CHAPTER VI

EULER'S TOTIENT FUNCTION AND THE THEOREM OF EULER

§ 1. Euler’s totient function. The number of natural numbers
< n that are relatively prime to » is denoted by ¢(n) (n being a natural
number). The fanction (n) thus obtained is called Fuler's totient function.
In fact, Euler was the first to investigate this function and its properties
in the year 1760. The notation @(n), however, is due to Gauss (it was
introduced by him in 1801) — this is the reason why some authors call
the funetion g(n) Gauss’s function.

It follows immediately from the definition of @(n) that (1) =1,
?(2) =1, ¢(3) =2, ¢(4) =2, ¢(5) = 4, p(6) =2, ¢(7) =6, P(8) =4,
#(9) =6, p(10) = 4.

If n is a prime, then, of course, every natural number less than n
is relatively prime to n; accordingly for prime #,

1 p(n) =n—1.

Ii, however, a natural number u is composite, i.e. has a divisor d
such that 1 < d < n, then in the set 1,2, ..., n there are at least the two
numbers, n and d, that are not relatively prime to n; therefore @(n)
<#7—2. Finally, for » =1 we have P(n) = n>n—1. We thus see that
formula (1) holds only in the case where 5 is a prime.

This establishes the truth of the following theorem:

4 natural number n>1 is o prime if and only if for every natural
number a <n the congruence o™ = 1(modn) holds.

In fact, the congruence implies that (@, n) =1, and 8o, if it is valid
for any a <, then p(n) =n—1, and consequently n is a prime. The
condition is thus sufficient. Its necessity follows immediately from the
theorem of Fermat (theorem 5, Chapter V).

It is easy to evaluate ¢(n) for any prime power n = % & being
a natural number.

The only numbers in the set 1 +2, ..., p* which are not relatively
prime to p® are those that are divisible by p. These are the numbers i,
where % is a natural number such that Pt < 9%, that is, such that ¢ < p*~.
Clearly the mumber of the ¢ is 2" Hence it follows that in the sequence
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1,2,...,p" there are exactly p*~' numbers which are not relatively
prime to p*; consequently, ¢(p*) = p*—p*!. We have thus proved
THEOREM 1. If p is a prime end k o natural number, then

e(@") =" (p—1).
In order to obtain a formula for p(n), where # is an arbitrary natu-
ral number, we prove the following

LA, Let m be a natural number, 1 a natural number relatively prime
to m, and r an arbitrary integer. Then, dividing the numbers

(2) 7y 17, 2147, ..., (M—1)14r
by m, we obiain the set of remainders

(3) 0,1,2,..., m.

Proof. Suppose that for some integers & and h with 0 <k <h <m
the numbers %l---7 and kl-}-» yield the same remainder when divided by m.
Then the difference between these numbers, equal to (h—Fk)I, is divis-
ible by m, whence, in view of (I,m) =1, m | h—%, which is impossible
gince 0 <h—%k <m. Thus we see that dividing numbers (2) by m
we obtain different remainders. But the number of numbers (2) is m,
and this is equal to the number of the residues modm, i.e. to the num-
ber of numbers (3). The lemma is thus proved.

TeEorEM 2. If 1 and m are relatively prime natural numbers, then

@(lm) = () p(m).

Proof. Since p(1) = 1, theorem 2 is valid if at least one of the num-
bers 1, m is equal to 1. Suppose that I > 1 and m > 1. As we know, num-
ber ¢(lm) is equal to the number of all the terms of the table

(4)

1, S 2, ., Ty eony
141, +2, ..., I4+r, ..., 2
2141, A+2, ..., 9+7, ..., 3

(m—1)l4+1, (m—1)1+2, ..., (m—1)l+r,

that are relatively prime to Im, i.e. to the number of terms which are rela-
tively prime both to I and to m.

Let r be a given natural number < 1. We consider the rth cohm_m Qf
the table. If (r, 1) = 1, then all the numbers of the column are rela;t%vely
prime to I; if (r, ) > 1, none of the numbers of the column_ is relatively
prime to . The number of the natural numbers r < I for .whmh. (r,0) = 1
is of course p(l), this being the number of the columns in which all the
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numbers are relatively prime to I. Let us consider one of these columnsg,
say the +th. According to the lemma, the remainders obtained by divid-
ing the numbers of the column by m fill up the set 0,1,2,...,m—1,
whence the number of the numbers of the column, which are relatively
prime to m, is p(m). This shows that in each of the ¢(l) columns, the
terms of which are relatively prime to I, there are ¢(m) numbers rela-
tively prime to m. Therefore the total number of the numbers of the
table, which are relatively prime to m and to I, is ¢(I) ¢{(m). This completes
the proof of the theorem.

From theorem 2, by an easy induction, we obtain the following

COROLLARY. If 1y, Mg, ..., My, are natural numbers any two of which
are relatively prime, then

@(mymy.. (my). ..

M) = p(ma)e @ (mg).

Now let # be a natural number >1 and n = ¢i%¢...q%% its fac-
torization into prime factors. Applying the formula, just proved, for m;
=4qi,1=1,2,...,k, we obtain the formula

p(n) = p(d") ¢(sz

But since, by theorem 1, ¢(¢f) = ¢3*(¢;—1) holds for ¢ =1, 2, ...
the following theorem 3 is valid:

TeEOREM 3. If @ 'natuml number n > 1 yields the factorization into
prime factors n = gilg...q5%, then

(8)

-9(g7)
7k7

e(n) = ¢ (i —1) g5 (g —1)...

This can be rewritten in the form

(6) g(n) =“(1* q'l;) (1‘211;) (l_i)

From theorem 3 one can easily deduce that, if (a,bd) = 1, then
¢(ab) > ¢p(a)p(b) and that, if m |n, then @(m)|en).
THEOREM 4. We have

anl;qr(%) =

G g—1).

Proof (due to J. Browkin). It is sufficient to show that the inequal-
ity @(n) > }¥n holds for any natural number n. Clearly, the inequality
is valid for » = 1. Suppose that n>1 and let n = 2%gHg...¢% be
the factorization of number # into prime factors, «, being a non-negative
integer and ay, as,..., 0, natural numbers. For an arbitrary mnatu-
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ral number ¢ > 2 we have a—1>V E, and for any natural number b
the inequality b—3% > 4b holds. Hence, by theorem 3,

p(n) = 2071 g g (g — 1) (ge—1)..

> 20 lgigta—t | gt > 2o gt gla qiuk

A{g@—1)
> 3Vn.

In connection with theorem 4 we note that there exist infinitely
many natuoral numbers n such that p(n) >p(n-+1).
In order to show this we prove

THROREM 5. If n 4s a composite natural number, then

(M gn) <n—Vn.

