CHAPTER VIII

CONTINUED FRACTIONS

§ 1. Continued fractions and their convergents. Simple continued
fractions have already been considered in connection with the Euclidean
algorithm in § 9, Chapter I. We also gave there a method of developing
rational number into a simple continued fraction. Now we are going to
consider slightly more general continued fractions of the form

1 il—1~.'..-}—i|

1) ay+ s
|a: " |a. |an
where 7 is a given natural number, a, & real number and a, a,, ...
positive numbers.

The number
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where k =1,2,...,u, is called the kth convergent to the fraction ).
We define the 0th convergent as the number B, = a,.
It follows from (2) that the kth convergent Ry is a function of k41

variables, @y, @y, ..., &, and that if for k¥ < » number a; is replaced by
number a;- . , the convergent R; turns into the convergent R,,.
Let
Py = a,, Qo=1,
Py = aya,+1, Q1 = ay,

3

Py =Pp 104+Prsy, Q= Q1 0Qp_,

for k=2,3,...,n.

As is shown by an easy induction, Py is a function of the variables
Ggy Gyy -y G, @ being a funetion of @y, B3y ..., 0z Moreover, P, and
Q. are integral polynomials of the variables in question. An immediate
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verification gives
P, a P, aya,+1 1
2 =2_F =TT _ — =R,.
Qo 1 ! & @y ot 4 B
We prove that for any positive numbers @y, Gy, ..., 4, the relation
(4) Prl@ =Ry, (=0,1,2,...,n,

holds.
As we have just seen, the relation is valid for k¥ =0 and % — 1.
For k = 2 its validity follows from (3); we have

P, Pia,+P, (aga,+1)as+a, 1
= = = apt
a;ay+1

Q2 - Q10:+@Q, -

= R,.
a4 —
Qs

Suppose that (4) holds for ¥ = m, where 2 < m < «. Then for any posi-
tive numbers a,, a,, ..., 4, we have R,, = P,/Q,. By (3), the equality

Py “m+Pm__2
O 10m+Qm_»

holds for any positive numbers a,, as, ..., ¢,. Equality (5) remains valid
1

+1
But then R,, turns into R,,, and, since on the right-hand side of the

equality Pp,_1, Py_s, Qm_1y @m_» do not depend on a,, we have

(5) Bn =

if @, is replaced by a,, - on each side of the equality (since a,,,, > 0).

1
Py
_ Py (am+ a‘m—:—l) + ! . (Prm_16m~+Pm_s)tmy1+Pm_y
e 1 @10 +Qrm2) Omir+ @y
Qm—l (am+ a ) +Qm—1 (Q ! Q ! o '
+1

Consequently, by (3),
ey _ Py
Qmam+1+Qm—1 Qm+1 !

which shows the validity of (4) for & = m-+1, and so, by induetion, for
any k=0,1,2,...,n.
We now write

Ay = Pr_1Qr—Qx 1P,

By

k=1,2,...,n.
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We then have
A, = Py,
But, by (3),
A = Pr_1 Q100 +Qrs) — Qi1 (Pr_1 5 +Pr_s)
=Py 1Qpr—Qu_1Pro=—4dp,  for

whence, immediately, 4, = (—1)f for £ =1,2,...
proved

(6) Ay = Py 1Qr—OQp_Pr = (—l)k for

§ 2. Representation of irrational numbers by continued fractions.
Let z denote an irrational number. Let @, = [#]. Since # ig irrational,
0 <2—ay <1 which implies that number z; = 1/(z—a,) is an irra-
tional number > 1. We set a; = [#,]. Clearly, [#,] is a natural number
and a reasoning similar to the above shows that number x, = 1/(x,—a,)
is an irrational number > 1. Proceeding in this way, we obtain an infi-
nite sequence ,, &, ... of irrational numbers each greater than 1 and
& sequence of natural numbers a, = [#,] such that @, = 1/(z,_;—a,_,)
for any n =1,2,..., ©, being taken as z. We then have

—QoPy = aya;— (aga; +1) = —1.

E=2,3,...,n,

,n. We have thus

E=1,2,..,n

Lp_ 1= Op_1+ o for
"

The sequence of the equalities

_ a1 a1 N
= ay+ . W1~“1T£a sy Bpy = Oy “;
gives
1 1
() & =g+ i— 1 +—+.. +. l l
ot T
Let
i 1 1
8) R,.“%—’r“!%‘ ¥ —l——l
| @y iag la,

Comparing (7) and (8), we see that, if a, in (8) is replaced by #,, R, turns
into .

Py and Q; being defined by (3), for an arbitrary @, and positive
Gy Gy, ..., G, We have

-Pn . Pn,..lan"'}"P —3

B = QT; N On100+Qn s
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Moreover, since Py,_;, Py 4, @, , and @, , do not depend on a,, by
replacing a, by @, on each side of the above equality we obtain

P, _ @, +Py_,

Qn—v’%%Qn-a

This formula is valid for any natural number n > 1; consequently, if
we replace in it » by n+1, we get

P nFny1+Pn_ 1

 QnayiFQn

(9

whence, by (6),
ann-;-l “{_P —1 -&I _ (___1)11, .
Qnmn+1+Qn..1 Qn a (ann+1+Qn—1)Qn‘

This and the inequality #,,; > a,,, give together the following evalua-
tion:

(10) #—R, =

1 . 1
(Qn“n+1+Qn—1)Qn h Qn—*«lQn.

We are going to prove that Qp > % for any % =1, 2,... Trivially
this is true for ¥ = 1 because @, = a, is a natural number. If for a natu-
ral number % the inequality @, > % holds, then, by (3), @ (¢ = 0,1,2,...)
is a natural number and we have Qr.; = Qi1 +Qx_1 > Qra+1 > k+1.
Thus, by induetion, the inequality @y > % is proved for all k =1, 2, ...
By (11) we then have

(1) le—Bq| <

1
@ —R,| < ———— Yo for

Hence # = lim R,. We express this by saying that number x is repre-

w=1,2,...

N0
sented by the (infinite) simple continued fraction
1], 1) 1
= a0+ I + 1 + I

(12) w Tl

+...

‘We have thus proved that any irrational number © may be expressed
as an infinite simple continued fraction, the representation being obiained
by the use of the algorithm presented above.

Since @n.; = [¥n1] > @y, —1 and consequently .., < a, at1,
formula (10) implies )
1 1
a8)  lo—By| =

(@1t On)0n (@l F1) - 0u )
1

T 0u(@ni+0n)
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But, since a,,. > 1, by replacing # by n-+1 in (11) we obtain
1
B—Rpp] < .
R (T T
The relation Q,.; = @na,+@Qn_, > Qn applied to (13) and (14) gives the
evaluation
(13) [t —EBppa] < lo—Ryl,

This means that of any two consecutive convergents to «, the second
gives a better approximation than the first. Formula (10) shows that

(14)

valid for any » =1,2,3,...

>0
<0

for even n,

o—R,
for odd n,

which means that the even convergents are less than &, whereas the odd ones
are greaier than z. This, combined with inequality (15), indicates that
the even convergents increase strictly as they tend to «x, while the odd
convergents decrease strictly.

Now let a, denote an arbitrary integer and a,, @3, ... an arbitrary
infinite sequence of natural numbers. Applying the above-mentioned
argument slightly modified, we conclude that if numbers R, are defined
by (2), then for any natural numbers n, m >n, we have

1
Hn ol < D)
This proves that the infinite sequence R, (n = 1,2,...) is convergent,
Le. that there existy a limit # — lim R,. We then write formula (12).

00
Thus any infinite continued fraction (12) (where a,, @g, ... are any natu-
ral numbers) represents a real number. Now, assuming (12), we write

1 1 .

