Chapter XI1I

SOME PROBLEMS OF THE ADDITIVE THEORY OF NUMBERS

§ 1. Partitio numerorum. Leibniz and Bernoulli and later on Euler
were the first to consider the problem of establishing the number g, of
all possible representations of an arbitrary natural number n as the
sum of non-inereasing natural numbers. This problem is known wunder
the name partitio numerorum.

Here are the initial ten values of the function g,: ¢, =1, g, =2,
95 =3, s =058, gs =17, gs =11, g; =15, gy = 22, g, = 30, g0 = 42.

Mac Mahon has found that ¢;4=1905692292 and ¢,,= 3972999029388

It can be proved that the numbers g, are the coefficients of the ex-
pansion into a power series of the function

o 1 o N ‘
”i_mn-—l—l—Zg,,m for |@} < 1.

N=1 . M=l

Let h, be the number of different representations of a number »
as the sum of increasing natural numbers. It is easy to prove that, for
lo] <1,

[]a+a" =1+ 3 ha".

=1 =1

The numbers g, (n =1,2,...) satisfy the inductive identity
Mo = o(n)+gro(n—1)+ga0(n—2)4 ...+ gy_10(1),

which may serve as a rule for finding g,’s (cf. Vahlen [1]).

Here are the initial ten values of the function h,: hy =1, hy ='1,
hg=2, hy=2, hy =23, hy=4, by =25, hy =6, hy =8, hy =10.

Denote by %, the number of all possible decompositions of a natural
number # into the sum of natural numbers, where two decompositions
are. considered as different also if they differ only in the order of the
summands.

Eagy induction shows that

by =2"" for any n =1,2,...
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Thus, in particular, the number 4 has eight ditferent decompositions
into the sum of natural numbers:

4341 =148 =242 =24141 =14+241 = 14142
= 1414141,

Tinally, let 1, denote the number of all possible decompositions of
a natural number # into the sum of non-decreasing odd natural numbers,
Then, for |»| <1, we have

o0 1 (-
(151 o
W]

=l

It is worth-while to mention that it can be proved that the-equality
l, = h, holds for any n =1,2,...

Let ¢, be the function which assigns to a natural number = the
number of partitions of the set of n elements into non-void disjoint sub-
set, two partitions that differ only in the order of the parts being regarded
ag identical.

The initial values of this function ave ¢, =1, g, = 2, ¢, =5, ¢, = 15,
g5 = 52.

We have the following inductive formula for ¢, (Ove [1]):

aw

Tni1 = 1“]“ Z (Z,) k.

Jeeal

We also have (Birkhoff [1], p. 17, and Williams [1])
(a[’n"‘l = E(]nmn/7lf .

The number of different representations of an integer as the sum
reduced with regpect to the modulus m of the numbers of the sequence
1,2,...,m—1 hag algo been considered. M. A. Stern [1] has proved that,
if p is an odd prime, then any residue to p hag precisely (277'—1)/p such
representations, where the summands are 1,2,...,p-1.

For example, if p =5,

0emldd =213 =1+24344(mod5),
Lemloes 244 = 1424 3(modb),
Qe 2 zm 844 == 1424 (modb),

Elementary theory of numbers : 2%
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§ 2. Representations as sums of n non-negative summands. We
now prove that if » and & are two given natural numbers, then the number
F, of all possible representations of the number & as the sum of # non-
negative integers, where two representations that differ in the order of

the summands are also regarded as different, i3 ("+77; _1)

In fact, we have Fy; =1 = (:) Suppose that for a natural num-

ber # the formula F,; = (”"'"77:_1) is valid for any k=1,2,... Then

it is eagy to see that
Fn-(-l,k = Fn,k‘l‘Fn,k_1+Fn,k-z+ vee ‘|‘Fn,1+ 1

_ [a+E—1 nt+k—2 nt+k—3 n
= (R () o ()
For any two natural numbers » and % the identity
w4k _ (k-1 n+k—1
()= )+ ()
holds. This implies that
n4+k\ _ [n4+k—1 n+l—2 n n
(5) = () (7)o () )

Consequently,

. T
Foprp = (n-]}a- c) ;

which shows that the formula F,; = (n+,': _1) for k=1,2,... is true

for any n.