Proof. Let n denote a composite number and p, the least prime
divigor of it. As we know, p, <Vn, so, by formula (6),

. 1 n
wln) <n(1—];~) <n—

which proves inequality (7).

Now suppose that n is a prime number > 7. Then n--1 is a com-
posite number and n+1 > 9. Hence Vnt+1 >3 and, by (7), p(n+1)
<n+l1—Va+l<n—2. Bub, since ¢(n) =n—1, we have o¢(n)
>g@(n+1). We see that this inequality is valid for any prime number
n > 7 (a8 is easy to prove, it holds for n =5 and also for # = 7); con-
sequently, it holds for infinitely many natural numbers n.

The equation ¢(n) = p{n-+1) in natural numbers n has been a sub-
ject of interest for several authors (cf. Klee [2], Moser [1]).

As has been verified, all the solutions of the equation in natural
numbers % < 10000 are the numbers # =1, 3, 15, 104, 164, 194, 255,
495, 584, 975, 2204, 2625, 2834, 3255, 3705, 5186, 5187. It follows that
the least natural number n which satisfies the equation ¢(n) = ¢(n4-1)
= @(n-+2) is the number 5186. (It is easy to verify that the number 5186
indeed satisfies the equation. This follows immediately from the factoriz-
ation of the following numbers into prime factors: 5186 = 2-2593,
5187 = 3-7-13-19, 5188 = 22-1297 and 2592 = 2-6-12-18 = 2-1296.)

We do not know whether there exist infinitely many natural num-
bers n for which ¢(n) = @(n-+1). As regards the equation ¢(n--2)
= ¢(n), we know that for » < 10000 it has 80 solutions (for » <100
these are n =4, 7, 8, 10, 26, 32, 70, 74). The equation ¢(n-3) =
¢(n), however, has only two solutions, » = 8 and n = 5, for » < 10000.

It is easy to prove that for any given natural number k the equation
¢(n+k) = () has at least one solution in natural numbers » (cf. exer-
cise 11 below). It follows from the conjecture H (cf. Chapter III; §8)
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that it has infinitely many solutions for any even natural numbers
(ef. Schinzel and Sierpifski [3], p. 195). A. Schinzel and Andrzej Waky-
licz [1] have proved that for every natural number % < 2-10% the equa-
tion g(n--%) = ¢(n) has at least two solutions in natural numbers »
(ef. also Schinzel [10]).

If each of the numbers » and n+ 2 is prime, then ¢(n+2) = @(n)+2
The equation, however, is satistied also by composite numbers, for exam:
ple n =12, 14, 20, 44. L. Moser [1] has proved that there are no com-
posite 0dd numbers n < 10000 that satisfy this equation. This suggests
a f,onjecture that there are no odd numbers 7, except for the pairs of twin
pr{mes n,n+2 for which the equality o(m+2) =@(n)4-2 holds. In
thl‘s connection A. Makowski [3] has raised the question whether there
exigt composite natural numbers » for which the equalities p(n42)

= <;0(1'L)+.2 and o(n+2) =o(n)42 hold simultaneously.

If » is & prime, then p(n) = n—1, 50 p(n) |n—1. We do not know
whether there exist composite natural numbers # for which oMm)[n—1 (2
On the other hand, it is easy to find all the natural numbers # for Whick;
@(n) |n. It has been proved that all the numbers with this property
are the numbers n =2° ¢ =0,1,2,..., and n = 23", where q, #
are natural numbers (c¢f. Sierpinski [25], pp. 196-197). ,

It follows from (5) that if » — 2%, where a is a natural number > 1
then @(n) = 2°-1, Consequently, 2 |9(2°) for a =2, 3,... If however,
n hag an odd prime divisor p, then number Pp—1is even and, therefore’
—}Jy (5), p—1]@(n) and 50 2| @(n). Bince any natural number > 2 eit;]:uut
1_s the kth power of 2 with & > 1 or has an odd prime divisor, we see that
for any natural number » > 2 the relation 2 | (n) holds. ’

Since ¢(1) = ¢(2) =1, the equation ¢(z) =m, m being odd, is
.solya:ble only in the case where m = 1. Thus it is shown that there e;:ist
}nﬁm’cely many (odd) natural numbers m for which the equation p(x) = m
is unsolvable in natural numbers z. On the other hand, it can be proved
that ﬁhere exigt infinitely many even natural numbers m for which the
equa,tlorf @ (@)} = m has no solutions in natural numbers . We show this
by proving that this is the cage for the numbers m = 2-5%, where %

. -—~.1, 2,..., for instance. It follows from (6) that it p(n) = 2"52" where
k is a natural number, then % must have precisely one odd prime :iiw'sor
Thg argument is that if ¢, and ¢, were two different odd prime divisors‘
of t:he rl.un}ber #, then, by (8), (g;—1)(g,—1) lo(n) = 2-5% and so 4 l@(n)
?vhleh 1s Impossible. Therefore we must have n — 2°p®, where « is ali
Tnt»eger >0 ?nd 8 a natural number. Moreover, « <1, ,since otherwise.
ifa>2, 2°'(p—1)) @(n}, and so 4 |gp(n), which is impossible. In th(;

1 .
- () D. H. Lehmt?r [2] has conjectured that there are no such numbers, F. Schuh
1 has proved that if they exist, they must have at least eleven prime factors.
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case of a = 0 we have n = p” and, in the case of a =1, n = 2p®; s0 in
cither case we have p(n) = p*~(p—1) = 2-5%. If § were > 1,thenp =5
and so p—1 =4, which is impossible. Therefore g =1, whence
p =2-5%4+1 which is impossible since the number 5% = (5%)° is con-
gruent to 1 with respect to the modulus 3, whence 3 | p, so p =3 and
this is elearly false. Thus we see that the equation @(n) = 2-5%, where
k=1,2,..., has no solutions in natural numbers.

By a similar method a stronger theorem has been proved by A.
Schinzel [6]. The theorem states that for every natural number s there
exists a natural number m divisible by s and such that the equation
p(n) = m has no solutions in natural numbers ». This theorem in its
turn is an immediate consequence of the following result of 8. 8. Pillai [2],
obtained in quite a different way: if g(#) denotes the number of natu-
ral numbers m < 2 for which the equation ¢(n) = m is solvable, then

im M = 0.
Zr00 &
It follows from theorem 4 that for every natural number m the num-

ber of solutions of the equation ¢(n) = m in natural numbers # is finite
> 0. Conversely, theorem 4 is an immediate consequence of this fact.
The theorem of Pillai implies the following:

THEOREM 6. For every natural number s there exisis o natural number
m such that the equation @(n) = m has more than s different solutions in
natural numbers n.
. Proof. We give an elementary proof of this theorem, due to A.
Schinzel in paper [5]. Let s denote a natural number and let m
= (p;—1)(pa—1)...(p,—1). We are going to prove that each of the num-
DETS @y, Bgy ...y Layy, WheTe B3 = Dy.eaPi 1 (Pi—1)Diy1.-Pss 6 =1,2,..5
@yypy = P1Pe...Ps I8 @& solution of the equation @(n) =m.
' In fact, let ¢ be one of the numbers 1,2,...,s. The number p;—1
is not divisible by any prime >p;, and so p;—1 = plpP...p¥il,
where 95, v, ..., ;1 aTe non-negative integers. Hence @; = pji+'plt!. ..
e VYD 1 Piys. .. ps and consequently

e(a;) = pPole. . 7 (91— 1) (02— 1) . (Piny — 1) (Pigy—1) ... (B —1).

