (40) correspond to each other
with respect to the correspondence defined above. In other words, the
correspondence we have defined orders the summands of the first group in
pairs in such a way that each pair consists of two summands, one defined
by system (40) and the other by (43), linked together by formulae (44).

. Let us caleulate the sum of the summands that belong to the same
pair, i.e. the rum

(49) (—1)F= I (1),
where d',d"”,d,; and d, are linked together by formulae (44).

(48)
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In virtue of (39) and (45) we have 2u = (d'—d")dé'+ (d,—dy)d"’,
and so

a—d"

2

g —d ‘
PR Y T

Hence, since the numbers 6’,d’’ and % ave odd,

d—d"  di—dy
5 +-—5—~:,~_1(m0d2).

This proves that sum (49) is equal to zero. In other words, this means
that the summands that belong to the same pair cancel each other.
Thus the sum of the summands of the first group, and consequently
the total sum of the summands of the second class in the first partition
into two classes is zero. As we have already proved, the sum of the sum-
mands of the first elass is equal to o(u); therefore, by (41), we obtain
THEOREM 10. If 4 is an odd natural number, then

0(4u) = 160 (u).

This theorem wag first formulated (in a slightly different way) and
proved by Jacobi [1]. The proof we have presented here, simpler than
the original one of Jacobi, is due to Dirichlet [1] (ef. also Bachmann
[2], pp. 349-354).

Now let

(50) v =&+ 09

be a representation of an odd natural number « as the sum of four squares
and let

o =§+nti4+d, Yy = Ehn—{-9,
¥ =f—g+l—F, V =E&—n—C(+9D.

Since, clearly, w? = w(mod 2) for any integer w, by (50), 2’ = % (mod2),
which in view of the fact that « is odd proves that ' iy odd. Further,
since formulae (50) imply that

Y =0'—3(E+0), # =a'—20n+9), 1 =a'—2(n+0),

all the four numbers %', y', 2, ¥ are odd. In virtue of (50) and (51)
we can eagsily verify that

o'yt = du..

(51)

Therefore the system
(52) ',y 2, v

defined by (50) gives a representation of the number 4% as the sum of
four odd squares. ‘

tcm
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On the other hand, let

L@ = —Eh gt LY,

= {949,

Here also the numbers
(54)

are all odd and, again,

Y= E— LD,

(53)
o=+ I—9.

.'I;'”, :’Irl’ zu’ I

(T;"2+:l[”5+z“2+t”2 = 4.

It can be verified that systems (52) and (54) are different. This is
because, by (61) and (53), we find

(B5) @'y et =4E, @byt = 2640+ L4D)

and so, since &+ n-+C+9 is odd, the sum of the numbers (52) is divis-
ible by 4 while the sum of the numbers (54) is not.

In virbue of (51) and (53) to any representation of an odd number
w a8 the sum of four squares . correspond two different representations
of the number 4% as the sum of four odd squares.

'We now prove that any representation (31) of the number 4w as
the sum of four odd squares corresponds the unique representation of
the number % as the sum of four squares.

In fact, the number

s =w-+y-+z-+t,

being the sum of four odd numbers. of (31), is even. We consider two
cases: ‘ .

(i) s = 0(mod4). Formulae (53) imply (55), consequently there
are no integers &, 7, {, ¥ which satisfy (50) and are such that num-
bers o', y",#" " defined by them are equal to &, ¥, 2, ?, Tespectively;
this is because the existence of such integers would imply that s is divis-
ible by 4, contrary to the assumption. On the other hand, there exists
precigely one system of integers & 7, £, ¥ which satisfy (50) and for
which ‘ .

@ = ft+nt+i4+0, y=E&tn—0—0,
2 = f—qt =9, & =E—n+l—1F

because the validity of (56) implies the validity of

(56)

s+ytedt £ oty—s—t
. 4 - ) 4 =,
(87) \
x-~y+2—1t ¢ @—y—2+t 9
) 4 - 2 4: - 7
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and this proves that the system z,y,#, ¢ corresponds to at most one
system £, 9, {, ¢ for which formulae (57) hold. If we calculate the num-
bers &, 5, ¢, ¢ from formulae (57), we see that, in the case under con-
sideration, the numbers obtained are integers which satisfy (56) and, by
(31), they must satisfy (50), which proves that the system 0,9,1%, 2 cor-
responds to at least one such system.
Thus in case (i) there is a one-to-one correspondence between repre-
sentations (31) and representations (50) of # as sums of four squares.
(ii) s == 2(mod4). In this ecase, since formulae (61) imply formulae
(55), there are no integers &, 5, ¢, #for which formulae (61) give a system

