CHAPTER X
MERSENNE NUMBERS AND FERMAT NUMBERS

§ 1. Some properties of Mersenne numbers. Mersenme numbers
M, = 2"—1 have already been discussed; cf. Chapter IV, § 5. Theorem
5 of Chapter V may be expressed by saying that in order that an even
number should be a perfect number it is necessary and sufficient that
it should be of the form 2"'M,, where n is a natural number and M,
is a Mersenne prime number. This is why Mersenne numbers which are
prime are of particular interest; moreover, the greatest prime numbers
that are known are Mersenne numbers.

As we learned in Chapter IV, § b, if a Mersenne number M, n 18 prime,
number % is also prime; the converse, however, is not necessarily true
(for example My, = 23-89).

It is easy o prove that a natural number m is a Mersenne number
if and only if m-+1 has no odd prime divisor. As noticed by Golomb [1],
this provides a method of finding all Mersenne numbers, the method
being similar to the sieve of Eratosthenes.

We now prove a theorem which, in a number of cages, enables us
to decide whether a Mersenne number is composite or not.

‘TEEOREM 1. If ¢ is & prime of the form 8k+17, then q | Mgz
Proof. In virtue of a formula of Chapter IX, since ¢ is a prime,

2
we have (g) = 2D (modg). If ¢ is a prime of the form 8k 7 , then,

by property IV of Legendre’s symbol (cf. Chapter IX, §1), we have
2

_E[) =1. Consequently, 2%~ =1(modg), whence g¢| 20-DE 1. ag
required.

An easy induction shows that 2%+3 >8(k+1). In fact, 2" >8-2,
and, if 2%45 > 8(k+1), then 24*+D+3 > 2%8(k--1) > 8(k--2). TPhere-
fore, if ¢ =8k+7>7, then 20-2_1 > 8%k+7 =g¢, which proves
that if g is a prime of the form 8k-+7 > 7, then the nwmber Mgy
is composite — it is divisible by ¢. Hence the following

CoROLLARY. If n is a prime >3 of the Sform 4k+3 and if number
q = 2n-+1 is o prime, then number M, is composite; for, it is divisible by q.
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In particular, this is the way to establish that the following Mersenne
numbers are composite, a prime divisor of any of them being also found:
23 | My, 47| My, 167 | My, 263 | My, 359 | My, 383 | My, 479
| Mg, 503 | Mysy, T19 | Mysy, 839 | My, 863 | My, 887 | My, 983 |
| Mgy, 1319 | My, 1367 | Mgy, 1439 | My, 1487 | Moy, 1823 | My,
2039 | Mg

It follows from the conjecture H (Chapter IIIL, § 8) that there exist
infinitely many prime numbers p of the form 4% 3 for which ¢ = 2p+1
ig a prime. Thus, by the corollary, we see that the conjecture H implies
the existence of infinitely many primes p such that the numbers M,
are composite (cf. Schinzel and Sierpinski [3], p. 198, C,).

As regards theorem 1, we note that an argument analogous to the one used in
its proof shows that, if g is a prime of the form 8k 1, then q| Mg_1y2. Here, how-
ever, the number (¢—1)/2 = 4% cannot be a prime. For example, we have 17) My,
41| Mg, 89| My, 97| Myg.

‘We do not know any composite Mersenne number which has a prime
index and which is not a product of different primes. Neither are we able
to prove that there exist infinitely many square-free Mersenne numbers.

E. Gabard [1], [2] proved that each of the numbers Mg and My,
is a product of five different prime numbers.

THEOREM 2. If n is a natural number > 1, then M, cannot be the m-th
power of a natural number, m being a natural number >1 (ef. Gerono [1]).

Proof. Suppose that 2" —1 = %™, where % and m > 1 are natural

‘numbers. Since # > 1, number % is odd. If m were even, then k™ would

be of the form 8¢--1, whence ¥™+1 = 2(4¢-+1). But, since n > 1, K™+ 1=
= 2" is divisible by 4, which is a contradiction. Consequently m is odd
and 2" =" +1 = (+1)(&"'—&"*}...—k+1), the second of the
factors being an algebraic sum of an odd number of odd summands, is
an odd number, whence, in virtue of the fact that it is a divisor of 27,
it is equal to 1. Therefore 2" = k-1, and so m =1, contrary to the
assumption. This proves theorem 2.

Theorem 2 implies that there are no Mersenne numbers that are
squares except M, = 12. On the other hand, there exist Mergenne numbers
which are triangular numbers. However, there are only four of them
M, =t, My=1ty, M, =1, My; =1, (¢f. Browkin and Schinzel [1]
and also Ramanujan [1], Nagell [4], [11], Skolem, Chowla and Lewis
[1], Chowla, Dunton and Lewis [1], Mordell [8], Shapiro and Slot-
nieki [1]).

It is easy to prove that for || < { the following equality holds:

1

— 2
Ty ~ Mt et Mor'
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LEXERCISES. 1. Prove that every odd matural number is a divisor of infini-
tely many Mersenne numbers.

Proof. If m is an odd natural number, then, by the theorem of Euler, for any
natural number & we have m| Migm).

2. Find the least Mersenne number that is divisible by the square of a natu-
ral number > 1.

Answer. It is the number Mg = 26— 1 = 63 = 327, because M, = 1, M, =3,
My =17, My =15 = 3-5 and M; = 31.

3. Find the least Mersenne number which has an odd index and which is
divisible by the square of a natural number > 1.

Answer. It is the number Mp; = 72-127-337 because M; = 127, My = 7-173,
My, = 2389, M, = 8191, My = 7-31-151, My = 131071, My = 524287.

Remark. The next Mersenne number after M,, which has odd index and is
divisible by the square of a natural number > 1 is the number Mgs; the next number
with the same property is Ms. They are both divisible by 72 because My| Mg
and le[ M[og.