Another proof of the same formula is this. To each decomposition
k = a,+ ay+ ...+ o, of a nataral number % into the sum of » non-nega-
give integers we relate the sequence of the numbers I; = a;+ ey+... -+ a; 4
+i, where ¢ =1, 2, ...,n—1L. It is clear that this sequence consists of in-
creasing natural numbers each of which is < #n--%—1. As is known the

number of such sequences is equal to (“:i;l) = (”“"77;"1 .

T. Skolem [3] has discussed the problem which are the natural
numbers # such that the set of the numbers 1, 2,..., 2n can be divided
into # pairs (a; by) (¢ =1,2,...,n) in such a way that b;—a; = ¢ for
any 4 =1,2,...,n.

If a number n has this property, then

Zbi — Z“i =142-+...+n = n(nt1)/2.
4=l 4=l

But, since the numbers a@,, by, @s, by, ..., @y, b, are equal to the num-
n n

bers 1,2,...,2n in a certain order, we see that > a;-+ > b= 1+
i=1

T=1
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n
+24...+20 = n(2n-+1). Hence ¢Zbi =3n(5n+3), which is easily
=1

proved not to be an integer provided  is congruent to 2 or 3 (mod4).
Conversely, as proved by T. Skolem in the paper referred to above (cf.
O’Keefe [1]), if » is congruent to 0 or to 1(mod4), then the partition
in question is always possible. For example, if » = 4, then the pairs
of the partition are (6, 7), (1,38), (2,5), (4,8); if n =5, the pairs of
the partition are (2,3), (6,8), (7,10), (1,5), (4,9).

§ 3. Magic squares. A square array of the integers 1,2, .., n? such
that the sums of the numbers in each row, each column and eachdiagonal
are the same is called a magic square of degree n. It is easy to caleulate
that the common value of all these sums is }#(n%--1). The case of n =1
ig trivial. For n = 2 it is easy to prove that no magic square exists. For
n = 3 an example of a magic square is

8 1 6
3 b 7
4 9 2

If n = 4, examples of magic squares are the following:

16 3 2 |13 10 5 | 11 8 115 | 10 8
b |10 | 11 8 3 {16 2113 14 4 5 | 11
9 6 712 6 9 712 7 9 | 16 2

4 | 15 | 14 1 15 4 | 14 1 12 6 3 1138

14 8 1|11 10 3|16 15 4 9 6

(=18
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Here are the examples for n=15,6,7] | | (T ]

1] 36 4 | 33 | 32 6

’17 24 1 8 | 15 w;.”) w 11 S)m 23 8 30
23 b T 14 |16 24‘ "J:l‘ :8 | J 6 | 17 2‘.’:—
4 6|18 | 20 | 22 —1;; 23 711; V 21 2() 15 A

10 {12 |19 | 21 3 1_1A 21) BTW- 1() | 2‘; 7
11 8 { 25 2 ’ 9 | ‘ I—';I} 2 ” ."541. | 3 | 7) ‘ -‘3]

30 | 39 | 48 1] 10

38 | 47 7 9] 18 | 27 | 29

46 6 8 | 17 | 26 | 35 | 37

34 | 36 | 40

13 | 15 | 24 | 33 | 42 | 44 4

21 | 23 | 32 | 41 | 43 3| 12

22 | 31 | 40 | 49 2011 20

. There exists precisely one magic square for # = 3, provided we iden-
tify the magic squares obtained from a given one by rotation or reflexion.
According to Frenicle, however, there exist 880 magic squaves for n = 4
and gm}):d-ing to 1\({;21.0 Mahon there are gome 60000 magic squares fmi
% =b. It i3 proved that there exi i 1 of
T B }}) Ay e exist magic squares for any n > 3 (df.

'I"he proof of the existence of magic squares for an arbitrarily large
n which we are going to present here is due to A. Makowski. First we
s%mw how, having two magie squares @y, and @, of degree n and m Tespec-
t%vely, Wwe can obtain a magic square Q,,, of degree nm. This can be done
simply by substituting the square @, for each number 4 of the square Q,,
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provided the number #*(i—1) is added to each number of the square
Q. It is easy to see that the square thus obtained is indeed a magic
square of degree mn, the sums of the numbers of each column, each row
and each diagonal of the square @, being equal to mn(n*+1)+
4 Endm(m?—1).