(16) Ty = Gyt }—l-—-—l for =»=0,1,2,...,
la‘n+1 ‘“n-;z
where z, = . Let
1 1
(17) RO =a,+ |+...+ [ for %=1,2,
[Bns1 [Gnsz

Then
(18) 1131; B ==, and }lﬂ BY =,
But, clearly,

1
-R,f;)-l =%+T‘n§‘m
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153
[’
pe

whence, by (18)

(19) By = Gp+ for n=0,1,2,
Ty 11
‘We also have
1 1
R§c722= [ R;:f:il) = @+ 1 3

Unp1+ ez

but, since R{*? > a,,,, we have

1
RI(:—?Z > an+ )

an+1+

Ony2
whence, in virtue of lim R{, — u,, we infer
N0

1
Ty, 2= Gyt
[

Fn g2

Consequently , >a, for any n =0, 1,2,... Therefore @n.;> ay,,
and 80 @,,; >1 for n =1,2,... On the other hand, by (19) we have
2 < a;+1. Thus we see that a, <o, <a,+1 for n = 0,1,2,...,
whence a, = @, for n = 0,1, 2, ... This, by (19), shows that if (12) is
any representation of # as an infinite simple continued fraction, then
the relations

1 1
Ppyq =

Bp— @y
(20)

@ =[@,) for n=0,1,2,...

hold. This proves that any irrational number is uniquely expressible
a8 an infinite simple continued fraction.

‘We now prove that any infinite simple continued fraction repre-
sents an irrational number. Accordingly we suppose that a rational num-
ber z =1/m (with (I, m) = 1) is expressed as in (12). As we have just
seen, (12) implies formulae (20). Therefore

LS (R

m,
But

1 l 1 1
[——]>———1, whence l—m[—] <l——m(—— —1) =m.
ml” m m, m
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Consequently, if @, = 1/my, Ljmy being an irreducible fraction, then
My < m. Thus we come to the conclusion that the denominators of the
rational numbers Do) &1y @y ... decrease strictly, which is impossible.
This proves that a rational number cannot be expressed as an infinite
simple continued fraction.

We sum up our conclusions in

THEOREM 1. Every irrational number can be empressed in exactly
one way as an infinite simple continued Jraction (12) (where a, is an integer
and a4y, a,, ... are natural numbers defined by formulae (20)). Conversely,
any infinite simple continued fraction represents an irrational number.

For irrational numbers of the 2nd degree representations as simple con-
tinued fractions are known. (We shall discuss this in detail in §4.) Among
other irrational numbers there are very few for which representations
as continued fractions are known. Number e belongs to this class. It has
been proved that

o1, 1), 1] 1 1) 1], 1] 1]
=24 A4 i oy S, 4 A A i T e |
e +f1 +12 ‘l‘!l —rll +’4 +!1 T---'f-ll +f27c+!1 +...
We also have
#-1_ 1 1] 1] 1]

21 :H"f‘l—s'“"ﬁi- +F‘,—+

The rule according to which the numbers appear in the sequence a,, 4,,
@5, ... of quotients of the simple continued fraction which expresses
number 2 iy also known. Here we have

7,2:1,1,3,18,5,1,1, 6, 30, ..., 243k, 1,1, 343k, 18412k, ...

No such rule is known for the sequence of quotients g, Gyy Gy, ... oOf
the simple continued fraction for the number =. G. Lochs [1] has ealcu-
lated the numbers a;, for % — 0,1,...,968. The greatest of them is the
number g, = 207 76; all natural numbers < 34 appear among the a’s
and number 1 appears 393 times. Here are the first 30 of the quotients:
37,151,292 1,1, 1, 2,1, 3, 1, 14,2,1,1,2,2,2,92,1, 84, 9, 1,
1, 15, 3, 13, 1, 4.

Tt is easy to find a sufficient and necessary condition for a non-integ-
ral number x which ensures that in the representation of as a simple
continued fraction the first quotient a, is equal to a given natural num-

ber m. In fact, we have a; =[] =[

1
]; therefore in order that
T—a,

4 = m it iy necessary and sufficient that m <1/@—ay) < m+ 1, ie,
1

-+ P

1
<@ < Gpf—.
mn

21
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In particular, the condition for a number # with 0 < » < 1 to.have
the first quotient equal to m in the representation of z as a continued
fraction is

ot

m-+1 m

tly, number # must be in an interval whose length is 1/m—

(-}?;7831}:2)2 1/m(m-+1). From this we infer tha,.t the probability of
the event that the first quotient of the representation of a real number
z a8 a continued fraction is equal to m is 1/m(m--1). Consequently,
for m =1 the probability is equal to 3, for m = 2 it is 3; for m =3
it is only liz, and so on. We see that the probability decreases as m tends
to infinity. It is easy to verify that the probability of the evenF that the
first quotient is > 10 is equal to ﬁ This is the reason why in general
the first quotient & is a comparatively small number.

A more difficult task is to caleulate the probability of the event
that the second quotient is equal to a given natural number m. (The pro‘r?-
ability that the kth digit in the representation of a real number as e‘m fieCl-
mal is equal to a given digit ¢ is equal to % for any % a{ld any c?lglt ¢.)

The theory of measure provides methods on the basis of Whmh_ one
can prove that the probability of the event that among the' quotients
of the representation of an irrational number as a simple con‘?mued frac-
tion there are finitely many (or zero) quotients equal to 1 is zero. (Ct.
Hausdorff [1], p. 426.) Similarly, the probability that among the quo-
tients there are only finitely many different numbers is zero.

§ 3. Law of the best approximation. Now we are going to prove a thef)-
rem which shows the importance of the theory of continued fractions in
finding approximate values of irrational numb.ers.

Let 2 be a given irrational number that is represented as a con-
tinued fraction as in (12), and let 7/s be a rational number that approxi-
mates # better than the nth convergent R, of #. In other words, we sup-
pose that

. r
(21) m~§| < |[#—Ral.

In virtne of (15) we have |z—R,| < |#—R,_,], whence, by (21), we get

(22) < |o—Rna]-

r
r——
8§

But, as we have already Iea,rned,'number o lies between numbers R,_,
and R,. Hence inequalities (21) and (22) prove that number rfs also

10
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lies between numbers R, ; and R,. Therefore we have

1

[ e !
(23) E ~RH_I} < | Bor
But, by (4) and (6),
Pos Pp|  1Ps@u—GQuiPl 1
R, —R, = —_—— = =
e O s0n Gl

which, in view of (23), gives

[r@n_1—8Pn_y| < 1
8Qn_ Qna@n

Number 7@,_, — sP,_, is an integer and it cannot be equal to zero, because,
if it were, r/s = R,_,, contrary to inequality (22). Thus we have proved
that |r@,_,—sP,_;| > 1; this and (24) show that s > Q,. We have thus
proved the following

THEOREM 2. Suppose thai a rational nwmber r(s, r being an integer
and s a natural nwmber, provides an appromimation of an irrational
number 2 better than the n-th convergent B, (n > 1) of x. Then the denomina-
tor s of the rational number r[s is greater than the denominator of the
convergent R,.

This theorem is known as the law of the best approwimation.

(24)

For example, representing = as a simple continued fraction we see that its
second convergent is ?; therefore the rational ? approximates number = better

than any other rational with a denominator < 7. Similarly, since the third conver-
gent is 355/113, this number approximates = better than any rational with a
denominator < 113.

