CHAPTER VII

REPRESENTATION OF NUMBERS BY DECIMALS IN A GIVEN SCALE

§ 1. Representation of natural numbers by decimals in a given scale.
Let g be a given natural number > 1. We say that a natural number N
ig expressed as a decimal in the seale of g if

) N = emgm’f‘ﬁm—:(gm-l‘}‘---+°’1g+007

where m is an integer > 0 and e (n=10,1,2,...,m) are integers with
the property

(2) 0<e, <g—1 for n=0,1,...,m and ¢, = 0.

7

If each number of the sequence
(3) 0,1,2,...,g-—1

is denoted by a special symbol, the symbols are called the digits and
formula (1) can be rewritten in the form

¥ =(ym Vm—1+++Y1Y0)gs

where y, is the digit which denotes the number ¢,.
If g <10, the digits o, 1,2,3,4,8,6, 7,8, 9 are taken as the
symbols to denote the numbers of (3). For example,

V= (10020), means N =1.240-240.921 7.9 0 =18,
X = (5608), means N = 5-73L6-721 0:-74+3 = 2019.

TEEORENM 1. Any natural number may be uniquely expressed as a deci-
mal in the scale of g (g being & natural number >1), d.e. it can be rewritten
tn form (1), where the numbers e (n=0,1,...,m) are integers which
satisfy tnequalities (2).

Proof. Suppose that a natural number ¥ can be represented in
form (1), where o, (n=0,1,..., m) are integers satisfying conditions (2).
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Let n denote one of the numbers 0,1,2,...,m—1. In virtue of (1)
we have
v I R s o

I R i Y e P

But in view of (2),

On—1, On—a G 972 1.9
Og——g + o +'"+g"\ 7 7 7

Hence, by (4), we infer that
I:%jl = cmgm—n_!_ em—-lgm—u—1 + cn+lg+ Cn
and similarly

V —n-2 .
[ ] = eng " b e

w1
g

These formulae show that

l l v =0,1,...,m.
(5) Cp = [?]~g[;ﬁ—+7] for any n=0,1,...,n
In virtue of (1) and (2), we also have

1

gm <N <(g~1)(g’”‘—l—g _1_1_.___]_9_1_1) =gm+l_1 <g s

whence mlogg < logN < (m+1)logg and therefore

N
m < log ¥ < m+1,
logyg
hich proves
el p i [IogN]
(6) m = 10gg .

Formulae (6) and (5) show that if I is represented as (i) oa.nld con(yir;
tions (2) are gsatisfied, then the numt{ers m and ¢, (n = .,W;l n ;,tu.
are uniquely defined by number N. This proves that for‘a g; ron aam
ral number N (with a fixed natural num‘t()g' g> 2 tzléle‘z is a

i 1) such that conditions are fed.
mpre;‘;zf‘zgzg 1; )order to prove the theorem it is sufficient to 'shoiv ;1;,22
for any natural number N and a npatural n_umber g> 1 there is &
one representation (1) (conditions (2) being satisfied).
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Let Ny and ¢, be the quotient and the remainder: yielded by the
division of ¥ by g. We then have N = ¢,4-g¥,. Replacing ¥ by N,
we find the quotient N, and the remainder ¢, from the division of N,
by g. Continuing, we proceed similarly with N, in place of N, and so on.

It is clear that the quotients consecutively obtained, when positive,

decrease because N, < N,f/g. Since they are non-negative integers,
for some k¥ >1 we must ultimately obtain Nj = 0. Let m denote the
greatest index for which ¥,, # 0. We have the following sequence of
equalities:
N =co+gNyy, Ny=o01+gNy, ooy Ny =Cm1t9Nm, Np =cpn.
Hence we easily obtain the desired representation of N, namely N == Co+
+eg+cg? ...+ eng™, where ¢, 7% 0 because N, 5= 0, and the num-
bers ¢, (n =0,1,...,m), being remainders obtained from the division
by g, satisfy condition (2).

Thus we have proved theorem 1 and, at the same time, we have
found an algorithm for finding the representation of N as a decimal in
the seale of g. The algorithm is the following: we divide N by g and
denote the remainder by ¢, and the quotient by ,; then we divide N 3
by g and denote the remainder by ¢; and the quotient by ¥,. We pro-
ceed in this way until we obtain the quotient N,,, = 0. This, as we
have just seen, leads to a representation of N in form (1).

Since in the scale of g = 2 there are only two digits, 0 and 1, from
theorem 1 we deduce the following

COROLLARY. Any natural number may be uniquely expressed as the sum
of different powers (the ewpoments being mon-negative integers) of mum-
ber 2.

For example: 100 =2°-4-2°422, 29 — 28423492400 I/, — 9"
—1=2"14 0" 124090,

EXERCISES. 1. Find the decimals in the scale of 2 of the first twelve prime
numbers.

Angwer: 10, 11, 101, 111, 1011, 1101, 10001, 10011, 10111, 11101, 11111,
100101.