This provides a method of constructing magic squares of degree
8% k== 1,2,..., from the magic square of degree 3.

A magic square of an odd degree is called perfect if the
sum of any two numbers of the square that are in symmetric
positions with respect to the number in the middle of the
square iy eqnal to double the number in the middle. Any magic
square of degree 3 is perfect (the number in the middle being
equal to B5). However, there are magic squares of degree five that
are not perfect (for example, such iz the magic square of degree
5 due to Stiffel and presented below). Here is an example of a perfect
magie square of degree 5. :

11 4 117 110 | 23

-1
Lo
<t
-
=
-t

3 | 16 9|22 |16

The magic square of degree seven presented above is perfect.
There exist magic squares that consist of different n® integers bub
not necessarily of the integers 1,2,...,#n% For example,

e e e : ‘
18 2 ] 13 43 1] 67 | 117 13 2 8
|

1 9| 16 | 14

61 | 37 | 13
9 120 § 778 |31 18 | 12 3 7
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Another more general example is this:

§s—38( 1 |s—6{ 8

§—T71 9 ls—4| 2

where ¢ > 18.

Magic squares (in the wider sense) have been found consisting of dif-
ferent prime numbers. For example,

569 | 09 | 449 17 1317 | 397 | 67
239 | 359 | 479 307 | 157 | 107 | 227
269 | 659 | 149 127 | 277 | 287 | 137

347 | 47| 37 | 367

(cf. Moessner [2] and [3]).

As has been noticed by A. Makowski, if the terms of the arithmeti-
cal progression a-+b, 2a44-b, ..., n?a+b are prime numbers, then re-
placing the number ¢ by the number ia--b in a magic square consisting
of the numbers 1, 2, ..., n* we obtain a magic square (in, the wider gensge)
that consists of prime numbers.

As we have already learned, conjecture implies the existence of
numbers @ such that any of the numbers x-1, 2041, ..., w21 is
prime. Therefore conjecture implies the existence of magic squares of
degree n for any m > 2 consisting of prime numbers.

A. Moessner has constructed a magic square of degree 8 that con-
sists of triangular numbers %, ...,%;. The square is such that the sum of
the numbers in each row, each column and each diagonal is the trian-
gular number ¢,,,. (Of. Moessner [11.)

A magic square (in the wider sense) is called almost magic if it is
formed of the numbers s, s--1, ..., s+n2. Tt is clear that such a square
will become a magic square (in the narrower senge) if from any of its num-
bers the number s—1 is subtracted. As announced by L. Bieberbach
[1], in the year 1544 Michael Stieffel considered almost magic squares

§ 3. Magic squares 407

which after removing the first and the last row and the first and the last
column remain almost magic squares. It can be proved that there exist
guch squares with an arbitrary > 4 number of rows.

Here is an example of such a square dne to Stieffel

b 6 | 23 24 7

22 1 12 | 17 | 10 4

18 | 11 | 13 | 1B 8

1| 16 9 | 14 | 25

19 | 20 3 221i

This iy a magic square (in the narrower sense) formed of the gumbers
1,2,...,25. After removing the first and the last row and the first and
the lagt column of the square we obtain an almost magic square formed
of the numbers 9,10,...,17.

The squares formed of natural numbers such that the products of
the numbers of each row, each column and each diagonal are the same
have also be considered. Such are for instance the squares (cf. Good-
stein [1]) '

i !
2 | 256 8 6 | 36 8 24 | 81 ) 24
64 16 & 16 | 12 9 36 | 36 | 36
32 1128 18 4 1 2 54 | 16 | dd

The bibliography concerning magie squares up fo the beginning of
the 20th century is to be found in P. ;Bachmaa.m [11. Many _methods
of constructions of magic squares are presented in Postnikov [1].

§ 4. Schur’s theorem and its corollaries.