Hence, looking at the formula for p;—1 and recalling the definition of
m, we see that p(z;) =mfors =1,2,...,s. Plainly, we also have ¢(zs,)
= m. We see that the numbers @, %, ..., #;,; are different and that
they are positive integers; the theorem is thus proved.

As has been shown by P. Erdos [3], there exists an infinite increas-
ing sequence of natural numbers m; (k =1, 2, ...) such that the number
of solutions of the equation g(n) = my for any k =1, 2,... is greater
than m§, where ¢ is a positive constant. A conjecture of P. Erdos is that
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for any number > 0 constant in question can be taken greater than
1—e.

The question arises whether for every natural number s there exists
a natural number m such that the equation g(n) = m has precisely s
solutions in natural numbers. We do not know the answer to this question
even in the simple case of s = 1. In fact, we do not know any natural
number m sueh that the equation ¢(n) = m has precisely one solution
in natural numbers n. A conjecture of Carmichael [5] is that there is no
sueh natural number m. As was shown by V. L. Klee Jr. [3], there are
no such numbers m < 10400,

However, it can be proved that there exist infinitely many natural
numbers m such that the equation ¢(n) = s has precisely two (or pre-
cisely three) solutions in natural numbers » (cf. exercise 12 below).

For a natural number s > 1 denote by ms the least natural number
m such that the equation ¢(n) = m has precisely s solutions in natural
numbers » (provided the number m, exists). It can be calculated that
My =1,My=2,m, = 4,m; = 8, my =12, m,= 32, my = 36, m, = 40, my,
=24, my; =48, my, =160, my; = 396, m,, = 3268, m,, — 704

We conjecture that for every natural number s > 1 there exigt infi-
nitely many natural numbers m such that the equation ¢(n)=m has
precisely s solutions in natural numbers ». This follows from the conjecture
H (cf. Schinzel [15]). The main difficulty consists in proving the existence
of the number m,, since, as has been proved by P. Erdés [18], if
for a given natural number s there exists a natural number m such
that the equation ¢(n) = m has Precisely s solutions (in natural num-
bers n), then there exist infinitely many natural numbers m with this
property.

‘We do not know whether there exist infinitely many natural num-
bers which are not of the form n—p(n) where n is & natural number.
(It can be proved that the numbers 10, 26, 34 and 50 are not of this
form.) We do not know whether every odd number is of this form. (The
answer ig in the positive, provided any even natural number > 6 is
the sum of two different prime numbers.)

EXERCISES. 1. Prove the formula of N. C. Scholomiti [17:

1

2 [“] for natural numbers n > 1.

=2

The proot follows from the remark that if » > 1, k < n and @, %) = 1, then
1
[—-—(n k)] = 1. On the other hand, it (n, k) > 1, then [

=0, fore the
(n,k)] 0. Therefore the

right-hand side of the formula is equal to the number of natural numbers < n rela-
tively prime to m, which, for n > 1, is the value of p{n).
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2. Find the natural numbers » for which ¢(n) is not divisible by 4.

Solution. { They are the numbers 1, 2, 4 and the numbers p® and 2p¢,
where p is a prime of the form 42--3. The proof is straightforward (cf. Carmichael
[1], Klee [1]).

8. Prove that there exist infinitely many pairs of natural numbers z,y,y> 2,
such that d(z) = d(y), ¢(=) = ¢(y) and o(x) = o(y).

Proof. As is easy to see, all the equations are satisfied by the numbers =
= 3%-568, y = 3-638, where k=0,1,2,... (cf. Jankowska [1]).

4. Prove that there exist infinitely many systems w, Y, such that x <y < z
and d(z) = d(y) = d(), 9(@) = 9(¥) = (), o(2) = o(y) = o(2).

Proof. We put o= 5%.23-33.71.113, ¢y = 5%.93.3.29.37-71, z = 5k.2-33.
+11-29-113.

P. Erdés [19] has proved that for any natural number s there exist s different
natural numbers ay, a@,,..., az such that

dlag) = d(aj),

(@) = p(a), o) = olay)

hold for any 1 < 4 <j <8 . According to a conjecture of P. Erdds one may additio-
nally assume that any two numbers of the sequence ay, a,, ..., a5 are relatively prime
(cf. Erdds [20]).

5. Prove that for any natural number m there exists a natural number n such
that

p(n)—pn—1)>m and @@)—@n+1)>m,

Proof. Let p be a prime of the form 4k--3 that is greater than 2m- 3. Then,
since p = 4k+3, we have p(p) = 452, p(p—1) = p(4k+2) = (2L 1) < 2k+1.
Therefore ¢(p)—@(p—1) > 2k+1>m. We also have P+l =4F+1) = 29,
where a > 2 and I is an odd number. Hence

plp+1) = 2% < 2 U = }(p+ 1),
and so

@ —9p+1)>p—1-%(+1) = ${p—3) > m.

Let us mention the following fact: there exists a natural number n > 1 such
that ¢(n—1)/p(n) > m and p(n+1)/p(n) > m, and similarly there exists a natural
number » > 1 such that p(n)/p(n—1) > m and ¢(n)/p(n-+1) > m (cf. Schinzel and
Sierpinski [17]).

It can be also proved (cf. Erdds and Schinzel [1]) that for any two natural
numbers m and % > 1 there exist a natural number n such that

m——>m for 4=1,2,...
p(n+i—1)
and a natural number n such that
p(n+i—1)
@(n-41)

6. Prove that for arbitrary natural numbers a,b there exist infinitely many
pairs of natural numbers «, y such that

for ¢=1,2,...,k.

p@):p(y) = azb.
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Proof. Let o and b be two given natural numbers. Without loss of generality
‘we may assume that they are relatively prime. Let ¢ denote a natural number prime
to ab (there are of course infinitely many such numbers; in particular all the numbers
kab+-1, where & = 1, 2, ..., have this property). Let & = abc, y = ab%. Since any
two of the numbers a,b, ¢ are relatively prime, ¢(z) = ¢(a®)@(b)p(c) and @ (y)
= ¢(a)p(b*)p(c). As follows easily from theorem 3, for any natural number n we
have ¢(n?) = ng(n), consequently ¢(a?) = ap(a), @(b2) = bp(b), whence o(x):p(y)
= 6:b, as required.

