icm

314 CHAPTER VIII. Confinued fractions

i.e. as the infinite continued fraction

2

byl

(58) By = o+ ia—l +
)

This proves the following theorem:

_ For any infinite sequence of natural numbers by, by, ... in which infi-
nitely many terms are different from 1, any real number x, may be repre-
sented as am infinite continued fraction of form (58), where a, = [20],
tn (0 =1,2,...) are integers 0 < a, <by, for n=1,2,...

As is easy to see, representation (57) coincides with the representa-

tion as a decimal with the varying base which was considered in Chap-
ter VII, § 6.

+..

CHAPTER IX

LEGENDRE’S SYMBOL AND JACOBI'S SYMBOL

D .
§ 1. Legendre’s symbol (F) and its properties. If p i3 an odd prime

D
and D an integer not divisible by p, Legendre’s symbol (};) is said to

be equal to L if D is a quadratic residue to the modulus p, and it is said
to be equal to —1 if D is a quadratic non-residue to p.
In view of theorem 4 of Chapter V, we have

(1) (g-) = D¥*Y(modp).

D P
Consequently, the value of (5) is 1 if and omly if D®-U2 divided by

p leaves the remainder 1.
By theorem 15 of Chapter VI, we have

) D
(2) (5) = (—1)=?,

where the indices are taken relative to a primitive root of the prime p.
It D and D’ are integers not divisible by a prime p, then, by (1),
the following property holds:

I. If D = D'(modp), then (—) —(—,)
; = D'(m =|—.
p? p

From (2) it follows that if D and D' are integers not divisible by p,
then

DD’ = (—1)ndDD’ d (B) L — (—1)indDHRAD’
(3) (p) (—1) an p(p)()

But, according to property II of indices (see Chapter VI, §8), we
have ind DD’ = indD-+indD’(modp—1). Hence, since p is an odd
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prime, and a fortiori, we have ind DD’ = ind D+ ind D’(mod2), whence

DD’ D\ (D’
—1)R4PD = (1 )mdDHRAD" Congequently, by (3 (—-) = (—) (——)
(—1) (=1 q ¥, (8), s 21\7
Thus we have proved

II. If D and D' are integers not divisible by p, then

(DDI ) (D) (DI)
P pI\pl
o . [P, .
Now we prove (ef. Sierpifiski [2]) that if FJ is a real number defined for

a fixed odd prime p and any integer D not divisible by p, which is different from zero
for at least one value of D and different from 1 for at least one D and which, more-
over, satisfies the conditions

D D’
10 if D = D’(modp), then {—} = {—_},
P
DI D) D
20 { } = {—} {7} for any D and D’ that are not divisible by p,

P P
then for any integer D not divisible by » we have

Bl-e)

Let g be a primitive root of the prime p. For any integer D that is not divisible
by p we have D = ¢indD (modp). Hence, in virtue of properties 1° and 20 of the

D
symbol y—¢, we have
P

D ind D ind D
® e
P P p
Let {—;—} =a. Since ¢P~! = 1(modp), by 1° and 2°, the equalities o?~! = {-2}

P

D1 1 2

= {g——} = {-—} hold, but, in view of 20, {-l—} = {}—}, whence {l} = 0 or { ! } =1
P P p » P

p—1
) .

1
We cannot have {5} = 0 because, if that were the case then, by 20 (for D’ = 1),
D D)1
we would have {;} = {F} {-5} = 0, contrary to the assumption that {B} is not
P

identically equal to zero (if D is not divisible by p). Therefore {-1—} =1, and
P

80 a?~! = 1, But o = {i} is a real number and the equation z?~! — 1, p being odd,
P
has precisely two roots, 1 and —1. Consequently ¢ = lora = —1. If g = 1 , then,

D
by (5), for every integer D not divisible by » we have {;} = 1, contrary to the assump-

. D). . .
tion that {5-} is not identically equal to 1 (D not being divisible by p). Consequently,
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o [P ind D D
we must have a = —1, whence, by (5), we obtain HD— = (—1)ndD, So, by (2), 5
== I—)) The theorem is thus proved. It follows that any property of Legendre’s
4

Dy, -
gymbol can be deduced from properties I and IT and the fact that {;} is not identically
equal to 1 or to 0 for any odd prime p.

Formula (1) implies that

IIIL. (i) = (=10,
)

In order to deduce some further properties of Legendre’s symbol
we prove the following

LeMyMA OF GAUSS. (2) = (—1)*, where A is the number of the resi-
p
dues mod p that appear in the sequence
(6) D, 2D, 3D, ..., $(p—1)D

and that are greater than p[2.