LeMMA. If & is o notural number, N = [ekl], if Uy <y <l < ...
veo < @y 48 @ sequence of integers and if the set of the differences a;—ay,
where 0 < i < j <N, s divided into & disjoint classes, then at least one
of the classes contains the differonces @p—thy Gn— 81y Gp— O for some
1, m,n such that 0 <I<m <n<N.
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Proof. Suppose to the contrary that for a natural number % the
lemma is false. Let K, denote the class that contains the maximal pos-
sible number of differences of the form a;—ay, where 0 < j < N, and
let a;—ag, @, @, ..., Gy, —a, e the members of the class K, ox-
dered according to their magnitude. We then have N <k, %.

By assumption, the k,—1 differences

(l) (ng"‘ ajl, gy =~ (ijﬂ ceey a)‘];;l""' a;

1

do not belong to the class K;. Consequently, they must belong to the
remaining k,—1 classes. Let K, denote the one that contains the maxi-
mal number k, of the differences of (1). Suppose that K, containg the
differences

(2) P U

where a<f<ty<... It is clear that k,—1 < ky(k—1).
It the first number of (2) is subtracted from any of the remaining
ky—1 numbers, then we obtain the differences

(3) Qg Agys G, =y eey

which can belong neither to the class K, nor to the class I¢,. Congequently,
they mmst belong to the remaining k—2 classes. Let K, denote the clags
that containg the maximal number %, of the numbers of (3). We then
have ky—1 <Cky(k—2). Continuing in this way we ultimately obtain
& sequence of natural numbers ki, ks, ..., k,, where s <% and

(4) k=1 <k (k—d)  for 4=1,2,.., 51,

with ks = 1, sinee, if k, > 1, the procedure described above applied once
more would produce the number kgp1. By (4), we infer that
ki < 7""H~1 . 1
(k=) = (h—i—1) i’

t=1,2,...,8—1,

whence, adding the inequalites, we obtain

by o1 1 1 1
= = G T T e <
Hence N <,k < ek!—1, contrary to the definition of ¥. The lemma
is thus proved. )

TreorEM 1 (L»ScHUR (1). Suppose that for o naturdl number & the

numbers 1,2, ..., [ek!] are divided into & classes. Then at ledst oné of the
classes comtains two numbers of the sequence and their difference.

+ (1) Schur [1], ef. also Bachmann [31,
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Proof. If we set a; == 4, 4 =1,2, ..., [ek!], in the lemma and note
that among the numbers 1,2,...,[ek!] all the differences a;— a; with 0
<1 <] < [ek!] appear and, moreover, a,—a,, = (@ — ;) — (@, — ay),
theorem 1 follows at once.

In connection with theorem 1 one may ask the following question.
Given a natural number %, which is the least number N = N (k) which
has the same property as the number [ek!], i.e. is such that, if the set
of the numbers 1,2,..., ¥ is divided into % classes, then at least one
of the classes containg two numbers of the set 1, 2, ..., N together with
their difference. Theorem 1 states that N (k) < [ek!]. Therefore N (1) < 2,
N(2) < 5, N(3) < 16. On the other hand, clearly, N(1) ¢ 1,80 N (1) = 2.
Since the numbers 1, 2, 3, 4 can be divided into two classes, 1, 4 and 2, 3,
neither of which containg two numbers together with their difference,
we see that N(2)>4; so since N(2) <5, we have N(2) =5. As proved
by I. Schur, N(k--1) > 3N(k)—1 (cf. exercise 1, helow). Hence
N (k) = (8%+1)/2, the equality being possible only in the case of k = 1, 2, 3.

TOBOREM 2. Let 0 < ay < 0y <...< ay be a sequence of integers
with N == [ek!]. If the sequence contains mo arithmetical progression of at
least three terms, then any partition of the set 1,2, ..., ay into k classes has
the following property: at least one of the olasses confains two different
numbers and their sum.

The proof ig easily deduced from the lemma and from the following
three obvious remarks:

1) among the numbers 1,2,..
0 <{i<j< N are contained,

2) ot = (O~ Q)+ (G — ),

3) @y @y, F G0z, Since the numbers a;, G,, @, are not in an
arithmetical progression. : :

o ay all the differences a;—a; with

COROLLARY 1. If k 8 a natural number, n = 21, and theset 1,2, ..., n
48 divided into % classes, then at least one of the classes contains two different
numbers and their sum.

