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number Fi,s has more than 10%* digits, it is quite impossible even to
write it down, let alone to divide it by m. But our aim is not to divide B,
by m but to establish whether ¥, is divigible by m or not. The meth-
od by means of which we can do it is as follows.

We denote by 7 the remainder left by an integer ¢ divided by m.
It follows from the definition of 7 that for any integer ¢ we have m | t—1.
We define the sequence 7, (k =1,2,...) by the conditions

(19) =22 mya=r7s, k=1,2,..
We are going to prove by induction that
(20) m|2¥—r, forany k=1,2,...

Formula (20) is clearly true for k& = 1 because 2’1—71 = 0. Suppose that

s o1

it is true for a natural number &. By (20), we have m | 2% —73, whence,
. p ) 5 e Bl
in view of m | t—3 for t = 7%, we obtain m | }—rE. This gives m | 2°°' 52

and so, by (19), m | 22k+1~r,,+1. Thus formula (20) is proved by induc-
tion. For % = 1945 it gives

.
m | Frogs—~1T1045— 1,

whence it follows that number Fi is congruent to 7945--1(modm).
Consequently, in order to establish whether ¥, is divisible by m, it
ig sufficient to find whether ry,s-+1 is divisible by m.

Let us see what calculations are involved in caleulating number
*1045- 16 follows from (19) that the numbers r,, 7, ... are the remainders
obtained by dividing by m, so any of them is less than m, whence it hag
not more than 587 digits. Thus, it follows from (19) that in order to obtain
number 7, one has to calculate the squares of 1944 natural numbers,
each having not more than 587 digits, and to divide these squares (i.e.
numbers that have no more than 1175 digits) by number m, which has
587 digits.

Present day electronic computers have proved capable of carrying
out these calculations. In this way number #,,; has been shown to be
divisible by number m = 2¥.54-1 < Fys and so it is a composite
number. The investigations of numbers 2°%4-1 for % = 1,2,8,4,
presented above together with theorem 5, show that m is the least natu-
ral divisox; > 1 of the number F;, and so m is a prime. -

In a similar way the least prime divisors of all the other known

composite Fermat numbers except the numbers ¥, Fy, Fyy, and Ty,
have been found. L
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CHAPTER XI

REPRESENTATIONS  OF NATUI{AL NUMBERS AS SUMS
OF NON-NEGATIVE kth POWERS

§ 1. Sums of two squares.

TuROREM 1. A natural number n is the sum of two squares of integers
if and only if the factorization of n into prime factors docs not contwin any
prime of the form 4k-3 that has an odd exponent.

LuMMA. If an odd prime p divides the sum of the squares of two rela-
tively prime integers, them it must be of the form 4k+1.

" Proof of the lemma. Let a,b be two relatively prime integers
and p an odd prime such that p | a®4-52. Then o* = ——bz(moldp); this,
raised to the (p—1)/2-th power gives a”~* = (—1)®~Vp*~! (modp).
But, rinco (a, b) =1, the numbers a, b are not divisible by p, whence,
by the theorem of Termat, A== 1(mod11)) 2, consgequently,
(—1)®=D7 == 1 (modp), Wwhich by p > 2, gives (—1)®~"* =1 and proves
that (p—1)/2 is even. Therefore p must be of the form 4k--1.

Proof of the theorem. Suppose that a number n can be repre-
sented as the sum of the squares of two integers,

1) n = a*-b.
Let
) n = gi'g. .. ¢°

bo the factorization of n into prime factors. Finally, let p be a prime
divigor of the form 4%-+3 of the number n. Write d = (¢,0), & = day,
b = db,, where (y,by) = 1. In virtue of (1), d*|=, and so n= dz‘nl,
where n, is & natural number. Suppose that the exponent on p 1In f?ctox;
ization (2) is odd. Then, since m = d*n,, We must have p | n, = al-'{-.b,,
which. contradicts the lemma. Thus we have proved that the condition
of the theorem is necessary. .

Tn order to prove that it is sufficient we note tha.‘u'wmhout any loss
of generality we may assume that » is greater than 1, since f_or ‘r,.lxe num-
ber 1 we have 1 = 12--0%. Suppose that (2) is the factorization of
into prime factors. Let m be the greatest natural number whose square


Yakuza


352 CHAPTER XI. Representations of natural numbers

divides #. Then n = m?*, where % either is equal to 1 or is a product of
different prime numbers among which no prime of the form 4%--3 occurs.
Since 2 = 12412, in virtue of theorem 9 of Chapter V, each of these
primes is the sum of the squares of two natural numbers. The identity

(a*+ B (* 4+ d%) = (ab+-cd)? - (ad— be)®

represents the product of two (and, by induction, of any finite mumber)
natural numbers, each of them being the sum of the squares of two inte-
gers, as the sum of the squares of two integers. Consequently, & ig the
sum of the squares of two integers. So % = #2402, whence n = m?k =
(mu)?(mwv)?. This completes the proof of sufficiency of the condition.
Theorem 1 is thus proved.

In connection with theorem 1 the question arises how many different
representations as sums of two squares a natural number n admits. The
answer to this question is to be found in Chapter XIIT, § 9.

COROLLARY. If a natural number is nmot the sum of the squares of two
integers, then it is mot the sum of the squares of two rational numbers either.

Proof. If a natural number » is not the sum of the squares of two
integers, then, by theorem 1, there is a prime p of the form 4%k--3 that
1\2 7, \2
divides n to an odd power exactly. Suppose that n = (—7;;) —1—(—’;:-)
! 1
where m, m, are natural numbers and 7,1, are integers. Then (mm,)*n
= (lm;)2+(l;m)?. But p must appear with an odd exponent in the fac-
torization of the left-hand side of the equality and, by theorem 1, this
cannot be true regarding the right-hand side of the equality; thus a con-
tradiction is reached and so the corollary is proved.
As proved by B. Landau [1], if f(2) denotes the number of natu-

@
l/log &

tends

ral numbers < # that are sums of two squares, then f(z):

to a finite positive limit as @ increases to infinity.

The representations n = @*-y2, where &,y are integers, 0 < » < v,
and n < 10000, are given by A. Wijngarden [1]. The number of decom-
position of n into two squares for n < 20000 is given by H. Gupta [2].

EXERCISES. 1. Find a necessary and sufficient condition for a rational num-
ber I/m to be the sum of the squares of two rational numbers.
Solution. Such a condition is that the number Im be the sum of the squares
. 1 1 \?
of two integers. We easily verify it on the basis of the remark that, if = (—;}—) -+
1

1 2
+ (—”-;’“—) » then Im (mymg)® = (mmyly)?+ (mmyly)?. On the other hand, if Im = a* b2,
2

wen = (&) + ()
then — =|—|) +(—] .
.m m m
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Remark. Exercise 1 and theorem 1 imply that an irreducible fraction 1jm,
where I, m are natural numbers, is the sum of the squares of two rational numbers if
and only if each of the numbers I, m is the sum of the squares of two integers.

2. Prove that if a rational r s 0 is the sum of the squares of two rationals,
then it has infinitely many representations as the sum of the squares of two positive
rationals.

Proof. First, we suppose that » = a®-- 0%, where a, b are rationals both diffe-
rent from zero. Therefore, without loss of generality, we may assume that a, b are
positive and that & > b. For any natural & we have

e ((702— 1)a— 27cb)2 ((kz- )b+ 27m)2
- %241 1 !

which gives a representation of r as the sum of the squares of two rationals. If & > 3,
we have 3k*— 8k = 3k(k—3)+% > 3, whence

Bol 4 b (#—Da—2b _
—— > 8 = — .
% "3 a o 2r1

Moreover it is easy to prove that ay increases with k. Therefore numbers ap are all
different and, for % > 3, positive. This, for & > 3, gives different representations of
~ a8 sums of the squares of positive rationals. Thus we see that » admits infinitely
many such representations.

Now we suppose that r = a?, where a is a rational. Since r % 0, we may assume
that o> 0. For natural & we have

((kg— l)w)2 ( 2ka )2
r =\—g—) + ).
K2+ 1 k-1

As it is easy to prove, numbers ax = (k2— 1)a/(k*+ 1) increase with k. Consequently,
there are infinitely many representations of the numbers r into sums of the squares
of positive rational numbers.

3. Given a natural number m, find a natural number n that has at least m
different representations as the sum of the squares of two natural numbers.

Solution. Let n = a2, where a = (324 1)(£+1)...((m+2)2--1). The num-
bers a/(k?41) are natural for any k = 3,4, ..., m+2. Consequently also the num-
bers

B2—1 w

B R

2ka

SN e = Ceey -2
r=gry k=34 mt2)

ak

are natural. But, in virtue of the identity
2 (702—— 1 a)2 i ( 2ka )2
> = P w41/

k e ;
=0, bk = e we have n = a® = a2 +b3, k= 3,4,...,m+2. But

k?— 2k —1 b—1)2—2
ag— by = ! d a:(c ) a>0

£
Pl 1 or

b=3,4,....m+2

20
oy = Q@— —5— whence a3 <ay <...< Gmyg.
k e 3 4 +2

Elementary theory of numbers 23
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Thus we see that the representations n = a,zc-(- b%c, %t=3,4,...,m+2, are all
different, their number being m. Therefore the number m has the required properties.

At the same time we have proved that for a given natural number m there
exist at least m non-congruent Pythagorean triangles that have the same hypothe-
nuse.

4. Given: a representation as the sum of two squares of a natural number n.
Find a similar representation of the number 2n.

Solution. If n = a?4b2, then 2n = (a-b)*+ (a—Db)2.

§ 2. The average number of representations as sums of two squares.
Now our aim is to consider the problem how to find all the representa-
tions of a given matural number as sums of two squares.

If n i3 representable as the sum of two squares, ie. if
(3) 7 = 2?4+ y*,
then » >4? and » >y, whence |u| <l/n, ly] < Vn. Thus, to solve
the problem, it is sufficient to substitute for # in (3) integers whose abso-
lute values are not greater than Vn each, and see whether the
number n—a? is a square or not. If »—a? is a square, then, putting y
= -+ Vn—2’, we obtain a representation of n as the sum of two squares.
If n—a? is not a square, such a representation is not obtained. It is
plain that we may confine our consideration to non-negative 2’s only
because the change of the sign of # does not cause any change of the
value of n— % It is worth-while to notice that the sequence n, n—12,
n—22, n—32%, ... has the following property: the differences of the con-
secutive mumbers of the sequence are 1,3,5,..., ie. they form the
sequence of odd natural numbers.

ExaMpLES. Let n = 10. We form the sequence 10, 9, 6, 1. In this sequence
the second term and the fourth term are squares so we put # = %1, y = 43 or
%= -3, y = +1. Thus eight decompositions are obtained. They are

10 = 1%4-8% = 124 (—3)% = (— 1)24-82 = (= 1)+ (= 3" = 3°+1*
= B4 (=1 = (=31 = (= 3P (— 1R

Now let n = 25. We form the sequence 25, 24, 21, 16, 9, 0. Here 25, 16, 9, 0
are squares. Therefore for x,y the following values are obtained:

=0,y=46; s=+48, y=44; s==44, 9y=:£3; a=+5,9=0

(where all combinations of the signs 4 are allowed). Thus 25 has 12 representations
as sums of two squares.

Let 7(n) denote the number of all the representations of a natural
number » as sums of two squares, two representations being regarded
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as different also when they differ in the order of summands only. As
above, we find
t(l) =4,
7(6) =0,

v(2) =4,
z(7) =0,

7(3) =0,
7(8) =4,

T(4) =4,
7(9) =4,

7(5) = 8,
7(10) = 8.

As we have proved in § 5, Chapter V, each prime of the form 4%--1
has a unique representation (apart from the order of the summands)
as the sum of two squares. This shows that for any prime p of the form
4k--1 we have 7(p) = 8. The reasoning presented above shows that for
any natural number » the inequality =(n) < 4Vn holds. Exercise 3 of
§1 implies that there is no upper bound for =(m).

Now we are going to calculate the sum

(4) I(n) =(1)+7(2)+...4+z(n).

The number 7 (%) is the number of solutions of the equation a2+4y? =k
in integers x,y. Hence the number T'(n) is the number of solutions of
the inequalities

(6)

We divide the solutions of (5) into classes by saying that two solutions
belong to the same class if and only if the values of « are equal. We are
going to find the number of solutions in each of these classes.

If # = 0, then, by (5), ¥ may assume integral values such that y* < n,
ie. |y <Vn. Asitis easy to verify, the number of such ¢’ is 2[Vn]. If
® =1k 50, then, by (5), we must have k2 < n; so |k < Vn and y?
< n—¥k?, whence |y| < Vn—k*. The number of those y’s is 1+ 2[Vn— k?]
(number 1 must be added since y = 0 is included). Since & may assume
any of the values +1, +2,..., £+ [l/;a] and the sign + has no influence
on the value of %% we obtain

0 <aty2 < n.

WA  wal
aVnl+2 ¥ (1+2[Vn—12) = 4[Vn)+4 > [Vn—#?]
Fw=l k=1
and 8o
7l
(6) T(n) =4 [Vn—Fkil.
k=0

Thus, for example, for # =100 we have
(100) = 4 ([V100]+[¥'99]+[V96]-+[VOLI-+[V84]1+[V75]+V641+
+IVBLIH[V361-+[V19)) = 4(10+9-+9+9-+9+8+8+7--6-4) = 316.
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Sum (4) has a simple geometric interpretation. Since, as we have learned,
number 14+7'(n) is the number of pairs of integers that satisfy the in-
equality 2+ y* < m, it is equal to the number of points of the plane whoge
coordinates are integers (these being called laitice points) inside or on the
circumference of a eircle ¢ whose centre is placed at the point (0, 0) and
radius is equal to Vn. To cut it
¥ short, number 1-1'(n) is equal to the

L ¢t number of lattice points that are
AR B ingide or on the circumference of
LA A N E L circle O.

¢ o 8 o o e . B e Now, to each lattice point we

agsign a square in which the middle

0 X point is a lattice point, the sides are
AR parallel to the axes of coordinates
DA S and the area is equal to 1 (see Fig. 1).
R The area P covered by the squares
AR S assigned to the lattice point that are
A not outside the circle ¢ is equal to

Tig. 1. the number of these points, and so

it is equal to 1+T'(n). The circle C,

— 1
the centre of which is (0, 0) and radius Va+ — contains (inside and on

V2
the circumference) all the points covered by the squares assigned to the
points of the circle ¢'. This is evident, since 1/¥2 is the greatest possible
distance from a point of a square of area 1 to its middle points. Therefore

9

the area P is legs than the area of the circle ¢;. Hence P < = (l/'h_ -+ —I/i.) .
. . 2

On the other hand, the area of the circle C,, whose centre is also (0, 0)

— 1 — 2
and radius is 1/%—;/?, is less than P, so P> n(l/n-——l/l—:) . This, by
2
the equality P = 14T (n), gives ,

(1) T:(l/hn?lgf —1<Tn) <nx (Vﬁ{- -]/13)2 —1.

We note that = V2 < 5 and that, for any natural number %, 0 < §r—

—1 <1< Vn. Hence
e 2 — — —
n(l/n—}—%) —1 =nn+n/2Vn+3rn—1 < mn+6Vn,

W(Vﬁ“%) —1 = W%—nﬁl/’i—’l,—l—n}nn—l > nn—6Vn.
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From thig, by (7), we obtain m—6Vn < T (n) < ©n+6Vn, whence
T (n)—nn| < 6Va for any mnatural number #, whence

6

ok

o

n

(8)

From (8) and (4) it follows that
(1) 7(2)4...+7(n)

lim = T,
Ny n

which means that the mean value of the function v(n) is =. This can
also be expressed by saying that on the average there are = representa-
tions of a natural number as the sum of two squares. Ag we have
found above, 7'(100) = 316 (i.e. natural numbers not greater than 100
have, on the average, 3.16 decompositions into the sum of two squares);
similarly, by (6), we can easily find that 7'(400) = 1256, whence T (400)/400
= 3.14, and T(1000) = 3148, whence T(1000)/1000 = 3.148.