Proof. For k=1,2,...,(p—1)/2, let r;, denote the rema,il%der
left by kD divided by p; we set g = 74 if 7, <.p/2 or g =pP—1 if 7,
>p/2. (The equality 7. = p/2 is impossible since, by assumption, p
is an odd prime. .
’ asmce % is n)ot divigible by p and in sequence (6) the cogﬂlclents
at D are natural numbers < (p—1)/2, neither the sum nor the .djﬁerence
of any two terms of sequence (6) is divisible by p. Hence it easily follows
that the sum and the difference of any two different terms of the sequence

(1) 911927-"’9_1%—-31

are indivisible by p. But, according to the definition of numbers‘ ks
they are all greater than zero and less than (p—1)/2 (because either
ox =1, < p[2, whence 20, <p, ie. 20 <p—1, or g =p—7; and
e > p[2, whence g, < p/2 again). Since, by the property of t}.Je numbers
of sequence (7) proved above, terms at different places are different, we
infer that the numbers of (7) are (in a certain order) equal to the num-
bers 1,2,...,(p—1)/2. Hence

p—1), p—1 1 pP-1

(8) 5

the congruence being valid since, in view of the theorem of Fermat,
DP7 =1 (modp).
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Let 4 be equal to 0 or 1 depending on whether 7, << /2 or 7, > p /2.
By the definition of number g¢; we have

9 o = (—1)%r,(modp).

But, according to the definition of 7y, , == kD(modp). Hence, in virtue
of (9), we obtain

’ T LT T |

-1 (p 1) 22
(10) 0102.+-0p_1 = (—1) 2 (13,2_)!1) ! (modp).

2

Formulae (8) and (9) together with the faet that the number
(@a—l) 1 D=1 i not divisible by p give
p=1 AptAgtatdp_y

D? =(—1) T (modp).

(11)

But, aceording to the definition of A, number 4 = A, 2,+... + Ap_yys 18
exactly the number of the remainders obtained by dividing the numbers
of (6) by p, successively. The number of the remainders is > p/2. On the

D
other hand, the left-band side of (11) is comgruent to (5) (modp). Con-
D
sequently, (11) turns into the congruence (—5) = (—1)" (modp). To
D
see that this in fact implies the equality (5) = (—1)*, asserted by the

D «
lemma, it is sufficient to note that (—) is equal either to 1 or to —1
D

and that p, being an odd prime, is > 3. The lemma is thus proved.

Numbers 4, defined in the course of the proof of thé lemma of Gauss,
are such that (—1)% = (—1)*P1 In fact, if 7, < p/2, then 2 =0,
and, on the other hand, the definition of r; shows that for an integer 3,
the equality kD = pt;-+ 7y is valid, whence 2kD/p = 2t 27 [p and, gince
0 < 2r, < p, [2kD/[p] = 2, we have (—1)"% = (—1)FPFI Tt r, > p/2,
then 1 < 2r/p < 2 (because r, << p), whence [2r,/p] =1 and [2kD/[p]
= 2+1. But, since for r, >p/2 we bave 1, =1, the formula (—1)%
= (—1)*2P follows,

Since the formula proved above holds for any ¥ =1, 2,..., (»p—1)/2,
we have

®-1)/2

; : 3 [2kD/p}
(—1)} = (—1yrtiatetip-yp — (_1) ¥ I

Thus the lemma of Gauss implies
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COROLLARY. We have
®=1)}

2
D > [2kD/p}
2
P

Oonsider the particular case of D = 2. By the corollary,

(r-1)/2

D) [4k[p).

k=1

(%) = (—1)* holds for 1=

T 1<k <p/d, then 0 <4k/p <1 and so [4k/p] = 0. The equality
% = p/4 is impossible because p iy odd. For [p/4] < & < (p—1)/2 we have
1 < 4k/p < 2(p—1)/p < 2; consequently, [4k/p] = 1. From this we infer
that among the summands of the sum for A in (12) there are (p—1)/2—
—[p/4] summands equal to 1, the remaining ones being equal to zero.
Consequently A = (p—1)/2—[p/4]. But, as is easy to verily, for odd
p we have

(12)

— 2 .
p—1_ [2] =P o).
2 4 8

In fact, number p, being odd, is equal to one of the following four numbers:
8%+1, 8k-+3, 8k-+5, 8%--7, where & is a natural number.