§ 4. Continued fractions of quadratie-irrationals. Let D be a natural
number which is not a square of ‘a natural number. We apply to it the
algorithm presented in §2 and obtain the representation of the irra-

tional number # = VD as a simple continued fraction. We have

- - 1
(25) a=[VD], VD =a+
‘1
therefore
U S VD+a, VD+b,
! 1/5—4!,(, D—a; o

where b, = a,, ¢; = D—a; and ¢; > 0 (because a, = [1/5] < 1/5, and
D is not the square of a natural number). We thus obtain

(26) DB —e,.
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1
Further, we have @, = [#;] and #, = a, +—, whence, by (26),

2

1 1 ¢ cl(lfﬁ—}—alcl—b,)
Xy = = = — = 5
Tom—ay VD4, . VD+b,—ae, D—(ae,—by)"
g
B e (VD4 aye;—by) _ VD+aye;—b, #Vﬁ—i—bz
D—bi—aici+2a,b,0,  1—aie,+2a,b, ey

where b, = a;6,—b; and ¢, = 1—ale;+2a,b;.
For natural numbers # > 1 we write

(27) bn-}-l = a’ncn”“‘bn, Cnyy = cu—l‘_‘a’icn+ 28, by, .
We are going to prove that for » >1 the equality
(28) . -D_bi = Cu_1lp

holds.
In fact,

D—b; = D—(a,e;—b,)* = D—bi—alet+2a,b.¢,
= ¢;—ar6i+2a;,b.0, = ¢;(1—aie;+2a,b;) = ¢;¢,.
If for a natural number n >1 we have D—3bj, = ¢, ,¢,, then, by (27),
Db, = D—(0,6,—by)* = D—bl—a2el+2a,b,cn
= Cp_1Cn— 05 Ot 200,00, = € (Cny— O3 Cn 205 bp) = CrCriy,
which, by induction, gives formula (28). The assumption regarding

D ensures, by (28), that ¢, # 0 for any n =1,2,...
‘We mnow prove that

VDb,
-

(29) Tn for n=1,2,...

As has just been shown, formula (29) holds for » = 1 and = = 2. Sup-
pose that it is true for a natural number # > 1. Then, by (27) and (28),

» _ 1 _ 1 . Cy,
" %—a,  VDib, . VD4 b,— ane,
Cn "
_ 0,,(@—}—&,,6,;—1),;) . Vlﬁ‘]‘bn-(-l
N D_(a’ncn"bn)g T Cny1

and thus formula (29) follows by induction.
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As we know ¢, is a natural number; so in view of b, = 4, = [V D]
< VD and thus 0 <VD—b, <1, we have 0 < (¥VD—by)jo, <1 and,
since @, >1, we have (VD-b;)/e, >1.

Thus we see that

VDb, VDb,
< <1< .
e ey

0

We are going to prove that the above formula is valid for any natu-
ral number n, ie. that

= =
D—b, D+-b,
Y <1<P +

Cp Cn

(30) 0<

holds for any natural number n. .
The formula is true for » = 1. Suppose that it is true for an arbitrary
natural number #. By (29) we have

by
WDibuss _, o
cn-(-l
By (27) and (28)
VD—bpy _ D—Biy e O
Onsa Cara(VD+bny) VDbn,, VD+awea—bn
_ 1
YD—b, ’
+
Cn
whence
0 < VD —by, <1,
Cay1
because in virtue of (30)
VD—b,
+ 0y >a, > 1.

n

Thus inequalities (30) are proved by induction.

If ¢, << 0 for a natural number n, then, by (30), we have VD—b, < 0
and VD+b, < 0, whence 2VD <0 , which is impossible. Therefore
¢n>0foralln =1,2, ... Consequently VD by <en < Vﬁ%—bn, whenee
VD—b, <VD+b, and 5o by>0 for n =1,2,... Consequently, (30)
implies that b, < VD and ¢, < VD+b, < 2VD.
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From this we infer that the number of different systems of nabural
numbers b, and ¢, is less than 2D. Therefore among the terms of the
infinite sequence (29), for # = 1, 2, ... there are only finitely many differ-
ent numbers, each of them being less than 2D. This implies that among
the numbers #,, &, ..., #,p at least two are equal. Consequently, there
exist numbers % and s < 2D such that

(81)
since

Ty = Lpig;

1

——  for
Bn— [#n]

Ly = n=12,..,

(31) gives @g,y = @p,sy, and, more generally, z, == @5 for n > k. There-
fore the infinite sequence @, ,,... and consequently the sequence
@y, Ggy ... (4, being equal to [#,], » =1, 2,...) is periodie.

Let
L _YD=h

(32) Tn
Cn

It follows from (29) that, if we change the sign at 1/1), number #, turns
into —ua, and, consequently, the equality z, = @y+1[2,,, turns into
—& = Gn—1[wh,,, le. into the equality 1/z,,, — a,+z. Since, by
(32) and (30), 0 < a, < 1, we obtain

1
(33) a,,:[,] for n=1,2,...
Bny1

Furthermore, since equality (31) gives z, = w}m, we see that, by (33),

akl—_l I'——l |=ak“

Therefore, in virtue of the relation #, = 6,-+1/z,,; and (31), We in-
fer that @,_; = ay,4_;.

Repeating the above argument for % > 2, we obtain s;_, = Brrs_s
and so on. Thig ghows that the sequence x,, @,, ... and, consequently,
the sequence a,, a,, ... have a pure period, i.e. a period which begins at
the first term (at @, not at a,).

Thus we have proved

(34) Bpys =, and a,,=4a, for n=1,2,...
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The sequences of the formulae

1 1 1 1
By =Gty By=Gt—, ., B =Gt = a5+ —
Ty &3 Popy 2
and
. 1 . 1 . 1 1
— &y = @y — 5, — &y = Gy——, aeny — % = Qg— — = g— —5-
2 Ty Ts41 &y

or, equivalently,

1 - 1 1 + 1 1 1
o= PEE S =l T Ty e == e
TUE TR g
@, A @}
have as their immediate consequence the formulae
1 1 1
¥ = + l+...+——;+~—!,
85) I @y Ia's L1
35
1 1] 1 }
— = G+ oot =+

B

[a’s—l ,011

But, in virtne of (25), VD = a,41/s;, and —VD = a,—1/x], whence
VD = —ay+1/z;. Therefore formulae (35) imply the relations

m—%ﬂl W+ +I+H

l g &y

I/B:as—an»i- 1 ? I

' gy , aa-2 la1

B

ey Gy = Gy

Since #, >1 and 1/z > 1, these relations give
(36) a4, =2a, = D[VD]a Oy = Og1; Gy = Ggy,

Thus we see that the sequence ay, a,, -vy Gy 15 Symmetrie.
We may sum up the conclusions just obtained in the following
TeEROREM 3. If D is a natural number which is not the square of & natu-
ral number, then in the representation of VD as o simple continued fraction,
1
}/D = “o+ ! + +...
!“2
the sequence a;, a,, ... is periodic. Mo'reover, the period of the sequence is

pure and, if it consists of s terms ay, a,, ey @, then 8 < 2D, a; = ‘)[1/5]
and the sequence a,, Gq, ..., Gy, i3 symmetric,
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The representation of VD as a continued fraction is usually written
in the form ¥D = (@g; @3,y Ggy ..., a5), the bar above the terms indicat-
ing that they form a period.

It is not true, however, that the square roots of natural numbers
which are not squares are the only quadratic irrationals that possess
the properties listed in theorem 3.

It can be proved that the class of positive irrational numbers which
have these properties coincides with the class of the square roots of ration-
als greater than 1.

For example, as is easy to check,

5 — 26
=(2;1,1,4), Vl=m3m, =(2; 3,1,1,3, 4).

2 3 5

Other quadratic irrationals do not have these properties; for example,

1+V13 - 24V/19 [
1 =(0; 1,6,1,1,1), 5 =(0;1,3,1,2,8,2),
1+ V365 1 — 14+V17
T = (1; 2,3, 2_).- ]/;-‘—(05 1,2), — = (25 1,1, 3).