By formula (6), T'(n) can be calculated for any = (though the cal-
culation may be very long), this, by (8), indicates a method of calculat-
ing the number = with a given accuracy.

In virtue of (8), we have |T'(n)—=n| < 6¥n for any natural num-
ber n. In the year 1906, I used the method of Voronoi to find that there

exist & constant A such that |T'(n)—mn| < A%/n (Sierpinski [17). After
that, stronger results were obtained by van der Corput and others; for
the best result at present, see Chen Jing-Run [1].

As so far we have calculated the number of lattice points that are
contained in a circle whose centre is (0, 0), which, of course, is a lattice
point. In 1957, H. Steinhaus [1] proposed the following exercise: prove
that for any natural number n there ewists such a circle on the plane as con-
tains precisely n lattice points.

We are going to show that if p = (V2, }), then for any natural
number 7 there is a circle 0, with centre p containing precisely = lattice
points inside.

Suppose that two different lattice points (2, ¥y} and (@, y,) are
at equal distances from point p. Then

(@~ V2P + (=) = (23— V2P + (g2~ D2
Hence
2@, — 02 = B3+ yi—ai— i+ FW— ).

Sinee V2 is irrational, @,—w®, =0, whence ¥;—¥i+2(y—y,) =0,
and 80 (¥y—¥1) (Y2+¥1—3§) = 0. But y,+y,—% + 0 because y; and g,
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are integers, consequently y,—y, = 0. This gives #;, = », and y, = y,,
contrary to the assumption that the points are different.

Now let » denote an arbitrary natural number. It is clear that any
circle ¢ with centre p and a radius large enough contains more than =
lattice points. It is also clear that the number of lattice points contained
in € is finite. Sinee, in virtue of what we proved above, the distances
from p to the lattice points are all different, we may arrange the lattice
points that are inside circle C in the sequence P, Pa; ..., Pny Pnpry -+
aceording to their distances from the point p. Let O, denote the circle
whose centre is p and radius is equal to the distance of point p,,; from
point p. It is plain that the only lattice points inside circle C, are the
Points Pi, Psy -.-, Pu. Consequently, circle O, possesses the required
properties; the theorem of Steinhaus is thus proved.

It is not difficult to prove that there is no point p in the plane whose
coordinates are rationals such that for any natural number » there exigts
a circle with centre p which contains precisely » lattice points (cf. Sierpin-
gki [18], p. 26).

On the other hand, it can be proved that for any natural n there
exists a circle whose centre has rational coordinates and which contains
precisely n lattice points inside.

Let us mention here that II. Steinhaus has proved that for any natu-
ral number # there exists a circle with area » containing precisely n lattice
points inside.  However, the proof of this statement is difficult.

It can be proved that for any natural number » there exists a square
that contains precisely n lattice points inside (ef. Sierpiriski [18], pp. 28-30).

It is also true that for any natural number n in the three-dimen-
sional space there exists a sphere that contains precisely n points whose
coordinates are integers.

In order to prove this it is sufficient to note firstly that if «, v, w
are rational numbers such that ul/§+'e;1/3+wl/5_ is a rational, then
4 =9 = w = 0, and secondly that any sphere whose centre is at the point
(1/5 , l/3, V8) and radius is equal to 3 contains at least one point whose
coordinates are all integers. From these two facts the proof iy deduced
ag in the case of the circle in the plane.

J..Browkin hag proved, that for any natural number n there exists
a cube (in the three-dimensional space) that contains ingide precisely =
points whose coordinates are integers.

A. Bchinzel [8] has proved that for any natural number n there exists
a circle on the circumference of which there are precisely n lattice points.
As a matter of fact, what he has proved is that if » is odd, i.e. n = 2k41,
where I is a non-negative integer, then the circle with centre (}, 0) and
radius 5*/3 has the required property. If n is even, i.e. if n'= 2%, where
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k is a natural number, then the circle with centre (%, 0) and radius 5(*~92/2
has the required property.

T. Kulikowski [1] has proved that for any natural number n there
exists a sphere (in the three-dimensional space), on the boundary
of which there are precisely » points whose coordinates are integers.
He generalized this theorem for spheres in spaces of an arbitrary > 3
dimension.

Rational points (i.e. points whose coordinates are rational num-
berg) on the circumiference of a circle have also been investigated. There
exist circles in the plane in which there are no rational points; for example,
such ig the circle z%--y? = 3. There are circles on which there lies pre-
cigely one rational point, for example, on the circle (z— Vo) + (y —Vi)“ =4
there is precisely one rational point, namely the point (0, 0). There are
also circles on which there are precisely two rational points, for example,
such is the circle »*-(y —1/2)2 = 3, the only rational points on it being
(1,0) and (—1,0).

In general, we prove that if there are there rational points on a circle,
then there are infinitely many rational poinis on 4t. It is easy to prove
that if there are three rational points on a circle, then the centre of the
circle is a rational point and the square of the radius of the circle is also
rational. Since by subtracting a rational number from two rational
numbers successively we again obtain rational numbers, then, without
any loss of generality, we may assume that the centre of the circle is the
point (0, 0). Denote this circle by C. It is not difficult to prove that if
¢ containg at least one rational point, then it must contain infinitely
many rational points. In fact, if a, b are rationals such that a®-b* = r2,

2at+b(1—¢?
then for any rational number # the point (#, y) where ¥ = b+ b )

14

_a@—#)—2t ol s 2
== 1_{_25 - —- is rational and =24 y? =%,

‘We sum up the facts thus obtained in saying that for a given circle
only the following cases are possible: it contains no rational points, it
containg precisely one rational point, it contains precisely two rational
points, or finally, it eontains infinitely many rational points. It can be
proved that, in the last case, rational points form a dense subset of the
circle, which means that on any arc of the circle there is a rational point.

It has been proved (cf. Sierpinski [20]) that if »2 is a rational num-
ber, then the circle ¢ with radius » contains infinitely many points such
that the distance of any two of them is a rational number. As an imme-
diate consequence of this we infer that for any natural number = there
exigts a circle which containg # points such that the distance of any two
of them is a natural number. This again has an important consequence,
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namely that for any natural » there exists a set consisting of »n points
no three of which lie on one line such that the distance of any two of them
is a natural number. This theorem was first proved by W. I Anning
and P. Brdos (their proof was different)(?). The authors proved also
that if in an infinite set of points in the plane the distance of any two
points of the set is integral, then all the points lie on a straight line (ef.
Erdos [7] and Trost [2]).

EXERCISE. Prove that the set of rational points of the plane can be divided
into two subsets, one having finitely many points in common with any vertical line,
the other having finitely many points in common with any horizontal line,

Proof. As is easy to see, the condition will be satisfied if the first subget con-
1
sists of the point (;y;, %) , the fractions being irreducible and such that the numera-

tors are integral and the denominators matural, and that they satisfy the relation
[Y|+m < |r|+s. The second subset compriges all the rest of the rational points of
the plane.

It can be proved that the set of points in the three-dimensional space whose
coordinates are rational can be divided into three parts such that each part has finite
intersection with any line parallel to a coordinate line (fixed for the part). The same
statement for the set of all points of the three-dimensional space is equivalent to the
continuum hypothesis (ef. Sierpifiski [13] and [21], p. 397)

§ 3. Sums of twe squares of matural mumbers.

TBEOREM 2. A natural number n is the sum of the squares of two
natural numbers if and only if all prime Jactors of the form 4k-+3 of the
number n have even exponenis in the standard factorization of n into
primes and either the prime 2 has an odd exponent (in the factorization
of m) or m has at least one prime divisor of the form 4k--1.

Proof. Suppose that there exists a natural number ‘which is the
sum of the squares of two natural numbers, and has the following prop-
erties: it does not possess a prime divisor of the form 4k4-1, and in
its factorization into primes the prime 2 has even exponent >> 0. Let
7 be the least natural number with this Droperties. Since it is the sum of
the squares of two natural numbers, by theorem 1 all prime factors of
% of the form 4%4-3 have even exponents in the standard form of n.
Consequently, n = 2*m?, where m is an odd natural number and % is
an integer > 0. Thus we may write 2%m? — a*+-b?, where a, b are nat-
ural numbers. If % > 0, then the left-hand side of the last equality is
divisible by 4; consequently the numbers @, b, are both even, i.e. 4 = 2a,,
b =2b,, whence 2°*"m?=gl1pl< p, contrary to the definition
of n. Hence k = 0 and 80 n = m? — a?+b% > 1. The numbers a, b mugt
be relatively prime because in the cage (@,d) =d>1 we would have

() Anning and Erdes

[1]; see also Hadwiger [11, p. 85, where a list of
references is given.
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o = day, b = dby, where a4, b, are natural numbers, whence m = dm,

. and m} = a3+ b} < m* = n, contrary to the definition of x. So (a, d) = 1.

But, since m ig odd and > 1 (having no prime divisor of the form 4%--1),
it has a prime divisor p = 4k-3. This implies that p | a2 52, whence
a? = —b*(modp). If we raise each side of the last congruence to the
(2% -+1)th power, then, by the fact that 2(2k+1) = p—1 and by the
theorem of Fermat, we obtain 1 = (—1)*+!(modp), which is impossible.

‘We have thus proved that a natural number that is the sum of the
squares of two natural numbers has the following property: either in
its factorization into prime factors the prime 2 hag an odd exponent,
or it has a prime divisor of the form 4%+ 1. Moreover, by theorem 1, it
follows that all prime divisors of the form 4% 3 have even exponents
in the factorization of the number into primes. This shows that the con-
dition. of theorem 2 is necessary.

Now, suppose that a natural number » satisfies the conditions of
the theorem. Thus we have either n = 2m? or n = 2°m?#, where a = 0
or 1 and ! ig the product of prime factors of the form 4% 1. If n = 2m?,
then n = m?4m?, and so it is the sum of the squares of two patuml
numbers. Suppose that n = 2°m?2l, where I is the product of prixoes of
the form 4%-+1. By theorem 9, Chapter V, each of the factors is the
gum of two positive squares. But the product of two odd numbers, eac?l
of them the sum of two positive squares, is again the sum of two posi-
tive squares. The argument to this is that, if n, = a®4-b%, n, = - d?,
where n,, n, are odd, then one of the numbers ¢ and b, say @, must be
odd, the other being even; the same is true for the numbers ¢, d; so let
¢ be odd, d even. Then n,n, = (a*+ b2)(c*+ d?) = (ad-+be)*+ (ac—bd)?,
where ac—bd is odd, and so = 0. Thus we see that the number Ny y
is the sum of the squares of two natural numbers. By induetion, we infer
that the same remains true for an arbitrary number of factors of the
form 4%--1. Hence we conclude that the number I is the sum of the
squares of two natural numbers, i.e. I = o>+ b%, whence m? == (ma)*+
4 (mb)2 and 2ml = (ma- mb)2+ (ma—mb)? and ma—mb ‘;é 0 (because
& mugt be different from b since the number I = a2+b* is odd). Thus
we gee that in any event the number » is the sum of the squaxes Qf_two
natural numbers. Therefore the condition of theorem 2 is sufficient.

Theorem 2 ig thus proved.

From theorem 2 it follows that in order that a square n? b'e.the sum
of two squares of two natural numbers it is necessary and sufficient that
the number n should have at least one prime divisor of the form 4k-4-1.
This can be expressed by saying that ) .

A natural number n is & hypotenuse of & Pythagorean triangle if and
only if n has at least one prime divisor of the form 4k+1.

Of. also the corollary to exercise 3, §1.
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EXERCISES. 1. Prove that a natural number « is the sum of the squares of
two different natural numbers if and only if 1° the primes of the form 4% -3 which
appear in the factorization of » into prime factors have even exponents, 2° the
number n hag at least one prime divisor of the form 4k 1.

Proof. The necessity of condition 1° follows from theorem 1. Suppose that
a natural number n does not satisfy condition 29, i.e. that it has no prime divisor of
the form 4%+ 1. Conesquently, if n = a®+ b2 for two different natural numbers a, b,
then, for d = (a,b), we have n = d*(af-+b?), where @ = da,, b = db, and a5, b,
are different relatively prime natural numbers. Number a% 4 b3 has no prime divisor of
the form 4k+1, and so, since (@, d;) = 1, the reasoning uwsed in the proof of
theorem 2 shows that number a? -+ b% has no prime divisor of the form 4% 3,
either. Therefore a?--b} = 2%, where s is a natural number > 1, since a,, b, are
different natural numbers. Consequently, number a?-b} is divisible by 4, whence
it follows that the numbers a;, b, are even, but this contradicts the fact that
(ay,0;) = 1.

Now suppose that a natural number » satisfies conditions 1° and 2°. Then, by
theorem 2, we have n = a®+-b%, where a,b are natural numbers. If ¢ == b, then
n = 2a? and, since n satisfies condition 29, it has a prime divisor of the form 4%k--1,
so, in virtue of what we have shown above, a is the hypotenuse of a Pythagorean
triangle. This means that a® = ¢%+4 d?, where ¢, d are natural numbers. Clearly ¢ # d
since, if ¢ = d, then a® = 262, which, in view of the fact that V2 is irrational, i8 im-
possible. Hence = = 2% = (c+d)2+(c—d)?, where ¢—d %= 0 and c¢+d + c—d
(since d is a natural number). Consequently, n is the sum of the squares of two diffe-

rent natural numbers. Thus we see that conditions 1° and 2° are sufficient. This com=
pletes the proof.

2. Prove that a natural number » is the sum of the squares of two relatively

prime natural numbers if and only if » is divisible neither by 4 nor by a natural num-
ber of the form 4%--3.

Proof. Suppose that a natural number » is the sum of the squares of two rela-
tively prime natural numbers: n = a2+ 5%, If n = 4k, then the numbers g, b are both
even, contrary to (a, b) = 1. If » has a divisor of the form 4%+ 3, then, as we know,
it has & prime divisor of this form, which, as was shown in the proof of theorem 2,
cannot divide the sum of the squares of two relatively prime natural numbers. Thus
we see that the condition is necessary. Suppose that a natural number n satisfies
the condition. If # = 2, then n = 124-12, and so it is the sum of the squares of two
relatively prime natural numbers. If n > 2, then the condition implies that # is the
product of prime numbers of the form 4%+ 1 or the product of number 2 and primes
of the form 4%+ 1. In the former case n is odd and each of the prime factors of m
is the sum of the squares of two relatively prime natural numbers. Hence, by lemma 2
and by exercise 8 of § 5, Chapter V, simple induction shows that = ig the sum of the
squares of two relatively prime natural numbers. In the latter case, i.e. if n is the
product of number 2 and the primes of the form 4k-+1, we have n = 2(a®+b?),
where 4, b are two relatively prime natural numbers. Since a2 - b is 0dd, one of the
numbers @, b is 0dd and the other is even. We have n = (a@+b)2+ (a— b)2, where a+b
and a—b are odd natural numbers; moreover, they are relatively prime because
if dla+b and d|a—b, where d is a natural number, then d|2a and d|2b; since d,
as a divisor of an odd number ¢4 b, is odd, we have dla and d|b, which, in virtue of
(@,b) = 1, implies d = 1. Therefore (a-+b,a—b) = 1. We have thus proved that
the condition is sufficient and the proof is completed.
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THEOREM 3. A natural number n can be the sum of three squares only
if 4t 48 mot of the form 418k 7), where &, 1 are integers > 0.