Write
_p—1 g] _p—1
f(p) =5 —[4 , 9(p) 5 "

Then, a simple calculation shows thatb
F(8k+1) = 4k —2k = 2k,
f(8k+4-3) = 4k +1—2Fk = 2k+1,
fe8k+B) = 4k+2—(2k+-1) = 2k+1,
f(8k+7) = 4k +3—(2k+1) = 2k+2,

9(8%+1) = k(8k+2),
9(8%+3) = (4k+1)(2k-4-1),
9(8%+38) = (2k+1)(4k+3),
g(8%+17) = (4k+3)(2k+2),
p*—1

whenee, in any case, f(p)=g(p)(mod2). Consequently, 1=

(mod?2), and thus, by (12), we obtain property IV of Legendre’s sym-
bol:

Iv. (3) e
S \p

From this we infer that 2 is a quadratic residue to all primes p of
the form 8%--1 and is not a quadratic residue to any prime p of th.e form
8k+3 (where k is an integer). Now we apply property IV in the

sof of the following theorem:
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TeeoREM 1. There ewist infinitely many primes of the form 8k—1,
where £ =1,2, ...

Proof. Let » be a natural number > 1. Number ¥ = 2(a!)*—1
is greater than 1 and has at least one odd prime divisor p» which is not
of the form 8k--1. The reason is that if all the odd prime divisors of
number N were of the form 8%-1, then number N itself would be of this
form, which is clearly impossible since N is of the form 8% —1. We have
p [ N,ie 2(n!)*=1%(modp), which proves that 2(n!)? is a quadratic
2(n!)?

=1, which, in view of

»
7 () ) ot 3 -
property II, gives ( p 21\ Mk Consequently, P 1
and, in view of property IV, p must be of the form 8%-+1. But the defi-
nition of p shows that p is not of the form 8%--1, and so it must be of the
form 8%k—1. But, since p | N = 2(n!)*—1, we see that p > n. We have
thus proved that for any natural number » > 1 there exists a prime p
greater than » that is of the form 8k—1. The proof is thus completed.

THEOREM 2. There ewist infinitely many primes of the form 8k-+3,
where k= 0,1,2,...

Proof. Leb » be a natural number > 1, and let a = p,p,...p,. Since
a is odd, its square a? is of the form 8¢+4-1, number N = a?4 2 being of
the form 8¢+-3. If any prime divisor of N is of the form 8¢+-1, then num-
ber N itself is of this form, which is impossible. Therefore the odd num-
ber N has a (necessarily odd) prime divisor p which is not of the form
8k +-1; consequently p is either of the form 8%+ 3 or of the form 8%+ 5.
Suppose p = 8k+5. Since p|N = a2+ 2, we have a? = —2(modp)

residue to the modulus p. Therefore (

—2
and so (T) = 1. But, in virtue of properties II, ITI, IV,

-1t

Since p = 8k+5, number 4(p—1) is even and number 4(p*—1) is odd,
-9
whence (7 = —1, which is a contradiction. Therefore p cannot

be of the form 8%k--5, and so it is of the form 8k-+3. But, since
Pl6*+2, 6 = pyp;... 0., we have p > p,,. Hence, since n may be chosen
arbitrarily large, theorem 2 is proved.

TEROREM 3. There ewist infinitely many primes of the form 8k-5,
where &k =0,1,2,...

Proof. Let #» be a natural number > 1 and let a = p,p;...p,. Since
o is an odd number, number N = a2--4 is of the form 8k-5. If any of
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its prime divisors is of the form 8¢+ 1, then number N itself ix of this
form, but this is impossible. Consequently, ¥ must have an odd prime
divisor p which is either of the form 8%43 or of the form 8%45.
The former case being impossible because, if p = 8%--3, the relation

—4
p| N =a*+4 shows that a® = —4(modp), and so (T’ ) = 1; hence,
by properties IT and III,

-3 o

—4 i1
whence, in view of p = 8k4-3, we have (—p—) = —1, which is a contra-

diction. Consequently, p is of the form 8k~ 5. But, since p | a2+ 4 and
@ = PyPs...Pn, We have p > p,, which, in view of the fact that n is axbi-
trarily chosen, completes the proof of theorem 3.