It is worth observing that conjecture H implies the existence of infinitely
many primes z, y such that ¢(z): p(y) = a: b for a given pair of natural numbers
a,b (cf. Schinzel and Sierpinski [8], p. 192).

7. Prove that if » is a natural number > 1, then there exist infinitely many
natural numbers m such that g(m)/m = @(n)/n.

Proof. Number #, being a natural number > 1, has a prime divisor p; so we
may assume that n = p°n,, where « is a natural number and (n;, p) = 1. Hence

o) _ o= Dem) _ p—1 o)
n Pom P n

Let m = pPn,, where B is a natural number. By a similar reagoning, we find

pm) _ p—1 o@m) glm) _ o)

m P ny m n

and hence the proof follows.

It can be proved that the numbers g(n)/n, n = 1, 2, ..., form a dense subset
in the unit interval (0, 1). On the other hand, there exists a dense subset of the inter-
val (0, 1) consisting of rational numbers which are not of the form @{n)/n (cf. Schoen-
berg [1], Sierpifski [25], p. 210).

K. Zarankiewiez has raised a question whether the set of the numbers @(n+41)/
/e(n), n=1,2,..., is dense in the set of the real numbers.. A. Schinzel [3] has
proved that the answer to this question is affirmative (cf. Erdos and Schinzel [1]).

8. Find all the solutions of the equation @(n) = p(2n) in natural numbers:

Answer. Those are all the odd numbers.

9. Find all the solutions of the eguation ¢(2n) = ¢(3n) in natural numbers.

Answer. They are those even natural numbers which are not divisible by 3.

10. Find all the solutions of the equation ¢(3n) = ¢ (4n) in natural numbers n.

Answer. They are all those natural numbers which are not divisible by 2
or by 3.

11. Prove that for any natural number & there exists at least one natural num-
ber n such that g(n+k) = g(n).

Proof. If k is an odd number, then the assertion holds, since in this case ¢ (2k)
= p(k) and we may put » = k. Suppose that % is_even, and let p denote the least
prime which is not a divisor of k. Consequently each prime number < p is a divisor
of the number k. Hence ¢((p—1)k) = (p— L) (k) (this follows at once from theorem
3 — in fact, if m is a natural number such that any prime divisor of it is a divisor of
a natural number &, then @(mk) = mep(k)). But, since (p,k) =1, we have ¢(pk)
=¢(p)ek) = (p— g k) = g((p—1)k), and so putting # = (p— 1)k, we obtain
¢{n+k) = p(n), as required (cf. Sierpinski [17], p. 184).
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It has been proved by A. Schinzel that for any natural number i there exists
a natural number % such that the equation ¢(n-4-%) = ¢(n) has more than m solu-
tions in natural numbers n (cf. ibid. pp. 184-185).

12. Prove that there exist infinitely many natural numbers m such that the
equation @(n) = m has precisely two solutions in natural numbers n.

Proof. Such are for instance the mumbers m = 2-3%+} where k = 1, 2, ...
In fact, suppose that @ is a natural number such that ¢(n) = 2-3%%+1, Of course,
number n is not a power of number 2 (because ¢ (2% = 29-1); consequently it must
have an odd prime divisor p, and moreover, it cannot have more than one such divi-
sors, because @(n) is not divisible by 4.

If p =3, then n = 3% or n = 2% 3%, where o and § are natural numbers.
Then, by.g(n) = 2-3%+1 we obtain 2-3/~1 = 2.36F+1 or 20.3/-1 = 2-36&: Con-
gequently, « = 1 and, in either case, f—1 = 6k-4-1. Therefore n = 3%%+2 or »
— 2.365+2 and, as is easy to verify, in any case g(n) == 2-36%+1 = .

If p # 3, that is if p > 3, then the number # cannot be divisible by p* because,
if it were, plep(n) = 236+ which for p > 3 is impossible. Therefore n=gp or
n = 2°p, where a is a natural number. Hence, by ¢(n) = 2.380+1 we find p—1
= 2-8%E+1 or 22-1(p_1) = 2-38%+1 Consequently, since p— 1 is even, a = 1 and.
in any case, p = 2.8%+1 11, which is impossible since, by k > 1, we h%ye p>7
and, in virtue of the theorem of Fermat, 36=1(mod7), whence p = 2:35%+1 1 1 =
2-34-1= 0(mod7), so 7|p. Thus we see that the equation ¢ (n) = 2-35’f‘:"1’, where & is
a natural number, has precisely two solutions, n = 36¥+1 and n = 2.35%+2 The equa-
tion @(n) = 2-3, however, has four solutions: » = 7,9, 14, 18, and the equation
¢(n) = 2-3% also has four solutions: n = 19, 27, 38,54.

Remark. A. Schinzel [6] has found infinitely many natural numbers m such
that the equation ¢ (n) = m has precisely three solutions in natural numbers 2. Such
are, for instance the numbers m = 732¥+1.12, where k = 0,1, 2, ... We then have
@(n) = m for n = 712%+2.3 712k+2.4 and 712%+2.6. The proof that there are no other
solutions, though elementary, is rather long.

13. Find all the solutions of the eguation ¢{n) = 210 in natural numbers ».

Solution. Suppose that # is an even number, and that n = 2%f1g%2...q%%—~
where gy, g5, ..., gk—1 are odd primes, is the factorization of n %nto prime fact.om
Let q; < g, < ... < gg—1. (We do not exclude the case & = 1,'i.e. » = 2. Since
@(n) = 2%, we see that

g lgt g = D (= Do g — D) = 29,

which proves that @, = 4y = ... = ag_1 =1 and g; = fzﬂiqkl, i= ‘1, 2’,""‘];—1’
where f; (i = 1,2, ..., k—1) are natural numbers, and, finally, a— 1+8; + f,+... +
+Pr.1 =10, and so f; < 10 for i = 1,2,...,k—1. . )

0dd prime numbers of the form 2%+ 1, § < 10 are the numbers 274+ 1 with
B =1,2,4,8 only. Therefore % < 5.

If & = 1 that is if » = 2% then a—1 = 10, whence a« = 11 and consequently
n = 21 = 2048. ) .