Proof. Suppose that there exist natural numbers of the form
4(8%+17), where &, I are integers > 0, that are the sums of the quuares
of three integers. Let » be the least of them. We then have n = 4(8k+-1)
== 2 b?4- %, where a, b, ¢ are integers. If among the numbers a,b, ¢
there ig precisely one odd number, then the sum of their squares is of
the form 4¢--1, and so it is different from n. If two of the numbers
a,b,c are odd, then the sum of their squares is of the form 4742, and
go it is st . If all the numbers a, b, ¢ are odd, then the sum of their
squares is of the form 8t4-3, and so it is ## n. Consequently, each of
the numbers a, b, ¢ must be even. We put ¢ = 2a,, b = 2111, ¢ = 2¢,
where ay, by, ¢, are integers. Hence 4~ (8k+7) = aj+bi+¢j, contrary
to the definition of n. Thus we have proved that no natural number
of the form 4*(8%k-7), where k,! are non-negative integers, can be
the sum of the squares of three integers, and this is precisely what
theorem 3 asserts.

It can be shown that the condition of theorem 3 is also sufficient in

order that & number n be the sum of the squares of three integers. Gauss
wag the first to prove that every natural number which is not of the form
4(8%+17), k and | being non-negative integers, is the sum of the squares of
th integers.
Lmoi[?ﬁ?{)riginal proof of Gauss was simplified later by Lejeune Dirich-
let and Landau (cf. Landan [2], vol. I, pp. 114-125). Recently N. .G. An-
keny [1] gave an “elementary” proof of the theorem .of Ga}lss. His p-roof
is Dased on the theorem of Minkowski concerning lattice points cor;tmned
in a convex body and on the theorem on arithmetical progression (ef.
Mordell [7]). ‘

Ag an immediate consequence of the theorem of Gauss we infer that
overy natural number of the form 8k+3 is the sum of the squares of
three integers, which, of course, must all be odd. Thus

818 = (2a-+1)24 (2b-+1)+ (2041,
where a,b,o are non-negative integers. Hence

o(e+1)
=g+ ty+1.
. T +h+

b(b-+1
kza(a—l—l)_l_ (b-+1)

Thus the theorem of Gauss implies a theorem (first formulated by ]‘i‘ermat)
stating that any netural number is the sum of three or fewer triangular
numbers.
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As regards numbers of the form 8%-1, there is a conjecture that
except 1 and 25 all of them are sums of the squares of three natural num-
bers. It follows from the results of A. Schinzel [12] and J. D. Swift [1]
that this is true up to 2500000. Among the numbers of the form 8%--5
that are less than 2500000 only the numbers 5, 13, 37 and 85 are not sums
of the squares of three natural numbers. No number of the form 8k4-7
is the sum of the squares of three integers, and so, & fortiori, it cannot
be the sum of the squares of three natural numbers. A number of the form
4k is the sum of the squares of three matural numbers if and only if %
itself is the sum of three such squares. In fact, if 4% = a%-+ b2+ ¢%, where
@, b, ¢ are natural numbers, then, as is easy to see, the numbers a,b,c
must be even, and s0 a = 2a,, b = 2b,, ¢ = 2¢,, where @y by, 0y are
natural numbers. Hence & = aj+bi+¢i. Conversely, the Iagt equality
implies that 4k = (2a,)*+ (25,)2+ (2¢,)2. From this we easily deduce
that no number of the form 2", » =1, 2, ... is the sum of three posi-
tive squares. But 8-3n? = (2n)24 (2n)2+ (4n)?, and 5o we see that among
the numbers of the form 8% there exist infinitely many natural numbers

which are sums of the squares of three natural numbers and infinitely.

many numbers which are not sums of three squares. As regards the num-
bers 8k+2, G. Pall [1] says: “It is conjectured that every 2(8n-1)
except 2 is a sum of three positive squares”. As noticed by A. Schinzel
[1] this conjecture is false: the number 2(8-8-+1) = 130 is not the sum
of the squares of three natural numbers (ef. exercise 1, below).

A number of the form 8%-4 is the sum of the squares of three natu-
ral numbers if and only if number 2%-+1 has this property. Consequently,
numbers 8(4k+3)44 =4(8%k+7), k= 0,1,2,... are not sums of the
squares of three natural numbers. On the other hand, numbers 8(4% 1)+
+4 =4(8k+3), k =0,1,2,... are sums of the squares of three natu-
ral numbers. Any number of the form 8%--6 iy the sum of the squares
of three natural numbers because, as follows from the theorem of Gauss,
it is the sum of the squares of three integers; it cannot, however, be
the sum of two squares because 8%+ 6 = 2(4k-+ 3).

. By means of the theory of quadratic forms one proves that any
sufficiently large number of the form 8k+1, 8%k+2, 8k--5 ig the sum
of the squares of three natural numbers. (cf. Schinzel [12] and Grosswald,
Calloway and Calloway [1]).

Denote by 7,(n) the number of different representations of a num-
ber n ag the sum of the squares of three integers. For » < 10 we have
73(1) =6, 74(2) =12, 7,(8) =8, 7,(4) = 6, 75(5) =24, 74(6) = 24,
75(T) = 0, 75(8) = 12, 74(9) = 30, 7,(10) = 24.

Theorem 3 implies that for infinitely many »’s we have 7y(n) = 0.

As regards the number T,(n) = Ta(1) 4 75(2)+...+ 75(n), & geomet-
ric argument, similar to that used in § 2 for the sum of two squares (we
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replace rational points of the plane by points of the three-dimensional
gpace, whose coordinates are integers and we consider spheres an(ll cubes
ingtead of circles and squares, respectively), gives the inequality

4 [~ V3 4 [

5’ T (l/n ——'—2—) —1< Ts(’l’ll) < ETC(]/’I'I/ -+
F.‘{“()I’X‘l this we obtain for all natural numbers n the evaluation
.‘ [Ts(n)~—§- xnVn | < 10n,

whenee it follows

Tim 2 1.
nv0 g7un Vi

* Denote by f(2) the number of natural numbers # which are repre-
sentable as sums of three squares. From Gausg’s theorem it follows that
the number »—jf(#) is precisely the number of numbers # which are of
the form 4'(8%-7), where %, ! are integers > 0. Thelrefore, for a given
non-negative integer 1 we have 8(k+1)—1 < 4‘150, Zand_ g0 k+1
< L(4~'w4-1), the number of ¥’s > 0 being clearly [3(4~'z+1)]. Hence,

as an immediate consequence, we obtain
o i#]
1[4 "1
= M| ]

1=0

If 1> logw[logd, then 4'> s> u/7, whence (4'w-+1)/8 <1. Conse-
quently

[logz/logd] [4_1517—}—1]
?

z—f(®) = 3
=0
and so
[logz/logd) g
(@) \7 4ol —0 loga —1—1), where O0<a<1.
peIn =4 TR Tog4
But
?27 4.-1 —_ é .4——[1030:101;4]-—1 < ':_ ,4—-10;;1:/1034 — 34‘_m
e [logz/logd] +1
) _1 _ 1
i~ @ Lo w—f(w) h
ine e tain lim ——— = —, whence
T=0
lim flo) _ §
rtoo X 6


Yakuza


366 CHAPTER XI. Representations of natural numbers

This formula was discovered by Landaun in 1908. Let us mention here
that M. C. Chakrabarti [1] has investigated the function

9(@) = f—(al%)lg—gﬁ

1
and has proved that lim infg(z) = 0, limsup g(w) = — and that
- 00 Lyt 00 log8

1
the values of the function g(x) are dense in the interval (0, @)

EXERCISES. 1. Prove that 130 is not representable as the sum of three posi-
tive squares.

Proof. Suppose that 130 = o®+4b*+¢?, where @,b,¢ are natural numbers.
Without loss of generality we may assume that @ > b > ¢. Consequently, a?+4 11
< 130 < 3a?, whence 43 < a® < 128, and s0 7 < o < 11. But 130— 72 = 81 = 3%,
130— 8% = 66 = 2:3-11, 130— 9% = 49 = 7%, 130—10% = 30 = 2-3-5, 130— 112
= 9 = 3%; thus, looking at the factorizations of numbers 81, 66, 49, 80, 9 inte
primes, we see that none of them satisfies the condition of theorem 2, and so none
of them is the sum of the squares of two natural numbers. Thus the assumption that
130 is the sum of the squares of three natural numbers leads to a contradiction.

Remark. It is easy to prove that 130 is the least natural number of the form
2(8k--1) which is not the sum of the squares of three natural numbers.

2. Using the theorem of Gaues prove that a natural number is the sum of the
squares of three rational numbers if and only if it is the sum of the squares of
three integers.

Proof. Suppose that a natural number » is the sum of the squares of three ra-
tional numbers. Reducing all the three rational numbers to the same denominator,
we may write m®n = a®+b24¢2, where a, b, ¢ are integers. If n = 4}(8k+7), where
k,1 are integers > 0, then, putting m = 27(2s-1), s and r being non-negative inte-
gers, we obtain mPn = 4%+"(8t+7), where k-+r and ¢ are non-negative integers.
But, in virtue of theorem 8, this is impossible because m?n = a®--b2+c2. Conge-
quently, number # cannot be of the form 4'(8%+ 7), where k,1 are integers. Thus,
by the theorem of Gauss, it is the sum of the squates of three integers. Thus we see that
the condition is necessary; plainly it is sufficient as well.

3. Prove that there are no rational numbers @, y, z that satisfy the equation
Syttt tatyte=1.

Proof. The equation is equivalent to the equation

©) (@04 124 (29 + 1P (22 + 12 = 7.

In the proof of exercise 2 we proved (without using Gauss’s theorem) that no num-
ber of the form 4% (8% - T), where k and I are non-negative integers, can be the sum of
the. squares of three rationals, Thus, in particular, number 7 cannot be such a sum,
which, in turn, implies that numbers z,y,# cannot satisfy equation (9). -

4. Making use of the theorem of Gauss prove that any odd natural number is
of the form b+ 2¢, where a,b,c are integers.

Proof. Let ¢ be an arbitrary non-negative integer. Number 4¢--2 is not of the
form 4!(8%+-7), where %, I are non-negative integers. Therefore, by Gauss’s theorem,
4642 = 22+ 4*+ 2%, where @,y, # are integers. Not all of them are -even, gince the
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left-hand side of the equality is not divigible by 4. However, the number of odd num-
bers among them must be even (since the left-hand side is even); therefore let x,y
be odd, # being even, i.e. # = 2¢. The numbers +y and x—y are even, and so
w+y =20, v—y = 2b, whence @ =a-+b, y=0a—b. Hence 4i+2 = (a+4b)+
+(a— D)2+ 4c?, whence 20-+1 = a?+ b2 2¢2, where a, b, ¢ are integers. This com
pletes the proof.

5. Deduce from the theorem of Gauss that any natural number is either of
the form a?-+b2+¢® or of the form a?+b?4-2?, where a,b, ¢ are integers.

Proof. If a natural number is not a sum of three squares, then, by Gauss’s
theorem, it is of the form 4%(8%-'7), where %, ! are non-negative integers. But, by
exercise 4, 8k--7 = 2?4424 2%, where %,y,z are integers. Hence 4'(8%-7)
= (2%)% + (2%)% + 2(2%)%, and so our number is of the form a®--b%+2¢%, where
a,b,e are integers.

6. Prove that if a number = 0 is representable as the sum of the squares of three
rationals, then it has infinitely many representations in this form.

Proof. This theorem is an immediate consequence of the theorem proved in
exercise 2 of § 1 which says that a number == 0 which is representable as the sum
of the squares of two rationals has infinitely many representations in this form.

7. Prove that the theorem of E. Lionnet stating that each odd natural num-
ber is the sum of the squares of four integers two of which are consecutive numbers
is a consequence of the theorem of Gauss.

Proof. Let n = 2k+1, where ¥ = 0,1,2,... From the theorem of Gauss
it follows that the number 4k-+1 is the sum of three squares; consequently 4%--1
= a?+9y2+2%. As it is easy to notice, one of the numbers «, y, # must be odd, the
other being even. Let z = 2a, y = 2b, 2 = 2¢+1, where a, b, ¢ are integers. Hence

= 2%k+1 = (a+b)2+(#—b)>+c®+ (c+1)?, which was to be proved.

8. Show that there exist infinitely many primes of the form a®--b%4-e241,
where a,b,c¢ are natural numbers. For the proof use Gauss’s theorem.

Proof. By theorem 1, Chapter IX, there exist infinitely many primes of the
form 8%+ 7. If p is a prime of this form, then p— 1 = 8k 6. But, as we have already
learned, Glauss’s theorem implies that any number of the form 8% 6 is the sum of
the squares of three natural mumbers. Thus p— 1 = a®+b?4¢*, where a,b, ¢ are
natural numbers, and so p = a?4-b 4?4 1.

9. Tind an example showing that the product of two numbers, each of them
the sum of three squares, need not be a sum of three squares.

Solution. 63 = 3:21 = (124124 12)(124- 224 4%). The number 63, however,
being of the form 8k--7, cannot be the sum of three squares.

10. Deduce from the theorem of Gauss that every natural number is repre-
gentable as the sum of ten (or fewer) squares of odd numbers (%)

Proof. As we know, Gauss’s theorem implies that every natural number of
the form 8k--3, where & is an integer > 0, is the sum of the squares of three odd
numbers. On the other hand, any natural number » > 8 is of the form 8k--3+-7,
where r = 0, 1, 2, 3, 4, 5, 8, 7. We see that r is the sum of at most seven squares of
the number 1, consequently, n is the sum of the squares of at most 10 squares of odd
natural numbers. There exist infinitely many natural numbers that are not repre-
sentable as sums of fewer than 10 squares of natural numbers (cf. exercise 12, below).

(') This theorem has been stated without proof by F. Pollock [1], and has
been proved by 8. Turski [1].
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Remark. The theorem, which we have just proved, and which we shall call
for the time being theorem T, implies that every natural number of the form 8%k 43,
where & is a non-negative integer, is the sum of the squares of three odd numbers.
In fact, by theorem T, if % > 0, then

(*) ’ 87a+3=n§+n§+.‘.+ﬂ§,

where s is a natural number < 10, ny, Mg, ..., Mg being odd. Thus we have nf
= 1(mod8) for i = 1,2,...,5 and s0, by (¥), 3 = $(mod8), which, in virtue of the
inequality 1 < s < 10, proves that s = 3. Therefore, by (*), the number 8%+ 3 is
the sum of the squares of three odd numbers (of. Sierpingki [8]).

11. Prove that the sth power, s being a natural number, of the sum of the
squares of three integers, is also the sum of three squares.

Proof. If s is 1 or 2, the proof is immediate. Therefore it is gufficient to con-
sider the case where s is of the form 2%+ 3, being a non-negative integer. We have
w23 — (nky23 | therefore it is sufficient to prove our theorem for s = 3. But this
follows immediately from the identity of Catalan:

(B + 12+ 2% = 22 (32— 22— y2)2 1 P (32— 22— %)% 4 22 (2 — 322 — 3y?)2.

12. Prove that there exist infinitely many natural numbers that are not repre-
sentable as sums of fewer than ten squares of odd natural numbers.

Proof. Such are numbers of the form 72k 442, where k = 0,1, 2, ... In fact,
suppose that a natural number n = 72%--42 is the sum of the squares of s < 10
0dd natural numbers. Since the square of an odd natural number is = 1(mod8§),
we have n = ¢(mod8), whence, since 7 = 72t 42 = 2(mod8), we have s = 2(mod8).
But this, by the fact that 0 < s < 10, gives s = 2. Consequently, n is the sum of
two squares. But this is impossible because n = 3(24¢4-14) = 9(8t+4)+ 6 is divis-
ible by 3 but not divisible by 9. Similarly, we can prove that none of the numbers
72k+66, 5 =0,1,2, ..., is the sum of fewer than ten mquares.

§ 5. Representation by four squares. We are going to prove the
following theorem known as Lagrange’s theorem.

TemoreM 4 (Lagrange). Hoery non-negative integer is representable
as a sum of four squares.