2. Prove that for every natural number m there exists a prime whose represen-
tation as a decimal in the scale of 2 is such that the last digit is 1 and the preced-
ing m digits are equal to zero.

Proof. By theorem 11 of Chapter VI, for a natural number m there exists
a prime p of the form 2™+1% -1, where k is a natural number. In the representation
of this number as a decimals in the secale of 2, m of the last m -1 digits are 0 and one,
at the very end, is equal to unity.

Remark. It is known that there are prime numbers whose digits in the scale
of 2 are all 1. There are 23 known numbers of this kind; the greatest of them has
11213 digits (each equal ot 1) in the scale of 2. We do not know whether there exist in-
finitely many primes of this kind. (Clearly, they coincide with the primes of the form
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97— 1.) There are known primes whose decimals in the scale of 2 consist of digits all
equal to zero with the exception of the first and the last digits. For example: 11, 101,
10001, 100000001 and 10000000000000001. These are all the known primes of
this form, we do not know whether there exist any other such primes. They are the
primes of Fermat of the form 2™ 1,

3. Prove that for any natural number s > 1 there exist at least two primes
which, presented as decimals in the scale of 2, have precisely s digits.

Proof. For s = 2 and s == 3 the result follows from exercise 1. If s > 4, then
95—=1 > 5 and, by theorem 7 of Chapter III, it follows that between 25—! and 2% there
are at least two primes. On the other hand, if » is a natural number with the prop-
erty 2°~1 < m < 2%, then it has, of course, s digits in the scale of 2.

4. Prove that the last digit of the representation as a decimal in the scale of
12 of any arbitrary square is a square.

Proof. If the last digit of a natural number is 0, 1, ..., 11, then the last digit
(in the scale of 12) of the square of them is 0, 1, 4, 9, 4, 1, 0, 4, 9, 4, 1, respec-
tively.

Remark. It has been proved that other scales with this property (proved
above for the scale of 12) are only the numbers 2, 3, 4, 5, 8, 16. Cf. Miiller [1].

5. Prove that there exist infinitely many natural numbers » that are not divis-
ible by 10 and such that number »’, obtained from n by reversing the order of the
digits in the representation of » as a decimal in the scale of 10, is a divisor of # and
n:n’ > 1.

Proof. As is easy to verify, the following numbers have the desired property:

9899...9901 = 9-1099...9989

and

8799...9912 = 4-2199...9978
where the number of 9’s in the middle is arbitrary but equal on either side of the equal-
ity. .

It can be proved that the least natural number > 9 with this property is the
number 8712 = 4-2178 and that the numbers written above exhaust the class of
the numbers of this property. Cf. Subba Rao [1]. The problem whether such
numbers exist had been formulated by D. R. Kaprekar.

6. Prove that any natural number may be uniquely expressed in the form
(*) n=a, U+a,°2+...4+amm!,

where m is a natural number, ap = 0 and a; (j = 1, 2,...,m) are integers such
that 0 < aj <j for j=1,2,...,m.

Proof. Suppose that a natural number n admits two representations in the form
(*). We then have

ap U4 ay 204+ ameml = a;-U+ay-20+...+ay, -ml.

Let % denote the greatest natural number such that a +# ay, i.e. a, > ay, say.
Therefore a;,— a;, > 1, whence

B <a B—a, W =a U4t (k—1)—a U—...—a_, (k—1)!
< L UH22 4.+ (b= 1) (k— 1)l = R —1 <X,

which is impossible.
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Now let s denote a natural number. Consider all the expansions of the form
(*) with m < s and 0 < g5 <jforj=1,2,...,m. As is easy to calculate, the num-
ber of them is equal to (1--1)(2-41)...(s+ 1) = (s 1)!. Therefore the number of the
expansions excluding those which give n = 0 is (s--1)!—1. In virtue of what we
have proved above, different expansions of the form (*) give different n’s. On the
other hand, any expansion of the form () with m < s produces a natural number
L LUE2-204 L dmem! = (m-- 1) —1 < (s 1)1—1. Hence, trivially, any natu-
ral number < (s--1)!—1 can be obtained as an n for a suitable expansion of the
form (*) with m < s.

7. For fixed natural numbers g and s let f(n) denote the sum of the sth powers
of the digits in the scale of g of the natural number n. Prove that for any natural
number » the infinite sequence

) a, fn), ff(n), fif@n), ...
is periodie.

Proof. Clearly, in order to show that sequence (i) is periodie it is sufficient
to prove that there is a number which ocours as different terms of (i).