4. Prove that if ¢ and n are natural numbers greater than 1, then, if a®— 1
is a prime, it is a Mersenne number.

Proof. In the case where a > 2, we have a—1|a"— 1, so, in view of n > 1,
1 <a—1 < a"— 1, which shows that number a”— 1 cannot be a prime. Thus we gee
that the assumption that a®— 1 is a prime implies that a < 2, whence @ = 2 (because
1—1 is not a prime). Consequently, a®— 1 = M.

5. Prove that, if m is an arbitrary natural number, s the number of digits of
n in the scale of ten, then there exists a Mersenne number M, whose first s digits are
equal to the s digits of m, respectively.

The proof follows immediately from an analogons property of the numbers
2% (cf. Sierpifski [11], theorem 2).

6. Prove that for any natural number s the last s digits of the numbers M,
(n=1,2,...) form an infinite periodic sequence, the period being formed of 4-5%-1
terms.

The proof follows from theorem 1, p. 246, of my paper referred to above.

Many theorems on divisors of numbers M, have been collected by E. Storchi
in paper [1].

§ 2. Theorem of E. Lucas and D. H. Lehmer.

TEEOREM 3 (). A number M,, p being an odd prime, is prime if and
only if it is a divisor of the (p—1)-th term of the sequence s, 8, ..., where
8 =4, & =8;2c_1~2, k=1,2,...

Proof. Let @ =1+V3, b =1—V3. We have a-+b =2, ab — —2,
a—b=2V3. We define sequences %,, v, (n =1,2,...) of natural
numbers by

at—b"
Uy, = -

T U= a”--b".

(1) Lehmer [4] (cf. also Kraitchik [1], p. 141, and Trost [3]).
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These formulae imply: that for any » = 1,2,... we have

n

Uy = (1) + (;)-34-(2).3%..‘, O = 2(1+(§)-3+(Z)-32+...).

Hence for any natural %, I we have

@ - Qpyy = U0+ vy,

2y (=2 g = wop— e, for k> I,
(3) ' g = 0,

(4) Vo = vk (—2)FH,

(5) o 0—12uf = (—2)8+?,

(6) 207 = V0 + 12050,

For an odd prime ¢ we denote by w(q) the least natural number n
such that ¢ | u, (provided it exists).
" 'We now prove three following lemmas.
LEMMA 1. An odd prime q divides u,, n being a natural number, if
and only if (g)|n.

. Proof of lemma 1. Let g be a given odd prime number. We denote
by 8 the set of natural numbers » such that q|%,. By (1) and (2), if
two numbers, k and I, belong to the set §, then number k-1 is also & num-
ber of the set S, moreover, if & > 1, then k—1 belongs to 8. Thus we see
that the set S has following property: the sum and the difference (pro-
vided it is positive) of any two numbers of the set § belong to S. Let ¢
be the least natural number that belongs to S. From the above-mentioned
property of the set §, we infer by a simple induction that numbers kd,
k=1,2,..., are in the set §. On the other hand, suppose that a natu-
ral number n belongs to § and that » divided by d leaves a positive remain-
der r. Then n = td-7, where ¢ i§ an integer > 0, and 7 < d. The case
t = 0 ig clearly impossible, since 7, being less than d, cannot be equal to
n and thus cannot belong to the set § because of the definition of d.
Consequently, # is a natural number and thus d belongs to 8, whence,
by the property of §, number » = n—1d, as the difference of two num-
beérs of the set § with » > td, must belong to §; this, however, contra-
diets the definition of . From this we conclude that » = 0, which means
that the set § is just the set of positive multiples of a number that belongs
to it. Therefore if a number n belongs to 8, then w(q) | n and vice versa.
This proves lemma 1. '

Lemma 2. If q is a prime >3, then

{7) .oql %_3(4-1)/2
and '
(8) q|v,—2.

Elementary theory of numbers 22
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Proof of lemma 2. In order to prove (7) we write

1 - . (@-1)2 ¢ .
o = 5= [0+ V3 (A —V5)] = 2 () 3
Tn the sum of the right-hand side the binomial coefficients are all divis-
ible by the prime g, except for the last, which is equal to 1; hence for-
mula (7) follows.
In order to prove (8) we write
_ (@2
o= LHVBHAVE =2 ) (4)3"
k=0
In this sum all the binomial coefficients, apart from the first one, are
divisible by ¢; hence formula (8) follows.

LEMMA 8. If for a prime ¢ >3 the number w(q) ewists, then w(q)
<q+1.

Proof of lemma 3. Since #; =2, v, =2, by (1) and (2) with
k=gq, 1=1, we find 2u,., = 2u,+v, and —4u, , = 2u,—v,;, whence
— 8ltgya g = 4uli—v}. But, in virtue of lemma 2, we have ¢ | uz—3%"*
and ¢ | v2—4. Since ¢ is a prime > 3, by the theorem of Fermat we obtain
¢ |37 '—1. Therefore we have ¢ | uz—1 and so g | 4ug— 0. Consequently
q | 8ty 4%, s, Which, by ¢ > 3, implies that either ¢ | wg; or ¢ | %, In
the former case, in virtue of lemma 1 we obtain w(g) <g+1, in ‘the
latter we have w(g) < ¢-—1. Thus, in any case, w(q) <¢--1, which
shows the validity of lemma 3.