Lmyma 1. Suppose that an odd prime D i a divisor of the sum of the
squares of four integers, at least one of which s not divisible by p. Then p
is the sum of four squares.

Proof of lemma 1. Suppose that a prime p satisfies the assumyp-
tion of the lemma. Then there is a multiple of p which is the sum of the
squares of four integers not all of which are divisible by p. Let » be the
least such multiple of p. 'We then have

(10) 7 =mp,

where m is a natural number, and

(11) n = a2+ b2t o2 4 g2,
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where a,b, ¢, d are integers, of which at least one, say a, is not div-
isible by p. Let ao, by, ¢y, d, be integers such that

(12) ay=a(modp), b,=>b(modp), ¢, =c(modp), d,=d(modp)
and
(13) laol <2/2, [bol <22, oo <D[2, |do| <p[2

(in order to find the number a, for instance, it suffices to find the re-
mainder 7 left by a divided by p and to put @, =r if » < p/2, or a,
=r—pif r > p/2).

Since a is not divisible by p, so is a, and, by a successive application
of (12), (10) and (11), we have

@+ b+ ci+ @ = @'+ b°+ A4+ @ = 0(modp).
Hence, by the definition of #, in view of (13), we infer
" < @4-bj+ o+ di < 4(p[2).
Consequently, n < p?, which, by (10), implies mp < p?, whence
(14) m<<p.

In virtue of (10) and (11), it remains to prove that m = 1. Suppose that
m # 1. 8ince m is a natural number, by (14) we have

(15)
We find natural numbers a,, b, ¢, d, that satisfy the conditions

1<m<p.

(16) a, = a(modm), b,==b(modm), ¢, =c(modm), d, = d(modm)
and
a7 la] <mf2, b <mf2, lal<m2, |d]<mf2.

By (16) we see that ai+bj+ci+di = a*4-b"+¢*+ d*(modm), whence,
by (11) and (10), we obtain m |ai4b1+ci+d:, so

(18) o+ bi+ei+di = mi,

where 1 is an integer > 0.

If 7==0, then by (18), a; = b; = ¢, = d, = 0, whence, l?y '(1.6)
all the numbers a, b, ¢, d are divisible by m, whence, by (11),. n is d%ws-
ible by m? and so, by (10), m | p, contrary to (15), since p is a prime.
Consequently, 7 is a natural number.

Suppose that

(19) 6] = 1ba] = &3] = |dy] = m /2,
this being possible only in the case of even m, i.e. when
(20) m = 2k,

Elementary theory of numbers 24
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where % is a natural number. The congruence a, = a(modm) gives a
= @,+mt, where ¢ is an integer. Therefore, by (20) and (19) we have
4 = +k+2kt = (264 1)k = k&, where %, is odd. Similarly we find

o =rkk, b==Ikk, o¢=1Wkk, d==kk,

where k,, &y, k3, ks are all odd numbers. Hence, by (20), (10) and (11)
we obtain # = 2kp = F* (k24 ki-+ki-+k;). Consequently, 2p = k(i ki
+k3+1%}). The square of an odd number is congruent to 1(modd),
whence we infer that the second factor of the right-hand side of the last
equality is divisible by 4, and so 2 | p, contrary to the assumption. This
shows that equalities (19) cannot hold. Conscquently, for at least one
of the inequalities of (17) the equality is impossible. This implies that

2
A de <4-%~, whence, by (18), we obtain ml < m?, so

(21) l<m.
Consider the identity of Euler
(@®+ 6"+ ¢+ @%) (a1 + b+ 1+ 8)) = (aay+bby+ oy +ddy) +

+ (aby— boy - edy — de; '+ (a0, — 04y + by — db, '+ (ady — da + be, — edy)?

(22)

Its left-hand side is, by (11), (10) and (18), equal to mp.
By (16) we have

(23) @y =a+may, by =btmby, ¢ =ctme, d =d+md,

where a,, by, ¢,,d, ave integers. By (11) and (10), formulae (23) give

aay+bby -+ cey +dd; = a®+ b2 e+ dB 4 m(aay+ bby+ cey+ dd,)
= m(p-+aa, -+ bb,+ce, -+ dd,) = miy,
ab,—ba, +ed, —de;, = m(aby— bay+- cdy— dey) = mt,,
a0, — ¢ty + bd; — b, = m(acy— cay+ bdy— db,) = mi,,
ady, — Q@+ bey — cby = m(ady— Ao+ bdy— cby) = mi,,
where i, ¥5, 15, 3, are integers. Substituting them in the right-hand side

of (22), the lcft-hand side of which is mp, we obtain m*lp = m*(13+
+#4+ 1241}, whence

(24) W = [+ G415+,

It the numbers #,,,1;,1, were all divisible by p, then p?|lp, and so
2 |1, which is impossible, since I is a natural number and, by (21) and
1(4), I < p. Formula (24) gives a representation of the number Ip as the
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sum of the squares of four integers, not all of which are divisible by p.
It follows from the definition of n that n < Ip, and 80, by (10), mp < Ip,
whence m < I, contrary to (21). Thus we see that the assumption that
m % 1 leads to a contradiction; consequently m must be equal to 1, and
this is precisely what was to he proved.

LeMMA 2. Hvery prime number is the sum of four squares.

Proof of lemma 2. We have 2 = 124-124 0202, therefore
there is no loss of generality in assuming that p is an odd prime. By lemma
1 it is sufivient to show that p is a divisor of the sum of the squares of
four integers which are not all divisible by p. The remainders obtained
by dividing the numbers

(25) 3y

1402, 1412, ..., 1+(—2—-
by p are different because, as we have already learned (cf. Chapter V,
—1\2
§ B), the numbers 02,12,..., (1’—2——) divided by p leave different re-

mainders. Similarly, the numbers

—1\2
I =

(26) -

divided by p leave different remainders. Suppose that the remainders
obtained by dividing the numbers of (25) by p are all different from the
remainders obtained by dividing the numbers of (26) by p. Then the total
number of different remainders obtained by dividing both the num-

—1
bers of (25) and those of (26) would be equal to 2 (1-!—%):1}-[—1,

which is impossible. Consequently, there exists at least one term of se-
quence (25), say 1%, that leaves the same remainder as a term, say
—y?, of sequence (26). We have p | 12292402, which shows that
p is a divisor of the sum of the squares of four integers one of which
(here the number 1) is not divisible by p. Hence, by lemma 1, p is the
sum of the squares of four integers. The proof of lemma 2 is thus
completed.

Proof of theorem 4. In virtue of identity (22), the product of two
numbers, cach of them the sum of four squares, is also the sum of four
squares. This, by induction, extends to any finite number of factors.
Hence, since any number > 1 is a product of primes, we infer by lem-
ma 2 that the number itself is the sum of four rquares. Sinee, more-
over, 0 = 024024 0240% and 1 = 12+ 02402+ 02, the theorem is proved.
Let. us mention hcre a result of D. H. Lehmer [6] saying that among
natural numbers only the numbers 1, 2, 5, 7, 11, 15, 23 and the num-
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bers of the form 4"m, where h = 0,1,2,..., m = 2,6, or 14, are such
that the representation of any of them as the sum of four squares is
unique apart from the order of the summands.

8. Ramanujan [2] has investigated the systems of natural num-
bers a,b,¢,d such that any natural number = is representable in the
form a@*+by*+c2+di?, where ®,y,2,t are integers. He has proved
that for a fixed order of @, b, ¢, d, say for @ < b <o < d, there are only
54 such systems, namely 1,1,1,d, where ¢ =1,2,...,7; 1,1,2,4,
where d =2,3,...,14; 1,1,3,d where d = 3,4,5,6; 1,2,2, d, where
4=2,3,..,7;1,2,8,d, where d=3,4,...,10; 1,2,4, d, where
d=4,5,...,14; 1,2,5,d, where ¢ =6,7,...,10 (cf. Dickson [71,
p. 104, theorem 95).

We now prove the following theorem of Jacobi:

Any natural number is of the form w4 2%+ 32+ 612, where »,y, 2, t
are wntegers.

Proof. Let » be a natural number. By theorem 4 there exist inte-
gers a,b,c,d such that

(27) n = a4 b4 ¢2 4 42,

We are going to prove that after a suitable change of notation and the
signs at a,b,¢,d we have 3 |a+b--¢. This is plain if at least three of
the numbers a, b, ¢, d are divisible by 3. Suppose that only two of them,
say ¢ and d, are divisible by 3. Then @ = -1 (mod3) and b = L1 (mod3),
whence for a suitable choice of the sign we have 3 | a5, 5o 3 |@atb4c.
Finally, if at least three of the numbers a, b, ¢, d, say a,b,c, are not
divisible by 3, then for a suitable choice of the sign + we have 3 | @t
+bde. Thus without any loss of generality we may assume that

at+b+tc = 3z,

where 2 i an integer. But among three integers at least two are congruent
mod2; therefore, in addition we may assume that a = b(mod2), whence
it follows that a--b = 2k, where & is an integer, and so a—b = 2(k—b)
= 2y, where y is an integer. But, it is easy to verify that the following
identity holds:

(28)

2 2
Bt o) = (oo 42 (U2 o) 40 (1)

whence
3(a?+b2+4c%) = (a4 b+ 0)*+ 2 (k—c)*+ 632,

which, by (28), proves that 3 |k—e¢; 80 k—c = 3t, where t ig an integer.
Hence, by (28), a®+b2+4¢2 = 322+ 62292, and so, by (27), n = d*+
+2y*+-32°+ 612, and this completes the proof of the theorem of J acobi
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EXERCISES. 1. On the basis of theorem 4 prove that every natural num-
ber which is divisible by 8 is the sum of the squares of eight odd integers.

Proof. If » is a natural number, then, by theorem 4, there exist four integers
a,b,c,d such that
n—1 = a? L b2 e24 @2,
whence
8n = (20—1)"+ (2a+1)*+ (26— 12+ (2b + 1)+ (26— 1)2 4 (20-F 1) +
+ (24— 1)+ (2d4-1)%
2. Prove that no natural number divisible by 8 is the sum of the squares of
fewer than eight odd integers.
Proof. As itis easy to prove, the sum of the squares of s 0dd numbers is of the

form 8k--s, where ¥ is a non-negative integer. So, if the sum is divisible by 8, then
8|s, and thus s > 8.

§ 6. The sums of the squares of four natural numbers. As an imme-
diate consequence of theorem 4, we conclude that any natural num-
ber is the sum of the squares of four, or fewer, natural numbers. Uging
Gauss’s theorem we now prove

THEOREM 5. A natural nwumber n is the sum of the squares of four
natural numbers if and only if it does not belong to the sequence of the num-
bersl, 3, B, 9, 11, 17, 29, 41, 4*.2,4%-6,4"- 14, where k. = 0,1, 2, ... (}).

Proof. We say that a natural number is §,, if it is the sum of the
squares of m natural numbers. It is easy to prove that none of the num-
bers 1, 3, 5, 9, 11, 29, 41 is §,. We prove this for 41, for instance.
Suppose, to the contrary, that 41 is §,, i.e. that 41 = a2 24 c2+a2,
where a,b,c,d are natural numbers, and a >b >¢ > d. Hence a? <
<4l <40®, and 80 4 <a <6. If 4 =6, then 5 = b2} ¢*+d2, which
is impossible. If @ =5, then 16 = b%4-¢®4-@2, which again is impos-
gible, since, as is easy to see, 16 is not S,.If @ = 4, then 25 = h24- 24 a2,
which is impossible, since 25 is not S;. Consequently, 41 cannot
be 8,.

Now, let m denote any of the numbers 2, 6, 14. Then m is of the
form 4%--2. Suppose that there exists a non-negative integer % such that
4"m is 8,. Let h denote the least of such integers. Since 2, 6 and 14 are
not 8, h>1. We then have 4'm = a2+b24c?4-d2, where a,b,c,d
are natural numbers and the left-hand side of the equality is divisible
by 8 because h >1 and m = 2(2k+1). From this we easily infer that
each of the numbers a,b,¢,d must be even. Thus « = 2ay, b = 2by,
¢ = 20,, d = 2d,, where a,, by, ¢;, d; are natural numbers. Hence 4" 'm
= aj-+bi+ci+di, which means that 4" 'm is 8, contrary to the defi-
nition of the number k. Thus we have proved that the number 4"m R

(%) G. Pall [1], p. 11. The truth of this theorem was conjectured by Descartes.
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where m =2, 6, 14, is not 8, for any non-negative infeger 4. This shows
that the condition of theorem 5 is necessary.

Now let n denote an odd natural number that satisfies the condi-
tions of theorem 5. Consequently, = %1 »3,b,9,11,17,29, 41, Since
7 13 odd, it must be of one of the forms 8%k--1, 8k4-3, 8k+5, 8k--7.

Suppose that n =8%k-+1. We are going to consider four cases %
=4, k=441, k=4i+2, b =4+3. If k=41, then # — 32t4+1
and, since » # 1, we must have ¢ > 1, and 8o ¢ = %-+1, where u is a non-
negative integer. Hence n = 32(u-1)--1 = 4(8u-+6)-+9. By Ganss’s
theorem, the number 8u+ 6 is the sum of the squares of three integers.
Since 8u+6 = 2(4u-3) cannot be the sum of the squares of two inte-
gers, we see that 8u-6 is §;, whence it follows that the number
= 2%8u—+6)+32is §,. If &t = 4141, then »n = 32¢{4-9. Therefore, since
n #9and w7 41, we have t > 2, 80 ¢ = 42 where ¢ is an integer > 0.
Hence n =32(u+42)49 = 22(8u+6)4-72, whence, as above, we infer
that » is §,. If % = 412, then n = 32{--17 and, by » 17, we
have ¢>1, and so ¢ =wu+1, where £ is an integer > 0. Hence n
=32(u+1)417 = 22(8u-6)4- 5, where n is 8. If & = 41+3, then
7 = 321+ 25 = 22(81+6)-+12, whence m is S,. Thus we see that the
condition of theorem 5 is sufficient provided # = 8k-1.

Now suppose that n = 8%k-+3. Since » '3 and n # 11, we have
k>2,and 50 & = -2, where ¢ is a non-negative integer. We then have
7 =8(t+2)+3 = 8i4 3442, therefore, in virtue of Gauss’s theorem,
which implies that the number 8¢ 8 is the sum of the squares of three
odd numbers, we conclude that n is 8,. The condition of theorem 5 i
thus sufficient also for the numbers n — 8k+43.

Further, suppose that n = 8k--5. We are going to comsider four
cases: k=4t, k=444+1, k= 4142, k=44+3. If & = 41, then =
= 32145 and, since n £ 5, we have t >0, 50 t = %1, where % ig 8 non-
negative integer. Hence = — 32 (u+1)+5 = 22(8u--3)4-52, whence
we infer that # is 8. If & = 41--1, then » =320+ 13 = 2%(8i+-3)4-12,
which shows that o is 8,. If & = 41+ 2, then n = 32{421 = 22(8t+4-3)+-31,
whence » is §,. If &k = 4t4-3, then n = 32429 and, since n w29,
we have ¢ >0, 80 ¢ = w41, where u > 0, whence n = 82(u-1)--29
== 2%(8u+3)+ 72, which shows that # is 8,. The condition of theorem
5 iy thus sufficient for the numbers # = 8% 5.

Finally, we consider n = 8%--7. Then, by theorem 4, there exist
integers @, b,c,d such that n = a*4+-b2+4- 024 d2 On the other hand,
by theorem 3, since n = 8%--7 » none of the numbers a,b,¢,d can be
equal to zero. Thus = ig &§,.

We have thus proved that in order that an odd natural number be the
sum of the squares of four natural numbers it is necessary and sufficient
that it should not be any of the mumbers 1,3, 5,9 11, 17, 29, 41. This
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implies that any odd natural number > 41 is the sum of the squares of four
natural numbers.