! 1
v =5, ¥y =y =z =1,

because Aotherwise, the sum s would be divisible by 4, contrary to the
agsumption. On the other hand, there exists a unique gystem of inte-
gers £, g, {, ¢ which satisfy (50) and are such that formula

¥ = —f+qg+i+d, y=E—nti+09,
= Sbg—l{4d, = Etntl—9
is valid because the validity of (58) imply the validity of

(58)

—s+y+ett B—y -zt
T T% T T
(59)
s+y—ebt ¢ s+y+e—1t
i Ty Tt

This proves that the system %,Y, %, corresponds to at most one system
&, m, £, ¢ for which formulae (59) hold. If the numbers &, 5, ¢ , 9
are caleulated from formulae (59), we see that, in the case under con-
sideration, they must be integers which satisfy (58). By (31), (58) implies
Tiha.t tg tz};e system. w, y, 2, t corresponds at least ome such system
Sy My &y V. :

Therefore, in case (ii), there is a one-to-one corregpondence between
representations (31) and representations (50) of the number % as sums
of four squares.

II} virtue of what we have proved above, the nurber of the repre-
sentations of 4u as the sum of four odd squares is twice as large as the
number z,(u) of representations of the (odd) number % as the sum of
four squares.

Hence, by theorem 10, we obtain the validity of the formulae
(60) 7 (%) = 8o (u)

for any odd natural number %. Thus we have
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TuEOREM 11. The number of representations of an odd number as
the sum of four squares is equal to the sum of its divisors multiplied by 8.

Since the number of divisors of an odd number > 1 is at least 4, by
theorem 11 we see that any odd natural number >1 has at least 32
representations as the sum of four squares. Since any odd square has
precisely 8 representations as the sum of four squares three of which
are equal to zero, we conclude that any odd square greater than 1 is
a sum of four squares at least, two of them different from zero. Hence,
by Lagrange’s theorem, the following corollary is obtained

COROLLARY. Any natural number greater than 1 is a sum of four
squares at least two of which are different from zero.

Now, we are going to calculate the number of representations of
the number 4% (where % is odd) as the sum of four squares.

Let

{61) du = g4y 2242

be such a representation.
If one of the numbers =, v, 2, ¢ were even, the remaining ones being
odd, or if one were odd, the remaining ones being even, then the sum of

' the squares of those numbers would be odd, contrary to (61).

It two of the numbers », ¥, 2, ¢ were even, the other two being odd,
then the sum of their squares would be of the form 4%k--2, contrary to
formula (61).

Consequently, the numbers , ¥, 2; ¢ must be all odd or all even.

The case where @, ¥, 2, t are odd is fully described by theorem 10,
which gives the number of representations of 4% as the sum of four odd
squares. Thus it remains to calculate the number of representations of
the number 4u as the sum of four even squares.

It is easy to see that to any such representation

du = (2£)*+ (29)*+ (20)2+ (29)*
corregponds a representation of # as the sum of four squares, namely
= £ 9P (2498

and wvice versa. From this we infer that the number of representations
of 4u as the sum of four even squares is equal to the number of repre-
sentations of the number » as the sum of four squares, this, by (60) being
equal to 8c(u). Consequently, the total number of representations of
the number 4y (where « is odd) as the sum of four squares is

160 (u)+ 80 (u) = 240(u).
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Hence
(62) 7,(4u) = 240(w)

for any odd w.
Finally we calculate the number of representations of the num-
ber 2u as the sum of four squares. We shall prove that

(63) 74 (2u) = 7, (4u).

In fact, if (61) is a representation of the number 4w (where u is odd)
as the sum of four squares, then, as we have already learned, the num-
bers @, y, 2, ¢ are either all even or all odd. In any case

@y _a—y _ g+t 2—t

64 e = .
(64) 3 5 0 5 5 5

are integers. We rewrite formula (61) in the form

I
o = |-l g —_—
" ( s )t ) i) i)
whence the representation

(65) Zu = E2-f -390

is obtained.

Thus to any representation (61) of the number 4u as the sum of
four syuares corresponds a representation (65) of the number 2 as the
sum of four squares. On the other hand, it is clear that to any represen-
tation (65) of the number 2u as the sum of four squares corresponds
precisely one representation (61) of the number 4w as the sum of four
squares. The proof easily follows from the fact that, under the assumption
that a representation (65) corresponds to a representation (61) with respect
to the correspondence defined above, formulae (64) hold. So we obtain

ftn=a, (—q=y, (+d=2, (—0=1,

and this defines uniquely the representation (64). Thus a one-to-one
correspondence between the representations of the number 4u as the
sum of four squares and the representations of the number 2u as the

sum of four squares is defined. Formula (63) is thus proved. Hence, by
(62), we obtain

(66) 74 (2u) = 240 (u)
for any odd wu.