§ 2. The quadratic reciprocity law. Let p and ¢ be two different
odd primes. Consider the pairs (kg,lp), where k =1,2,...,(p—1)/2,
p—1 ¢—1

2 2
For any of the pairs we have kq - Ip because, in the opposite case, i.e.
if kg = lp, we have p | kg, whence, by (p,q) =1, p |k, Whi({h is impos-
sible because & < (p—1)/2. We divide all the pairs into tWwo eclasses,
one consisting of all the pairs for which kg < Ip, the other comprising
the pairs for which kg > Ip. We calculate the number of pairs in each class
as follows. )

Given a number I out of the sequence 1,2, ..., (¢—1)/2. If the pair
(kq, Ip) belongs to the first class, then k < Ip/q. Since, as we know, Ip/q
is not an integer and since

Ip _(g—Lp _p
- . <
q < 2¢ 2’

1=1,2,...,(¢g—1)/2. The number of such pairs is clearly

[/
whence [—1?»] < 3,
q 2
we have
! . ip <Q] p—1
2[—5] <p, le. 2[?] <p-—1, whence [ P < 7
Consequently, for a given number I, < 3(¢—1), & may take the values
1,2,.., [.l}l], which are [_lp;] in number. From this we infer that the
1 ! @y p .
number of pairs which belong to the first class is 2 [~q—] Similarly,
e a1 .
the number of the pairs that belong to the second class is Z {?] . Bince

k=1

21
Elementary theory of numbers


Yakuza


322 CHAPTER IX. Legendre’s and Jacobi’s symbols
_— . p—1 gq—1 .
the number of all the pairs in both classes is 5 g ! we obtain the
equality
(@-1p -1
=2 [ 2
(13) 2 2 2 q + 2 1
=1 k=1
In virtue of the corollary to the lemma of Gauss, by properties I and IT
we have
2 4 +p
@q_{ﬂp+®)= 2 =(@+m&)
P » » p
=D kp1g) PRk @D PP gy | o1
=(—1)“1[ ? ]= -qui bl :(—-1)"El B4

@D
(the last equality being valid since > % = % (p2—1)). But (since q is 0odd),
k=1

in virtue of II and IV we have

-1
- ()
P piAp p
2
which, combined with the formula proved above for (—q), implies the
equality P

@=1)/2 gy
v

P
valid for any odd p and ¢. Hence
@Dy

e

By (13), these two formulae show that the formula

v )
g/ \p
is valid for any two different odd primes p and g. This formula is known

under the name of the gquadratic reciprocity law.
p—1 ¢—1
2

p-1 g-1

==y T

Number is odd if and only if each of the numbers p

and ¢ is of the form 4k---3; hence equality V may be expressed by saying
If two different odd primes p and q are of the form 4k-+3, then

(2) = —(%); if at Teast one of them is of the form 4k+-1, then (%) = (%)
P
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There are as many as seven different proofs of the law of quadratic
reciprocity given only by Gauss himself. A table of 45 proofs of this law,
ordered according to the time of their discovery (from 1796 to 1897),
is given by P. Bachmann [2], p. 203. The number of proofs has consi-
derably increased since then.

Now we are going to apply property V to the proof of

TeworEM 4. There are infinitely many primes of the form Bk—1,
where k& is a natural number.

Proof. Let » be an arbitrary natural number > 1. Let ¥ = 5(n!)2—1.
Clearly, & is an odd number > 1 and, since it is not of the form 51,
it has at least one prime divisor p which is odd (different from 5) and not
of the form 5¢{-4-1. We have p > n. Since p | N, we have B(nl)2=1

5
(modp), whence (E) = 1. By V, we thus have %) =1. The prime p,

different from 5, must be of the form 5k4-1 or 5k+2. If p = Bk+2,

+2 +1\(2 - +1
s, by Tana 1, (2) = (£2) - (£2) (). Bussince, by, () 2
2

p

and, by IV, (5) = —1, we obtain (E) = —1, which is a contradiction.

Therefore number p must be of the form 5%4-1, and so, since it is
proved not to be of the form 5k+-1, it is of the form 5%k—1. Thus we
have shown that for any natural number » there exists a prime p > n
that is of the form 5k—1. This completes the proof of the theorem.

If p = b5k—1 (k being a natural number) is a prime, then % must
be even (since otherwise p would be an even number > 2, and thus com-
posite). Therefore & = 2, where ¢ is a natural number and p = 106—1.
From theorem 4 we infer that there ewist infinitely many primes of the
form 10t—1, where t is & natural number. In other words, there exist infi-
nitely many primes whose last digits are 9.