Now let n denote an even natural number different from 4.2, 4.6,
4".14, where h =0,1,2,... Let 4" denote the highest power of the
number 4 which divides the number n. We have n = 4"m, where m is
not divisible by 4. Consequently, m = 4k+4-1, m = 45+ 2, or m = 4k--3.

If m = 4k--1 with even %, i.e. with k¥ = 2¢, then m = 841, which,
as proved above, is S,. If, in addition, m 5= 1, 9, 17, 41, then also n =
4™ is 8,. But, since » is even, in virtue of the fact that m is not divis-
ible by 4, we must have kb > 0. Clearly, 4 is §,, 4-17 =68 = 124324
482472, 4-41 =164 = 1212492492, whence 4"-1 = 4(2"1)?, 4*-9
= 4(2" 1.8, 4M17 = 4-17(2%0), 4M4l = 4-41(2" are all S,
Thus we see that, if m = 4k41 and % is even, then n = 4™m is 8,. If
m =4k-+1 and % is odd, i.e. % = 2¢t+1, then m = 8t+5, as proved
above, is §, provided m = 5 and m 5= 29. But 4-5 = 20 = 1212432+ 32,
4-29 =116 = 12432452492, whence, by the fact that m is odd, n
is even and % is a natural number, we infer that both numbers are §,.
Thus we have proved that if m = 4%-1, then n = 4"m is §,.

Suppose that m = 4%k-+2, then, if &k = 2¢{, we have m = 8{42.
Sinee 7 # 4"-2, and since n = 4"m, we have m # 2, and so ¢ > 0, ie.

% = %1, where % is a non-negative integer. We then have m = 8(w4-1)4

+2 = 8u-6-122. Since, as we have already learned, 8u+6 is 8;, we
infer that m is §,, and consequently n = 4"m is also §,. In the case of &
=241 we have m = 86, and since = == 4"-6 and n % 4"-14, we
must have ¢ > 2; so ¢ = u-+2, where « i3 a non-negative integer. Hence
m = 8(u+2)+6 = 8u+6--42, which, in virtue of the fact that 8u--6
is 8,, implies that m is 8, whence it follows that # = 4"m is also .
Thus we have proved that if m = 4k+2, then n = & i 8.

Finally, if m = 4k 3, then, in the case of &k = 2¢{, we have m
= 8¢+43. But, as is shown above, for m % 3 and m s 11 the number
m = 8t+3 is S§,. Thus, if m ==4k-+3, then the number n = 4"m is
8, provided n # 47‘-3, n 4" 11, But 4-3 =12 = 12412412432 and
4-11 = 44 = 12432432452, Thus # = 4"n, where h >0, is 8, because
n is even and m odd. In the case of k = 2{+1 we have m = 8+ 7, and
50, a5 we know, m is §,. This implies that n = 4"n is also S,. Thus we
have proved that, if m = 4k-+3, then n = 4™ iy §,.

‘We sum up the results we have just proved in the statement that,
it m is an even number different from 4*-2, 4"-6, 4*-14, where
h=20,1,2,..., then » is §,. We have also proved that an even natu-
ral number m is the sum of the squares of four natural numbers if and only
if i is mome of the mumbers 472, 4*-6, 4"-14, where h = 0,1,2, ...

Thig, combined with the results obtained for odd numbers, com-
pletes the proof of theorem 5.
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Theorem 5 implies the following

COROLLARY. The square of any natural number > 1, with the emcep-
tion of 32 is the ‘sum of the squares of four natural numbers.

EXERCISE. Without using the theorem of Gauss, prove that any positive
rational number is the sum of the squares of four positive rationals.

Proof. Let r be a positive rational, r = /m, where I and m are natural num-
bers. By theorem 4 it follows that every natural number is the sum of the squares
of four or fewer natural numbers. If Im = a2+ b2+ 2+ d2, where a,b,c,d are natu-
ral numbers, then r = Um = (a/m)®+(bjm)2-+ (¢/m)2+(d/m)?, whence we see that 7 is
the sum of the squares of four natural numbers. If lm = a®4- b2+ ¢, where a,b,care
natural numbers, then r — ljm == (a/m)2+(b/m)z-l—(30/5m)2+(4o/5m)2. If Im =
a®-+ b2, where a, b are natural numbers, then r = I/m = (a/m)?4- (b/3m)2 + (2b/3m)2
+(2b/3mP. Tinally, if Im = a2, where o is a natural number, then r = ljm
= 4(a/2m)2. Thus, in any case, » is the sum of the squares of four positive rational
numbers.

Remark. It can be proved that each positive rational number is the sum of
the squares of four different positive rationals, and that for any positive rational there
are infinitely many such representations.

As it is proved in § 4, the numbers 2% wheren =1, 2, ... » and, @ for-
tiori, the numbers 42, b = 0,1, 2, ..., are not 8;. On the other hand,
3= 12412412, 9 = 12422422 11 = 12112432, 17 = 224224 32,
20 =24 80447 41 = P4 221 62, b6 — (2" (212 (2P, 4Py
= (2" (@MY)2 4 (27-3) for R =0,1,2,... Thus, by theorem 5, we,
deduce

THEOREM 6. 4 natural number n is the
or four natural numbers if and only
42, where h =0,1,2, ...

This, in consequence, gives the following

COROLLARY. An odd natural number n s the sum of the squares of
three or four natural numbers if and only if n is different from 1 and B.

This corollary is the basis of the proof (due to A. Schinzel) of the
following

THEOREM 7 (Hurwitz [an.

sum of the squares of three
if n is none of the numbers 1, 5, and

The only natural numbers n for which
"2 is not the sum of the squares of three natural numbers are the numbers
n=2" and n=29"5, where h — 0,1,2,...

Proof. In §4 we proved that, if % is not
is not §;. But, since the numbers 1 and 52 are not 83, the numbers 4*
and 4*-52, B = 0,1,2,..., are not 8,. Thus it remaing to prove that,
if # is @ natural number = 2* and #2"5, where h =0, 1, 2,..., then
n® is S,.

Suppose therefore that » is a natural number such that % s 2* and
n 5 25, where } = 0,1,2,... Let s be the greatest exponent for
which 27 divides n. We have n — 2°m, where m is odd. Moreover, in
virtue of the condition on 7, m must be different from 1 and 5. From the

83, then the number 4%
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corollary to theorem 6 it follows that m is the sum of the squares of
three or four natural numbers; so m = a4 b*--¢24-d2, where @, b, ¢ are
natural numbers and ¢ is a non-negative integer. Hence
m* = (6" b+ ¢+ &) = (a’+ b — ¢ —d)*+ (2 (ac+ bd)* + (2 (ad— bo))?
= (a*+ " — & — @' +(2 (ad -+ be))*+(2 (ac— bd))*.

Since m is odd, the equality m = a2 b2+ 2+ d? implies that among 1‘3he
numbers a, b, ¢, d either one or three numbers are odd,. the remaining
ones being even. Therefore the number a2 b2—c¢®—d? is odd, and so
it is different from zero. Since a, b, ¢ are natural numbers, ac--bd and
ad--be are also natural numbers. We are going to prove that at least one
of the numbers ad—be, ac— bd is different from zero. In fact, suppose
that ad = be and ac = bd. Then ade = be® and acd = bd*, whence bc?
== bd?, and so, since b > 0, ¢? = d*. Hence, in view of ¢ >0 and & > 0,
it follows that ¢ = d, and, since ad = bc and ¢>0, a = Db ) whence m
= 2(a?+¢?), which is impossible, since m is odd. Therefore elt.her ad—be
s 0 or ac—bd = 0 (or both). Thus at least one of the sums written above
gives a representation of the number m? as the sum of the squares of
three natural numbers. We thus have m? = 2--y*+-22, where 2,y,2
are natural numbers. ..

Hence, n° = (2°»)*-+ (2°%)*+ (2°%)?, which proves that »" is 8,.

Theorem 7 is thus proved. ) o _

By theorem 7 it follows that o natural number n is a principal dztzgo.-
nal of a rectangula: pm‘%llelepi;oed 'Zzhoseo e;lgezs are natural numbers if it
2 the form 2" or 2"-b, where h = 0,1,2,... .
“ m]ﬁ‘r(gm T]J:eorem 7 it foll(’)ws that for any odd natural number ¢ d.lf;
ferent from 1 and 5 there exist natural numbers x,y,z such that ¢
= g2-}-y2+22. The question arises whether for any odd natural number ¢
different from 1 and 5 there exist natural numbers 09,2 such that
(@,9,2) =1 and & y2+2* = 12. Ag proved by.A_. Schmgel ([12], Corol-
lary 1), the answer to this question is in the pqs1t1ve. (It is easy to prov;i
that for even t there are no such , y, 2.) F. Steiger [1] has foun;i 343 sue .
systems ®,y,# for ¢<100. For example, 3%= 1:-|—22x +22~, 1;3
== 02432468, 0% = 1242482 = 42442472, 112 =2 +ei +92, >
= 3242122, 152 = 22--52}14% = 224-1024+112, 172 = 12 +122 +1
== 824024122, 19% = 12624182 = 624-62-417% = 62+10.—1_—15 . u

A. Schinzel ([12], Theorem 1) gives necessary and suffml:nt ﬁon 2~
tions for a natural number # to be representable in the form —}—yi—}.-z s
where @, y, ¢ are natural numlll)erz ;(sluch that (z,y, 2) = 1. The conditions

ewhat complicated.
hOW%;hez ?)ﬁ‘?)bsl?;lx of represegting a natural number a8 the sum of the
squares of four different integers has also been considered. - We have
namely the following theorem of G. Pall [1].
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The only natural numbers that canmot be represented as the sums
of four different squares > 0 are the numbers 4*a, where h =0,1,2, ...,
=13, 517,09, 11, 13, 15, 17, 19, 23, 25, 27, 31, 33, 37, 43, 47, b5, 67,
78, 97, 103, 2, 6, 10, 18, 22, 34, 58, 82.

§ 7. Sums of m > B positive squares. By theorem 5 any odd natu-
ral number > 41 is 8,. Therefore, if to any such number we add 12 or 22,
we see that any even number > 42 and any odd number > 45 are S;.
Thus it remaing to consider numbers < 45. By theorem 5 numbers 4,
7, 10, 12, 18, 16, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 35,
36, 37, 38, 39, 40, 42, 43, 44 are §,. So, adding 1 or 4 to any of them
we obtain numbers of §;. There are still the numbers 1, 2, 3, 4, 6, 7, 9,
10, 12, 15, 18 and 33 to be considered. It is easy to prove that none of them
is S;. We exemplify this by proving that 33 is not S;. Suppose that 33
is §;, ie. that 33 = a?4-b2+c¢24-d%+-¢2, where a,b,c, d, e are natural
numbers such that ¢ >b>¢>d>e. Hence a?*+4 <33 <L ba?; s0
6 < a® < 29, which shows that 3 <a <5, whence a =3 or 4 or 5.
In the case of @ =3 the number 33—a® =24 =4-6 is 8,, contrary
to theorem 5. If ¢ = 4, the number 33 —a? = 17 is §,, which, as in the
previous case, contradicts theorem 5; the case of ¢ =05 gives 33—a?
= 8§ = 4-2 and this is also impossible, since, by theorem 5, 4-2 is not §,.

‘We have thus proved

TaeorREM 8. The only natural numbers that are not the sums of the
squares of five natural numbers are the numbers 1, 2, 3, 4, 6, 7, 9, 10, 12,
15, 18, 33.

Now let m be a natural number > 6. We are going to find the natu-
ral numbers << m-+13 that are §,. Suppose that » is such a number.
Then there exist natural numbers a,, a5, ..., ¢, such that ¢; = a, > ...
> ay and % = o+ aj+...+a5,. Hence ai+(m—1) < n < m-+13, which
implies. o <14, and so a, < 3. Therefore @, =1 or a, = 2 or a, = 3.
In the case of a; =1 (since a; > ay > ... = ay,) We have a, = ay = ...
== @y-=1, and 80 m = n. Suppose that ¢, = 2. If at least four of the
numbers @y, ag, ..., dy are equal to 2, then n > 5.4+ (m—D5) = m415,
contrary to the assumption that » <m--13. Consequently, at most
three of the numbers a,, @g, ..., d,, can be equal to 2. Therefore there
are four possibilities: 1. none of them is equal to 2, and then » == 44
+(m—1) = m-+3; 2. one is equal to 2, then # = 24 = (m—2) = m-+6;
3. two are equal to 2, then n = 3-4-(m—3) = m-+9; 4. three of the
numbers a;, s, ..., Gn are equal to 2, then n = 4-4-+(m—4) = m-++12.
Thus all that remains to be considered is the casé a; = 3. Then n—9
=aj+a5+...+a;5,. If 6, =3, then n > 18+ (m—2), contrary to the
agsumption that n < m+4-13. Consequently a, < 2. If a, =1, then

Ay = @y == ... =0y =1; 80 7 =3%tm—1 =m+8. If a,=2 and,
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if among the numbers a,, ¢, ..., &, there are two or more numbers equal
to 2, then n > 324224224 (m—3) = m-+14, econtrary to the assumption
that #» <m-+13. Hence a3 =a, = ... whence m = 324
4224 (m—2) = m-+11.

‘We have thus proved that among the natural numbers < m--13
only the numbers m,m-+3, m+6, m-+8, m-+9, m+1l m+4-12
are Sy,.

Now we suppose that » is a natural number > m-+4+13. If n = m-28,
then, since m 3> 6, we have n = m-|28 = 2-32+4-2°+(m—6)-1%,
which shows that n is S,,. Suppose that n = m--28. Then n— (m—>5)
> 18 (since n > m--13) and n—(m—B5) % 23. By theorem 8 it follows
that the number n-—(m—5) is S;; so the number n=n— (m—>5)--(m—>5)-1*
is Sm.

We sum up the results we have just obtained in

TrROREM 9 (Pall [1]). If m is a natural number > 6, then the only
positive integers that are not the sums of the squares of m natural numbers
are the numbers 1,2,3,...,m—1,m+1, m+2,m+4, m+5,m+7,m+
10, m-+13.

By theorems 8 and 9 we deduce that, if m is a natural number > 5,
then any sufficiently large natural number is the sum of the squares of
m mnatural numbers. This is not true for m =1, 2, 3, 4, because there
exigt infinitely many natural numbers

1) which are not the squares of natural numbers (e.g. the numbers
#2-+1, where n =1,2,...),

2) which are not S, (e.z. the numbers of the form 4k 3, where
F=0,1,2,...),

3) which are not S, (e.g. the numbers of the form 8k+ 7, where T
= 0,1,2,...), .

4) which are not S, (e.g. the numbers of the form 4".2, where h
= 0,1,2,...).

Bqually, there exist infinitely many natural numbers which are not
the sums of the squares of three or fewer natural numbers, e.g. numbers
of the form 8%--7, where & = 0,1,2,... However, by the theorem of
Lagrange, any natural number is the sum of the squares of four or
fewer natural numbers.

= Oy =1,

EXERCISES. 1. Prove that for any natural number m there exist infinitely
many natural numbers which are 8, ¢ =1,2,...,m, simultaneously.