Now we are going to present a practical method of finding the repre-

sentation of the number VD as a continued fraction. To this aim, we
prove the following
LEMMA. If k 48 a natural number and x a real number, then

-2

Proof. Since [#] <@, we have

[—:-]- < %, whence [Er;—]] < [%] .

To prove the converse inequality we use the inequality +—[t] <1

for t =— [o] . We have
% [[:]]< 1 whence [o] < k[[ ]] +k

and, consequently, the numbers on both sides of the last inequality being
integers, [#] <k [[ ]]-i—k 1.
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In virtue of the relation # < [w]+1, we infer that

and 50 [%] < [%]—Fl, whence [%]s [%],

a8 was to be proved. This completes the proof of formula (37).
In view of the lemma, by (29), we have

m<k|:[%1]+k

[1/1‘)+ b,,] [[l/5]+ bn] [ a+ bn]

a, = [2,] = = = ’
[ Cp Cn

ie.

(38) anz[ijj—'i] for =«=1,2,...

Hence, by (27) and (28), we obtain the following algorithm for repre-
senting number VD as a simple continued fraction:

We set a, = [VD], b, =a,, ¢, =D—a? and we find the numbers
Gny, by and c, successively using the formulae

oDy
g = [“—_‘“c y bn = GngCny—byy,
n—1

Now we look at the sequence
(ba2y 6a)y  (bay €5), (bay €a),

and find the smallest index s for which, say, bey, == by and ¢o .y = 0y; the
representation of VD as a simple continued fraciion is then

VD = (@3 @yy Gy ouvy ag).

By this algorithm the representation of VD as a simple continued
fraction is obtained by finitely many rational operations on rational
numbers.

Remark. Since the period, the last term excluded (this, as we
know, being 2[VD]), is symmetric, the task of finding it reduces to find-
ing at most half of its terms. Therefore it iy of practical importance to
know when half of the terms have already been found. It can be proved
that if the number s of the terms of the period is even, then number
%s s equal 1o the first index & for which by, = by; if 8 is odd, then }(s—1)
is the first indexw k for which ¢y = ¢ (*).

Exawpres. We find the representation of number Va*—2, where
¢ i8 a natural number >3, as a simple continued fraction. We ‘have
(6—1)* = a®—2a+1 < a?—2 < a®. Therefore ay = [}/az—-2] =a—1.

(*) This theorem is due to T. Muir; cf. Perron [1], p. 91.

icm

§ 4. Continued fractions of quadratic irrationals 297

Hence by = @y =a—1, ¢; =D—a; = a*—2—(a—1)® = 24—3, whence

@+ b 20—2 1 -
a, =[ 001 1]: [2a—3] = [1+2a——3] =1 (since, by a>3, we

have 2a—3 >3). Hence, further, b,=a,¢,—b, =2s—3—(a—1)
D—  a—2—(a—2)7 da—b [ao+b2]
= = = = =9 =20
6=2 G ¢ 20—3 2a—38 G a,
=[0#] - [a-—é]: 4—2, whence by = ay0,—b,= (6—2)2—
Db  a*—2—(a—2)* 4a—6
—(6—2)=a—2, ¢ = c23= 3 =— =2¢—3,

. — [ao—l-bs] _ [a——l—l—a—z
7L oe 1 L 203
_ Db a—2—(a—1)

] =1, whence b, = ag0;—b; = 2a6—3—

_ Soth

—(6a—2) =a—1, €y = o 2a—3 =1, Oy o
- ‘-‘Z—lﬂlL—H =92 —2. THence by = ae,—b, —2a—2— (a—1) =
d— b} a?—2—(a—1)2 '

a—1 =0, ¢ = f = ( ) = 2¢—3 = ¢,.
Cy 1

Therefore bs = b, and ¢; = ¢;, which implies that s = 4. The de-
sired representation is then:
(39) Va2*-2 =(a—1;1,6—2,1,2a—2)
The fact that the quotients a, and a, (and, more generally, a,, n
being odd) do not depend on a is worth noticing.

for any natural a > 3.

o _ 1
Formula (39) does not hold for » =2. In fact, V2 =14 ——
1+V2

and so V2 = (1, 2). Substituting 3, 4, 5 for & in (39), we obtain
Vi=(2;1,1,1,4), Vit =(3;1,2,1,6), V28 =(4;1,3,1,8).

The following representations arve found in a similar way:

Var+1 = (a3 %), Vart2 = (a; ;:—Z—a—) for any natural number a;

Var—1 = (a—1; 1, 2a—2), Va’—a = (a—1; 2, 2a—2) for a=2,3,...;

Vart4 = (a; $(a—1),1,1, }(a—1), 24) for odd & >1;

Voi—4 = (a—1; 1, $(a—3), 2, 3(a—3), 1, 2a—2) for odd a > 3;

Vier 14 = (2a; a_,_zﬁ) for natural numbers a;

Vina)*+a = (na; 2n, 2an), V(na)*+2a = (na; n, 2na) for natural num-

" bers a,n; ‘

V’(n_a,ﬂ)ﬂ—~a = (ma—1; 1,2n—2, 1, 2(ne—1) for natural numbers a and

»>1.
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Now we find all natural numbers D for which the representation of VD
as 2 simple continued fraction has a period consisting of one term only.
It follows from property (36) of the representation of VD asa simple
continued fraction that in this case VD = (a;EE) , Whence we eagily

infer that VD = a+-

! =, and so D = ¢2?+41. Thus we come fo the
a—H/D
following easy conclusion: in order that for a natural number D number
VD should have a representation as o simple continued fraction with a period
consisting of one term only it is necessary and sufficient that D = a24-1,
where a s a natural nuwmber.

It is also easy to find all natural numbers .D for which the represen-
tation of ¥D as a simple continued fraction has a period consisting of
two terms. In fact, by (36), we have VD = (a;b, 2a), where b s« 2a.
Hence VD = a—l—-lJ +-—‘1—-—|

b |a+VD
that 2a = kb, where & is a natural number > 1 since b + 2a. Hence we
conclude that in drder that for @ natural number D number VD should have
o representation as a simple continued fraction with a period consisting
of two terms it is mecessary and sufficient that D = a®-k, where %k is a
divisor greater than 1 of number 2a.

Now we are going to find these natural numbers for which the period
of the representation of VDasa simple continued fraction consists of three
terms.

Suppose that D is such a number. Then VD = (ag; @1, Qgy 2ay).
Since, in view of theorem 3, the sequence a@,, @, must be symmetric, we
have a, = a, and, moreover, a, # 2a, since otherwise the period of the
simple continued fraction for VD would consist of one term a;. This
shows that the formula

2
and, consequently, D = a2+ ;(f It follows

- 11 1|
(40) VD =g — + 4 ——
S PR P
holds. This (VD being irrational) is clearly equivalent to the formula
2a40,+1
41 D=al+ 2.
(41) o+~ “i 1

Hence it follows that in order that a natural number D should belong to
the class under consideration it is necessary and sufficient that it should
be of form (41). We are now going to show that a natural number D is
of form (41) if and only if @, is an even number and

(42) = (0i+1)k+}a,,

where k=1,2,...
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The condition is sufficient. The argument iy that if a, is an even natural
number and (42) holds, then a, is a natural number, 2a, > a, and

2a00y 41 = 2(a}+1)a k+al+1 = (ai+1)(2a,k+1),

number D of (41) being natural. ;

On the other hand, if for some natural numbers a, and a, # 2a,
number D of (41) is natural, then, since 2a,a,+1 is odd, number aj-+1
(as a divisor of it) must also be odd; so number a, is even and, since num-

ber D of (41) is an integer and, consequently,

Wﬁ—iﬂl)—% is an integer, number a3+ 1 divides number (ay— a,/2)24,.
1
But (2a,,ai+1) =1 (since a, is even); therefore number a,—a;/2 is
divisible by ai--1 and this results in the equality ay—a,/2 = (a3-+1)k,
where k% is an integer. This gives formula (42). But since 2a, # a,, we
must have k& > 0, and so % is a natural number. The necessity of the con-
dition is thus proved.