In other words, it is sufficient to prove that not all terms of (i) are different.
Let » denote a natural number and let n— Go+mg+...+ax_195-1 be the repre-
sentation of » as a decimal in the scale of g. We have. f(n)=ag—l~af—i—...a§:,_1

< k(g—1)* < k¢®. But, as we know, g*/k increases to infinity with %; so for k large
enough we have g%/ > ¢5+1. Therefore kg® < g"1 < n. From this we easily infer
that for sufficiently large , say for n > m, we have f(n) < n. This shows that after
any term of the sequence that is greater than m there occurs a term less than the
term in question. Consequently, for none of the terms all the terms that follows it
are greater than m (for this would produce a decreasing infinite sequence of natural
numbers). Thus we have proved that the sequence contains infinitely many terms
that are not greater than m and this shows that the sequence must contain different
terms that are equal, and this is what was to be proved.

Remark.Forg = 10 and s = 2, Porges [1] has proved that the period of sequen-
ce (i) consists of either oneterm equalto 1 orthe following eight terms: 4, 16, 37, 58,
89, 145, 42, 20. For example, if » = 3 we have the sequence 3, 9, 81, 65, 61, 37,
58, ..., 16, 87, ...; if n =5, we have the sequence 5, 25, 29, 85, 89, 145, ...,
58, 89, ...; if n = 7, we have the sequence 7, 49, 97, 130, 10, 1,1, 1, ... A gener-
alization of the results of Porges has been obtained by B. M. Stewart [1]. The case
where g = 10 and s = 3 has been considered by K. Iséki [1]. He has proved that
there are 9 possible periods of the sequence of the form (i). These are: ome term
periods, the term being any of the numbers 1, 153, 370, 371, 407; period consisting
of two numbers, either of 136 and 244 or of 919 and 1459; finally, periods consist-
ing of three numbers, either of 55, 250, 133 or of 160, 217, 252 (see also Iséki [2]).

K. Chikawa, K. Iséki and T. Kusakabe [1] proved that in the case where g = 10,
8 = 4 there are six possible periods of sequence (i). These are: periods consisting of
one number, which can he any of the numbers 1, 1634, 8208, 9474; a period con-
sisting of the numbers 2178, 8514; a period consisting of gseven numbers 13139, 6725,
4338, 4514, 1138, 4179, 9219 (see also Chikawa, Iséki, Kusakabe and Shiba-

mura [17). .
8. Prove that the period of sequence (i) of exercise 7 may begin arbitrarily far.

Proof. This follows immediately from the fact that for every natural number
n there exists a natural numher m > n such that SF(m) = n. In fact, for any natiral
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number s the sum of the s-th powers of the digits (in the scale of ¢) of the num-

n
ber m = " isn and, moreover, if » > 1, we have m > n; if # =1, then we
put m =g.
9. Find the tables of addition and multiplication of decimals in the scale of 7.
Answer:
1 2 3 4 5 &6 v 2 3 4 5
1,2 3 4 5 6 10 Ti 1 2 3 4 35 6
2[3 4 5 6 10 11 212 4 6 11 13 15
3| 4 5 6 10 11 12 3/3 6 12 15 21 24
4 5 6 10 11 12 13 4 ! 4 11 15 22 26 338
51 6 10 11 12 13 14 515 13 21 26 34 42
610 11 12 13 14 15 6,6 15 24 83 42 51

§ 2. Representations of numbers by decimals in negative scales.

TEEOREM 2. If g is an integer << —1, then any integer N may be
uniquely expressed as a decimal of form (1), where ¢, (n = 0,1,...,m)
are integers such that

(7) O<e,<lgl for n=0,1,....,m

and ¢,, = 0.

The theorem is due to Andrzej Wakulicz and Z. Pawlak, [1], who
have found it as an aid fo computation with the use of electronie com-
puters.

Proof. Let g be an integer < —1 and # = N an arbitrary inte-
ger. Denote by ¢, the remainder left when = is divided by [g,|. We have
0 <¢, <lg| and & = e,+ g, where @, is an integer. Hence gz, = &—c¢,
and so lgu| < |o+¢o < @i+ gl—1, whence |ay| < (|z]+|g|—1)/lg|. If
(lzl+1g1—1)/lg| > o], then lo|+lgl—1 > lgl o], ie. lgl—1 > (lg]—1) 1|,
whence, by lg] > 1, we see that |2] <1,s0 2 =0,1 0r —1. If 2 =0
or gz =1, then  =¢,. If # = —1, then # = |g|—1+g = ¢,-+g, where
¢, = |g] —1. Therefore it remaing to consider the case where (Jo|+ g —1)/
/lgl < |z]. We have |#,| < |#| and we may apply the procedure which
we have just applied to w, to ;. Continuing, we proceed in this way
until, after a finite number of steps, we obtain a representation of N
in form (1), where ¢, (n =0,1,...,m) are integers satisfying condi-
tions (7). )

In order to prove that the representation of N in form (1), condi-
tions (7) being satisfied, is unique, it is sufficient to note that N divid.ed
by |g] leaves the remainder ¢,, (N —e¢,)/g divided by |g| leaves the remain-
der ¢; and so on. Hence it follows that the numbers ¢,, ¢y, ¢;, -.. are uni-
quely defined by number X; so the representation of N in form (1) is
unique. Theorem 2 is thus proved.
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Examples: —1 = (11),, 10 = (11110)_,, —10 = (1010)_,, 16 —
= (10000)_s, —16 = (110000)_,, 25 = (1101001)_,, —25 = (111011)
100 = (110100100)_, = (10201)_,.