Proof. We show that any number of the form (13k)* greater than m-+-13 has
this property. In fact, we have n = (18k)* = (5k)*+ (12k)? = (8%)2 4 (4%)2 + (12k)*
= (2k)2 4 (4%)2 4 (Tk)% -+ (10K)2. Thus we see that the number n is 8y, S,, 83 and 84.
It 4> 4 and 4 < m, then we have n = (13%)2 > 33 and n > m-+13; 8o n > i+ 13,
which in virtue of theorems 8 and 9 shows that » is Si.
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Remark. It can be proved that the least natural number which is §,, 8, and
83 is 169. This number is §; for all ¢ < 155 and among the i’s between 155 and 169
it is S; only for ¢ = 157, 158, 160, 161, 163, 166 and 169. The proof that 169 is
8100 follows for instance from the formula 169 = 23:22477+12 or from the formula
169 = 8249224 97-12,

2. Find the least natural number n which is §; for any ¢ < 1000.

Solution. m = 342, In fact, since n is §;, and 80 n = k2, where & is a natural
number, we have since = is 899, %% > 1000, and so % > 82. But, by theorem 2,
the numbers 322 = 210 and 332 = (3-11)® cannot be §,. However, 342 = 162302
= 2742424 247, whence we infer that 34? is ,, 8y, 83. By theorem 5 we see that
34%ig §4 and by theorem 8 it is §5. Now a simple application of theorem 9 shows that
34% is 9; provided 34% > i+ 13 and ¢ » 6. Therefore 342 is ; for any 4 < 1142. An
example of a representation of 342 as the sum of 1000 squares is 342 = 2-824 2-4% |
+999-12.

3. Prove that the only natural numbers » such that #2 is not S5 are the numbers
, 3 and that the only natural numbers # for which n% is not S¢ are the numbers
s 4. :

The proof follows immediately from theorems 8 and 9.

1,2
1,2
§ 8. The difference of two squares.
TEROREM 10. An dinteger % is representable as the difference of two
squares if and only if k is not of the form 41+ 2, where ¢ is an intéger.
Proof. If a and b are two even numbers, then a®—b2 i divisible
by 4; if both @ and b are odd, then a?— b2 is divisible by 8; if, final-
ly, one of the numbers a,bis even and the other is odd, then a2— b2

is odd. We have thus proved that the condition of theorem 10 is
necessary.

Now suppose that an integer % i not of the form 4¢--2. Consequentlys
either % is odd or it is divisible by 4. If % is odd, then both % and k-1
are even; 50 (k—1)/2 and (k+1)/2 are integers. We have

-

If % is divisible by 4, then
T : ok 2
b=~ —~ = —1}.
(4 +1) (4 1)

Thus we see that the condition is sufficient as well. This completes the
proof of theorem 10.

The argument used to prove theorem 10 will also prove the following
TEROREM 10% Any natural number different from 1 and 4, which s
not of the form 4142, is the difference of the squares of two natural numbers.

As iy easy to prove, none of the numbers 1 and 4 can be represented
a8 the difference of the squares of two natural numbers.
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Our present aim is to determine all the representations of a given
natural number » as the difference of the squares of two natural numbers.

Let n be a natural number different from 1 and 4 which is not of
the form 4z--2. Suppose that n = #2—4?, where z, y are natural num-
bers. We then have n = (¢4 y)(z—y) and, if d = s—y, then 4 is a natu-
ral divisor of the number n less than the divisor d’ = #-y, complemen-
tary to it. Moreover, the divisors d and d' are either both even or both
odd because d'—d = 2y. Now let d denote an arbitrary natural divisor
of the number » which is less than the complementary divisor d’ = n/d
and such that @ and ¢’ axe either both even or both odd. Then = d%d s
ol’—l—d)2 (al’——c‘l)2
2] T\ 2
= dd =mn. S0 n = a?—y?. We see that in this way all the representa-
tions of the number n as the difference of the squares of two natural num-
bers are obtained. Thus the number of the representations is equal to
the number of natural divisors of the number » that are less than the
complementary divisors, respectively, and such that the divisor anq the
divisor complementary to it are either both even of both odd. This, in
particular, shows that any odd prime number has precisely one repre-
sentation as the difference of the squares of two natural numbers, namely

2 2
P = (1—0—:{:}—) — (1—)—;—}—) Another consequence iy that, if an odd natural

d'—a

g = are natural numbers and 22—y* =(

2
number is not the square of a natural number, then it has d(n)/2 dif-
ferent representations as the difference of the squares of two natural
numbers. If the number » is a square, then it has (@ ('n)——l)/z such repre-
sentations. (By d(n) we mean the number of the divisors of n.) This shows
that odd primes are not the only numbers that have precisely one repre-
sentation as the difference of squares of two natural numbers. Tlhg

P+
-

squares of odd primes have the same property; we have p? = (

— (p 2;1)2. But any odd composite number that is not the square of

a prime number has at least two representations as the difference of the
squares of two natural numbers. . o

It is easy to prove that among the natural numbers'dlwmble by 4
only the numbers of the form 4p or 4p? where p is a prime > 2, have
precisely one representation as the difference of the squares of matural
numbers.

EXERCISE. Prove that for any natural number m there exists a natural
number n which has precisely m representations as the difference of the squares of
two natural numbers.
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Proof. For n we may set n = 2™+, In fact, it has precisely m represen-
tations as the difference of the squares of two natural numbers because, as if is
easy to see, the only such representations are 22+l — (2¥m—kyok-1y2_ (ggm—Is__
—ok=12 k1,2, ..., m.

§ 9. Sums of two cubes. It is easy to prove that any integer = 0
hag a finite number I > 0 of representations as the sum of two cubes.
Clearly, it suffices to prove this for natural numbers. The number of re-
presentations of a number as the sum of two non-negative cubes is, ob-
viously, finite. Suppose that n = 2°4-y®, where @,y are integers, @ >0,
¥ <0. We then have n = (#-+y)(x*—ay+y?), where —ay > 0. DBut,
since ©-+y >0, whence z+y >1, we have 2E—ay+y? < n, which,
in virtue of the fact that —ay > 0, proves that o < Vn and 0 < —
< Vn. From this we infer that the number of pairs @,y is finite.

Using the fact that the cube of an integer is econgruent to 0, 1 or
8(mod9), one can easily prove that no integer of the form 9%+ 4, where
k is an integer, can be the sum of three or fewer cubes. Consequently,
there exist infinitely many natural numbers that are not representable
a8 sums of two cubes. It is also easy to answer the question which are
the prime numbers that are representable as sums of the cubes of two nat-
ural numbers. In fact, if p = %+ 43, where @,y are natural numbers,
then p = (m+y)((w»—y)2+my), whence, since z+y > 2, we must have
? =a+y and (v—y)>+ay = 1, which shows that 4 = ¥ and oy =1,
and 80 # =y = 1 and p = 2. Thus we see that the number 2 is the only
prime which ean be represented as the sum of the cubes of two natural
numbers.

Now we suppose that a prime p is the sum of the cubes of two inte-
gers one of which is not a natural number. Then prime p is the difference
of the cubes of two natural numbers. Let Pp = a®—b®. We then have p =
(a—b) (a*+-ab+4-b%), which implies @—b =1 and P = a’+ ab-b?
= 3b(b+1)+1. From this we see that, if a prime p is representable ag
the difference of the cubes of two mnatural numbers, then p must be of
the form p = 3b(b--1)+1, where b is a natural number. On the other
hand, if p is of this form, then p = (b+1)*—b3. Thus the primes of the
form 3b(b--1)+1 are precisely the ones which are representable ag the
differences of the cubes of natural numbers. We do not know whether
there exist infinitely many primes of this form. (The answer in the
Dositive follows from the conjecture H.) However, many primes of
this form are known. For example, 7 =2—1%, 19 =33—23, 37
=43—33, 61 = 5°—43, 127 — 73_@3, ‘

THROREM 11. For any natural number m there emists a natural num-

ber m that is representable as the sum of the cubes of two integers in at least
m different ways. '

s

icm

§9. Sums of two cubes 383

Proof. In §15, Chapter IL, we have proved that there exists an

infinite sequence of systems wy,yz, 2, (k=1,2,...) of integers such

that (@, ¥x) =1, @h+yk = 72% and 0 < |2 < |2,| < ... Changing, if
necessary, the signs of 4; and y; we may assume that 2, > 0 for any
kb=1,2,...

2124 .%m
Ly b/c = m—— Yy for %
2 k23

=1,2,...,m. All a;, and b, ave integers and, moreover, a}-+ b} = n.

If for some different indices 7, j of the sequence 1,2, ..., m we have
@; = a;, then, since #; = 0 for any k =1, 2, ..., m, ;/2; = a;/z;, whence,
in virtue of (#;,2;) = (w;,#) =1 we obtain #; = #; and 2, = #;, which
is impossible. Similarly, if a; =b;, then a;/2; = 9;/2;, which, in virtue
of (w;,2) = (y;,%) =1, is impossible. Thus we have obtained m dif-
ferent representations of the number » ag & sum of the cubes of two inte-
gers. This completes the proof of theorem 11.

TamorEM 12. Let n be a natural number that is neither the cube of
a natural number nor the cube of & natural number multiplied by 2. If n
is representable as the sum of the cubes of two rational numbers, then n has
infinitely many such representations.

Proof. Let » be the greatest integer for which r® divides n. Then
7 == rPq, where ¢ is a natural number which is not divisible by the cube
of any natural number > 1. By assumption, @ cannot be equal to 1 or 2.
Suppose that » is the sum of the cubes of two rational numbers. If we
reduce them to the same denominator, we may write n = (u[t)3- (v/t)3,
where «, v are integers and f is a natural number. Hence u®--v® = a(rt)s.
The numbers «, v arve different from zero, since, by assumption, » is nob
the cube of a natural number, and so it cannot be the cube of a rational
number. Thus d == (u,v) is a natural number. Let u =dx, v =dy,
where @,y are integers such that (z,y) = 1. We also have d°®| a(rt)?,
whence, since a is not divisible by the cube of any natural number, we
eagily infer that d | rt, and so rt = de¢, where 2 is a natural number. We
gee that the numbers =, v,z satisfy the equation #34-y® = az®. Thus,
by theorem 10, § 15, Chapter II, we deduce that this equation has infini-
tely many solutions in integers @, y,# with (@,¥y) = (#,2) = (¥, z)‘ =1
and # # 0. For any such golution we have nz® = a(r2)® = (m)a—l—(r.y)ﬁ,
whence n == (r#/2)3+(ry/2)3. Moreover, we see that different solutions
give different representations of » as the sum of two cubes, because the
fractions @/¢ and y/¢ are irreducible. Theorem 12 is thus proved.

COROLLARY. If r is a rational number which is neither the cube of a ra-
tional number nor the cube of a rational number multiplied by 2, and if r

2%y 2
Let n = Téa...60,, ap = —— "

s representable as the sum of the oubes of two rational numbers, then r has

infinitely many such representations.

AR R T S
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Proof. Clearly, we may suppose that r is a
ie. that r =1/m, where I and m are natural

According to the hypothesis,
number ¢ such that

l w\®  [p)® . [um)® (vm)3
;;;"(7) +(7)’ whence  Tm —(T) s

positive rational number,
numbers and (7, m) = 1.
there exist integers u,v and a natural

Thus the natural number Im? is the sum of the cubes of two rational
numbers and it is neither the cube of a rational number nor the cube of
a rational number multiplied by two, because, if it were, r = I/m would
be either the cube of a rational number or the cube of a rational num-
ber multiplied by two, contrary to the assumption. Thus, by theorem 12 ,
we see that the number Im? hag infinitely many representations as the
sum of the cubes of two rational numbers, which, in turn, implies that

the number r = Im?/m® has this property. This completes the proof of
the corollary.

§ 10. The equation #3--y* = 22, Now we are going to present an
elementary proof of Fermat Last Theorem for the exponent 3. The proof
which we present here has been worked out by J. Browkin on the bagis
of ideas due to R. D. Carmichael [4]1, pp. 67-70.

THEOREM 13. The equation @+ y% =28 4is insolvable in integers
Ty Y, 2 # 0.

LEvwma, Al the solutions of the equation

(29) 8% = 24 3p2

in iniegers a, b, s such that (@, ) =1, s is odd are given by the following
Jormulae

(30) 8§ =a®+3p82, a= a®—9af2, b = 3a?f— 383,

where the numbers a, p satisfy the conditions

(31) a f(mod2), (a,38) =1.

Proof of the lemma. First we
fy conditions (31). Let the numbers
Then, using the identity

(32)

suppose that the integers a, f satis-
a,b,s be given by formulae (30).

(4243B2)s = (A3—9AB=)2+3(3ABB—SB")2, -
we eagily verify that the numbers a, b, s satisfy equation (29). By (31)

we infer that (a,d) = (a(a2—9p2), 3p(a2—p2) = (a?-—9p2, a2 g2) =
(882, 0®—p%) =1 and that ¢ is odd.
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Suppose that integers a, b, s satisty equation (29) and that (a, b)=1
and ¢ is odd. In order to prove the lemma we have to find integers a, §
that satisfy conditions (30) and (31).

In order to do this we note that any prime divisor of the number
s is of the form 6k--1. In fact, if p | s, then, since s is odd, p > 3. If
p =3, then by (29), 3 | a?; so 3|a, and, again by (29), 9 | 3b2, whence
3 | b, contrary to the assumption that (t.l,, b) = 1. Thus we see that p >23.
Since p | s and (@, b) = 1, by (29) we infer tlzlat (b,p) =1, 850 0 =at+
+ 8b? = b2(a®”° +-3)(mod p) . Hence (ad®~ ") = —8(modp). This shows
that —3 is a quadratic residue to the modulus p. As is known, this implies
that p is of the form 6%--1. ' . ' _

The construction of a, 8 can now be carried out by induection with
regpect to the number n of the prime factors of .the integer s.

If n = 0, then, since §* = a?+3b2 > 0, we obtzan'l s=1.80a = +1,
b = 0. Thug the numbers a, f are defined by settmg a= 41, f=0.
It is plain that conditions (30) and (31) are satisfied. ‘

Now we suppose that the lemma iz proved for a natural 11111.11])61
% > 0. Let an integer s that has n--1 prime factors aJrEd twq I:elatlvebt
prime integers a, b matisfy equation (29). Let p be a prime divisor of s;
80 & = tp, where ¢ has # prime factors. e .

Since p is of the form 6k+1, there exist integers a,, f; such tha

o 2
"p = al4-38}, where a, B, satisfy conditions (31). If ¢ = a}—9a,fi,

d = 303$,— 36}, in virtue of identity (32), we obtain p3 = ¢2--3d? and,
by (31), (¢, d) =1.
We have

t°ps = $3p3 = (a2 3b2)(c%+3d*) = (ac-3bd)24- 3 (adT be)?.
Consider the product

(34)  (ad—bo)(ad-+bo) = (ad)?—(bo)? = (o~ BD%)d*— b(c+ 3l

= {5p3d2— bap? = p3(13d>—b?).

It p fad—Dbo and p | ad-be, then p | 2ad and p | 200, whenei, in :11'131;«2
of the fact that p is odd, we obtain p | ad and p | be. But p® = ¢*+43;

and (¢, d) = 1. Hence (p,¢) = (p,d) =1 and 8o p|a and p|b, con-

@, by =1.

tJMTYO01;;5ec(luzmzuly, only one of the numbers‘ Aa.d_—— be and ad--be can })e
divigible by p. But, by (34), this number is divisible by p°. Consequant g’,
for the appropriate choice of the sign in the brack.ets afg the e;x('i of (33)
the number in the brackets is divisible by p® BSince, in addition, t1'1e
left-hand side of (33) is divisible by p°, we see that the other number in

25
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the brackets on the right-hand side of (33) must be divisible by ps.
Therefore if the signs are suitably chosen,

ac =+ 3bd adF be
W == - and v =

(35) S pe

are integers. Thus formula (33) turns into the form
(36) 1 = u24 302,
We solve (38) for ¢ and b to tind

@ =uc+3vd and +b = ud—uve.

Hence, in view of (a, b) =1, we infer that (u »0) =1. In virtue of the
induetive hypothesis and formulae (36), there exist integers a,, 8, which
satisfy (31) and are such that

(37) t= a§+3ﬁgs U = ag‘l‘gazﬂg; v = 3a§ﬂ2"3ﬂ§-

We write w

o = a3+ 36,65, B = ayfly—faa,. ;
Then

§ = 1p = (ai+31) (a}+36}) = o*438°, ,
¢ = ou~+3dv = (af— 90y f3) (a3 — 90, f3) + 3 (383 f, — 36%) (302 B, — 363)
= d®—9qaf?, o
bb = du—cv = (3¢}, —3%) (o — 90, 83) — (0} — 901 B3) (33 B, 343)
= 3’8 —34°.