To prove the corollary it is sufficient to set a; == 2”:, i=0,1,2,...,
[ek!] in theorem 2 and to note that the sequence 2° (i=0,1,2,...)
does not contain any arithmetical progression that has three terms.

Ag an immediate consequence of corollary 1 we have

COROLLARY 2. If the set of all natural numbers is divided into fini-
tely many classes, then at least onc of the classes contains two different
natural numbers and their sum (cf. Rado [1]).

In connection with theorem 2 the following question arises. Given
a natural number %, which is the least natural number n = n(k) with
the following property: if the numbers 1,2,...,n are divided into k
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classes, then at least one clags containg two different numbers together
with their sum.

Clearly, we have n(l) = 3. It can be proved that n(2) = 9. The
inequality #(2) > 9 follows from the fact that the set of the numbers
1,2,...,8 can Dbe divided into the classes A4 = {1,2,4,8} and B
= {3,5,6, 7} such that neither of them contains the sum of any two
numbers contained in it. Consequently, in order to prove that indeed
n(2) =9, it is sufficient to prove that if the set of the numbers 1,2,...,9
is divided into two classes, then at least one of them is such that it con-
tainy two different numbers and their sum. The proof of this fact is pre-
sented in detail in my book in Polish (Sierpifiski [25], pp. 427-428).

Ag regards the number n(3), we mention here a remark due to
T. Kaczmarczyk, namely that n(3) > 24. The argument follows from
the fact that the natural numbers 1,2, ..., 28 can be divided into three
classes 4, B, € such that none of the classes contains the sum of any two
elements contained in it. In fact, we set A = {1, 2, 4, 8, 11, 22}, B
=13, 5 6, 7, 19, 21, 23}, O = {9, 10, 12, 13, 14, 15, 16, 17, 18, 20}.
On the other hand G. W. Walker [1] has announced (without a proof)
that #(3) =24, n(4) =67, n(8) = 197. He also formulated the in-
equality 2n(k) < n(k+-1) <3n(k) for any k =1,2,...

Another problem connected with this topic is this: Given a natural
number N, which is the maximal number 7 = »(N) such that there exists
3 sequence dy, d,, ..., a, congisting of the natural numbers < ¥ and
containing no arithmetical progression that has three terms. (The sequence
Qyy 8y, ...y 0, 18 called A-sequence belonging to N.) It is easy to prove
that r(1) =1, 7(2) = r(3) =2, r(4) = 3, #(5) = (6) = r(7) = 4. P. Br-
d6s and P. Turdn [1] have proved that »(8) =4, r(9) = r(10) = 5,
r(11) =7(12) = 6, r(13) =7, r(14) = 7(18) = 7(16) = r(17) = r(18) =
=7(19) =8, r(21) =r(22) =r(23) =9 (*) and quoted the conjecture
of G. Szekeres that the equality r(%(3"+ 1)) = 2* holds for any k=0,1,
2, ... The conjecture, however, turned out to be false; as is shown by
F. Behrend [1], r(N) > Ni-ovios¥, where o is a constant (cf. Salem
and Speneer- [1], [2]; Moser [3]).

On the other hand, K. F. Roth [1] has proved. that

(n)

— (N
lim —~loglog n > oo.
nesoo W

EXERCISES. 1. Prove the theorem of I. Schur stating that N (k- 1) » 3N (k) —1.

Proof. It follows from the definition of N (k) that the set of the numbers
1,2,..., N{k)—1 can be divided into % classes in such a way that none of the classes

(1) P. Erdés and P. Turén have stated that r(20) = 8 this, however, is not
true, because, as shown by A..Makowski [2], 7(20) = 9. .
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containg the difference of any two numbers contained in it. Let K; = {m,(®, my®,
o w) (= 1,2, .., K). Let

Ly = 3uN-- 1, 300~ 1, 3afd, ..., 3m§;>, 1, 3mg;>}, i=1,2,...,k,
Lpgr = {1, 4, 7, ..., 3N(k)—2}.
It is easy to verify that none of the classes L; (¢ = 1,2,...,k-41) contains the
difference of any two numbers contained in it and all the classes Iy (1 = 1, 2, ..., k1)

together contain all the natural numbers 1, 2,...,3N (k)— 2. It follows from the
definition of N (h--1) that N (k1) > 3N (k)—2, whence N(&-1) > 3N (k)—1.