—2

§ 3. Infinite fractions in a given scale. Let ¢ denote a natural
number > 1 and # a real number. Let #, = 5— [#]. We have ¢ <oy <1,
Further, let o, = go,—[g2,], then again 0 < @, < 1. Continuing, we define
@3 a8 gw,—[gz,] and 5o on. Thus we obtain an infinite sequence @, (n =
1,2,...) defined by the conditions

(8) o =a—[z], @4 =gv,—[gn,] for n—= 1,2,...
These formulae imply
(9 0<@, <1 for =n=1,2,..
Let
(10) on=[gm] for =n=1,2,...

In VirFue of (9) we have 0 < gw, < g; therefore, by (10), 0 <e¢, < g,
and, since numbers (10) are integers, we have
(11) 0<en<g—1

for n=1,2,...

Formulae (8) and (11) give

_ 6+ @, Cot+ 2
5= [ij“”ly @y =20 2y = _ﬂ_a’ ey @ = Cot iy .
g g g

Hence, for n =1, 2,...,

(12) o=[o]+ 3+ 24 p B T
g g g

g

Tny1

. 1
Since, by (9), 0 < < 7 and in virtue of ¢ >2, ¢" increases to in-

finity with n, we see that lim % = 0. Therefore, by (12), we obtain
N0

the following expansion of number # into an infinite series:
(13) o=+ 242 %

g ¢ g

where, by (11), numbers on are digits in the scale of g.

) Thus we have. Proved that every real number » has a representa-
tion (at least one) in form (13) for any given natural scale g >1, where
numbers ¢, are digits in the scale of g. ’
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Suppose that a real number & is represented in form (13) (where
¢, are integers satisfying conditions (11)). For any » =1,2,... we set

(2% Cy Gy,

We have

whence, by (11).
g—1

M+2

1
+... zg—n,

i 91
0<z—1, %Wﬂf

the equality #—r, = 1/¢" being possible only in the case where ¢y,
= ¢, = ... =¢g—1, ie. where all the digits of the representation are
equal to g—1 from a certain n onwards. Then # = r,41/¢", and so, by
(14), = is the quotient of an integer by a power of number g. If m is the
least natural number such that ¢, = ¢g—1 for n > m, then in the case
of m =1, by (13), we would have # = [#]+1, which is impossible. If,
however, m > 1, then e¢,_; # g—1, therefore, by (11), ¢n_; < g—1,
that is, ¢z_; < g—2, which shows that number ¢, ; = ¢,_,-+1 is also
a digit in the scale of g; consequently number 2 has a representation

,
Cm—_1

0, 0
g’"“l +g_m+§m_+l_‘—’

Cm—z

. L0, 0
o= [w]"l‘;‘l‘?_i‘"'_“gm—z-l_

which is different from (13).

It is easy to prove that, conversely, if # is the quotient of an inte-
ger by a power of number g, then 2 has two different representations
in form (13), where ¢, are integers satisfying conditions (11). In one of
them all ¢,’s except a finite number are equal to zero, in the other from
a certain » onwards all ¢,’s are equal to g—1.

If a real number # is not the quotient of an integer by a power of
number g, then
n=1,2,...,

1
O<<o—r, < ? for

whence 0 < §"z— ™7, < 1. Hence, since by (14) number g"r, is an inte-
ger, we see that g¢"r, = [¢"w], this being also true for n = 0 provided
7o is defined as [#]. We then have

(15) gnrn — [gnm] and gn_lrn_l . [gn’lm] for 7 o= 1, 2, e
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But, in view of (14), r,—rn_, =§—:: for any n =1,2,..., whence e,
= g"rn—g¢""'ra_, Which, by (15), implies
{16) e =[g"2]—glg" 5], n=1,2,..

This shows that any real number # which is not the quotient of an inte-
ger by a power of g has precisely one representation as series (13), where
¢, are integers satisfying conditions (11). This representation is denoted
by

1) 2z = [2]4(0, e e505...),.

Formula (16), which gives the nth digit, is simple; however, it is not
easy in general to compute the value of its right-hand side. For example,
for g = 10 formula (16) gives for the 1000th digit of the decimal of ¥'2
the value ey = [101000)/2]—10 [10°*V2], which is not easy to cal-
culate.

We have just proved that in order to obtain the representation
of a real number as a decimal (17) we may apply the following algorithm:
o =a—[x], ¢ = [gx,], @, = gBy—0C1y Oy = [g0g], @y = gBy—0p, ..., @,
= PBn1—Cn1y Cn = [gZ,], ...