", Changing, if necessary, the sign of B, we see that the numbers a, f satisty
equations (30). From this, since (@, b) =1, we infer that the integers a, #
satisfy (31).

Proof of theorem 13. Suppose that numbers »,Y,? satisty equa-
tion (29) and, moreover, that they are chosen in such a way that the
number |zyz| 5 0 agsumes the least possible value. Clearly any two of the
numbers x,y, 2 are relatively prime, since otherwise a common - divi-
sor 4 >1 of two of them would divide all the three and thus we could
divide equation (29) throughout by @, which would produce a smaller
solution. :

It is very easy to verify that ®,Y,% are not all odd, and, by what
we have proved above, only one of them is even. Consequently, we may
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agsume that the number 2 is even and the numbers @,y are odd. So the
numbers z--y and r—y are even, whence

(38) Tty =2u, F-—y = 220.
Hence .
(39) T o= Uw, Y o= g—ap,

By (39), in virtue of (v, y) = 1, since the numbers @,y are odd, we infer
that (u,w) =1 and u % w(mod?2). Substituting the values for z,y ob-
tained from (89) in equation (29) we obtain

[(40) 2u (u? 4 3w2) = 23,

If (u,3) =1, then, since % = w(mod?2), we have (2u,uz+3ivﬂ) =1,
5O
(41) 2u =1, w430 = s,

“where s i an odd number and (%, w) = 1. In virbue of the lemma there

exist” integers a, # that satisfy conditions (31) and are such that % =
a®—9af?. Hence, by (41), 3 = 2u = 2a(a—38)(a+35).

Now we verify without difficulty that any two of the numbers
2a, a— 38, a+ 38 are relatively prime; 50 2¢ = 0%, a— 38 = 73, a-+3f= g%,
which gives the equality 0% = g3--2. But |go7} = [ = |20 = |o+y| # 0
and |w-+y| <ayz| < loyz|®, contrary to the assumption that |eyel is
minimal.

 If 8|, ie. if 4 = 3v, then (40) can be rewritten is the form

(42) . 187)(302+ka) =28,

whence, in view of 3vs&w(mod2) and (3v,w) = 1, we obtain (18v,
3vt-w?) =1; so

(43) 18y = %, 304 w? = g8,

where s is odd and (v, w) = 1. In virtue of the lemma there exist inte-
gers a, § which satisfy conditions (31) and are such that v = 38a2— 388,
Hence, by (48), 8 = 18v = 2728 (a+f)(a—f). It is easy to verify that

any two of the numbers 28, a8, a— B are relatively prime; so 28 = o?,
a+tf =% a—p =% which gives ® = o®-+¢?. But

lerl® = [#8 = o = 2w | = oty £0 and Hoty| < laye] < Jayel?,

éo;‘nk_trary» to the kassumpt‘ion that |syz| is minimal. Theorem 13 ig thus
proved. :
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As an immediate congequence of theorem 13 we obtain the following

CoroLrLARY. The equation a3+4y® =2° has no solution in rational

numbers # 0.

EXERCISES. 1. Prove that theorem 13 is equivalent to the theorem stating
that the equation 3x%*+4 1 = 4y® has no solution in rational numbers except © = -+ 1,
y = 1 (J. Browkin).

Proof. If two rational numbers # 5 41 and y satisfy the equation 3a®-4-1
= 4y%, then u = (3v— 1)/2 is a rational number, % 5% 1 and w % — 2. Moxeover,
u?4u-1 = 3y8, whence y # 0 (because the equation u?--u-1 = 0 has no solu-
tion in rational numbers); consequently (24 u)®+(1—u)® = (3y)®, contrary to
the corollary to theorem 13. On the other hand, suppose that theorem 13 is false.
Then there exist rational numbers u, v different from zero and such that wd-4-o% = 1
and o = (u—v)/(u+v), ¥y = 1/(u+wv) are rational numbers such that 3x%--1 = 4y,
If = 41and y =1, then w+v =1, u—v = 41, whence u = 0 or v = 0, con-
trary to the definition of the numbers w,v:

2. Prove that the equation 2®+y® = 2%+ 1 has infinitely many solutions in
natural numbers =z, y, 2.

The proof follows immediately from the identity of Gérardin:
(9% 4 (903 + 1) = (P +-8n)3+1, mn=1,2,

Tor example, if n =1, 984-10° = 1234+ 1; it n = 2, 14434733 =

150°+ 1. We also
have 6434 94% = 1033—1— 1.

3.
8. [ind three different matural numbers a, b, ¢ such that the numbers Ve,

s 8_ 8 8  8_
Vb, Ve are irrational and Va-+vbh =Ve.
Answer a =2, b = 16, ¢ = 54.

§ 11. Sums of three cubes. According to what we noticed at the
beginning of § 9 no integer of the form 9% --4 is the sum of three of fewer
cubes. On the other hand, we do not know whether every integer which
is not of the form 9% -4 (where  is an integer) is the sum of three cubes.
This, being easy to prove for any integer n, —30 < n < 30, turns to
be rather difficult for the number 30; we do not know any representa-
tion of 30 as the sum of three cubes and we do not know whether such
a representation exists.

J. C. P. Miller and M. F. O. Woollett [1] have found the solu-
tions of the equation #%--y3+2% =% with |k| <100 in integers w,y,2
with |z] < |y| < |2| < 3164. They have shown that there are no such
solutions for &k = 30, 33, 39, 42, 52, 74, 75, 84, 87 and that for k = 12

there is precisely one golution 2 = —11, y =10, @ = 7; for k = 9 there
are two solutions # =2, y =1, 2 =0 and #»=217, y = —216, #
= —32.

This result, however, does not indicate whether there are other so-

Intions of the equation in integers , 4, 2 among which at least one in its
absolute value is greater than 3164.
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There are some integers % for which we are able to prove that there
are infinitely many repregentations of % as sums of three cubes. For
example (cf. Mordell [4]):
0 =7+ (—n)'+ 0%, 1 = (9n)"+ (19t (3n—9nt)?,

= (L4 6n%)3+ (L—6n%)®+ (—6n2)® for any » =0, +1, 42,

For & = 1 there are representations of & ag the sum of three cubes
= 043
+ 643+ (—103)3. D. H. Lehmer [9] has proved that there exist infi-
nitely many such representations (cf. Godwin [1]). In fact, let o =
304(2'8% —B), y = —31(6*°+213%° 3% —1), 2 = 2'35°+ 2%34° 3% 1.
It is easy to verify that for any #, 4+ y3+2% = 1. If ¢is a natural num-
ber which is not divisible by 3, then the solution thus obtained is different
from any of the solutions 9n4, 1—9n3, 3n— 9nt, because, as one verifies
directly, none of the numbers z,y, 2 is equal to 9n4, since y, 2 are not
divigible by 3 and, if # = 9n#, then in virtue of 3% | z, we obtain 3¢ | n,
80 m = 3ut (u an integer), whence 2*3%° —5 = 3%#, which iz impossible.

Substituting ¢ =1 we obtain » = 3783, y = —b262, 2 = 4528.
For ¢t = —1 we have x = 3753, y = —2676, 2 = —3230.

For & = 2 we do not know any representation of % as the sum of
three cubes different from the one given above. We do not know any
integer % not of the form 9¢4-4 for which it could be proved that it has
only finitely many representations as the sum of three cubes. On the
other hand, it is easy to prove that there exist infinitely many %'s not
of the form 9?44 which are not representable as sums of the cubeég of
three natural numbers.

For & =3 we know only. four representations of % as the sum of
three cubes; these are (#,y,2)=(1,1,1), (—5,4,4), (4, —b,4),
(4, 4, —b) and we do not know whether there are any ot;her such repre-
gentations. As we shall gee later, the number 3, like every other posi-
tive rational numper, has infinitely many representations as the sum of
the cubes of three positive rational numbers (cf. theorem 14).

Representations of an integer in the form x®-y®4-22%, where =, y, 2
are integers, have algo been considered. To this end, Chao Ko [1] has
proved that any natural number < 100, except perhaps 76 and 99, admits
at least one such repregentation. (For example, 18 = (— 35)3+ (—62)%+
+2(52)%, 20 = 633+ (—38)34-2(—50)%, - 81 = 5334-313-2(—44)%) 76
i the least natural number about which we do not know whether it is
of the form #3-y%4- 228, where #, ¥, # are integers. The number 2, except
the trivial decompositions 2 = #¥-+(~1)342-13%, has infinitely many
such: decompositions. This follows immediately from the identity 2
= (1—1—13)24 (14-1—12)34-2(#*)?, valid for any integer {, this being
the consequence of an identity due to B. Segre [1].
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A, Makowski has proved that any natural number n, 100 < 2 < 220,
exeept perhaps the numbers 113, 148, 183, 190, 195, is representable
in the form #°+-y®+22°, where x,y,2 are integers. The decomposition
113 = (—133)*+-(—46)°+2-107° has been found by XK. Moszyriski
and J. Swianiewicz [1].

THEOREM 14. Hvery positive rational number has infinitely many
representations as the sum of the three rational positive cubes. (Of. Hardy
and Wright [1], pp. 197-199, Theorem 34,)

Proof. Let r be a given positive rational number. We define v ag
a rational number such that i@»‘/} <o < %7 Let w = (37— v%) /(374 v3),
s=0(4u), 2 =su, t =8/83(1—u?), ¢ =s—1%, § =t{—z,

Since » < ?/31“, the number w is positive and less than 1; the num-
bers u, s, z,t are positive rationals, and @,y are ‘rational numbers. In

3
virtue of v >V3r/2, we have v3 >3r, whence % = 6r/(3r+¢*)—1 < L.
Consequently, 3(1—u?) >1, s>¢ and 3u(l—u?) <1, whence # < {.
Therefore >0 and y> 0. But ‘

Wyt = (3 1)+ (1—2)s 28 = 89— B(sP—a2) i+ 3 (s —2) 12

and
3(s2—2%) = 3g3(1—u2),
whence '
’ 3(s2— 2% = &3,
50

24yt 4-28 = 3(s—2)12 = 3s(1 — u)i?

$3(1—u) 88

. _ C0(L4u)?  od(L+tw)
31w

3(L+uw)(A—ud) ~ SE—wh)  B(I—w)

In virtue of the fact that any rational number less than %/5; ‘and sufficiently

f J—— B

close to V3r can be chosen as v, the number w and consequently the
number su =z can’be arbitrarily small. This implies that the equation
has infinitely many solutions in positive rational numbers. This com-
pletes the proof of theorem 14.

For r =3, v =1, the formulae above give the decompogition 3
()" + () + G5

Theorem 14 hag the following two corollaries:

COROLLARY 1. For any natural number n - the equation #°-+-y3-4ob
= nt® has infindiely many solutions in natural numbers @, y,2,t such
that (x,y,2,t) =1. ’ :
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OOROLLARY 2. For any natural mumber s >3 any positive rational
number has infinitely many representations as the sum of the cubes of s pos-
itive rational numbers. ’
If the proof of theorem 14 is modified in the way that the num-

ber v we ¢hoose a little greater than %@7, then 4 < 0, 14+ >0, 1
—ut>0, u* < §, 80 §>0,2<0,t>0, y>0, s >0. This gives the
proof of the following theorem:

Amy positive rational number has infinitely many representations in
the form ®*--y®—2°, where w,y,2 are rationals > 0.

Applying this to the nmmber r-413, where », ¢ are positive ration-
als, we obtain

THROREM 15. Any rational nwmber has infinitely many represen-
tations in the form x®--y®—2®—13, where w,y, 2, are positive rationals.

§ 12. Sums of four cubes. Several years ago I formulated the fol-
lowing conjecture:

C. .fmy integer has infinitely many representations in the form x%+
- yd—e8—1%, where w,y,2,t are natural numbers.

The conjecture has been proved for the infegers g with —1000
£ g < 1000 and for an infinite set of other numbers, e.g. for the’integers
divigible by 3 (*). The proof is based on the following theorem due to
L. J. Mordell [3]:

If g = a®~4-b®—c*—d?, where a, b, c, d are integers, (a+b)(c+d) >0
and a #b or ¢ % d and, moreover, if the number (a-b)(c+d) is not
the square of @ matural- number, then conjecture C 1is true for the
number ¢. e

For g = 0 the truth of conjecture C is an immedidte consequence of the identity
0z p34 13— 03— 13, for any n =1,2,...

We are going to present here a straightforward verification of conjecture
for g == 1. For this purpose it is gufficient to ghow that the equation

(b4 13)% 4 (2 14— (b B)3— (w+17)3 = 1

hag infinitely many solutions in integers ¢, w. But this follows from the fact that the
equation is satisfied for ¢ == w == 0, and that, if is satisfied by the numbers ¢t and
w, then the numbers & = 11t 6u--178, wu; = 20t 11u-315 also satisfy it. For
example, gince ¢ = 0 and u = 0 gatisfy the equation, then also #, = 173, uy = 315
satisfy it .and, moreover, 1863 320%— 176%— 3828 = 1.

The fact that the equation @3-+ y?— 28— 3 = 1 has infinitely many solutions
in natural numbers =, 9, &, t implies that there exist infinitely many natural numbers
n-guch that both » and n-- 1 are §ums of two positive cubes.

: © ¢ Schinzel and Siel_;ﬁiﬁskif'[Q], Mepkowéki [1], and unpublished manuseript
of J. Calozyhika deposited in the archives of the University of Warsaw.
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If g =2, an immediate proof of conjecture C follows from the identity
2 = (4P + 13— (93— 18— (9n*—3n)® for any a=1,2,...
In particular, for n = 1 we have 2 = 934 13— 83— ¢8.
If g = 3, the truth of conjecture C is a consequence of the identity
3= (6n3+ 1+ 15— (60— 1)3— (6n2)® for =n=1,2,...
We also know positive integral solutions of the equation w3+ y3+23—#8 = 1, for

example, 45443+ 65— 78 = 1, 494389+ 58— 639 = 1, 45+ 83781 63°— 678 = 1, and

recently J. A. Gabovié [1] has proved that the equation has infinitely many
solutions in natural numbers.

On the other hand, it is easy to prove that there exist infinitely many solu-

tions of the equation 23— y®—23—1% = 1 in natural numbers », y,#2,t. This is an
immediate consequence of the identity

(608 4+1)3— 13— (6n2)3— (6n3— 1P =1 for =n =1, 2,...

As is shown by A. Makowski ([1], p. 121), the equation a®— YP—B—13 = 2

has infinitely many golutions in natural numbers. This fact follows immediately
from the identity

(BnP+ 13— (3n8—1)°— (3n2P— (302 =2 for nm=1,2,...

The equation has also solutions that are not given by the above identity,

for example
235%— 85— 69°— 2333 = 2, 683%— 650%— 3535 — 28 — 2,

EXERCISE. Prove that there exist infinitely many natural numbers. g for
which each of the equations

g=0+P—P—8, =By P—, g= 28— g3 — 28— 3

has infinitely many solutions in natural numbers @,Y,%,1.

Proof. All g = a®— 3%, where @ and b < a are arbitrary natural numbers,
are such numbers. The proof follows immediately from the identities:

b = aP 3 p3— 93,

a—b% = ad+((9nP— 1)b)3+((9nd— 3n)b)¥— (9ntb)3,

aP— b3 = (9nfa)s—((9n%— 1)a)®—((9nt— 3n)a)3— bs.
(cf. Schinzel and Sierpifski [2], pp. 26-27).

It is easy to prove that any integer has infinitely many representations
as the sum of five cubes.