It is easy to verify that there exist infinitely many primes of the form 5k 2,
where % is a natural number. In fact, let » be an arbitrary natural number > 2. We
put N = pyps...pn— 2. Then N is an odd number > 1 whose prime divisors are dif-
ferent from 5. If all its prime divisors were of the form 5k 1, number N itself would
be of this form. Consequently, there exists at least one prime divisor p of N which is
different from 5 and not of the form 5k--1. So p must be of the form 5k 2. But,
sinee p > py, the theorem follows. The theorem on arithmetical progressions implies
that there are infinitely many primes of the forms 5k+2 and 5k—2. The proof,
however, is far more difficult. Since % must be an 0dd number, one easily sees that
the former of the two theorems is equivalent to the theorem stating that there exist
infinitely many primes whose last digits are 7; the latter theorem is equivalent to the
theorem stating that there exist infinitely many primes whose last digits are 3.

TEEOREM 5. Huvery prime p which 4s of the form 6k-+1 is of the
form p = 32+ y2, where =,y are natural numbers.
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Proof. Suppose that p is a prime of the form 6k+1. By property

3
V of Legendre’s symbol, (5) = (—1)‘”“1)’2(%). By property I, (-‘g) = (%)

=1. Combining these two equalities, we obtain

-6 - o))

P » /\p P 3

which proves that —3 is a quadratic residue to the modulus p. Therefore
there exists an integer a such that 4243 = 0(modp). In view of Thue's
theorem (see Chapter I, §13), there exist natural numbers *,y, each
< Vp, such that for a suitable choice of the sign the number az-ty
is divisible by p. Hence it follows that p | a2s?—y2. But, since ?|a*+3,
whence p | a%2-+ 342, we have p|3z®+y®. But # <1/]_) and y <V§.
Consequently, in view of the fact that p is a prime, we have 22 < P and
y* <p, whence 3224y < 4p. In virtue of the relation p | 32 Y2, we
then have 3z°+y* = pi, where t is a natural number < 4. If ¢ — 3,
then 3 |y and so y = 3z, where 2z is a natural number, whence p = g2}
+32%. I ¢ = 2, then the numbers »,y must both be even or both be
odd. In either case number 2p = 3w2--y? is divisible by 4, whence 2 | p,
which is impossible. In the case where t = 1, we have p = 3w2-}y2,
Theorem 5 is thus proved.

It is easy to prove that if a prime p is of the form p = 3w2+4y2, where
#, y are natural numbers, then » must be of the form p = 6k+1, where
k is a natural number. From theorem 10 of Chapter V it follows that
any prime of the form 6%--1 has exactly one representation in the form
3#®+y?%, where ¢ and y are natural numbers. B. van der Pol and
P. Speziali [1] have tabulated the representations in the form 32 y2
of primes of the form 6%4-1 which are less than 10000. In particular,
we have 7 =3-1242?, 13 = 3-2°+1%, 19 = 3-124-42, 31 = 3-324.22,
37 =3-204-5%, 43 —3-3%442, 61 —3-224 72, 67 =3-124-82, 73 =
342452 79 = 3-524-22, 97 —= 3-42.1.72,

As has been noticed by A. Makowski, theorem 5 implies the follow-
ing corollary: for any prime p of the form 6k-+-1 number 2p* is the sum
of three biquadraes.

This is obtained immediately from theorem 5 by a simple applica-
tion of the identity )

2(302 4y = (34 20y —y?)i+- (302 — 2oy — y2)+ (day)t
and by the remark that for p = 324 y* we have the equality 8?4

& 20y —y* = p— 2y oy the right-hand side of which is different from
zero since p = 6k-+1 is odd.

icm
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We note that also the following identity holds:
2307+ y*)* = (30*+ 20y —y*)*+ (3a*— 2wy — y2)* -+ (doy)*.
Hence, in particular, for # =1, ¥y =2 we obtain
274 = 34454484, 2-72 = 32452482,
and, for # =2, y =1, we find
2:13% = 15*-744-8%, 2-13% = 15272482,
In this connection, we present the following two identities:
232>+ y*)* = (6 +y)*+ (0 —y)* +(22)*,
2322+ y?) = (2+9)*+ (z—y)*+ (22)*.