We now turn to the proof of sufficiency of the condition of theo-
rem 3. Suppose that p is an odd prime and let Mj|s,. .. Then

9) R

‘We have 2s, = v,. For a natural number 7 suppose that 22""18,,

= vyn, this being true for » =1. Since s,,; = sp—2, we then have
9%"85,0 = (20" 5,2 97 = ol — 27" 1, But;, in virtue of (4) with % = 2",
we have vni1 = vin—22""1, Thus 2*",,, = vms1. The formula 2" s,
= gy i thus proved by induction. Hence, for » = p—1 we have

(10) 2% s, ) = v,
By (10), from (9) we obtain
(11) M, | vp-1,

whence, by (3) with & = 27-%,
(12) M, | ugp.
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Now let ¢ denote an arbitrary prime divisor of M,,. Since, in view
of the fact that p is odd, number M, = 2°—1 is not divisible by 3, we
have ¢ > 3. The relation ¢ | M, and formula (12) give ¢ | Ugp, and con-
sequently, by lemma 1, we have w(q) | 2°. On the other hand, w(g) does
not divide 2°~* because, if it did, we would have, by lemma L qluy .,
whence, by (5) with & = 27!, ¢ would be a divisor of a power of2 the
number 2 which is impossible since ¢ is a prime > 3. Hence w(qg) = 2°.
In virtue of lemma 3, we then have 27 < ¢+41, whence M, < ¢, which,
in virtue of the relation q|M,, proves that M, = ¢, which means
that M, is a prime.

The sufficiency of the condition of theorem 3§ is thus proved. In
order to prove the necessity we prove the following

Lowva 4. If p is a prime of the form 12k-+7, then p|3@-D211,

Proof of lemma 4. Let p be a prime of the form 12k-7, where
k is an integer > 1. Then p >3 and, by property I of Legendre’s sym-

. * 1
bol (cf. Chapter IX, § 1), we find (g—) = (5) = 1. By property V of Le-

gendre’s symbol we have (g) (%) =—1, whence (?—') = —1. Conse-
quently 8%-Y2 = _1(modp), whence p [3"’“"””—|—1,pas asserted.

‘We now turn to the proof of the necessity of the condition of the-
orem 3. Suppose that p is a prime >2 and that the number ¢ = M,
ig also a prime. Since p > 2, we have 8127 = g+1. Hence ¢ = 8¢+ 7,
where ¢ i§ an integer > 0. We have ¢—1 = 2°—2 = 2(2°~'—1). Since
p—1is even,i.e. p—1 = 2s, where s is a natural number, we have 27~ —1
= (83+1)°—1 = 3u, where u is an integer. Hence 3|2°~'—1|¢—1
= 8146, whence 3 |¢, i.e. f = 3%, where % is an integer. Therefore
q = 8t+7 = 24k 7. ‘

By (4), with & = 2°~%, we have

(13) ‘ O = tlp—1— 427711,

But since g == 24%+7=8-8%-7, by theorem 1 wo find ¢ | My,
ie. q| Mp—1_; = 2“’"1‘1—-—1, whence, by (13),

(14) g | v —vio—1-44.

But, by (6) with ¥ =g¢, I =1, and since ¢-+1 = 2?, we have
L 2090 = Vg0, +12ugu; = 20,-+12u,.
Consequently,

(15) Vyp = Vgt 61y = (W,—2)+ 6 (ug+1)—4.
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Sinee ¢ = 24%4 7, we may apply lemma 4 to number g; so g | 3¢ L1,
and hence, by (7), g {u,+1 and, by (8), ¢|v,—2. Thus, by formula
(1B), ¢ | v+ 4, Whence, by (14), ¢ | 'vzz,,_l. This, in view of (10), ¢ = M,
being odd, shows that M, | s,_;, and this completes the proof of the neces-

sity of the condition.
Theorem 3 is thus proved.

It is easy to prove that theorem 3 is equivalent to the following theorem of
Lucas: .

TurorEM 3%, 4 number My, where p is an odd prime, is a prime if and only if
number Mp is a divisor of the (p— 1)-th term of the sequence ty, ty, ..., where t, = 2,
tepr = 2%—1for k=1,2,...

The proof of equivalence follows immediately from the fact that the sequence
sg (b =1,2,...) turns into the sequence i (k = 1, 2,...) if s is replaced by 2.
Thus, since My, is odd, the relations Mp|sy_; and Mp|ép_y are equivalent.

A proof of theorem 3% baged on the theory of trigonometric functions of com-
plex variable was given by T. Ba.ng: [11.

§ 3. How the greatest of the known prime numbers have been found.
Theorem 3 cannot be easily applied in investigation of Mersenne numbers
whose indices are greater than, say, ten. The reagson is that the terms
of the sequence s; (k =1, 2,...) increase very rapidly with %. By induc-
tion, it follows from the definition of the sequence (s, = 4, s = s}.,—2,
k=2,3,..) that s, >10""+4 for any k =2,3,... Consequently
830 >10"" = 10", which shows that the tenth term s,, has more than 250
digits. Number s;4, cannot even be written as a decimal ag it has more
than 107 digits.

Therefore, in order to apply theorem 3 while investigating whether
a given number M, (p being a prime > 2) is a prime or not, we proceed
as follows.

For any integer ¢ we denote by i the remainder left by ¢ divided by
M,. Thus for any integer ¢ we have M, |t—i. Now we define a sequence
e (k=1,2,...) by

(16) =4, g =1%—2 for k=1,2,..
and we prove by induction that
an My |sp—r, for k=1,2,...

‘We see that (17) is valid for ¥ = 1. Suppose that it is true for a natural
number k. Then, a fortiori, M, |si—r;, whence M, |si—2—(ri—2).
Since si—2 = sx,y, and, in view of M, |¢t—% with ¢t =+—2, and by
(16), My, |ri—2—1y41, We obtain My, | sp.q— 7y, Formula (17) is thus
proved by induction on k =1,2,...
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By (17), formula M, |s,_, is equivalent to the formula My |1y,
By (16) in order to caleulate #,_, one has to calculate »—2 squares of the
numbers which are the remainders obtained by dividing by M, these
having clearly no more digits than number M,, and to caleulate the
remainders left by these squares minug 2 divided by M,. The electronic
computers that exist nowadays are able to carry out the ealeulation des-
cribed above for primes p up to about ten thousand.