THEOREM 4. All natural numbers D for which the representation of

number VD as a simple continued fraction has o period consisting of three
terms are given by the formula

D = ((a}+1)k+ a, /2" + 2, k-1,

where a, 18 an even natural number, k =1,2,..
then of the form

. The representation is

VD = (a; 1, a1, 2a,) ().
It is not difficult to prove that
D = {(ai— 1) b+ a,/2)2+ (2a, 4+ 1)%.
In particular, theorem 4 implies that all the natural numbers D for
which the simple continued fraction for VD has a period consisting of
three terms, the first two of them being equal to 2, are the numbers

D = (bk+1)*+4k+1, where k=1,2,...

By using theorem 4 it is easy to verify that among all the numbers D
< 1000 there are only 7 numbers, such that VD represented as simple
continued fraction has a period consisting of three terms. They are the
numbers 41, 130, 269, 370, 458, 697, 986.

(1) As regards the generalization of this theorem to- periods consisting of an
arbitrary number of terms cf. Perron [1], I, p. 88, Satz 3, 17; cf. also ibid., pp.
89-90, Drittes Beispiel & = 3:
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THEOREM 5. If s is a natural number and >1, Ay Gayenny By 08
the symmetric pars of the period of the simple continued fraction for ]/50,
D, being a natural number, then there exist infinitely many natural numbers
D for which a4, as, ..., by 18 the symmetric part of the period of the simple
continued fraction for VD (ef. Kraitchik [1], pp. 57-58).
Proof. If
1 1
VBy = agt 4 1

lay " o

1j+ 1
|a'8—1 lau+1/5’

then, if P/Q, denotes the kth convergent of the fraction TJ;’+TH +
ay U2

4.4

“+’a1 ’, we have
§—1

Pﬂ—l(aﬂ+l/50) +P,_,
Q51 (“o‘H/-Bo) +Qss ’

whence, since VD, is irrational,

‘/-50 = Gyt

Qs =P, ; and Q51 Dy = o (Qs_109+Q4_s)+P _100+Ps_y,
whence
D, = ai+ A (Qs_2+Ps_1)+P, -2
Qs1
Let
4 =ay+Q, 1k, where % =1,3, 3,...

Then the number

a(Qo_s+Py_y)+-P, -2 _
Qsq

@ (Qs_z+P;_;)+P,
Qs_1

=Do—“§+(Qa—z+-P_1)k
is natoral and < 2a¢-+1, since

=2 4(Qe_g+P,_ 1)k

QS—Z-'-'P —1 2Q8—1 P8 2
< —— =2 and — < 1.
Qo1 Qsz Qs1

Therefore the number

D =a+ @(Qs_o+Ps_;)+P, 2
D5y

is natural and [1/5] = a. Moreover, since Q,_, =P,
VD — a_}_Ps—l(a‘l“/'l_))—f‘P 2
Qs—l(“+1/5)+Qs—2 T

—19

icm

§ 4. Continued fractions of quadratic irrationals 301
we have
— 1 1 1 1
I/D:a,—f——l+——‘+...+ | ‘.
|‘11 !”'z |a's-1 |a—l—l/5

Then the number
D = (“0+Qs_1k)2+po—'“3+(Qs—z+P _1)k
= Qﬁ_lkz'i‘ (204Qs_1+Qs_, +P, 1) k+D,,

where k =1, 2, ..., satisfies the condition of the theorem, the proof of
which is thus completed.

We now prove the following

TEEOREM 6. For any natural number s there emist infinstely many
natural numbers D such that the representation of the number VD as a simple
continued fraction has o period consisting of s terms.

Lemma. If n is a natural number >1 and @y, @y, ..., 4, 6 Symmetric
sequence of natural numbers, and if, moreover, Pi[Qr denotes the k-th con-
vergent of the continued fraction

ETRET )
las * |ag (an
then
Py =0Qu_1.

Proof of the lemma. In view of formulae (3) we have
Qn =Qn 100 +Qn_sy Qu_y = Qo2 1@nzy .-y Q2 = 230, +1, @ =a,.

Hence

@n 1], 1] 1] | 1]
= an ettt
Qn_s ant ‘,a/n—l + lam_z + ’“2 la’l
But, since the sequence ay,d, ..., a, is symmetrie, this gives
O _ 4y 1] Qs _ 1] 1 i _ P
s ~a1+|a2+...—|—|an and so 0. ;—la’l a2+"'+!an 0.

whence P, = @,_,, which was to be proved. .
Remark. If by @, we understand number 1, then the lemma is
true for # =1 ag well
Proof of theorem 6. Let ¥ and n be two given natural numbers
and let a,, ay, ..., a, be a sequence whose terms are all equal to 2k. In
virtue of the lemma, P, = @,_,. For an integer ¢ > 0 we denote by ¥,
the number ) ;

Yo = (Qut-+k; 2k, 2k, ..., 2k, 2Q,t+2K),
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where the sequence 2k, 2k,...,2% has # terms. Then
1] 1] 1l 1|
=Quitht el -
Yt = Qn +c+‘27ﬂ+l270+ +izk+"Qnt+k+?]

Hence, since @,_, = P,, we have

Pu(@ni+k+y)+P,_,

- nt—k = " .
v@ Qu(@ni+ b+ y,) L P,

So
Qn (2/:2— (Qnt'I' k)z) = 2-Pn(Q'nt+ k)+P —1-

Thus, in particular, for ¢ = 0 we obtain

Qu(ti— 1) = 2P, k4P, _,.

On the other hand, by the definition of the numbers y,, y, — (%3 2%)
= Vi*+1. Consequently, @, =2P,k+P, ; and so Y = (Qut+ %)+

+2P,i+1, whence g, =V(Q,t-+k)’+2P,t+1. Hence it follows that
for natural numbers % and integers ¢ > 0 the simple continued fraction
for the square root of the number D — (@nt-+kY’+2P,t+1 has a period
congisting of n+4-1 terms, each of the first # terms being equal to 2%.

Taking into account the fact that the period (k;ﬁ) =V%*+1 has one
term only, we see that the proof of theorem 6 is completed.
For example, for % =1 and = = 1,28, 4,5, 6 we find for
t=10,1,2,..., respectively (cf.- Kraitchik [1], p. B7)
V(2+1)2 4241 = (2t 4-1; 2, 4142),
V1P 441 = (5t-11; 2,2,10t42),
V24 1P L1041 = (12641, 2, 2,2, 2414 2),
V(296 4+ 12424041 — (29¢+1; 2,2,2,2,58+2),
V(T08+1)24-88i+1 = (70t+1; 2, 2, 2, 2, 2, 1402 2),
V(169%+1)*+ 1401 +1 = (169t+1; 3, 2, 2, 2,2,2, 338+ 2).

Hence, in particular, for ¢ — 1, we obtain

V12 =(3; 2,6), V4l = (s; 2,2,12),

V180 = (13; 2,2, 2, 96), V925 — (30; 2,2, 2,2, 60).
It can be proved that for every number # of the form 3%-or 3%4-1
there exist infinitely many natural numbers D such that the representa-

tion of the number VD as a simple continued fraction has a period con-
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V(89— 44)2+ 110t —54 = (89t—44; 1,1,1,1,1,1,1,1,1, 1, 1781— 83).

Hence, for t =1,

V2081 = (455 1,1,1,1,1,1,1,1,1, 1, 90).