Ik =2, then a— 14p; = 10 and for §, = 1,2, 4,8 we find o= 10,9,7,3,
respectively. So the values for n are 290-3 = 3072, 2°-5 = 2560, 2°-17 = 2176 or
23257 = 2056, - o

I %k =3, then a— 1+, +f, = 10. Here B, cannot be > 2 because, if it were,
B, would be greater than or equal to 4. But, since f; < f; (for g, < 4.}, W(.l would
obtain f, > 4 80 B, > 8 and §;+ B, > 12, which is impossible. Therefore f; is equal
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either to 1 or to 2. If §;, = I, then a-+f, = 10 and Bo>pr=1;80p8,=2,40rs,
which implies « = 8, 6, 2, and this gives the following values for n: 28-3-5, 26.3.17
or 22-3:257. If §; = 2, then a+ 8, = 9, By =4 or 8, whence a =5 or 1 and so n
= 925-5:17 or 2-5-257.

Ifk = 4, then a— 1+, + B, f; = 10. Since By < By < By (which holds because
91 <4z < ), In virtue of the fact that §,, f,, ; can be chosen from the numbers
L 2, 4, 8 only, we infer that §; = 1, §, = 2, By = 4, which proves that « = 4 and
80 n = 2%3-5.17,

Finally, we see that the case k = 5 is impossible.- This is because the equality
k=35 implies 8, =1, g, =2, By =4, Bpy= 8, which contradicts the equality
a— 14+ B+ Ba+Ba = 10.

Now suppose that n is odd. Then n = gglgz"Z...q‘;ck_—ll, where ¢y, g, ey
are odd prime numbers and ¢; < g, < ... < 9;_,- By assumption, we have

G T - D (g — 1) (g — 1) = 910,

Hence oy = ay= ... =ar_3 =1 and g; = 2541 for 4 = 1,2,...,k~ 1. Moreover,
PrtByt oo+ iy = 10.

Itk = 2, then f; = 10, which is impossible. If & = 3, then 8,48, = 10, whenece
we easily infer that §, = 2, B, = 8, and this gives n = 5-257.

If k= 4, then B, +B,+f, = 10, which is impossible because B, f,, f, are dif-
ferent numbers chosen out of the sequence 1,2, 4, 8. Similarly, ¥ > 5 is impossible.

Thus we reach the final conclusion that the equation ¢(n) = 210 hag 12 solutions
in natural numbers n, namely:

7= 2N, 20.3, 2.5, 27.17, 98-257, 98.3.5, 26-8.17, 2%-3-257, 25-5-17, 5-251,
2-5-257, 23-3.5-17.

Remark. It can be proved that for 0 <m < 31 (m being an integer) the equa-
tion ¢ (n) = 2™ has m-+ 2 solutions in natural numbers #. For 31 < m < 217 the equa-
tion has always precisely 32 solutions. The proof is based on the fact that the num-
bers 2211 (5 < n < 17) are composite ().

14. Prove that there exist infinitely many natural numbers m such that the
equation ¢(n) = m has at least one solution in natural numbers and such that any
solution of the equation is even.

Proof. Let m = 23+2° where 5 — 6,7, ... If there existed an odd natural
number % such that p(n) = m, then n would be the product of different odd prime
fa,ctors which, in addition, would be of the form Fp = 22h+14 (The argument is that
if p is a prime and p|n, then P—1ip(n) = m, whence it follows that p~11is a natu-
ral power of 2, and 50 p = Fr). Suppose that they are the numbers Fnys Fhgsoers Py
Then 2%14-9%a 4 |, 1 ohg_ 2°42%, where by, hy, ..., hz; are different natura,f numbers.
T'he number 254 25, where s> 5, admits only one representation as the sum of
different powers of the number 2. Therefore one of the numbers Fp,, Fp,, ..., Fpy,
must be equal to Fs, which is impossible, since Fs iz a compositelnum%)er. Thus
we see that the equation #(n) = m has no solutions in odd natural numbers. If n is
allowed to be even, a solution can be easily found, for example (28+2°%) — s,

‘15. Prove that, if p > 2 and 2p+1 are prime numbers, then for n — 4p the
equality p(n-+2) = g(n)+2 holds.

() Cf. Carmichael [1] for m < 210,

( For the numbers 210 < m < 217 the
proof is analogouns.
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Proof. If the numbers p > 2 and 2p-+1 are prime, then g(4p) = ¢{4)p(p)
2(p—1) and @(4p+2) =p(20@p+1) =@(2p+1) = 2p, whence @(ip-+2)
P(4p)+2.

Remark. It easily follows from conjecture H (cf. Chapter III, § 8) that there
exist infinitely many pairs of twin prime numbers; similarly, it follows from this
conjecture that there exist inifinitely many primes p for which the numbers 2p+1
are also prime. Consequently, conjecture H implies that there exist infinitely many
odd and infinitely many even numbers » which satisfy the eguation @(n+2)
= q(n)+2.

§ 2. Properties of Euler’s totient functien. Now for a given natural
number n we are going to calculate the number of natural numbers < =
such that the greatest common divisor of any of them and n is equal to
a number d (with d|=n).

In order that the greatest common divisor of the numbers m < n and
n be d it is necessary and sufficient that m = kd, where k is a natural
number < n/d relatively prime to n/d. Consequently, the number of
natural numbers m < »n which satisfy the condition (m,n) = d is equal
to the number of natural numbers < n/d which are relatively prime to
nfd, and so it is equal to ¢(n/d).

Thus we see that in the sequence 1,2, ..., n for every natural divisor
d of a natural number n there are precisely o(n/d) natural numbers m such
that, for any m, (m,n)=d.

Let dy, dg, ..., d; be all the natural divisors of a natural number x.
The numbers 1,2,...,n can be divided into s classes by the rule that
a number m belongs to the ith class if and only if (n, m) = d;. The num-
%

ber of elements of the ith class is then ¢ (d ) Moreover, since the num-

2
ber of numbers in the sequence 1,2,..., 7 is equal to n, we obtain the

(d]) ((ln) ( s) -
[ T . a

But, elearly, if d; runs all over the set of natural divisors of number =,

then :—;— runs all over the same set of natural divisors of n. Hence

P(d) +@(da)+-...+9(ds) =n, ie.

(8) - el =n.

am

‘We have thus proved the following

THEOREM 7. The sum of the values of EBuler's totient funmction over
the set of natural divisors of e natural number n is equal to n.
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Applying Dirichlet’s multiplication (cf. Chapter IV, § 3) to the series
Gy+0Gy+... and by -+b,+..., where, for real s>2, a, =¢p(n)/n°, b
=1/ (n =1,2,...), we obtain by (8)

(3

@{d) & 1\ n 1
e, = v b, = v — = ) d) =
n= R ’zl i & w0 (@ A
din 7 dn dam
Hence Eﬂn = {(3—1) and so
W=1

= S(s—1

qu; — ) for s§>2.

& n’ 5(8)

By the use of (8) we can prove the identity of Liouville
= g (n)a = ‘
g - = {lh—w)_ for |o| < 1.