It has been discovered in this way that number My, is composite
since it i8 not a divisor of the corresponding number ,5,. We do not know
any prime divisor of this number, though we do know that M,y is the
product of two different primes. As announced by J. Brillhart and G. D.
Johngon [1], p. 365, number 2" —1 has no prime divisors less than 2%.
Hence it follows that number M,y eannot be a product of three or more
prime divisors (different or not) because if it could and if p were the least
of those prime factors, we would have p* < 2" which would give p < 2%,
On the other hand, as we have already mentioned, M,,, is not a prime
and, by theorem 2, it is not the square of a prime number either. There-
fore M,y can only be the product of two different primes.

A situation similar to the one described above arises for Mi,. We
know that My, is the product of two different prime numbers, but we
do not know either of them.

Until the year 1950 the greatest known prime number was My,
which hag 39 digits. It was investigated by B. Lucas in 1876 and in 1914
E. Fauquemberge proved it to be a prime. In January 1952 by the use
of electronic computers SWAC the numbers M. su and Mg, were proved
to be prime. The former has 157 digits, the latter 183 digits. In the same
year, in June, the number M, was proved to be a prime; it has 376
digits. In September, 1952, the same was proved about the numbers
Myp; and My, the former having 664 digits, and the latter 687
digits (). :

The next known prime number in the order of magnitude is num-
ber My,,; it has 969 digits.

The. primes Myyy, M o and My,, which are now the largest
known primes were discovered by using the Trraac IT at the Digital
Computer, Laboratory of the University of Illinois. The My, has 3381
digits. The computing time was 2 hours 15 minutes (D.B. Gilles [1D).

Thus twenty three prime Mersenne numbers M, are known, namely for
n =2, 3, 5, 7, 18, 17, 19, 31, 61, 89, 107, 127, 521, 617, 1279, 2203,
2281, 8217, 4219, 4423, 9689, 9941, 11213

() More details on these large prime numhers are to be found in papers of
H. 8. Uhler [2], [3].
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For primes p < 100 the factorizations of numbers 2°—1 are known.
For example, number M,, is the product of two primes, the smaller
being 11447 (c¢f. Brillhart and Johnson [1], Brillhart [1]). We do
not know any prime factor of any of the numbers M,, p = 101,
137, 139, 149, 199, 227, 257, although we know that they are com-
posite.

There was a conjecture that if a Mersenne number M, is a prime,
then number M. ,, 18 also a prime. This is,true for the first four Mersenne
prime numbers, but for the fifth, i.e. for M,; = 8191, the conjecture
was disproved by D.J. Wheeler in 1953. Number My, = 21

(which has 2466 digits) turned out to be composite (of. Robinson [1],
p. 844). This fact was shown by an application of the theorem of Lucas
and Lehmer; the caleulation involved was done by an electronic computer
and required 100 hours. None of the prime divisor of this number is
known. However, in 1957 it was proved that, though number I/ w is
a prime, number My is composite. It is divisible by 1768(27—1)-+-1.
Similarly, though number M,, is prime, the number M 1y, 18 composite,
divisible by 120(2”—1)--1. In this connection there is another conjec-
ture (still undecided): the sequence gy, gy, gy «.., Where. o =2,
Gnp1 =2—1, n =0,1,2,..., contains only prime numbers. :This
bas been verified for g, with n < 4; number g¢;, however, as it ig easy to
verify, has more than 10%" digits, and so it cannot even be written as
a decimal. Moreover, since the prime divisor of number ¢, are of the
form 2kq,+1 > 2¢,, number g¢; has no prime -divisors that have less than
39 digits. Therefore, at the present time at least, it is impossible to decide
whether number ¢; is prime or not. .

§ 4. Prime divisors of Fermat numbers. The Fermat numbers
F, =241 (n=10,1,2,...) may be considered as a particular cage
of the numbers of the form a”+1, where ¢ is a natural number > 1.
Suppose that a number a™--1, where m is a natural number > 1, is
& prime. If m has an odd divisor k> 1, then n = kl, whence a'+1 |
| (6Y*+1 = a™+1 and, since &>1, the number a1 is composite.
Consequently, if a™41, where m is a natural number > 1 , i8 @ prime,
then number m must be a power of number 2, i.e. m = 2", where » is
& natural number. In particular, if 2™ -1, where m is a natural number,
is a prime, then it must be a Fermat number.

Hence it follows that in order that a natural number s be a prime
Fermat number, it is necessary and sufficient that ¢ be a prime > 2 and
8—1 have no odd prime divisors. This indicates a method of finding ali
the Fermat numbers that are prime. The method is a double application

of Eratosthenes’ sieve. (Compare an analogous method of finding Mer-
senne numbers, § 1.)
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THEOREM 4. If @ 4s an even integer, n o natural number and p «

prime such that p|a® 41, then p= 2" -1, where % is o natural
number.

Proof. Since p|a® 41, we have p|a¥'—1; p|a®—1 is impossi-
ble, because, if p | 2, so p = 2, which is a contradiction since p | a2"+1
implies (p, a) =1, and ¢ is even. Let § denote the exponent to which
o belongs modyp. Since p | az”“—l, by theorem 9 of Chapter VI we
have 8|2"*, the relation 8 = 2™ being impossible, because p | a®"—1 does
not hold. From this we infer that 6 = 2" and, since by the theorem
of Fermat p|a”'—1, we obtain 6|p—1, that is 2" |p—1,
whence p == 2""%+41, where k is a natural number, as was to be
proved.

TororREM 5. Any divisor >1 of number F,, where n is on integer
>1, 48 of the form 2"’ k-1, where & is a natural number.

Proof. As follows from the proof of theorem 4 (with o = 2), if p
is & prime and p | Fy, then number 2 belongs to the exponent 2" modyp.
On the other hand, theorem 4 implies that p is of the form 2"+%41,
where ¢ is a natural number. Consequently, if » > 1, it is of the form 8%+1,
whenoe, as we learned in § 1, the relation p | My _ypu, ie. p|20-97—1,
holds. But, since 2 belongs to the exponent 2" 'modp, we must have
2"+l | (p—1)/2, and so 2"*%|p—1, whence p = 2"+*%--1, where & is
a natural number.