W. Patz [1] has tabulated the representations of the irrational
numbers VD, with D < 10000, as simple continued fractions.

It follows from the tables that among the first hundred natural
numbers the longest period is that of the number

Vo4 = (9; 1,2,3,1,1,5,1,8,1,5,1,1, 3, 2,1, 18),

which consists of 16 terms.
The number V919 has a period consisting of 62 terms:

Vo19 = (30; 3,5,1,2,1,2,1,1,1,2,3,1,1,19, 2,3,1,1, 4, 9,1,
7,1,3,6,2,11,1,1,1,29,1,1,1,11,2,6,3,1,7,1,
9,4,1,1,8,2,19,1,1,8,2,1,1,1,2,1,2,1, 5, 3, 60)

(ef. Rraitchik [1], 13.___57 )
The number Y991 has a period consisting of 60 terms:

991 = (31; 2,12, 10, 2,2,2,1,1,9,6,1,1,1,1, 3,1, 8,4,1, 2,1,
2,3,1,4,1,20,6,4,31,4,6,20,1,4,1,3,2,1, 2,
1,4,8,1,8,1,1,1,1,6,1,1,2,2,2,10,12, 2, 62).

It will be observed that

Y1000 = (31; 1,1,1,1,1,6,2,2,15,2,2,6,1,1,1,1,1, 62).

Any irrational root of a polynomial of th;s second degree with inte-
] icie; is called quadratic drrational.
e I(;O:fl'f;ca ?’ZZI irrati(')nalql?umber satisfying the equation Ax2-4Bz-4-C
=0, where 4, B, (' are integers, then, as is known, D = B*—44C >0
and D ig not the square of a natural number. We have % = ( ‘—B +VD)[24.
The following theorem of Lagrange is proved by suitable changes
in the proof of theorem 3. ' .
The representation of a veal quadratic irrational as a sm.zple aonmm?ed
fraction is periodic. Conversely, every periodic simple continued fraction

sisting of #+1 terms, each of the first n terms being equal to 1 (cf.
Sierpinski [25], p. 300).
For example we have for ¢t =1,2,...
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represents a real quadratic irrational (Lagrange [1], p. 74, cf. also Krai-
tehik [1], pp. 9-13).

Exavpiz. We have }(V5+4-1) = (1; 1). This follows immediately
from the equality 3(V5-1) =141/3(VE41).

EXERCISES. 1. Prove that any real number is a sum of two numbers, each of
them representable by a simple continued fraction with the first quotient equal to 1.

Proof. As we have learned in § 3, in order that the first quotient of the gimple
continued fraction for a real number ¢ equal to 1 it is necessary and sufficient that {—[1)
> % (). For a real number » we set w = }(@— [#])+ %, v = [z]— 14 u. Then, clearly,
@ =u-+v and, sinece 0 < #—[¢] <1, we have } < u <1, whence [v] = [x]—1,
and 80 v— [v] = w > }. These inequalities: give the desired result by the above re-
mark.

Remark. M. Hall, Jr., [18] has proved that each real number is a sum of two
numbers, each of them representable by a simple continued fraction with no quotient
greater than 4.

Even if a number « is known within the accuracy of 1/101° we are in general
unable to find the first quotient of its representation as a simple continued fraction.
In fact, if the only thing we know is that 0 < % < 1/101%, then we may conclude
that 1/z > 1010, i, e. that the first quotient of the representation of = as a simple
continued fraction is > 10100,

2. Prove that there is no natural number D such that VD could be represented
as a simple continued fraction with a period consisting of 8 terms, the first five being
equal to 1.

Proof. Suppose that such a D exists. Then

Y,
‘1 I‘%"‘Vﬁ.

1
Denote by Pn/@y the nth convergent of the simple continued fraction LI + ——I +

1 1
VD—%+, +T -1-,1 it

1
We have
VP q - Ps@+VD)+Ps _ 5(a+VD)+3
* T Q@+VD)+Qs  8(ao+VD)+5
whence
10ay+ 3

D =g utd

which is impossible because the odd number 10ay+3 is not divisible by 8.
3. Let f(s) denote the least natural number D such that the period of the simple
continued fraction of ¥D consists of s terms. Find the values of f(s) for s < 10.
Answer. f(1)=2,V2=(1; 2); f2) =3, V3= (1; 1, 3); F3) = 41, Va1
= (65 2, 2,12); f(4) =17, )/7—(2 1,1,1, 4); f(5) =183, l/1_3=(3; 1,1,1,1, 6);
F16) =19, V10 = (4; 2,1,8,1, 2, 8); f(7) =58, V58— (7; 1,1, 1,1, 1, 1, 14);
f(8) = 381, 1/31-—(5 1,1,3,5,3,1,1, 10); f(9) = 106, I/F}E—(lo 3,2,1,1,1,1,
2,3,20); f(10) = 43, V43 = (6; 1,1, 8,1, 5, 1, 3, 1, 1, 12).

(*) This is true because {— [t] = } gives t = [t]+jll 111
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§ 5. Application of the continued fraction for VD in solving
the equations #*—Dy? =1 and #2—Dy? = —1. Let D be a natural
number which is not the square of a natural number. Tet VD =
(@o; @1, @3y ..., a5) be the simple continued fraction for lf_ and P./Q
the kth convergent to it. We have

1‘ 1 ‘

as—ao+V§-

N

[

VD = a+ —l +
|“ ] l 81 !

Hence

Py_y(as—a,+VD)+P, ,

Qs—l('as_ao'*“/ﬁ)’*'Qs_z

and, more generally, since @, = a,— a,,

VD =

_ Pus(/D4a)+Pis
Qo1 (VD4 a6) +Qrs_s

whence, in view of the fact that VD is irrational,
BoQro—1—Prs_1 = —Qrs_s

Multiplying the first equality by —P,_, and the second by —Q,_, and
then adding them, we obtain by (6),

for k=1,2,3,...,

and  D@Qps.,— g Pys_y = Ppe_».

»P?cs—1_-DQ?cs_1 = QkS—ZPks——l“-Pk872Qké‘~l = (_1)ks
If & is odd, then this equality gives
2 s _J—1 for k=1,3,5,.
(43) Pla—1 =Dl “{ 1 for k=2,4,6,.
If s is even, then
(44) Pl 1—DQis 1 = for any k=1,2,3,...

Thus we see that some of the convergents of the simple continued
fraction for ¥D are solutions of the equation 22—Dy® =1 in natural
numbers. We show that the converse is also true: any solution of the equa-
tion in natural numbers gives the numerator and the denominator of
a convergent of the simple continued fraction for VD.

Accordingly we assume that ¢ and % are a solution of the equation
#*—Dy* =1 in natural numbers. We have ¢ > u.

Let

‘ 1, 1
(45) R e e

+.. +!bk%


Yakuza


306 CHAPTER VIII. Continued fractions

be the representation of number ¢/u as a simple continued fraction, &
Dbeing even. To see that such a representation exists we note that, if ¥ —1
1
were even, then for b_, > 1 the number bk_1—1+[T|
place of b;_;, and for ¥,_, = 1 the number b_,--1 could be written in

could be written in

place of by_s+

be_y
Let #'[u’ be the last but one convergent of the simple eontinued

fraction (45). Then

v i 1

1
(45%) w =t |

ST
We have u’' < %. (For k = 2 we have #'/u’ = b,.) Since k is even, by

(6) we have tu'—ui’ = 1. Now, subtracting the last equality from the
equality ##—Du? =1, we obtain

(46)

u'

t(u'—1) = u(t'—Du).
In virtue of (45) we have 0 < ¢/u—Db, <1, whence
(47) 0 <i—bou < %.