2. Prove that n(k--1) > 2n(k)--1.

Proof. It follows from the definition of n (%) that the numbers 1,2, ..., n(k)—1
can be divided into % classes in such a way that none of them contains the sum of
any two numbers contained in it. To this classes we add another class consisting of
the numbers = (k), n{k)+1, n(k)+2, ..., 2n(k). Thus we obtain a partition of the
get of the numbers 1, 2, ..., 2n(k) into k-+1 classes which has an analogous prop-
erty. It follows from the definition of the number « (k- 1) that n(k+1) > 2n (k)4 1.

Remark. A. Makowski [3] has proved a stronger ineguality, namely n (k4 1)
> 2n(k)+3k(b-4-1)+1.

8. Prove that r(m-+n) < r(m)+r(n) (Erdés and Turin).

The proof follows from the remark that, if a; <ay <...<ar is an A-ge-
quence that belongs to the number N, then a;—%, ..., a—k is also an A-sequence
of N for any k < a3.

4. Prove that »(2n) < n for # » 8 (Erdiés and Turdn).

This is proved by induction on % and it follows from the formulae »(2-8) =8,
7(2:9) < 9, 7(2:10) <10, #(2-11) < 11 and from the implication: if »(2n) < n, then
(2(n+4)) = r(2n-+8) < r(2n)4-7(8) < n-+4.

5. Prove that if » » m, then »(2n--m—1) > v(m)+r(n) (A. Schinzel).

This follows from the fact that if a1 < ag... < arm) is an 4-sequence that be-
longs to n and by < by < ... < brm) is an A-sequence that belongs to m, then, for
nEm, 4 <oy << opmy < 2(11«(7;)-]—51-—- 1 < 20pmy+ba—1 <. < 2ar(n) -+ br(m)
—1 is an A-sequence of the number 2n-+m— 1 that consists of »(n)+7(m) terms.

6. Prove that (}(3%-+1)) > 2* (Erdés and Turén).

The proof is by induction and it follows from the formula r(}(3°+1)) = (1)
= 1 = 20 and from the fact that if »(§(8%+1)) » 2%, then, by exercise 5,

PHEFHL L)) (2G4 1) F §EF A1) — 1) 3 r(FEF D) £ rEEEH 1) > 2P

7. Prove that »(51) 3 17. .

The proof follows immediately from the fact (noticed by 8. Maslowski) that
the sequence 1, 2, 5, 6, 12, 14, 15, 17, 21, 35, 38, 30, 42, 44, 47, 48, 51 does
not contain any three numbers in an arithmetical progression. .~

M. Hall hag solved the following problem: does there exist
2 set Z of different natural numbers such that any natural number is
the difference of precisely one pair of numbers of the set Z. We are going
to construet an infinite sequence of natural numbers that form a set Z
which has the required property (of. Browkin [2]).
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Let a, = 1, 6, = 2. Further, let » denote a natural number and sup-
pose that the numbers a,, ay, ..., @, With a;, < ay < ... ay, arc already
defined. We set @y y = 2604,.

Now let 7, be the least natural number which cannot be represen-
ted in the form a;—a; with 1 << i < j < 2n-41. We define ay, ., 88 tgy, -+
—+7,. We see that the sequence @y, @, ... is now well defined by induction.
The initial seven terms of the sequence are 1, 2, 4, 8, 16, 21, 42,

It follows from definition of », that each of the numbers 1,2,...,7,
is of the form a;—a; with 1 (i <j <5 2,42. Hence it follows that
Pagy > Ty for any n =1,2,... Therefore any mnatural number can be
represented in the form a;—a; provided the indices 4, ave suitably
chosen.