Thus we see that any prime divisor of number F, (n > 1) is of the
form 2"*?k--1. Moreover, gince any divisor > 1 of number F, is the
product of prime divisors of F,, then it must also be of the above form
(because the product of two numbers of the form mk+1 is also of this
form). Theorem 5 iy thus proved. ‘

Theorem 5 is used in investigations whether a given Fermat number
in prime or not. For example, the prime divisors of number F, are, by
theorem B, of the form 2%%-4-1 = 64%--1. In order to verify whether
number F, ig prime one has to divide it by primes of this form which are
not greater than l/."if'":, i.e. less than 2° The only number which satisfies
the above conditions is number 193; therefore, since F, = 65537 is not
divigible by 198, it is prime.

‘We now turn to number F;. By theorem 5, any prime divisor of
it must be of the form 2% 1 = 128k 1. Substituting ¥ =1, 2, 3, 4, 5
we obtain prime numbers for % ==2 and % = 5 only. They are numbers
287 and 641, respectively. Dividing number Fy = 2321 by these two
numbers, we see that it is divisible by the second of them. Consequently,
Fy is eomposite. As regards the proof that 641 | F';, an easy elementary
proof which does not involve any explicit dividing is at hand. In fact,
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we have 641 = 5*-+2*| 5.2 - 2% and 641 = 5-27--1|5%-2M"—1|5*2%¥ 1
whence 641 is a divisor of the difference of the numbers 5*-2%.4-282
and 5'-2%_1, ie. of the number 2¥4-1 = F;.

We have Fy = 641-6700417. Since V6700417 < 2600 and the prime
divisors of 6700417 (as divicors of F';) are of the form 128%--1, where
k'=15,6,..., we see that in order to verify whether 6700417 is prime
or not it is sufficient to divide the number by 128%--1 with 5 <% < 20.
This, however, yields a positive remainder for any such k. Thus we see
that 6700417 is a prime. The fact that F; is the product of two du“-
ferent primes was discovered by Euler in 1732.

The prime divicors of number F; must be of the form 2564-41.
Here the first prime divicor is obtained for k¥ = 1071 and is 274177.
Therefore number ¥, is composite, which was found by Landry in 1880,
It can be proved that Fy is, like Fy, the product of two primes..

The method of finding a prime divitor of a number F, among the
numbers of the form 2"+*%41 is successful only in the cage where the
requierd prime diviror is small enough. In the opposite case, even by sub-
stituting very many natural numbers successively for %, we may. not
obtain any prime divicor of F,,. This is the case of the numbers F'; and F,,
the former having 39 digits, the latter 78 digits. We do not know any
prime divisor of any of these two numbers; neither do ‘we kunow a de-
composition of any of them into & product of two numbers greater than 1.
However, as was proved by J. O. Morehead in 1905, F, is composite,
and in 1909 J. C. Morehead and A. E. Western proved that also Ty is
composite. Their proof is based on theorem 6, see § 5 below.

Number F, is composite. As was found by Western in 1903 the num--

ber 21k+1, where k = 2°-87, is a prime divisor of Fy.

The question whether F;, is composite or not hag been - an-
swered quite recently. In 1943 J. L. Selfridge with the aid of the ' elec-
tronic computer SWAC verified that F,, is composite, it iy divisible
by 212-11131+41.

The same problem for the subsequent two numbers was much eagier
to solve. In 1899 Cunningham found two prime divisors of number By
they are 2%2-3941 and 2'3-119--1. For F,, three different prime divi-
sors have been found: the divisor 2"-7+1 was found by Pervouchin
and Lucas in 1877, the divisors 2'°-397-+1 and 2'-973 41 were found
by Western in 1903.

Numbers F,; and F,, were proved to be composite by J. L. Selfridge
and A, Hurwitz [1], but no prime factor of them has been found.
Number F; wag established to be composute in 1925 by Kramehlk He
found that 221-573 -1 is its prime divisor.

Fys was found to be composite in 1953 by Belfridge. By the use of
the electronic computer SWAC he found that 2°-157541 is ity prime
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factor. The importance of this result lies in the fact that it disproves
the conjecture that all the terms of the sequenee

92

241, 241, 2841, 211, o 41,
are prime numbers. In fact, number F,; (which has 19729 digits) is the
fifth. term of the sequence.

Number P, is the least Fermat number about which we do not
know whether it is prime or not. Number Iy, is composite. In 1903 West-
ern found that 2*-18--1 is its prime divisor. Also number T, is com-
posite. In 1962 Riesel found that 33629-2* 1 is ity prime divisor.

We do not know whether the numbers #,, #,, are prime or
not. In 1878 Pervouchin found that the number F,, is composite,
he showed that 2%-5+1 i its prime divisor. At present 46 composite
Fermat numbers are known. They are the numbers F, with # =5, 6,
7, 8,9,10,11, 12, 13, 14, 15, 16, 18, 19, 21, 23, 25, 26, 27, 30, 32, 36, 38, 39,
42, 52, 55, 58, 63, 73, 77, 81, 117, 125, 144, 150, 207, 226, 228, 260, 267,
268, 284, 316, 452, 1945. The greatest known composite Fermat num-
ber is Fyge. It has a prime divisor 2°7-54+1 (cf. Robinson [2]). The
namber of the digits of Fys is greater than 10, so we are unable
even to write it down. In §6 it is explained how we can gshow that
number Fg, is divisible by number 2541, 587 digits.

We are unable to prove that there exist infinitely many eompo-
gite Fermat numbers, or to prove that there is at least one Fermat num-
ber > F, that is prime. The fact that there are many Fermat numbers
> F, which are known to be composite and that there is no such prime
Fermat number, has been a source of the conjecture that all the Fermat
numbers > F, are composite.

By theorem 5, prime divisors of Fermat numbers are of the form
%-2™4-1, where %,m are natural numbers; it has been investigated,
therefore, which numbers of this form are prime.