In view of the fact that ¢ and u are relatively prime (because #*—Du? = 1),
we see that for an integer ! the equalities

(48) w—t=1, t—Du=104
hold. Hence
(49) w' — (t—bou) = (I-+by)u.
From the inequalities 0 < #’ < « and (47) we infer that |u'— (1—bew)|
< %, which in virtue of (49) gives 140, =0, so I = —b,, whence,
by (48)
uw =1t—byu, 1 =Du—Db,
and consequently
t(b D)+ tV.D+D —
(50) BotVD) 4 _ DD _ o
u(bo+VD)+u'  t4uVD
but, by (45) and (45%), the left-hand side of (50) is equal to
' 1] 1 1] 1|
bot + =+ b
’ |b1 ’ba Ibk_l lbu—H/B’

80, by (50), the simple continued fraction for VD is VD = (by;

by Day ooy br_1, 2bg), the (E—1)-th convergent of which being number (45).
It follows from. what we stated above that number % is equal to the num-

ber of the terms of the period of the simple continued fraction for VD.
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This period need not be the shortest one. Denote by s the shortest period
of this continued fraction. Clearly, s | k and so & = sn, where # is a natu-
ral number. For any solution of the equation #2—Dy? =1 in natural
numbers ¢ and %, number t/u is a convergent of the simple continued
fraction for I/D; namely it is the (ns—1)-th convergent, where s is the
number of terms of the shortest period of the continued fraction and
n @ natural number. According to what we have proved above (cf. for-
mula (44)), if s is an even number, then any (ns—1)-th convergent
(n =1,2,...) defines a solution of the equation #2—Dy? = 1 in natural
numbers. Thus we have proved the following

THEOREM 7. If the period of the simple continued fraction for num-
ber VD consists of an even number s of terms, then the numerator and the
denominator of the (ns—1)-th convergent, n =1,2,..., form a solution
of the equation x*—Dy?* = 1 in notural numbers. Moreover, all the solutions
are obtained in this way.

From this we see that the solution in the least matural numbers is
given by the (s—1)-th convergent.

If s is odd, then formulae (43) show that the numerator and the
denominator of the (rs—1)-th convergent form a solution of the equation
22—Dy* =1 only in the case where » is an even number. Hence.

THEOREM 8. If the period of the simple continued fraction for VD
consists of an odd number s of terms, then the numerator and the denominator
of the (2ns—1)-th convergent, n =1, 2, ... form the solution of the equation
22—Dy? =1 in natural numbers. Moreover, all the solutions are obtained
in this way. .

Thus we see that in this case the solution in the least natural num-
bers is given by the (2s—1)-th convergent.

The representation of number V991 as a simple continued fraction
was given above. We saw that its period consists of 60 terms. This repre-
gsentation and theorem 7 were the basis for caleulating the least solu-
tion of the equation #®—991y? =1 in natural numbers, which was given
in Chapter II, §15. In this solution number # has 30 digits, number ¥
29 digits.

Now we turn to the equation

(61) x2—Dy? = —1.

Suppose that D = a24-1, where a is a natural number >1. As we have
already learned, we have Va?+1 = (a; 2a). Hence, if P,[Q; is the kth
convergent of (a;2a), then by (43), since s =1, we obtain

Pi,—DQi,=—1, k=1,3,8,..
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Thus the solution in the least natural numbers of the equation are the
numbers t =P, =a, % =@, = 1. For the other solutions of (51) in
natural numbers ?, 4 we have # >1. If D £ a®*+1, @ being a natural
number, then, if ¢ and « are a solution of equation (51) in natural numbers,
we also have % > 1 because, if % were equal to 1, we would have $*—D=
= —1, whence D = 141, contrary to the assumption concerning num-
ber D. Therefore in what follows we may assume that ¢ and % are a solu-
tion of (51) in natural numbers with » > 1. Again let (45) be the simple
continued fraction for the number ¢/u, this time % being an odd number.
‘We define algo the number #'/u’ by (45%). Since now % is odd, we have
' —ut’ = —1, whence, in view of the formula 2—Du®= —1, we
again obtain (46).

An argament similar to that used in the previous case shows that
number (45) is the (k—1)-th convergent of the simple continued fraction
for number VD and that %k = sn, where s is the number of the terms

of the (least) period of the continued fraction for ¥D and # is a natural
number. But, if s is even, then, by (44), none of the (sn— 1)-th convergents
gives a solution of equation (51). If, conversely, s is odd, then, by (43)
the sm—1 convergents give solutions of (b1), provided = is odd.
Thus we arrive at

THEOREM 9. If the period of the simple continued fraction for number

VD has s terms and if s 18 even, then egua,m'on (81) has no solutions in natural
numbers. If s is odd, then the mumerator and the denominator of each of
the ((2n 1) 8—1) th convergents, n =1, 2, ..., form a solution of equation
(81) in natural numbers. Moreover, all the solutions are obtained in this way.

EXAMPLES. 1. Let D = 2. Since D = (1; 2), we have s = 1 and so, by
theorem 7, we infer that the numerator and the denominator of any of the (2n— 1)-th
convergents, » = 1, 2, ... form a solution of the equation 22— 2y? = 1 in natural
numbers, and, moreover, all the solutions are obtained in this way. The first con-
vergent, i. . the number l—l—% = ;, gives the molution in the least matural numbers,
% =3,y = 2. In virtue of theorem 9 the numerator and the denumerator of any of
the (21— 2)-th convergents, n = 1, 2, ..., form a solution of the equation @2 — 2y% =—1
in natural numbers, and all the solutions are obtained in this way. The 0-th
convergent, i.e. number 1/1 gives the solution of the eguation in the least
natural numbers. '

2. Let D = 3. Then ¥3 = (1; 1, 2). We have s — 2, and so, by theorem 7,
the numerator and the denominator of the (2n— 1)-th convergents, n = 1, 2,
form a solution of the equation 22— 342 = 1 and all the solutions are obtamed in
this way. The solutlon m the least natural numbers is given by the first convergent,
ie. by number 1+1 2, whence, # = 3, y = 2. However, in view of theorem 9,
the equation #*—3y2 = —1 has no solutions in natural numbers.

8. Let D =13. Then V13 = (3; 1,1,1, 1, 6). We have & = 5, and so, by
theorem 8, the numerator and the denominator of any of the (10n— 1)-th conver-
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gents, » =1, 2, ..., gives the solution of the equation 2 — 1332 = 1, and all the solu-
tions are obtained in this way. The solution in the least natural numbers is given by
the 9-th convergent, i.e. by the number

RN TN I )
TR T T

whence x = 649, y = 180.

In view of theorem 9 the numerator and the denominator of any of the (10n-— 6)-th
convergents, # == 1, 2, ..., is a solution of the equation 22— 13y%2 = — 1 and all the
solutions are obtained in this way. The solution in the least natural numbers is given
by the 4-th convergent, i.e. by the number

1[+ 1] ﬂ 1]

il G T

It i 1

—t
Vlloo

whence % = 18, y = 5.

It is really not at all difficult to find the solutions of the equation
@#*—Dy* = —1 in the least natural numbers by the use of the represen-
tation of number VD as a simple continued fraction for .D < 100.
The table of such solutions for D <1003 has been given already by
Legendre [1].

Here are the solutions in the least natural numbers of the equation
22—Dy? =1 for D < 40.