In order to complete the proof that the set Z indeed has the required
property, it remains to show that for any natural numbers b, %, 1, m with
<k and T <m, k< m the inequality az— a;, % @,,—a; is valid. Sup-
pose to the contrary that a,—ay, = a,,—a;. Since m >k >h =1, we
must have m > 3. If m is odd, i.e. m = 2n--1, where » is a natural num-
ber, then @y = @+ @ < 26—y = 20ay = @gpyq, Which iy impossible.
If m is even, i.e. m = 2n--2, where o is a natural number, then, in the
case of 1 = 2n+4-1, we have @, — & = tyy0— Gay == 7, Which, in virtue
of the equality ap—ay = a,—a;, gives 7, = ay—ay, where h <k <
m~—1 = 2n+1, contrary to the definition of the number r,. In the cage
of 1 < 2n4-1 (which in virtue of | < m is the ouly possibility provided
1 = 2n+1 is excluded for & == 2n--1), we have a,,— a; = a;— a;, whence,
since k<<m, we have h<l1<2n and du,— 0 = Gy yy— Gopyg == T}
80 1y, = @y— @y, With b <1< 2n, contrary to the definition of »,. Finally,
it T<2n41 and % <2n-+1, then Banpa == Gy = O Qp— 0y < @34 g
< @gp Oy = Ganpy1, Which is impossible.

Thus we see that the sequence a,, a,, ... has the required property.

It will be observed that if the axiom of choice is assumed, a similar
property can be proved for real numbers. One can prove the existence
of a set X congisting of real numbers and such that any positive real
number is uniquely expressible as the difference of two numbers of the
set X (%),

§ 5. 0dd numbers which are not of the form 2" p, where p is a prime.
In the year 1849 A. de Polignac [1] formulated the conjecture that any
0dd number > 1 is of the form 2"+ p, where % is a natural number and
» is either a prime or the number 1. In 1950 P. Brdés [11] proved that
there exist infinitely many odd numbers for which the conjecture fails
(ef. also van de Corput [3]).

() Cf. Piccard [1], pp. 36-37 (Remarqite), and Lindenbanm [11, p. 25,
. Corollaire 17, and footnote (27) on ‘page 24.
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TuuorEM 8 (Brdos [11]). There ewxists an infinite arithmetical
progression of odd numbers none of which is of the form 2%+ p, where &
=0,1,2,..., and p is a prime.

LeMMA. Hoery natuwral number sotisfies af least one of the following siz
CONGruences :

(1) % == 0(mod?2), (2) k == 0(mod3),

(4) k== 3(mod8), (B) &k == T (modl12),

(3) k== 1(mod4),
(6) k == 23 (mod 24).

Proof of the lemma. If a number & does not patisfy (1) or (2),
then it is divisible neither by 2 nor by 3 and thus it must be of the form
94t -7, where t ig an integer and r is one of the numbers 1, 5, 7, 11, 13,
17, 19, 23. Bubt a straightforward verification shows that then % must
satisfy congruences (3), (3), (8), (&), (3), (8), (4), (6), respectively.

COROLLARY. If & is a non-negative integer, then at least one of the fol-
lowing congruences holds:

(9) 2" = 2(mod ),
(12) 2% == 228(mod 241).

(8) 2% = 1(mod7),

(1) 2 2
(11) 2" = 2" (mod 13),

2% = 1 (mod3),
(10) 27 s

28 (mod17),

Proof of the covollary. We gimply verify that 2% = 1(mod3),
9% w21 (mod7), 2*=:1(modB), 2°==1(modl?), 2" = 1(mod13), 2" =
s -1 (m0d 241), whenee 2% = 1(mod241). From this we infer that the
congruences (1), (2), (8), (4), (B), (6) imply the congruences (7,) (8), (9),
(10), (11), (12), respectively.

Proof of the theorem. In virtue of the Chinese remainder theo-
rem there exigts a natural number ¢ that satisfies the congruences

@ == 27 (mod 13), @ =5 229 (mod241), a::3(mod3l) and, moreover, there
exigts an infinite arithmetical progression of a’s each of which satisfies
these congruences. Clearly, the terms of the arithmetical progression
must be odd. If @ is any term of fhe arithmetical progression, then,
since it satisfies the congruences, the covollary of the lemma implies
that the number a-—9° is divigible by at least one of the primes 3, 7,
5,17,13, 241, On the other band, @:=3(mod81) and for any k=1,2,...
the number 2" ix congruent to one of the mumbers 1, 2, 4, 8 (mod31)
(this is Decauso 2° = 1(mod81)). Consequently, a- 9% iy congruent to
one of the numbers 2, 1, —9, —5, —13 (mod31). But none of these
numbers is congruent (mod31) to any of the numbers 3, 7, 5, 17,
13, 241. Therefore the number a—2% cannot possibly be any of
these numbers, but, on the other hand, it is divigible by at least
one of them. Therefore it is a composite number. Hence it follows that the
number @—2* cannot be & prime for any non-negative integer %; con-
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sequently, o cannot be of the form & = 2¥+4-p, where k = 0,1, 2, ciey
and p is a prime. Thus we see that the terms of the arithmetical progres-
sion which we have defined above have the required property. This
proves the truth of theorem 3.