It follows from theorem 6 of § 10, Chapter IV, that Fuler’s totient funetion
is the only function ¢ that satisfies theorem 7. Formulae (8) and (37)
of Chapter IV give together the formula

(9) pn) = nz%@v

ain

valid for all natural numbers n. Plainly, formula (9) can be rewritten
in the form

(10) () = > lu(k)
kl=n

where the summation extends all over the pairs of natural numbers
k and 1 such that kI =x. For » > 1 formula (10) gives

1z}

(11) an(n D lu(k),
N=1 K<
Wwhere ]‘Z denotes the sum extended all over the pairs of natural numbers
g

k,1 such that X <x. But, clearly,

S [zik)
D W) = 3 {um) Y1)
ki< k=1 =1

and since
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in virtue of formula (33) of Chapter IV, formula (11) gives

(12) W(w) ~ 343 2( |7 ])

This formula can be used for calculating the sum of the consecutive
values of the function ¢ as well as for finding the approximate value
of that sum. Using the formula

y uk 6
A TR Y
k=1
[zl
proved in Chapter IV, § 10, one can prove that the ratio of number Y ¢(n)

=1
to number 3z%(x? tends to 1, as # increases.

A generalization of the function ¢(n) is the function ¢,(n), defined

for pairs of natural numbers %k, » as the number of the sequences a,, a,...

.., ay, congisting of k natural numbers < » such that (ay, as, ..., az, n) = 1.

It is easy to prove the theorem of C. Jordan [1] (pp. 95-97) stating

that if n = ¢}1¢52...q5¢ is the factorization of the number # into prime
factors, then

op(n) = n® (1— 1) (1— -1,;) (1— 17") and Zq;k(d) = n".
q’l‘ Q2 ds dan

Another generalization of the function ¢ is the funection @,(n) given
by V. L. Klee, Jr. [4]. This is defined for natural numbers % and # as the
number of numbers % that occur in the sequence 1,2, ..., » and are such
that number (&, ) is not divisible by the kth power of any number
greater than 1.

It is easy to prove that if n = gft ¢52...¢5° is the factorization of
the number » into prime factors, then

op(n) = [[a [ [ -1
aj<k >k
We also have
D (n) =n H 1—¢* and Zék(dk) =k,
am

o*ln
g prime

§ 3. The theorem of Euler. Let m > 1 be a given natural number
and let

(13) T1y Ty oo Topm)

be the sequence of the natural numbers relatively prime to m less than m.
Let a denote an arbitrary integer relatively prime to m. Denote by o

Elementary theory of numbers 1.
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the remainder obtained by dividing the number ar; by m (k =
@(m)). We then have

1,2,..

’

(14) or = ary(modm) for k=1,2,...,¢(m)
and
(15) O = @yt iy,

where 4 (k=1,2,...,¢p(m)) are integers.
‘We are going to prove that the numbers

(16) Q13 02y +++) Qg(m)

and numbers (13) are identical in certain order. For this purpose it is
sufficient to prove that

1° any term of sequence (16) is a natural number relatively prime
to m and less than m,

2° the elements of sequence (16) are different.

Let @ = (g, m). In virtue of (15), we see that ar, = g,— miy, whence
it follows thab dy |ar,. But, since (a,m) = (ry, m) =1, (ary, m) =1.
Therefore, in view of dy | m and dy, | ary, We must have d, = 1,1.e. (g, m)
=1. On the other hand, number g, as the remainder obtained from
division by m, satisfies the inequalities 0 < g, < m. Moreover, since
(o, m) =1 and m > 1, g, cannot be equal to 0. Thus we have proved
that the terms of sequence (16) have property 1°.

Now, suppose that for certain two different indices ¢ and j taken out
of the sequence 1, 2, ..., p(m) the equality g; = g; holds. Then, in virtue
of (14), we have ar; = ar;(modm), and so m | a(r;—r;) and, since (a, m)
=1, we have m | ;—7;, which is impossible beeause r; and 75, a8 two dif-
ferent terms of sequence (13), (since 4 ) are different natural num-
bers <m. We have thus proved that the terms of sequence (16) have
property 2°.

This proves that the elements of sequence (16) and those of sequence
(13) are identical apart from the order. Therefore

01024+ Qppmy = 1172+ -Tim) -

Denote by P the common value of these products. The number P
is relatively prime to m because anyone of its factors is relatively prime
to m.

Multiplying the congruences obtained from (14) by substituting
1,2,..,¢(m) for %k we obtain

0102+ Oppmy = 677y 7 oy (M0 M),

that is, the congruence P = ¢”™ P(modm) which ig, clearly, equivalent
to m|P(a®™—1), whence, since (P,m) =1, we obtain m|a?™—1.
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‘We have thus proved

TeEOREM 8 (Euler). For any integer & which ds relatively prime to
a natural number m the congruence

a*™ == 1(mod m)
holds.

If p is a prime, then ¢(p) = p—1; therefore the theorem of Buler
can be regarded as a generalization of the theorem of Fermat (proved
in Chapter V, § 5).

TeEOREM 8° (Rédel) (1). For any natural number m >1 and every
integer a we have
(17)

m| ™ —a™ "™,

Proof. Let m = ¢f2¢32...¢%* be the factorization of the number
m into prime factors. Let 7 denote one of the numbers 1,2,...,%. If
(@, ¢;) = 1, then, in view of theorem 8, we have g; | a?(4) —1, and, since
by theorem 3 ¢(¢f) | p(m), we have ¢f|a"™—1.

If a and ¢ > 2 are natural numbers, then (as it is easy to prove by
induction) ¢*~* > «. On the other hand, for ¢ =1,2,...,%, we have
¢~ |m and ¢ '|e(m), whence ¢%!|m—op(m). Since, moreover,
m—@(m) is positive for m greater than 1, the last relation implies that
m—g(m) > ¢¥ ' > o;. Hence, in the case where (a,g;) > 1, that is, if
g: | @, We have gf | gf*=*0™ | ¢™=7"),

Thus we see that for any integer a the relation ¢% | g™ *™(a"™ —1)
holds for every 4 =1, 2, ..., k. This means that ¢¥ | a™— a™ %™, whence,
looking at the factorization of a into prime factors, we see that formula
(17) holds. Theorem 8* is thus proved.

The theorem of Euler is an easy consequence of theorem 8> In fact,
in view of theorem 82, for any natural m > 1 and any integer ¢ we have
m | &% (@™ 1), So, if in addition (&, m) = 1, then (a™ "™, m) =1,
whence m | a"™—1, which gives the theorem of Euler.

EXERCISES. 1. Prove that from any infinite arithmetical progression, whose
terms are integers, a geometric progression can be selected.

Proof. Suppose we are given an infinite arithmetical progression

(18) a, at+r, at+2r, ...

the terms of which are integers. If r = 0, there is nothing to prove since then the
whole sequence (18) can be regarded as a geometric progression.