If % = 1, the numbers 2™ -1, are prime if and only if they are Fer-
mat numbers. Consequently, we know only five such numbers, for m
==1,2,4,8,16. The leagt number of this form about which we do
not know whether it is prime is the number 2" 41, In congequence of
what we have said above, there are only four numbers of the form 2-2™ -1
which are known to be prime. They are for m = 1, 3, 7, 15. However,
we know 19 primes of the form 8:2™-+1. They are obtained for m
=1, 2, 5, 6, 8 12, 18, 30, 36, 41, 66, 189, 201, 209, 276, 353, 408, 438,
534. There are only three known prime numbers of the form 4-2™41,
where m = 1,2, ... They are obtained for m = 2, 6, 14. There ar¢ 12
known primes of the form 5-2™--1 (where m =1,2,...), for m =1,
3, 7, 18, 1b, 2B, 39, B85, 75, 85, 127, 1947, For any natural number


Yakuza


346 CHAPTER X. Mersenne and Fermat numbers

k <100 we know at least one natural number m such that number
k-2™41 ig prime. (It is known that for % = 47 numbers %-2™+1 are
composite for any m << 583, ¢f. Robingon [2] and Selfridge [1]). On the other
hand it can be proved that there exist infinitely many natural numbers %
such that %-2™+1 is composite for m = 1,2,...; see exercise 3, below.

For n =39 and » = 207 we have 3-2"**-1-1|F,. For any of the
numbers n = 5, 23, 73, 125, 1945, we have 5-2"*2+1[F, and also
5:2° 41| Fy. If for a number of the form %-2™-1 we put % =m =n,
we obtain a Cullen number Gy, = n-2"4-1 (cf. Beeger [2]). A. J. 0. Cunning-
ham and H. J. Woodall [1] proved that any of the Cullen numbers
Cn with 1 <n < 141 is composite and has a small prime divisor. How-
ever, it has been proved that number Cy; is prime (Robinson [2]).

EXERCISES. 1. Prove that if m is a natural number s 3, then number 2™ 41
is not a power of a natural number, the exponent being greater than 1.

Proof. At first we prove that if m is a natural number s 3, then number
2™+1 is not the square of a natural number. In fact, if 2™+ 1 were oqual to =2,
where % is a natural number, then, clearly, #» would be odd and greater than I1;
moreover, it would be greater than 3, becanse n = 3 gives m = 3, contrary to the
assumption. Therefore 2™ = n?—1 = (n—1)(n+1), whence n—1 = 2%, nit1 =
oM~k where &k would be a natural number contained between 1 and m, k < m— k.
Hence 2m—k_ 9%k — 9, whicli, in view of the factthat & > 1, is impossible. Now sup-
pose that m + 3 and 2™--1 = n®, where s is a natural number > I. Since 2™ 1
is not a square, s must be odd. Consequently, 2™ = n¥—1 =/ (n— 1) (n*~1 49824
+...+n+1), which is impossible because the second factor, being a sum of odd
numbers, is an odd number > 1. The proof is thus completed.

2. Prove that for Fermat numbers m = 2”"+1 (n=0,1,2,...) the relation
m|2™— 2 holds.

Proof. For any integer n > 0 we have n+1{2", whence 2"+1|22" and conse-
quently 22" 11221, and, since m = 22" 1 1122" 1, we obtain m|2t"—1,
whence, a fortiori, m|2™— 2. .

Remark. Hence it follows that composite Fermat numbers are pseudoprime
(Chapter V, § 7). : '

It can be proved that if for a natural number & number m = 2% 11 patisfies
the relation m|2™— 2, then m is a Fermat number (Jakébezyk [1], p. 122: theorem X).

3. Prove that there exist infinitely many natural numbers & such that fox any
of them number %-2™+1 is composite for any natural number .

Proof. As we have already learned, numbers Fy, are prime for m == 0, 1, 2, 8, 4;
moreover, number Fjs is the product of two prime numbers, 641 and p, where p > Fy.
By the Chinese remainder theorem, there exist infinitely many natural numbers %
that satisfy the two congruences
(18) and

k= 1(mod (2%~ 1)641) k= —1{modp).

We are going to prove that if k is any such number and if in addition, it is
greater than p, then all the numbers %:2"+1, m'=1,2,..., aré composite,

At first snppose that n = 25(2¢-- 1), where s is one of the numbers 0, 1, 2, 3, 4
and ¢t is an arbitrary integer > 0. In virtue of (18), we have k-271 1 = 22%at+1) &
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4 1(mod 2%2— 1) and, since g | 282— 1 and Fy| 22°G4+1) 4 1, we infer that number k- 2% -1
is divisible by F, at the same time being greater than p > Fj, it is composite.

Nowletn == 25(2(+ 1), wheret = 0, 1, 2, ... In virtue of (18), we have %-2"41
= 22°@0HD) 1 (mod 641) and, since 641]2%° 41|22 L1, wo infer that number
J-2741 is divigible by 641, But it is greater than 641, and so it is composite.

It remaing to consider the case where n is divisible by 26, i.e. where n = 26
for t = 1, 2,... In virtue of formulac (18), we have k-2"--1 == —226‘+1(modp). But
_’p|22$ 411 920 1\226‘—-— 1, whence we infer that number %-2"-1is divisible by p and
greater than p, and so it is composite.

We bhave thus proved that number %-2"+1 is composite for any n = 1,2, ...
(cf. Sierpifiski [27]).

2. Find all the primes of the form n"--1, where » is a natural number, that
have po more than 300000 digits.

Solution. There are only three primes that satisfy this condition. They are:
N1 =2, 2241 =8, 4'4 1 = 257, In fact, if a number »™4 1, where n is a natural
number, is a prime, then, clearly, n» cannot have any odd divisor > 1, and so it must
be of the form m = 2%, where k is a natural number. But then n"+1 = 22k+1,
whence we infer that % cannot have any odd divisor > 1, and so k = 2%, where s
is an integer > 0. Hence it follows that n"-1 = Fe, . Thus, for s = 0 we obtain
number Ky = 5, for 8 == 1 number Fy = 257, for ¢ = 2 and s = 3 numbers I and
Py, which are composite; for & = 4 we obtain the number Fy > 920 5 9106 1yt
this has more than 300000 digits (Sierpifiski [197).