‘We have also proved that representation (13) is finite (i.e. all its digits
are zero from a certain » onwards) if and only if z is the quotient of an
integer by a power of number g. It is easy to prove that this condition
is equivalent to saying that » is a rational number equal to an irreducible
fraction whose denominator is a produet of primes each of which is a divi-
sor of g. The necessity of this condition is evident. On the other hand,
if # = I/m, where 7 is an integer and m a natural number such that any
prime divisor of m is a divisor of g, then, if g = gf1g%2...¢% denotes the
factorization of g into primes, m = iR .. q¥, Where Ay, Ay, ..., J, arve
non-negative integers. Let % be a natural number such that ka; > 4
for any ¢ =1,2,...,s. Then m[g’“, so ¢ = hm, where % is a natural
number. Hence # = Ifm = hl/g®, which gives the sufficiency of the con-
dition.

Thus we see that if a real number # is not a rational number which
is an irreducible fraction with denominator such that any prime divi-
sor of it divides g, then number z has precisely one representation in form
(13), where ¢, (n =1,2,...) are digits in the scale of g. Moreover, the
representation is infinite and has infinitely many digits different from
g—1. The representation is t0 be obtained by the use of the algorithm
presented above.

The algorithm for Tepresenting a real number # as a decimal may
also be applied in the case where ¢ is a real number > 1. Then formulae
(8), (9), (10) and (12) are still valid. However, the only proposition
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about ¢,’s (n =1,2,...) which remains true iz that they satisfy the
inequalities 0 < ¢, <g and that they are integers. For example, for
g = Va , &= V2 the representation given by the algorithm is

1 1 1 1
—=t =t = t—t...
WVap 02y ot (o)
However, there is also another representation of V2 in the form (13).
This is

V2 =1

ve— L4 L T S
Ve o (V2@ (V2) (Vo)
For g = V2 and % = (21/ §+1)/4 we have two representations in the
form (13):
2241 1 1 1 1 1

= b = L
4 vzt Ve (V2p Ve o (a7
the latter being given by the algorithm. We also have
2 V2 1 1 1 1 1 1

—t = = —t—t... = ~+ + + ...
1% T vy ol oy 02F 02 0y

where the second representation is given by the algorithm. See also Gel-
fond [1].

§ 4. Representations of rational nmumbers by decimals.- Now let =
be a rational number which is equal to an irreducible fraction 1/m and
suppose that the representation of # as a decimal is of th.e fOI'I?l (13),
where ¢, (n =1, 2,...) are digits in the scale of ¢ where g is an integer
> 1. Let x, (n =1, 2,...) be numbers defined by formulae (8). Then,
as we know, formulae (9) and (10) bold. In virtue of ('8) we have
ma; = 1— [#]. Consequently m®, is a natural number and, since, by .(8),
‘we have maw, ., = gma,—m[gay] for any n =1, 2, ..., then, by induction,
we infer that all the numbers ma, are integers and, moreover, by (9),
that they satisfy the inequalities 0 < mw, < m for n = 1,2,... If for
some 7 we have x, = 0, then, by (8), #; = 0 for all J 2.')1,'. Hence, by
(10), ¢; = 0 for j > n and representation (13) for # is finite. Further,
suppose that , 5£0 for all » =1,2,... We then have 0 <mz, <m
for n =1,2,... and so the numbers mz,, Mm@y, ..., My, ca,n‘take only
m—1 different values 1, 2, ..., m—1. It follows that there exist natural
numbers % and s such that k-8 < m and ma, = ma,,,, which, by (8),
proves that @, = #,,, for n >h and therefore, .b‘y (.10), c,.’——- Cn, s :E.or
n > h. This proves that the infinite sequence of digits in (17) ig periodic.
‘We have thus proved the following theorem:

Elementary theory of numbers

+...
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TerorEM 3. The representation of a rational number in form (13),
where g is a natural number greater than 1, is periodic. The 'fmmber of_ digits
in the period, as well as the number, not less than 0, of digits p?‘ecedmg the
period, s less than the denominator of the rational number in question.

Consider an arbitrary infinite sequence ¢;, ¢,, ..., wheree, (n =1,2,...)
are digits in the scale of g. Then the ¢,’s satisfy condition (11), whence
it follows that infinite series (13) is convergent and its sum z is a real
number. It follows from theorem 3 that, if the sequence ¢y, c,, ... is
not periodic, then # is an irrational number. In order to prove the
converse it is snfficient to show that if a sequence of digits ¢,, Cay.n.
is periodie, then number (17) is rational.