If r < 0, the desired result follows provided it is proved for the arithmetieal
progression obtained from the original one by a simple change of the sign at each
of the terms of the progression. Thus the problem reduces to the case where r is
& natural number. Moreover, we may suppose that (a,r) = 1, since otherwise, that

(1) Cf. Szele [1], footnote 2.
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is,if d = (@, r) > 1, we have a = da’, » = dr’ where (a’,7) = 1, and so it is suffi-
cient to prove the theorem for the arithmetical progression a’, @'+, a"+2¢/, ...

Finally, since r > 0, from a certain term onwards all the terms of (18) are
greater than 1, Thus in order to prove the theorem we may remove some terms at
the beginning and suppose ¢ > 1. Since (a,7) = 1, then, by theorem 8, we have
a?") = 1(modr). Hence, for natural numbers n, a"¥(" = I(modr) and therefore the
number ky = (aa™—a)/r is an integer for any a=1,2,... But a-Lk,r
= a(a‘P("))“ forn=1,2,..., and go, since a > 0, 0 < ¥y < k2 < ... and the numbhers
atkar (n=1,2,...) form a geometrical progression.

The theoremn we have just proved implies that in any infinite arithmetical
progression there are infinitely many terms which have the same prime factors (ef.
Pélya and Szegs [1], p. 344). Another consequence of the theorem just proved is this:
from any infinite arithmetical progression whose terms are rational numbers an
infinite geometric progression can be selected.

2. Prove that if m, a, r are natural numbers with (@, ) = 1 and Z is any infinite
set of terms of the arithmetical progression a+%r (k = 1, 2,...), then the progression
contains terms which are products of more than m different numbers of the set Z.

Proof. We take s = mg(r)+4 1 different numbers of the set Z. Denote them by
t1, %3, ..., ts. These numbers, being the terms of the arithmetical progression a-+kr
(k =1,2,...), are congruent to a(modr). So tyfs...fs = a° = a+a™?(") (modr), whence,
in view of (a,r) = 1, by theorem 8, we infer that a?") = 1(modr). Therefore #;5...
...fs = a(modr), and consequently the number #;{>...t; is a term of the arithmeti-
cal progression a+-kr (k=1,2,...) Moreover, s = mp(r)+1> m, and so the
proof follows.

3. Prove that every natural number which is not divisible by 2 or by 5 is a divi-
sor of a natural number whose digits (in the scale of ten) are all equal to 1.

Proof. If (n,10) = 1, then of course (9m, 10) = 1 and hence, by theorem 8,
109" = 1(mod 9n). Therefors 10°(")— 1 = 9nk, where ¥ is a natural number. Hence
nk = (10%°"™—1)/9 and thus we see that the digits (in the scale of ten) of this num-
ber are equal to 1.

4. Prove that every natural number has a multiple whose digits (in the scale
of ten) are all equal to 1 or 0 and the digits equal to 1 precede those equal to 0. °

Proof. Every natural number can be represented in the form n = m;2°5%,
where (n;, 10) = 1. In virtue of exercise 3, the number n; is a divisor of a number
m whose digits (in the scale of ten) are equal to 1. On the other hand, 2258|107, where
y = max(a, f); consequently, n|m-107.

5. Find all the solutions of the congruence »* = 3(mod10) in natural num-
bers .

Solution. If a natural number & satisfies the congruence, then, since (3, 10) = 1,
we must have (z, 10) = 1. Consequently (x--20%, 10) = 1 for any s =0, 1, 2, ...
Hence, by theorem 8, since p(10) =4, we find that (z< 20k)* = 1(mod10) and,
a fortiori, (x-+20k)*% = 1(mod10). On the other hand, the congruence (x--20k)
= #"(mod 10) holds for any natural number x. Therefore, multiplying the last two
congruences, we obtain (z-+ 20k)%+2% = 2% (mpd 10) for any k= 0,1,2,... If a natu-
ral number « satisfies the congruence »* == 3(mod10), then any of the terms of the
arithmetical progression #-4-20k (k¥ = 0,1,2,...) just obtained also satisfies it.
It is easy to verify that among the integers = such that 0 < z < 20 only numbers 7
and 13 satisfy the congruence. From this we infer that the solutions of the congruence
#° = 3(mod 10) in natural numbers = are precisely the numbers 7+ 20k and 13420k,
where k= 0,1,2, ...
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§ 4. Numbers which helong to a given exponent with respect to
a given modulus. It follows from theorem 8 that if @ is an integer rela-
tively prime to a natural number m, then the congruence
(19) a® = 1(modm)
has infinitely many solutions in natural numbers x; for example an
infinite set of solutions is formed by the numbers « = k¢ {m), where
k =1,2,... On the other hand, it is clear that congruence (19) has natu-
ral solutions only in the case where (a,m) =1.

If x = 6 is the least natural solution of congruence (19), then we
say that number a belongs to exponent 6 with respect to modulus m.

It is clear that if two numbers are congruent with respect to modu-
lus m, then they belong to the same exponent with respect to modulus
m; for, if & = b(modm) and for some z formula (19) holds, then &*
= 1(modm) (since, as we know, the congruence a = b(modm) implies
the congruence a® = b"(modm) for any # =1,2,...).

TBEOREM 9. If (a,m) =1, then any solution of congruence (19)
is divisible by the exponent & to which a belongs with respect to modulus m.

Proof. Suppose, to the contrary, that the solution » of congruence
(19) is not divisible by 6. This means that x divided by 6 leaves a positive
remainder 7. Accordingly, # = kd-+r, where k is a non-negative integer.
By (19) we have

(20) @ =1(modm) that is (a’fa” = 1(modm).

By the definition of & the congruence o’ = 1(modm) holds. Therefore,
by (20), " = 1(modm). Thus we see that our assumption leads us to the
conclusion that there exists a solution 7 of congruence (19) less than 4,
which contradiets the definition of 4. The theorem is thus proved.

Since, by theorem 8, ¢(m) is a solution of congruence (19), theorem
9 implies the following ‘

CorOLLARY. The exponent to which an arbitrary number relatively
prime to m belongs with respect to modulus m is a divisor of number ¢(m).

In particular, numbers (relatively prime to m) which belong to
exponent p(m) with respect to modulus m (that is numbers which belong
to the maximum exponent with respect to modulus ), if they exist, are
called primitive roots of number m.

For example, number 3 is a primitive root of number 10 because
3'=3, 8°=9, 3=7, 3'=1(mod10) and ¢(10) = 4. Number 10,
however, is not a primitive root of number 3 because 10 = 1(mod3),
which shows that 10 belongs to the exponent 1 with respect to modulus
3 and ¢(3) = 2.
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Number 7 is also a primitive root of number 10 since 7' =7, 7* = 9,
7 =3, T =1(mod10). Equally, number 10 is a primitive root of the
number 7 because 10=3, 10°=2, 10° =6, 10*=4, 10°=5, 10°=
= 1(mod7) and ¢(7) = 6.