From them we derive the following corollary: for any prime p of
the form 6%+ 1 number 2p2 is a sum of three biquadrates of natural numbers.
For example, for ¥ =1, y =2, we have
27 = 3410428, 2-7 =324124-2%
for x =2, y =1 we have
24132 = 34414444, 2-13 = 3212442,

§ 3. Calculation of Legendre’s symbol by its properties. The five
properties of Legendre’s symbol deduced from its definition combined
with the fact that the value of the symbol is either 1 or —1 enable us to
caleulate its value.

Let p be a given odd prime and D an integer not divisible by p.
Let r be the remainder left by D divided by p. Consequently, we have

D r
0 < r < p, and, by property I, (]T) = (;) Let a? denote the greatest

square that divides r. We have r = ka2, where either & =1 or % is the
product of different primes, ie. & = ¢;¢s...0s, With ¢, <g,... <
moreover, since r <<p, we have ¢, <p. In virtue of property II

- -

thig being equal to (1) =1 or to (—q—l) (q—z) (&) If g, = 2, then (~)
: » pi\p ? P
is caleulated by the use of property IV. If ¢, > 2, then the values of the
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symbols (2)’ where ¢ and p are odd primes and ¢ < p, are still to be
»
calenlated. By property V, we have

it iy
(7)==
p
D
Thus the caleulation of Legendre’s symbol (;) reduces to the calcula-

. D
tion of the symbols (?), where ¢ is an odd prime less than p.
Therefore, after a finite number of reductions, we obtain the value
D
of the symbol (5) This procedure has the disadvantage that it invol-

ves expansions into prime factors. In order to avoid that, Jacobi intro-
duced a more general symbol; it will be investigated in the next section.

§ 4. Jacobi’s symbol and its properties. Jacobi defined the symbol
D
(P) for odd numbers P >1 and integers D relatively prime to P ag

follows:
It P = ¢'g:?...q5° is the factorization of P into prime factors (each
factor being odd), then

a0 [#) - G-

where on the right-hand side we have Legendre’s symbols.

It follows immediately from the definition that if P is a prime, then
Jacobi’s symbol is equal to Legendre’s symbol. However, for investigat-
ing the quadratic residuacity Jacobi’s symbol does not correspond exactly

to Legendre’s symbol. The reason is that though the equality (F) = —1
implies that D is not a quadratic residue to P because then at least one

D
of the factors (7!—) one on the right-hand side of (14), must be equal

to —1, whence the congruence %= D(modg,) is insolvable, and so,
a fortiori (since ¢;|D) the congruence %= D ig insovable, the rela-

tion 7= ~+1 does not necessarily imply that D is a quadratic residue

2 2
to P, for example (1 5) (—2) (—) =(—1)(—1) =1 and the congruence

w’—2(m0d15) is ingolvable because the congruence % = 2(mod3)
is insolvable.
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Jacobi’s symbol possesses five properties similar to those of Legen-
dre’s symbol. In order to prove them we note that (14) may be rewritten
in the form

= (3)- () ()G

where P = ¢;4;...q, and the primes ¢, ¢s,...,¢: are not necessarily
different.
D D’
PropERTY I. If D = D'(modP), then =\

Proof. In virtue of (15) we have

o Q-OE-E B2

If D = D'(modP), then, a fortiori, D = D’'(modg;) forany s =1,2,...,8
: D D
Consequently, by property I of Legendre’s symbol, (?) = (~—) for

D :
4 =1,2,...,8, whence, by (16), (—«):(?—)

ProrerTY IL (l)—;—)w) =(£) (D) for any integers D and D’

not divisible by P.
The proof follows easily from property IT of Legendre’s symbol,
formula (16) and the fact that

)= - 50

. {1
As an immediate consequence of property IL we obtain (T)) =1.

—1
PropERTY III. (—}——) = (—1)F-2

Proof. In wew of (15), by property III of Legendre’s symbol we
have

an (:P_l) (;1)( - ) ,,(;3)=(~1>5'1—3~+32—,‘—1-+...+ L=y

Congider the identity
P=gq.. ¢ =(G—D+1){(qa—1D+1)...(¢s—1)+1).
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All the numbers ¢,—1,¢,—1,...,9,—1 are even; consequently the
product of any two of them is divisible by 4. Hence

P =4k+1+ (s —1)+(ga—1)+...+(g—1),
and so
P-—-1

1 512_1 QS—l
3 —_—

_ Gi—
= 2k 2 + P +.oF 2

Therefore
P31 q1—1

(-1* =(-1°*

a2—-1 gs—~1
2

+ ot 25

Henee, by (17), property IIT follows.
ProPERTY IV. (1%) = (—1)®*-0

Proof. In virtue of (15), by property IV of Legendre’s symbol, we
have

2 2\(2) (2 E.Fﬁ+_,,+“§;‘
(18) (?)=(a)(;)'--(z)=(—”“ ' :