Suppose then that the sequence ¢, ¢y, ... is periodic. This means
that for some natural numbers s and % the equality Cnys = Cn holds when-
ever n > h. We then have

C [
— 42+
g g

—1 Cn | Chp1

€ G O
EEE g Tkl —-—+...+
g+g2+gh_1+g]|+g]z-.—1

Chis_1 Chy1 Chis—1

C,
+g—hm+?%+gh+s+l tet

_a ., % ey [0, O if:;)(l 1 _{+,__)
_g+g2+"'+9"“+(y"+g"+1+"'+g"““’ +g"+y“

¢, 02 Ch1 Cn , Chp1 0h+s—1) '3
=?+E+...+F+(gh +gh+1+"'+—_gh+8—l ‘f—l

T e w2 e SV Y i Y e ROV WP
B 7 g —1)

B N A NN Lo KB S,
1)

(61€3++-Ch1s_1)g _ (6165...01_1)y )
¢ He—1) 9 —1)

Thus we see that the sum of the series is a rational number

(€165 Onys_1)g—(C105... Cn_1)g

7' —1)

This, however, in the form as is written, is not necessa.rjly an
irreducible fraction. '
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This formula may also serve as a rule Jor reducing periodic fractions
in a given scale of g >1.

We have thus proved the following

THEOREM 3% For a given scale of 9> 1, where g is a natural number,
the numbers which admit representaiions in form (18) such that the sequence
of the digits is periodic are precisely rational numbers (finite representations
are understood to be periodie, the period consisting of one number being
equal either to 0 or to g—1).

As an immediate consequence of theorem 3 we note that if a number
# has a non-periodic representation as a decimal in a, scale of g, then x is
irrational. On the basis of this fact it is easy to prove that a number g
whose decimal (in the seale of 10) is obtained by writing 0 for the integer
and the consecutive natural numbers to the right of the decimal point,
i.e. number

o = 0. 1234567891011121314...,

is an irrational number. In fact, if the decimal of & were Tecurring, then,
since all numbers 10® (n =1, 2, ...} oceur in it, arbitrarily long sequen-
ces consisting of 0’s would appear; consequently, the period would neces-
sarily consist of number 0 only. But this is impossible since infinitely
many 1’s occur in the decimal.

EXERCISES. 1. Write the number 9—;2 as a decimal.
Answer:
?;7 = 0.00010203...0806101113. .. 65789 .
(the dots above the digits indicate that the digits form the period). The period (which
starte exactly at the deeimal point) is obtained by writing down all the natural num-
bers from 0 to 99 excluding 98 written as decimals. As proved by J. W. L. Glaisher
[1]1 a more general formula holds

1 »eaa —_—
——— = (0.0123...g—3¢g—1
g—1p ¢ 9—39—1)g

whenever ¢ is a natural number > 2.

2. Using the representation of number ¢ as a decimal e = 2.718281828...
write number e as a decimal in the scale of 2 up to the 24th decimal place.

Answer:
6= (10.101101111110000101010001...)2.

This representation has been given by G. Peano [1]. He writes a point and an
exclamation mark in place of 0 and 1, respectively; therefore this equality has the
form

e = (L, LI, ),

3. Using the representation of number = as a decimal = — 3.14159265... write
the number = as a decimal in the scale of 2 up to the 24th decimal place.
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Answer:
= = (11.001001000011111101101010...),

(cf. G. Peano [1], p. 177).

4. Prove that in any infinite decimal fraction there are arbitrarily long sequen-
ces of digits that appear infinitely many times.

Proof. Let 0.¢;¢3¢;... denote an infinite decimal fraction and m a natural

number. Consider all the sequences that consist of m digits which appear in the sequence
€,6y..., i.e. all the sequences
(18) Ckmils Ckmi2s -« Ckmem Where k=10,1,...
We divide the set of sequences into classes by saying that two sequences belong to
the same class if and only if the terms of one are equal to the corresponding terms
of the other. Clearly, the number of classes of sequences consisting of m terms is
not greater than 10™. Consequently it is a finite number. But, on the other hand,
there are infinitely many sequences of form (18); so at least one of the classes con-
taing infinitely many of them.

Remark. As a special case of the theorem just proved, we note that in any
infinite decimal fraction at least one digit appears infinitely many times. (If, more-
over, the number is irrational, there are at least two digits that appear infinitely
many times each.) However, for numbers V2 and = we are unable to establish which
two of the digits have this property. As was noticed by L. E. J. Brouwer, we do not
know whether the sequence 0123456789 appears in the representation of number =
as a decimal.

The decimals of ¢ and = up to the 2053th decimal place are to be found on page
14 of a paper of G. W. Reitwiesner [1].

The number = is given up to the 100000th decimal place in D, Shanks and
J. W. Wrench Jr. [1].

5. Prove that the number (cc...0);0, whose digits in the scale of 10 are all equal
to ¢, with ¢ = 2, ¢ = 5 or ¢ = 8, is not of the form m®, where m and n are natural
numbers > 1.

~ Proof. Numbers 2, 5 and 6 are not divisible by any square of a natural num-
ber > 1. Therefore none of them can be of the form m", where m and n are natural
numbers > 1. Numbers whose last two digits are 22, 55 or 66 are not divisible by
the numbers 4, 25 and 4 respectively, which would be the case if they were of the
form m™, where m and » are natural numbers > 1. A number > 4 whose digits (in
the scale of 10) are all equal to 4 is divisible by 4 but not divisible by 8. Consequently
it cannot be an nth power of a natural number m with n > 3, If 44...4 — m?2, then
the number 111...1 would be a square; but this is impossible since the last two digits
of a square of a natural number cannot be 11.