The identity

61 = (t+1)'+ (1= 1) (— )2+ (— 1)

shows that any integer divisible by 6 is the sum of four cubes. In order
to prove that any integer has infinitely many representations as the sum
of five cubes it is sufficient to show that for any integer there exists an
arbitrarily large natural number such that the difference between the
integer and the cube of the natural number is divisible by 6,
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i i inder left by g di-
. i Let g denote an arbitrary integer, r the remain
v&deij by%. Then ¢ == 6%+, For any natural number »n we have 6k-+7r
—(6n-r) = r—r3 = 0(mod6) so 6]g—(6n-tr)°.

§ 13. Equal sums of different cubes. In connection with theo;em
18 it seems interesting to know which natural numbers m and n =m
are such that the equation

(44) “”2‘1'0”:'\"”-‘1*-'1’%1='I/§+'y§+...+y:

bas golution in different natural numbers @y, @a, oy my Y1) Yo veis Yn-

Tt is clear that there are no solutions for n = m = 1. Theorem 13 implies

that in the case of m =1, n = 2 there are no solutions either. We provel
TuzorEM 16. In order that equation (44), where n,m are nam;m
numbers, n =m, be solvable in diffew.m.t natural m?::bersm m-l_, a;;z,:. .i, n,g;
Yiy Yay vy Yn U 08 'n@ess.cfz‘r'l{d amzci ]é)mffmem that neither m =
" =1:1’1 Zh?tzﬁv?filassvl:rgz Isproer iy the sufficiency of the eondition.
TEMMA. For any notural number n >.2_ there exists o natural number
whose cube is the sum of n different positive cubes. g and 18
Proof of the lemma. The formulae 6% = 344 ——*_—4 aéx:lppose
= B8-784-934-11% prove the lemma for n =3 and f}_‘?’h-n éhem pose
that the lemma is true for a natural number n > 2. ae_ rantynl
natural numbers 6; < @y < ... < ln < G such that ay = o1+ @2
...+ab. Hence

(600)" = (36)"+ (4a5)5 -+ (3)%-+ (Ba)*+ (B ..+ (60’

' i the
and, moreover, 3a, < 4a; < 5ay < 6ay <... < 6ay, whlchﬁop;o:l;st b
tmt,h of the lemma for n-+2. Thus we gee that the assump D o
lemma is true for a natural number implies that tl}e lemrzg e
n-}-2. This, combined with the fact that the lemma 18 Prov o
for 'n.= 3 a’nd n = 4, gives the proof of the lemma for any natur
P e lies the following

The lemma implies the "

OomoLLARY. Theorem 16 ig true for any natural numbers m, n Wit
m>3, n>38.

P;‘o of of the corollary. Ifm > 8 and n> 3, then, gcigaetlﬁ:;mzi
there exist mnatural numbers b <by <...< by < a1< O o
= BB, .+ b5, and numbers 6y <8 <... < fm < On nch, the
a3 +la,3 —1—5l A-ab, = b. Moreover, We INay assume that @y > 4, : b,
1fz it ig n(;{: already ttue, we replace each Ofttlile num{:z;‘s :2—,[— 0;3, '[.n'hzeer ,0 rz
: it iplication by the num ,+1.
by the product of ity multiplica s L e
tlslre numIT)oers @y, Bgy ovey Omy D1y Doy ooy b, are different. Adding tog ‘
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the equalities obtained above we see that ai--al+...+al, = bi--bi+
+...-+ b}, and this is what was to be proved in order to verify theorem
16 for the numbers m and n. The corollary is thus proved. In order to
obtain theorem 16 in its whole generality it remains to prove that it is
valid for m = 2 and m =3 and any # > m. :
Im=2,n=2,3,4,5, the truth of theorem 16 follows from the
formulae

92 --10° = 134118,
63 4-36% = 434 5342731309,

78.4-8% = 13_{.53_{_937
2684282 = 2°4- 354 491 531343,

If m =2 and » > 5, then, by the lemma, there exist natural num-
bers by << by < ... < b, 3 < &, such that a® = bi+bi+... by, whence
a1+ (60, = (3a,)*+ (4a,)P+ (5a,)? - b+ b3+...-+ b5, which, by a, «
3a; < 40, << Ba; < 60; proves the theorem for = and m.

If m =3, n =3, 4 the truth of theorem 16 follows from the for-
mulae

P12 4158 = 234103+ 168, 12341331143 = 3249841034173,

If m =3, n > 4, then, by the lemma, there exist natural numbers
by <by <... < by y < 4 such that o = bi+b3+...+b5_,, whence al-+
+(20:)'+ (160,)° = (90,)°+ (160,)° + B3B3+ ...+ B ,, and so, by a, <
2a, < 94, < 156, < 16a,, the truth of theorem 16 for the numbers
m, n follows. -

Theorem 16 is thus proved.

§ 14. Sums of biquadrates. Tn virtue of Fermab Last Theorem
for the exponent 4 (cf. Chapter II, § 6) there is no biquadrate that is
the sum of two positive biquadrates. According to the conjecture of Euler,
there is no biquadrate which is the sum od three positive biquadrates
either. However, there are biquadrates which are sums of four, five or
six biguadrates. For example, 353¢ — 30%-12044- 2724 - 3154, 15 = 44
644 84 94 148, 914 = 1444 2401 348 494 5844844,

TumorEM 17. For any natural number n ~ 3 there ewisis a biquadrate
which is the sum of n different positive biquadrates.

Proof. Let § denote the set of the natural numbers # > 1 for which
there exists a biquadrate that is the sum of n different positive: biqua-
drates. As we have just shown numbers 4, 5, 6 belong to the set 9.
We now prove that if numbers 7, m belong to §, then the number m—++n-—1
also belongs to 8. In fact, if m and n belong to 8, then there exist natu-
ral numbers o, < a, < ... < ay, <@ and b, <by<..<b,<b, such
that : -

0 =i+t ah, b= BpBL . bt
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Hence
(@ybo)* == (a;by)*+- (“1b2)4’if et (@00) - (ado) + (agby)t-- .+ (@mbo)t

and, moreover, a,b; < a,b, < ... < @by < wyby < @ghy < ... < @b, . This
shows that the number m~+n—1 belongs to the set S. Now the proof
i almost over, we simply notice that if a set & of natural numbers is such
that the numbers 4, 5 belong to § and that together with any natural
numbers m and » of § the number m-+n —1 ig in S, then § contains any
natural number 2= 7. In fact, since 4 and 5 belong to 8, then 4+4—1 =7,
B-+4—1 =8, 545~1 =9 belong to §. By simple induction we verify
that, if m belongs to §, then m+ 3%, where & =1, 2, <oy I8 in 8 (this
i bécause m--3k = m--3(k—1)44—1). Oonsequently, the set § con-
taing every number of the form T-+3k, 8+3%k, 9+3k, when k
=0,1,2,..., that is § contains any natural numbers > 7. Since the
numbers 5, 4, 6 belong to 8, we see that § containg every natural num-
ber >3, Theorem 17 is thus proved.

We know some natural numbers which have two different represen-
tations as sums of two positive biquadrates. For example, 13341344
= 59*-+-158%. However, we do not know any natural number which has
more than two different representations as the sum of two positive
biquadrates, provided representations that differ only in the order of the
summands are regarded as identical.

The following equality holds 84944174 = 344134164,

We hereby note that the identity

41285% = (8(255 -+ 2))* — (8 (255 — 20))t+ (320 — 255 — (322 1 255t

implies that any rational number is an algebraic sum of four rational
biquadrates.

It can be proved that for any natural number n > 4 that is diffe-
rent from 8 there exists a natural number that is the sum of the fifth
powers of n different natural numbers. For example, 12° = 4°4-5°
6° 7 0% 11°,  99° = 2540 1154225+ 515585 1-89°, 325 = 854 6°
T 8 10% - 115 135 - 145 154165 - 18° - 315 (of, A. 8. Bang [1]).
According to P. Brdds, it can be proved that for any natural num-
ber m there exists a natural number %, such that for any natural number
n > ky, there exists a natural number Inm Such that any natural number
greater than I, ,, is the sum of n different numbers each of which is a posi-
tive mth power.

. § 15. Waring’s theorem. In 1782 Waring stated without proof the
following theorem:
For any ewponent s there ewist a natural number k such that any natu-
ral number n is the sum of & non-negative s-th powers.
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This theorem was proved by D. Hilbert in 1909. An elementary proof
of Waring’s theorem, due to Yu. V. Linnik [2] and based on the idea
of L. Schnirelman, is presented in a book of A. Ya. Xhinchin [1].

For s =1 Waring’s theorem is true but irrelevant. If s = 2, theorem
4 (of Lagrange) provides an evaluation for k as & = 4. For s = 3 Waring
claimed that % can be assumed to be equal to 9, i.e. that any natural
number is the sum of nine or fewer positive cubes. It was not until 1909
that A. Wieferich proved it true. For s = 4 Waring stated that % = 19
is good. This, however, has not been proved or digproved. F. O. Auluck [1]
proved by the method of Hardy and Littlewood that it is true for the
natural numbers > 10", 1.. B. Dickson [4] has proved (not in an elemen-
tary way) that & = 35 is good for any natural number. This is still the
best evaluation for % (cf. Palama [1]).

‘We are going to give an elementary proof that % can be assumed to
be equal to 50 (cf. theorem 18).

For a natural number s we denote by g(s) the least natural number
k such that any natural number is the sum of k or less sth powers. Waring’s

theorem asserts that for any s the natural number g(s) exists. We prove
that

(45) g(s) 2 2°+[(]—2, s=1,2,..
Let
(46) n = 2°[(3)]—1.

Olearly, » is a natural number, and, since [#] <, we have

(47) n < 3°.

It follows from the definition of g(s) that there exist non-negative inte-
gers x; (¢ =1,2,...,¢(s)) such that
(48) n= o+t 2.

By (47), any number #; (¢ =1, 2, ..., g(s)) must be less than 3. Con-
sequently, the numbers #; can take only the three values, 0,1 and 2. Sup-
pose that among the x;’s there are k different numbers equal to 2, I equal
to 1, and 7 equal to 0. Plainly, %, 1, are non-negative integers and

(49) 9(8) = k+14+r = k41
with
(50) n = 2%1.

Hence n 3> 2%, and, since, by formula (46), n<2‘[(§)’], we obtain
k<[], ie

1) b <@L
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In virtue of (50), we have ! = n—2°%, and so

(52) k+1=k+n—2% = n—(2°—1)k.
Since s i§ & natural number, 2°—1 is also a natural number; we multiply
(1) by it to obtain

@ -1k < (2°—1)(§F—1).
Hence, by (49), (b2) and (46),
g(s8) > k41> n— (2= 1) (G ~1) = 2+ [ -2,

which proves (458).

If & =2, inequality (45) gives ¢(2)>2'+[]—2=4+2-2,
and 8o g(2) > 4. But, as we know, g(2) = 4. If s =3, (45) shows that
g(s) = 2+ [§] —2 = 9. There exist natural numbers, for example 23,
which are not representable as sums of eight non-negative cubes. As
we have already mentioned, Wieferich proved that ¢(3) =9.

Tf s = 4, (45) gives the inequality g(4) > 2*+ [i] —2 = 19. By (46),
there exigt natural numbers (e.g. 79) which are not representable as
sums of 18 non-negative biquadrates. The conjecture of Waring states

=19.
thamI??: B, inequality (45), by a simple calculation, gives ¢(b) > 37.
We do not know whether g(5) = 37 or, perhaps ¢(5)>37. All that
is known is that 87 < ¢(B) <40 (cf. Cheng Jing-jun [1]).
L. E. Dickson [8], [6] (cf. Pillai [3]) has proved that the formula

g(s) = 2°+[(]—2

is valid for 6 < s < 400, (actually, this is true also for § = 2 s{und s = 3).
K. Mahler [1] has proved that the above forrm‘xla. is valid .fo.r any
sufficiently large number s and R. M. Stemmler; [1] has verified its
validity for 400 < s < 200000.

Tor a natural number s denote by G(s) the least natural num.ber k
such that all sufficiently large natural numbers (i.e. all numbers w1th.a,t
most & finite number of exceptions) are representable by & non-negative
sth powers. It has been proved that

G(4) = 16, G(6) <36

G@) =4, GB) <1, @(5) < 28,
(cf. Hardy and Wright, [1], p. 336).

Now we are going to present an elementary proof that g(4) <50. -

(%) This was proved by Yu. V. Linnik [1] in 1942; a simpler proof is given by
G- L. Watgon [1].
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Accordingly we recall the identity of B. Lucas (found in 1876) .

(53) (@i +ai+ 05+ @) = (@, o)+ (23— 0)' o+ (3, 00) - (01— ) -
+ (@ o)+ (2, — @)*+ (my+ w5)* - (a, - ?73')1L -+
& + (@y+ @) (m2~m4)"+(w5 )+ (5 —m,)".

Let % be a natural number divigible by 6, i.e. n = 6m, where m ig
a natural number. In virtue of theorem 4, we have m =qa2-+ b2 e,
where @, b, ¢, d are non-negative integers. Hence n = 6a2-- 652 6c2-- 642,
But, in virtue of theorem 4, there exist non-negative integers ay, x,,
@, %y Such that o = o]+ i+ i+ af. Hence, by (83); 6a° = at--alt...
-o.Faly, where a; (i = 1,2,...,12)" are non-negative integers. We
represent each of the numbers 652, 6¢2, 6d2 in 4 similar way as the sum
of twelve biquadrates. From this we infer that the number n = ém i
the sum of 48 biquadrates. :

Thus we have proved that any natural number divisible by 6 is the
sam of 48 biquadrates. : !

Any natural number < 95 ig representable in the form 2%+,
where 0 <% <5, 0 <r <18, and 5o it is the sum of 20 biguadrates,
Consequently, to complete the Proof we may suppose that the number
n i8 greater than 95. Then # = 6m -7, where m > 15 and 0 <r B,
The numbers m, m—2, m—13 are positive and 8o, for » =0,1,2,...,5
we have % =6m, n = bm+4-18, n = bm—4-154-14, 9 = 6(m—13)- 31,
n="56(m—2)42¢, n = 6(m—2)+144-2¢, regpectively. Hence, in ﬁntne
of what we have proved above, we see that, since any natural number
divisible by 6 is the sum of 48 biquadrates, every natural number ig the
sum of 50 biquadrates. Thus in an elementary way we have proved

TemorEM 18. Bvery natural number is the sum of BO biquadrates.

Using the theorem of Gauss one can elementarily prove that g(4) <37
(cf. Wieferich [1]). ‘

For any natural number s we denote by v(s) the least natural num-
ber % such that any natural numper is the algebraic sum of % numbers
each of which iy the sth Power of an integer.

It is easy to prove that 9(2) = 8 and that 4 < 9(3) <58, however
we do not know whether ©(3) i8 equal to 4 or to 5. It is proved that 9
<2(4) <10, 5 < (5) < 10. v

Now we are going to prove that for any natural number s the num-
.ber v(s) exists. To this aim we start with the identity of P, Tardy [1}
(ef. Dickson [8], vol. II, pp. 723, 728) L

'

Z (__l)a1+az+._.+aa((__1)a1501+(__1)a2mz+__._*_(_l)agms)s

@1,92,...,08

.

= 812°m, 0y, . iy,

icm
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where ¢ is & natural number, and the summation on the left-hand side
extends all over the 2° sequences a;, ay, ...,"a, the terms of which are 0
and 1. .

Hence, for @, =@, = ... = 4,= 1, we deduce that every lnt(?gel‘
divigible by s!2° is an algebraic sum of 2° sth powers. Therefore, since
any integer is of the form s§!2°%-L7, where k,» are integerf ands (z <r
% 8121, we see that any integer is an algebraic sum of 2°-s!2%-1 sth
powers. This proves that

v(8) < 27481277, for any s =1,2,...
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