5. Find all the primes of the form 2" 41 that have not more than a milliard
miliards of digits,

Solution. There are only two such numbers: 111+1 = 2, 222—1—1 = 17. The
proof is gimilar to that used in the preceding exercise. We prove first that if n > 2
and number.n”””—l— 1 is a prime, then n = 229, where s is a natural number. Therefore
n”'”’—'#}-l = Fzﬁﬂ+",|.3. For s = 1 we obtain the number Fy which is composite, for.s = 2
we obtain number Fg which has more than 10 digits. It follows that, if it is true
that there are no prime numbers of the form 'n/"n-{-l with n > 2, then there exist
infinitely many composite Fermat numbers.

6. Prove that among the numbers 2”"—}— 3, n=1,2,,.., there are infinitely
many composite ones. vor1

Proof. We are going to show that all the numbers 22 -3, wherek = 1,2,...,
are composite. In fact, as we know, for natural numbers & we have 22? == 3141, where
1'is & natural number. Hence 226! 1.3 = 2642 1.8 = 4(2%% 4 3 = 4+ 3 = 0(mod 7).
But, since for any natural number & number 2“%'}‘1—%3 i > 17, it is composite. The
problem whelher among the nuwmbers 9™ 1.8 there exist infinitely many primes re.
maing open.

7. Prove that any of the numbers 22n+ 5, ns=1,2,..., is composite.

The proof follows from the fact that all these numbers are divisible by 3.

§ 5. A necessary and sufficient condition for a Fermat number to
be a prime.

THEoREM 5. In order that a Fermat number F,, where n is a natural
number, be a prime, it is necessary and sufficient that F, | 3 =N,
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Proof. Let n denote a natural number. Suppose that F,, | 3Fn~D/2 41,
Then ¥, cannot be divisible by 3. Let » be any prime divisor of By, dif-
ferent from 3. Let & be the exponent to which 3 belongs modp. Since
p|8Fn-l1, ye must have 6 | F,—1 = 2" If § were < 2%, then 8 =
2*, where k is a non-negative integer < 2". Consequently, 2°|2*" ™' —
(Fn—1)/2, 80 8| (F,—1)/2 and therefore, since p | 3°—1,p |3Fn=D2_1
and 50, by p | Fy, we would have p | 3Fn~1"% 1, whence p | 2, 80 p = 2,
which is impossible because p | ¥, and F, is odd. Therefore § = 2",
But, as we know, 6 [ p—1, whence p = 22n70+1, where % is a natural
number, whence p > 2*'++1 = F,, and, since p | F,, we see that F, = p,
which proves that F, is a prime. The condition is thus proved to be
sufficient.

In order to show that the condition is necessary we prove the followin.g

Lovwa. If p is o prime of the form 12k-+5, then p | 3%~ V241,

Proof of the lemma. If p is a prime and p = 12%--5, then, by

the properties of Legendre’s symbol, (%) =(-_—1) = —1, whence, by

3

property V of Legendre’s symbol, (s) (%) =1. Oonskequgntly‘(%)‘( = —1,
and g0 3% = —1(modp), which gives p 3P~V 1, ag required.
Now let # be a natural number. Number F, = 22“+1 iy of the form
12k 45 because for any natural number # we have 2" = 2m, and, as it iy
easy to verify (by simple induction for example) that 4™ = 4(mod12)
for any m=1,2,... Consequently F, =4"+1 = 5(mod12), i.e. 7,
=12k+5 and, if F, is a prime, then, by the lemma, F, | 3021,

Thus we see that the condition of theorem 5 is sufficient.

Theorem 5 is thus proved. It implies that if F, is a prime, then
nunber 3 is & primitive root of number F,. (The proof is obtained simply
by noting that the number 3 belongs to the exponent F,—1 mod #,,,
which actually follows from the proof of theorem 5.)

The useful procedure for applying theorem 5 in order to decide
whether a Fermat number ¥, is prime or not is as follows. We denote
by i the remainder left by I, divided by an integer ¢ and set

"n=38, Tra=1i k=1,2,...
By an easy induction we verify that F, | 32k"l—~¢k holds for any %
=1,2,.... Hence, for ¥ = 2", we find F,|3%» Y2y Prom' this
we infer that number 3¥»~D211 iy congruent to 7n+1 mod Fy,.

This is the very method by which numbers F,, Py, By and Fy, have
been proved to be composite. ‘ o
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The number F, hag 39 digits, so in order to find the number #at+1
=7+ 1, necessary for applying the procedure described above, some
hundred and thirty squares of matural numbers, each having less than
39 digits, had to be calculated. Moreover, each of these squares had to
be divided by number F, (which has 39 digits). Nowadays the calcula-
tion. described above is not difficult to perform owing to the use of elec-
tronic computers, but in the year 1905, i.e. when Morehead obtained
thig result, the task was very tedious, although it could be performed.

A gimilar method was applied to Fy, Fyy and Iy, in order to find
that they are also composite numbers. The method described above
gives no information about the prime divisors of the number under con-
sideration; mneither it gives any decomposition of the number into
a product of two factors greater than 1. This is why we do not know any
guch decomposition of the numbers F;, Fy, Iy and Fy.

The next Iermat number, whose character is unknown, namely
Fy,, has more that 30000 digits; the caleulations involved in the proce-
dure described above, and msed to show that numbers F., Fy, F'yy and
Iy, are composite involve in this case some ten thousand divisions of
numbers that have well over ten thousand digits, each by a number that
has over 30000 digits.