Remark. R. Oblath [1] showed that, if any of the numbers 33...8,77...7,
88...8, 99...9 is greater than 10, then it cannot be of the form m®, where m, n are
natural numbers > 1. It is still an open question whether the number 11...1 can be
of ‘that form.

6. Write the number % as a decimal in the scale of 2 and in the scale of 3.
Answer:

& = (0.60011), = (0.6023),.
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7. Write the number *

g 8s a decimal in the scale of 10.

Angwer:
éli = (0.016393442622950819672131147540983606557377049180327868852459) 10 .

Remark. It can be proved that the period of the decimal of number 1/97 con-
gists of 96 digits and that of number 1/1913 consists of 1912 digits. We do not know
whether there exist infinitely many natural numbers % > 2 such that the decimal
of number 1/n has the period consisting of n—1 digits. To this class belong the num-
bers n» = 313, 1021, 1873, 2137, 3221, 3313. It can be proved that primes for
which 10 is a primitive root have this property.

§ 5. Normal pnumbers and absolutely normal numbers. Let g be
a natural number > 1; we write a real number z: & = [#]-(0.¢,0565...),
a8 a decimal in the scale of g. For any digit ¢ (in the scale of g) and every
natural number #» we denote by I(c, n) the number of those digits of the
sequence ¢,, €y, ..., 6, Which are equal to c. If

lim l{e, n) _ i
o N g

for each of the g possible values of ¢, then number 2 is called normal in
the scale of g. For example number

1234567890
9999999999

is normal in the scale of 10; number ;15 is normal in the scale of 2 but
it is not normal in the scale of 3. If # is a normal number in the
scale of 10, then #/2 is not necessarily a normal number. For example,

A number which is normal in any seale is called absolutely normal.
The existence of absolutely normal numbers was proved by E. Borel
[1]. His proof is based on the meagure theory and, being purely existen-
tional, it does not provide any method for constructing such a number.
The first effective example of an absolutely normal number was given
by me in the year 1916 (Sierpiniski [5], see also H. Lebesgue [1]). As was
proved by Borel, almost all (in the sense of the measure theory) real
numbers are absolutely normal. However, as regards most of the com-
monly used numbers, we either know them not to be normal or we are
unable to decide whether they are normal or not. For example, we do
not know whether the numbers ¥2, =, ¢ are normal in the secale of 10.
Therefore, though according to the theorem of Borel almost all numbers
are absolutely normal, it was by no means easy to construet an example
of an absolutely normal number. Examples of such numbers are indeed
fairly complicated.
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D. G. Champernowne [1] proved in 1933 that the number a (which
we proved in § 4 to be irrational) is normal in the seale of 10. He for-
mulated the conjecture that the number whose decimal is obtained by
writing 0 for the integers and the consecutive prime numbers (instead of
consecutive natural numbers) to the right of the decimal point, i.e. num-
ber 0.2357111317..., is normal in the scale of 10. The conjecture, and
a more general theorem have been proved by A. H. Copeland and P.
Erd6s [1]. Other interesting properties of normality have been investi-
gated by W. M. Schmidt [1].

§ 6. Decimals in the varying scale. TLet G15 g2y --- be an infinite
sequence of natural numbers >1, 2 a real number. We define infinite
sequences ¢y, 6y, ... and @, #,,... as follows:

(19) ey =[], 2, = T—Coy 0 = [g:1,], @y = 01%1—0Cy, 63 = [g0,],

cery Op = [gnmnlr Tnip1l = nlp—0Cpy N =l$ 2: one

It is clear that 0 <z, < 1 and 0 < 0n < gn—1 hold for any n = 1,2,...

Comparing formulae (19) and the algorithm of § 3, we see that the
digit ¢, has been defined as if it were the corresponding digit in the scale
of gy, ¢, as if it were the corresponding digit in the scale of g> and so on.
Moreover, formulae (19) give

20)  omoep ey 4 O B
9 0192 91929 9192 9n G193+ -9n

Sinee for n = 1, 2, ... we have gn=>2and 0 <, ; < 1, the last summand
in (20) is non-negative and less than 1 {2", and consequently it tends to
zero as n increases to infinity. This gives the following expansion of num-
ber @ in an infinite series:

¢y s

C.
(21) @ ==+ +..
91 G192 919:9s
It g, =g,=... =g, this coincides with the ordinary representation

of # a8 a decimal in the scale of g.
Now we put g, = #+1, n =1,2,... Then (21) assumes the form

_ C1 , € G5
(22) 97—004-2*!-&-5'!-1?4-...,

where ¢y, 0, (n=1,2,...) are integers and
(23) I<e,<n (n=1,2,..).