D | @ Yy D z y D ] y
2 3 2 15 4 1 28 127 24
3 2 1 17 33 8 29 | 4901 | 1820
3 9 4 18 17 4 30 11 2
6 5 2 19 | 170 | 39 31 | 1520 273
7 8 3 20 9 2 32 17 3
8 3 1 21 55 | 12 33 23 4

10 19 6 22 | 197 | 42 34 35 6

11 10 3 23 24 5 35 6

12 7 2 24 5 1 37 73 12

13 | 649 | 180 26 51 10 38 37 6

14 15 4 27 26 5 39 25 4

40 19 3

From theorem 8 it follows that the equation x*—Dy? = —1 is sol-
vable in natural numbers for D < 100 only in the case where D is one of
the numbers

2, 5, 10, 13, 17, 26, 29, 37, 41, B0, 53, 58, 61, 65, 73, 74, 82, 85, 89, 97.
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§ 6. Continued fractions other than simple continued fractions. Frac-
tions of the form

LA

52 L +.. +
( ) 0‘]‘ | ! ay l
Wheve @y, Gqy ...y Gyy by, Dgy ..., by are arbitrary real or complex numbers
have been investigated.

A numerical value can be assigned to symbol (52) if and only if all

the divisions can be carried out, ie. if and only if

“n?’é 0,

by [ b,
Gy #0, gyt 2'+—“l;é0,
@y, Jatn

l n—1
bl bl ,
oy al-l—l +.. +l

‘We see that some (or even all) of the numbers ay, a,, ..., a,_; may be
equal to zero; for example as is easily shown, the contmued fraction
1, 1 1, 1]
CRICRESI TR

It can be proved that if & continued fraction

is equal to 2.

(63)

has & well-defined value and if the numbers Py and @y (¢ =0,1,...,n)
are given by the inductive formulae

Py=ay Qy=1, P;=a,6+b, ;=ay,
P =Pr_1ap+Py_sbr, Qr=Qr_10:+Qi_sby, k¥=2,3,...,n,
then
Pn k
R, = Q— ond  Py_1Qrp—Qur_1Pr = (—1)°b.b,...0; for B=1,2,...,n
n

‘We note that if the continued fraction (52) has a well-defined value,
then it may happen that some of its convergents do not have this property.

For example, the fraction T:]LT} -+ |_—1i -+ ]]ﬂ hag the value 2, but the con-

1, ]
vergent 1 + [T

‘ has no value.
l
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If the sequences a,, 0y, @5, ... and by, b,, ... are infinite and if the
sequence of numbers (53) is convergent to a limit %, then x is called the
value of the infinite continued fraction:

RARA

(54) o +

-

@ = G+ ——

a

3

Examples of such infinite continued fractions are provided by the
formula of Brouncker for number =(4, found in the year 1655,

= 1], 12, 3] 8
=ttt
¢ 1 f2 T2
and the formula for log2
1] 12| 2% 32

1 1 (2’)1,—3)2\
—3_+§_"' on—1 2

1
1
and from the well-known formula of Leibniz for =/4; the latter follows

from the identity

(n—1)
T

|

for natural numbers » ().
We now turn to some special cases of continued fractions like (54).
For a real number #, we denote by G(z,) the least integer >u,.
We then have =z, < G(#,) <®+1, whence 0 < G(w))—z, <1 and

1 >1. Hence G(z;) >2. We repeat this
G (o) — 2y 1

G(wn—-l)—a}n—l
n =1, 2,... Moreover,

consequently @, =

procedure with x, in place of z, and so on. Thus, if #, =

forn =1,2,..., we have @, >1 and G(z,) >2,

1| 1| —1|
Gy T @) o

1]
Xy _G(m0)+!G( +|

() The proofs of the formulae are to be found in Sierpifski [7], part II, p. 140,
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Tt can be proved that this leads to an infinite continued fraction for the
number a,:

—1 l
,G(wﬂ

—1 |
‘G(fﬁ)

_1(

(55) By = G{2)+ [G(w )

-+

_|_

+...

Thus we see that any real number # is representable as an infinite con-
tinued fraction of the form

where g, Is an integer and a,, are natural numbers > 2. Tt can be proved
that every real number has precisely one such representation. In part-
icular, we have

It is a property of rational numbers that in their representations
in form (55) we have G (z,) = 2 for sufficiently large n.
The formula

5o 11 |
e PR P}

gives the representation of ¥'2 as a continued fraction with a period eon-
sisting of two terms,

Another type of representation of a real number by a continued
fraction is the one in which a, is the nearest integer to # and x, is the
number given by the formula & = a,+1 /@, where the sign + or — is
taken depending on whether z > @o OT & <T &y By the use of o, we define
4, and @, in the same way as a, and @, was defined by @, and so on (cf.
Hurwitz [27). )

A representation of this type of V2 is the same as the simple con-
tinued fraction for V2. For V3, however, we have
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i.e. a representation of form (55). For ¥5 the representation coincides
with the simple continued fraction for ¥5, and for V7 we have

ie. a repregentation of type (55) again. But for V13 we have
& _1f, 1 |
V13 =g— 1ty =
13 [2 "ls4vis’

which gives the representation

which is neither of type (55) nor a simple continued fraction.
To close this chapter we consider the following continued fraction

(/7%

bg larl |alz Qy @y a3
— = b — L = — e e |- - ...
b St T T St o T b,

a,+
Go+ —

Let b,, by, ... be an infinite sequence of natural numbers among which
there are infinitely many numbers different from 1. Let z, denote a real
number and let a, = [#,], a, = [by(2,—a,)]. Clearly, a, is an integer
< b,. Let @y = by(wo— ao)—a,. We then have 0 <z, < 1. In general,
suppose that for a natural number » > 1 we are given the numbe rz,_;;
then we put @, = [b,%,_,] and z, = b,%,_;—a,. Thus the sequence
@y, Gg, ... i3 defined by induction and its terms are non-negative inte-
gers such that a, <b,, as well as the sequence x,,%,,... of real

numbers with 0 <, <1, for any n =1, 2, ... Hence, we easily obtain
oy g @, Ty,
= — 4 + .
(56) B= bt T T bbb
By assumption, numbers by, by, ... are natural and infinitely many of

them are > 2. Therefore the product b,b,...b, increases to infinity with n.
Moreover, since 0 < @, <1, formula (56) gives a representation of @,
a§ the infinite series

2 (2]

al —— “an
(87) By = &gt b + b by +b1b2bs +y
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i.e. as the infinite continued fraction

2

byl

(58) By = o+ ia—l +
)

This proves the following theorem:

_ For any infinite sequence of natural numbers by, by, ... in which infi-
nitely many terms are different from 1, any real number x, may be repre-
sented as am infinite continued fraction of form (58), where a, = [20],
tn (0 =1,2,...) are integers 0 < a, <by, for n=1,2,...

As is easy to see, representation (57) coincides with the representa-

tion as a decimal with the varying base which was considered in Chap-
ter VII, § 6.

+..

CHAPTER IX

LEGENDRE’S SYMBOL AND JACOBI'S SYMBOL

D .
§ 1. Legendre’s symbol (F) and its properties. If p i3 an odd prime

D
and D an integer not divisible by p, Legendre’s symbol (};) is said to

be equal to L if D is a quadratic residue to the modulus p, and it is said
to be equal to —1 if D is a quadratic non-residue to p.
In view of theorem 4 of Chapter V, we have

(1) (g-) = D¥*Y(modp).

D P
Consequently, the value of (5) is 1 if and omly if D®-U2 divided by

p leaves the remainder 1.
By theorem 15 of Chapter VI, we have

) D
(2) (5) = (—1)=?,

where the indices are taken relative to a primitive root of the prime p.
It D and D’ are integers not divisible by a prime p, then, by (1),
the following property holds:

I. If D = D'(modp), then (—) —(—,)
; = D'(m =|—.
p? p

From (2) it follows that if D and D' are integers not divisible by p,
then

DD’ = (—1)ndDD’ d (B) L — (—1)indDHRAD’
(3) (p) (—1) an p(p)()

But, according to property II of indices (see Chapter VI, §8), we
have ind DD’ = indD-+indD’(modp—1). Hence, since p is an odd
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