Since the square of any odd natural number is of the form 8k4-1, the
identity

P = (i —1)+1)((@—1)+1)...((E—1)+1)

shows that any of the differences ¢;—1, ¢5—1, ..., ¢*—1 is divisible
by 8. Consequently, the produet of any two of them is divisible by 64.
Hence

P = 64414 (g1 — 1)+ (g5 —1)+ ...+ (g3 —1),
and so
P-1_ o 61 g1 G—1

R R

whence
P d-1 a1 a1

—— +
(—1)F = (=1 F TE T

whick, by (18), completes the proof of property IV.

P\(Q Po1 01
ProrPERTY V. (6) (F) =(—1) % % for any relatively prime odd

numbers P, Q > 1.

. Proof. Let Q =r7,...1y, where ry,7,,...,7, are not necessarily
different odd primes.

icm
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In virtue of (15), property IIL, and property V of Legendre’s

symbol, we have

o Y- T - oA

But
s 4 8
q,;_l.rfv—l _ —jq-,‘,—l. 7’7'—-*1
(20 D) =2 2
As is easily noticed, in the proof of property III

8
i—1 —1
Li—-~ =£~——2k
2, 2 2
i=1

whence, P and @ being odd, we have

[
)

"',’—l - Q—l Y
2 2 !

i
>

and similarly >
=

i1qi~1_ Sr—1  P—1 Q—1
2 2 2 2

-+ 2h.

1=1 7=1
This by (19) and (20) completes the proof of property V.

§ 5. Eisenstein’s rule. The properties of Jacobi’s symbol intro-
duced in the preceding section will serve to obtain the Eisenstein rule,
by means of which the value of Jacobi’s symbol (and thus also of
Legendre’s symbol) may be caleulated without using the factorization
of a number into primes.

D
First of all we note that the task of calculating the value of (f)’
where P is an odd number >1 and D an. integer relatively prime to P,
may be reduced to that of calculating the value of (g‘ , where @ is an

odd natural number, In fact, if 2° (where f is an integer > 0) is the
greatest power of 2 that divides D, then D = (—1)%2°Q, where o =0
or 1, Q being 3 natural odd number. Clearly, in order to find the num-
ber Q we do not need to know the factorization of D into primes; it is
sufficient to divide D by consecutive powers of 2.

By the properties of Jacobi’s symbol, in virtue of the formula

for D, we obtain
EANNE a+””;‘ﬂ<_@).
P/ =(-1) P
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Thus it remains to find the value of (%), where @, P are odd relatively

prime natural numbers.

Let B be the remainder left by @ divided by P. Consequently, R
is one of the numbers of the sequence 1, 2,...,P—1. Number P—R
also belongs to this sequence. Hence, for an integer ¢ we have

Q =Pi+R and Q =P({+1)—(P—R).

Since the sum of the numbers B and P—R is odd, one of them must be
0dd, the other being even. Let P, denote the odd number. If P, = R,
then @ =Pi+P,; if Py = P—R, then Q =P(t+1)—P,. In any case
Q = Pk+¢,P,, where k is an integer and & is 1 or —1. We note that %
must be an even number, since otherwise the number @ 4-P, would be odd,
which is clearly impossible because the numbers @ and P, are odd. Con-
sequently, & = 2k;, where %, is an integer. We have Q = 2k,P--¢,P,.

If P, %1, then we may repeat the above reasoning with P and P,
in place of @ and P. Then we obtain the equality P = 2k P;+ g, Py,
where k, is an integer and & = +1, P, is an odd natural number.

If P, 0, then, as in the previous case, P, = 2k,P,+ &, P, and
80 on. Numbers P, Py, Py, ... are strictly decreasing because P, < P—
—1, Py <Py—1,... Therefore the sequence of the equalities that link
together numbers P, P,, P,, ... cannot be infinite because the number of
odd natural numbers < P is finite. Therefore we ultimately obtain the
last equality, P,_, = 2k, P,_,+&,P,, where P, must be equal to 1, since
otherwise a next equality could be obtained. Thus we obtain the se-
quence of equalities:

Q =2kP+eP;, P = 2k, Py + &Py, Py =28y Pyt &3Py, veey
Py s = 2kn 1Py o+ en1Pr1y  Ppog = 2kn Py~ &P,
where P, =1. The first equality of (21), by properties I and II of