It is easy to prove that if & is a rational, algorithm (19) leads to
a finite representation in form (22), where ¢, (n =1,2,...) satisfy
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inequalities (23). However, any rational admits also aa'mtheF infinite
representation in form (22). This follows from the following identity:

Cn_1 C,

€, C 'n
R L T e e O]
cy Cn1 Cp—1 n+1 n+2 n+3
U TR et mra)l Tegan t mrar T

As regards representations of type (21) see E. Stra,ussf [1] and G. Can-
tor [1]; representations of the type (22) have been investigated by C. Sté-
phanos [1] and G. Faber [1]. ) o

Let us mention some other expansions of real numbers into infinite
series.

Let o denote a positive real number. Denote by %, the least natural
number satisfying the inequality &,z > 1. We set &,z = 1-}-.:01 and have
2, > 0. We proceed similarly with #; in place of #, i.e. we find the least
natural number &, such that k,z; > 1 and we put ko, = lh—i—m2 and so
on. The expansion of # into an infinite series thus obtained is as follows

1 1

1
= Tk ik

Ky | Tk,

ey

where k, (n = 1,2, ...) are natural numbers and &, ., > k, forn = 1,2,...

It can be proved that each positive real number has preclsely' one

repregentation in this form and that a sufficient and necessary .(fom.hbmn

for # to be an irrational number is that lim %, = oo (Sierpinski [3]).
00

The éxpansion thus obtained for number ¢ is as follows:

1

1-1-2-3+“'

1 1 1
c=ytiitriet

Let ¢ be a natural number > 2. Using the identity

a—Va—4 1 a—2-V(@—2y—4
2 = 2a

one easily proves that for a4, =a, @, =a,—2 (n =1,2,...)

a—Var—4 1 + 1 1
(24) 2 T ay @10y

;04

This series converges rapidly because, ag is easily proved by induction,
4, >2""" n=1,2,...
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In particular, for @ =3, we obtain G =3, @Gy =17, a; =47,
6, = 2207, a5 = 4870847 and so on. Hence
3-V’5"_1+1+ 1, 1 ,
2 3737 3747 ' 3.7.47.9207 T

This expansion is to be found under the name of Pell’s series in a book
by E. Lucas [2], p. 33L.

It a is even, a = 25, b > 1, from (24) we derive the following expan-
sion.:

— 1 1
b—Vbe 1= — 4 _—
2b, + 25,2b,

+ 2b,2b,2b, T
where b, =b and b,,; =20—1 for » =1,2,...

It is worth noticing that the following expansion into an infinite
product is valid:

S—
i) ) )
— =14+ {1+ = ...
V b—1 + by - b, 1+ bs
Some particular cases of this expansion (for b = 2, b = 3 and some

others) were given by G. Cantor [2] in 1879.
Now let , denote an irrational number such that 0 < 2y << 1. Let

4, be the greatest natural number such that z, < —Ji Let o, = i—wn.
a a

1 1
We then have 0 < o, < 1. We proceed similarly with @, in place of z,

and obtain the greatest natural number a, such that » < i We put
. @3

1 .
Ty = - —#, and so on. Thus we obtain an

2
numbers a;, @,... and an infinite sequence of irrational numbers ,, z, ,

infinite sequence of natural

such that 0 <z, <1 for 7n=0,1,2,... and a:,,:—l——-m,‘_l for
a.

T

n=1,2 Moreover, <L By < - for 1,2 H
,2,... ] 1 . n=1,2,.. ence
— By < — and so
- < By < 1 Ly_y < 1 1 1
G bl T Ca S 0 T 0T T wat)

It follows that Gap1+1 > a,(a,+1) and B8O Gypyy > 6n(6,+1) for =
=1,2,... From this, by induetion, we easily infer that Gnys > 27 for
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n =1,2,... Numbers a, increase rapidly to infinity with n. It follows

from the definition of numbers a, and =, (n =1,2,...) that
11 1

By = = — = F =

@ Gy g

71
P Gt AP
ay,

(25) .

Since 0 < 2, < , in view of the fact that lima,.; = +oc, we have
N->00

[L7%%]

lim @, = 0. Therefore formula (25) gives us an expansion of the irra-
ntl::)iayl number x, into an infinite rapidly eonvergent series
1 1 1

By =— —
¢ a; Gy

1
R

(26) a; @

where @, (n =1,2,...) are natural numbers satisfying the inequali-
ties

@7 Gn iy 2 @n (0 +1)
We have thus proved that anybdirrational number z,, 0 < 2, < 1, may

in form (26).
e eﬁpﬁﬁ proved ﬂfat )every irrational number between 0 and 1 I}a.s
precisely one representation of this form and that a real number », which
can be expressed in form (26), where a, (7{ =1,2,...) are .na,t}l’ra,lhnum-
bers satisfying conditions (27), is an irrational number (Sierpinski [4]).

for n:—l,z,...
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