The proof of theorem 3 shows that there exist infinitely many natu-
ral numbers n such that for any non-negative integer % the number
—n—2" and thus also the number n-2* are divisible by at least one of
the numbers 3, 7, 5, 17, 13, 241. Let P denote the product of these
primes. In virtue of what we proved above the mumber 5 2M7@)-1
has ‘a prime divisor p | P. But 2°"F) = 1(modP), which in virtue of
n+ 217" = 0(modp) gives n-2°41 = 0(modp), which for n large
enough (e.g. for n > 241) gives a composite number n-2’°+l. Thus we
have proved the following

CoroLLARY. There emist infinitely many natural numbers n such that each
of the numbers n-28 41, where & =0,1,2,..., is composite (cf. Sierpiriski
[27] and Chapter X, § 4, ex. 3).

THEOREM 4 (A. Schinzel). There emist infindtely many natural num-
bers that are not representable as sums of two different powers of 2 (with
non-negative exponents) and a prime mumber.

Proof. (This proof was obtained by A. Schinzel by a thorough exam-
ination of the proof of a weaker theorem of R. Crocker [1] which we pres-
ent below.) We are going to show that the numbers that have the re-
quired property are the numbers 2zn—1, n =3,4,... In fact, suppose
that for a natural number n > 2 we have 2" —1 = 2° 124 p where %, I
are integers and % > 1> 0. We note that the equality 7 = 0 ig impossible,
because otherwise we would have p = 9% —2% 2 — g(9"-1_gk-1_7)
and, since 2" >k, k—1 < 2"—2, whence 22"~1_.9k~1 3 gi"-1_ itz _
272 29" =95 and thus 2™ —21_ 191> 1, which is
impossible since p is a prime. Consequently, we have I > 1, and so & > 1.
Let b denote the greatest non-negative exponent for which 2" divides
k—I. The number (k—1)/2" is then odd and 2”1 |2*'41. Since
p=2"—2"—2'1 = 9" _1_9¥9¥11 1), the Qivisibility relations
obtained above give 22"-|~1 | p, whence, in virtue of the fact that p is
a prime, we infer that p = 22" 1. COonsequently, 2" = 2% 2l.22 1 o,
Since 2" >k >1, the number 2'+ 22"—}—2 is. divisible by 4. Therefore
either } =1 or2" =1.If 2" =1, then !> 1 and o 2*"~* = 2F-2 o2 1,
which is impossible because the left-hand side of the equality is divis-
ible by 2°. Thus, necessarily, I = 1, 2* > 1, whence 2**~? — ok-2y g¥t-2
+1, which (in virtue of 2"—2 > 6) proves that precisely one of
the two possible cases k = 2 and 2" = 2 can cecur. If & = 2, then 2" | k—
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‘—1 =1, which is impossible because 2*>1. If 2* =2, then % >3
and 27"% = 2%-11, which, in virtue of n >3, gives k=3, and so
n = 2, which again is impossible.

This completes the proof of the fact that the numbers 27" —1 have
the required property.

OorOLLARY (Crocker [1]). None of the numbers 2% —5, where
n=23,4,8,..., @5 of the form 2°4p, where & =0,1,2,... and p
ts a prime.

Proof of the corollary. If 2" —5 = 2"+ p, where & is a non-
negative integer and p is a prime, then 2°—1 = 2°4-224p, whence,
in view of n > 3, the fact that the numbers 2% —1 have the property
just shown implies that % must be equal to 2; eonsequer;ﬂ? 21
=24 p,and so p = 27" —9 = (2"1—3)(2""*'4-3), whence 2" —3=1,
contrary to the assumption that n > 3.
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