Jacobi’s By]]lbo]., gives
.P P P '

(21)

(22)
If & =1, then

21

§ 5. Kisenstein’s rule
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In any case we then have
Pl 1-5

)-a

In virtue of property V of Jacobi’s symbol and by the fact that the square
of Jacobi’s symbol is always equal to 1, we have

HRCI

‘whence, by (22),

Q) _ (). Ly e I
(3 - (7o) - :

But (since & = 1) we have

P—-1 1—g P-1 Pi=1 P—1 P—e P—1 &P—¢
2 2 2 2 2 2 2 2¢,
_P-1 -elPI—l
) 2

Moreover, trivially, (—1)*% = (—1)* for & = 41, and so

P-1 1—g P-1 5Pj—1 Pl gPy-1
1+ T 151

(_1)T.T TET2 __:(_1)7—"_2_;

8- z)

consequently

Similarly, from the second equality of (20) we find
Py—1 gPy—1
(7)o
Py P,
and so on. Finally, the last but one equality gives

—1 ey 1Pp_q1~
(P,,_3) _ (_1)12:33__1._1_;3_‘ (P,._l)
P n—2 -P n—1.

and from the last equality, taking into account that P, =1, we find

=) - (=)
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But hence, for ¢, = 41, we easily obtain

) Pp_1~1 ep—1
( én ) z 32

an_l = (_1) )

whence, in view of P, =1, we obtain

Pp_1-1 enPp~1

() =

P
Now if we put together the formulae obtained for (%), (F)’ ceny

(ﬁ"“z) we get the final formula

n—1

Pp_1—1 epPp-1

0 Pl gPj~1 Pi—1 syPy-1
(_)=(_1)T' Tt 2 2 P

P

The value of the right-hand side of this equality depends on the number
P—1 &P —1
2

of odd summands in the exponent. :The product is odd

if and only if each of the numbers P and &P, is of the form 41+ 3.
Therefore we may write

Q n
(28) (9 = -2,

where number m is equal to the number of those of the pairs P;_;, P
(¢=1,2,...,n, and P, = P) in which both P; , and g P; are of the
form 4¢+3. This gives

EISENSTEIN’S RULE. To calculate (%) we look at equalities (21) and

Jind the number m of the pairs P;_, and &P; in which both P, and &P;
are of the form 4t 3. Then we substitute m in (23).

As is easy to see, the rule makes it possible to caleulate the value of
Jacobi’s symbol without developing a number into prime factors.

. . 641

EXAMPLES. 1. We apply Eisenstein’s rule in order to find the value of (EE’?)'
Here equalities (21) are the following:

641 = 2:2574 127,

257 = 2-12748, 127 = 42-3+1.

Among the pairs 257, 127; 127, 3; 3, 1, only the second is such that each of its terms
. 4
is of the form 4i+3. Therefore m = 1, and, consequently, (275;) = —1, which
shows that number 641 is not a quadratic residue for the modulus 257.
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io5—31) ‘We have 65537
274177
= 0-2741774- 655637, 274177 = 4-65537- 12029, 65537 = 6-12029— 6637, 12029
= 2-6637— 1245, 6637 = 6-1245— 833, 1245 = 2:833— 421, 833 = 2-421—9, 421
= 46-9+7,9=27—5,7=2-5—-3, 5 =2-3—1.

Among the pairs P;_3, ¢P; only in the pairs 7, — 5 and 3, — 1 both of the

65537 )

274177/

2. We calculate the wvalue of the symbol (

terms are of the form 4¢-+ 3. Therefore m = 2, whence (

— 104
3. In order to calculate the value of (—;9—5—) we find that —104 = (—1)-23-13.

—~104) {—1\/ 2 \[13 -1
T8V (T2 (o) (2. Number 997 is of the form 4441, (-;):1.
0( 997 ) (997)(997)(997) Number 997 is o orm 4+1, 80 \ oo

2 —104 13
Number 997 is of the form 8+ 5, so {——] = — 1. Therefore = — .

997 997 997

997
13 = 0-997+13, 997 =76-13+49,

We see that there is no pair P;_y, ¢P; in which both terms are of the form 4t + 3.
—104) - _1
997

13 ) .
In order to calculate the value of (—) we write equalities like (20), i.e.

13=29—5, 9=25-1.

13
Consequently, m == 0, whence (99—7) =1 and so (
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