Our present aim i to calculate the number of the representations
of the number 2"y (h = 3 »4, .5 w is odd) as the sum of four squares.
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(67) 2 = oyttt
be such a representation. The numbers x, y, 2, ¢ cannot all be even
because, if they were, the right-hand side of (67) would be eongruen?; tf’
4(mod 8), while (since h > 3) the left-hand side is divisible by 8. Simi-
larly, if two of the numbers were even, the other two being odd, thgn th'c
rigﬁt-hana gide of (67) would be congruent to 2(mod4), which is
inipossible. From. this we easily infer that all the numbers z, y, =, ¢
must be even.
Let
v == 2&, Yy = 27, 2 = 2¢, t =29,
where &, n, £, @ are integers. In virtue of (67) we have
(68) M2y = ER g 22,
Thus we see that to any representation (67) of the number 2Mu as the 21_112[11
of four squares corresponds a representation (68) o.f the number 2*
as the sum of four squares. On the other hand, it is clear that to any
representation (68) of 9"y precisely one representation of the number
oty corresponds, namely the representation
oMy = (28)2+ (2n)2 4 (20)2+ (29)%.
Hence
(69) 7, (2Mu) = 7, (2" )

for any b >3 and any odd natural number u. ’ .
” N?)rw, iat s be any natural number and u an odd natural mpnbel.
T s =1 or § = 2, then by (66) or by (62) respectively we obtain

(70) 7, (2%u) = 240 (u).

If s> 2, we congider two cases.
(i) § == 2%. Then, by (69), we may write

which, for thiy case, proves (70).
(i) s = 2k-+1. By (69) we have
7(2') = 7, (2% ) = 7, (2% M) = ... = 7,(2%) = 7,(2%),
whence, by (66), formula (70) follows.

Thug we see that formula (70) is true for any natural number s and
any odd natural number .
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Formulae (60) and (70) can be formulated in one theorem. Accord-
ingly we suppose that = is an arbitrary natural number, and by ¢* (m)
we denote the sum of divisors of the natural number » which are not
divisible by 4.

If » = u is odd, then none of the divisors of  ig divisible by 4, so

(71) o*(n) = o(n).

It n is even, we put # = 2°, where s is a natural number and »
is an odd natural number. It is clear that any divisor of the number 2%
which is not divisible by 4 is a divisor of the number 2u and, conversely,
any divisor of the number 2u is a divisor of the number 2% which i not
divigible by 4.

Consequently

o*(n) = o*(2%) = o (2u),
whence, since (2, %) = 1 implies
0(2u) = ¢(2)o(u) = 30(u),
we have
(72) o*(n) = 30(u).

Formulae (71) and (72) combined with formulae (60) and (70) prove the
validity of

(13) 7a(n) = 86"(n)

for any natural number n. Thus we have shown the following

TeeoREM 12. The number of representations of a natural number n
as the sum of four squares is equal to the sum of divisors which are not di-
visible by 4 of n multiplied by 8.

Since any natural number has at leash one divisor which is not divis-
ible by 4 (e.g. the number 1), then as an immediate consequence of
theorem 12 we obtain the theorem stating that any natural number
is a sum of four squares. This theorem was proved in Chapter XI in
a different way.

An extensive list of references concerning the number of represen-
tations of number as the sum of any number of squares is given by R.
A. Rankin [1].

EXAMPLES. In virtue of (70) we have

5 -1
5—1

74(100) = 240(25) = 24

'

= 24.31 = 744.

8o the number 100 has 744 representations as the sum of four squares.

¢
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Similarly
P—-1 521

——— = 24:13+6 = 1872.
3—1 5—1

74(90) = 240 (45) = 24

This is the greatest number of representations as the sum of four squares for a num-

ber < 100. )
In the same way we obtain

74(6) = 240(3) = 24-4 = 96,
74(1024) = 74(219) = 240(l) = 24.

74(7) == 80(7) = 8-8 = 64,
74(96) = 240(3) = 24-4 = 96,
In virtue of (73) we easgily obtain
[

&

a(n) = 88(x)— 328 (zi)

b

L Ma=]

i

fvhere .
[zi x 1 ‘[)ﬂ @ @ +1
(@) = ’;lk[‘];] = 2 [—k_] )

From this we can easily deduce the inequality

= i Ve
— —| < 1002V2,
7T>'/1 T4 (n) ) )

valid for any integer z and obtain the formula of Euler
n? 1 1 1

1
T twtEte

in a purely arithmetical way.
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