EXERCISE, Find the least prime divisor of number 122901,

Solution. By theorem 4, each prime divisor p of number 12241 is of the
form 1216k 1, where % is a natural number, Consequently, p > 2641 = Fy4. Since
I'y is a prime, by theorem 5 we have 14‘4,13215—]—1. Hence 32" == — (mod Fy). But,
in virtue of the theorem of Fermat, 9236 _ 974—1 = 1 (mod Fy), whence 42'° = 1(mod 7).
Therefore 122%° = 3%%.42" == — 1(mod Fy), so F4|12215+1. Thus we see that num-
ber F, is the least prime divisor of number 122154— 1, the latter being > ¥, and thus
composite, We do not know whether there are infinitely many composite numbers
among the numbers 122”—{- 1, where n = 1,2, ..., or whether there are infinitely
many primes among them.

§ 6. How the fact that number 22" 11 is divisible by 5-24+1
was discovered. By theorem 5, any prime divisor of number Fi;
i§ to be found among numbers 2°%-41, where & are natural num-
bers. For & =1, number 2"+ 1 iy divisible by 3, and so it is composite.
Tor % =2, we obtain mumber 241 = (2%*"4-1, which is divisible
by 2¢41; so again it is a composite number. For &k = 3 wwe o]gtﬁm
21%%7.3 1.1, which is divisible by 5 (because 2 = 1(mod5), whence 2 9- -3
41 E= (246.9%.3 41 = 27341 == 0(modB)), and so it is composite.
For & = 4, we obtain number 21, which is divisible by 3, and so
it is composite again. Thus in order to find a prime divisor of number
Fyoss We arrive at the stage where we have to divide it by number m
= 2"7.54-1, which has 587 digits. Since, as it is easy to calculate, -
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number Fi,s has more than 10%* digits, it is quite impossible even to
write it down, let alone to divide it by m. But our aim is not to divide B,
by m but to establish whether ¥, is divigible by m or not. The meth-
od by means of which we can do it is as follows.

We denote by 7 the remainder left by an integer ¢ divided by m.
It follows from the definition of 7 that for any integer ¢ we have m | t—1.
We define the sequence 7, (k =1,2,...) by the conditions

(19) =22 mya=r7s, k=1,2,..
We are going to prove by induction that
(20) m|2¥—r, forany k=1,2,...

Formula (20) is clearly true for k& = 1 because 2’1—71 = 0. Suppose that

s o1

it is true for a natural number &. By (20), we have m | 2% —73, whence,
. p ) 5 e Bl
in view of m | t—3 for t = 7%, we obtain m | }—rE. This gives m | 2°°' 52

and so, by (19), m | 22k+1~r,,+1. Thus formula (20) is proved by induc-
tion. For % = 1945 it gives

.
m | Frogs—~1T1045— 1,

whence it follows that number Fi is congruent to 7945--1(modm).
Consequently, in order to establish whether ¥, is divisible by m, it
ig sufficient to find whether ry,s-+1 is divisible by m.

Let us see what calculations are involved in caleulating number
*1045- 16 follows from (19) that the numbers r,, 7, ... are the remainders
obtained by dividing by m, so any of them is less than m, whence it hag
not more than 587 digits. Thus, it follows from (19) that in order to obtain
number 7, one has to calculate the squares of 1944 natural numbers,
each having not more than 587 digits, and to divide these squares (i.e.
numbers that have no more than 1175 digits) by number m, which has
587 digits.

Present day electronic computers have proved capable of carrying
out these calculations. In this way number #,,; has been shown to be
divisible by number m = 2¥.54-1 < Fys and so it is a composite
number. The investigations of numbers 2°%4-1 for % = 1,2,8,4,
presented above together with theorem 5, show that m is the least natu-
ral divisox; > 1 of the number F;, and so m is a prime. -

In a similar way the least prime divisors of all the other known

composite Fermat numbers except the numbers ¥, Fy, Fyy, and Ty,
have been found. L
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CHAPTER XI

REPRESENTATIONS  OF NATUI{AL NUMBERS AS SUMS
OF NON-NEGATIVE kth POWERS

§ 1. Sums of two squares.

TuROREM 1. A natural number n is the sum of two squares of integers
if and only if the factorization of n into prime factors docs not contwin any
prime of the form 4k-3 that has an odd exponent.

LuMMA. If an odd prime p divides the sum of the squares of two rela-
tively prime integers, them it must be of the form 4k+1.

" Proof of the lemma. Let a,b be two relatively prime integers
and p an odd prime such that p | a®4-52. Then o* = ——bz(moldp); this,
raised to the (p—1)/2-th power gives a”~* = (—1)®~Vp*~! (modp).
But, rinco (a, b) =1, the numbers a, b are not divisible by p, whence,
by the theorem of Termat, A== 1(mod11)) 2, consgequently,
(—1)®=D7 == 1 (modp), Wwhich by p > 2, gives (—1)®~"* =1 and proves
that (p—1)/2 is even. Therefore p must be of the form 4k--1.

Proof of the theorem. Suppose that a number n can be repre-
sented as the sum of the squares of two integers,

1) n = a*-b.
Let
) n = gi'g. .. ¢°

bo the factorization of n into prime factors. Finally, let p be a prime
divigor of the form 4%-+3 of the number n. Write d = (¢,0), & = day,
b = db,, where (y,by) = 1. In virtue of (1), d*|=, and so n= dz‘nl,
where n, is & natural number. Suppose that the exponent on p 1In f?ctox;
ization (2) is odd. Then, since m = d*n,, We must have p | n, = al-'{-.b,,
which. contradicts the lemma. Thus we have proved that the condition
of the theorem is necessary. .

Tn order to prove that it is sufficient we note tha.‘u'wmhout any loss
of generality we may assume that » is greater than 1, since f_or ‘r,.lxe num-
ber 1 we have 1 = 12--0%. Suppose that (2) is the factorization of
into prime factors. Let m be the greatest natural number whose square
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