It follows immediately from theorem 8 that for any natural number
m there exists the least natural number A(m) such that m | ¢*™—1 for
(a,m) =1(*). Number i (m) is called the minimum universal exponent
modsm. By theorem 8, the inequality i(m) < p(m) holds for any natu-
ral m. It can be proved that A(2) =1, A(2%) =2-1(2%) =22, ¢ =
3,4,... It is also true that if m =2%PgR...¢ff, 2 < <@ < ...
< g, is the factorization of number m into prime factors, then

A(m) =[2(2%), @(g1), ..., @(ge")],

and that for any natural number m there exist natural numbers that
belong to the exponent A(m) with respect to modulus m (cf. Ore [2],
pp. 292-293).
' As announced in Mathematical Tables and other Aids to Computa-
tion 4 (1950), pp. 29-30, S. Whitten [1] has tabulated the function A(n)
for n < 1200.

The accompanying table covers the values of the function Ai(m)
for m << 100.

0 1 2 3 4 5 6 7 8 9

2 2 4 2 6 2 6
10 2 12 6 4 4 10 6 18
6 10 22 2 20 12 18 6 28

30 8 10 16 12 6 36 18 12
40 6 42 10 12 22 46 4 42
20 16 12 52 18 20 6 18 28 58
4 60 30 6 18 12 10 66 16 22
12 70 6 72 86 20 18 30 12 78
4 54 40 82 6 16 42 28 10 88
12 12 22 30 46 36 8 96 42 30

[N NN

W0 - DGR W N

Tt can be proved that A(m) = @(m) holds only for m = 1,2, 4, p°
and 2p° where p is an odd prime and « a natural number. Another fact
worth reporting is that there exists an increasing infinite sequence of
natural numbers n, (k¥ =1,2,...) such that lim A{ng)Jo(ny) = 0. For

k=co

example, such is the sequence = =0Ps.-Pr (k=1,2,...). It can
also be proved that in order that a number m be a composite number

(*) This function should not be mist i iouvi i
o in Chaptor Ty oty mistaken for the function of Liouville conside-
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of Carmichael (and so absolutely pseudo-prime) it is necessary and suf-
ficient that A(m) | m—1 (cf. Carmichael [2], p. 237, formula (18)).

As announced by Carmichael (ibid., p. 236) the equation i(n) =2
has precisely six solutions, n =3, 4, 6, 8, 12, 24, and the equation
A(n) = 4 has 12 solutions (the least of which is » =5 and the greatest
n = 240); the equation A(n) = 12 has 84 solutions (the least of which
is m == 13 and the greatest n = 65520). We have 1(100) = 20. For » < 100
the equality A(n-+1) = A(n) holds only for » =3, 15 and 90.

For every natural number s there exists a natural number m, such
that the equation A(n) = m, has more than s solutions in natural num-
bers n. The proof of this fact presented here is due to A. Schinzel. By
theorem 11, which will be proved in the next section, for every natural
number s there exists a natural number k such that p = 2°%k--11is a prime
number. For j =0,1,2,...,5,8+1 we have 1(2/(2°%k+1)) = 2%, so
putting m, = 2°%% we obtain the desived result.

Tt is easy to prove that for natural numbers n > 2 the numbers.1(n)
are even. There exist infinitely many even numbers which are not values
of the function A(n). It can be proved that the numbers 2-7%,
where & =1, 2, ..., have this property (cf. Sierpinski [25], pp. 191-192).

THEOREM 10. If p s @ prime >2, then any natural divisor of the
number 27 —1 is of the form 2kp+1, where k is an inieger.

Proof. Since the product of two (or more) numbers of the form 2kp+1
is also of this form, and since number 1 is of this form (for & = 0), it is
sufficient to prove that every prime divisor ¢ of number 9P —1 is of the
form 2kp-+1. If q|2°—1, then 27 = 1(modg) and so, by theorem 9,
6|p, where & denotes the exponent to which number 2 belongs with
respect to modulus g. We cannot have 6 =1 because, in that case, 2
= 1(modg) and so ¢ |1, which is impossible. Therefore, since é|p and
p is a prime, we infer that 6 = p. On the other hand, the corollary to the-
orem 9 gives 8| ¢(q), i.e. 6] g—1. Thus we see that p | ¢—1 and, since
g is a divisor of an odd number and since (p, 2) = 1 (because p is a prime
> 2), we conclude that 2p|g—1, that is ¢—1 = 2kp, so g =2kp+1,
where % is an integer. The theorem is thus proved.

‘We note that in theorem 10 the assumption that p is a prime > 2
is essential; the divisors 3, 5 and 15 of number 2*—1 are not of the
form 8&k--1 and the divisor 7 = 2°—1 of number 2 —1 is not of the
form 30k+1.

EXERCISES. 1. Prove the following theorem of Fermat:

If p is a prime > 3, then any natural divisor > 1 of mumber (2¥-+1)/3 is of the
Jorm 2kp -1, where k is a natural number.

Proof. Number (22 +1)/3 is a natural number since, for odd p, 24+1[2P4+1.
Let d denote a divisor > 1 of number (27 1)/3 and let ¢ be a divisor relatively prime
to d. If g = 3, then 2741 = 0(mod9), whence 2%% = 1(mod9) and, by theorem 9,
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number 2p is divisible by the exponent to which numhber 2 belongs with respect io
modulus 9. But, as is easy to calculate, 5 = 6, so 6[2p, whence 3|p, and this con-
tradicts the assumption that p > 3. Therefore, necessarily, ¢ ¥ 3. Since 2P 1
= 0(modg), we have 2% = 1(modq). Now let & denote the exponent to which num-
ber 2 belongs with respect to modulus g. We cannot have § — 1 or § — 2, because
¢ # 3. Therefore § > 2. But, in virtue of theorem 9, 612p and, by 20-1 = 1(modg),
d[g—1. Thus we see that numbers 2p and g¢— 1 have a common divisor 8 > 2, which,
in turn, implies that numbers p and g— 1 have a common divisor > 1. But, since p
is a prime, this implies that p|g— 1 and so ¢ = pt-+1, where £ is an integer and, in
view of the fact that the numbers p, ¢ are odd, ¢ is even. Thus we conclude that ¢
= 2kp-+1, where k is a natural number, and so we see that each divisor of the num-
ber d iy of the form 2kp--1. Consequently number d itself is of the form 2kp-+1.
This completes the proof of the theorem.

2. Prove that if a,b and » are natural numbers such that o > b, n> 1, then
each prime divisor of number a®— b™ ig either of the form nk-+1, where k is an inte-
ger, or a divisor of a number a™— 5™, where n|n and n; < n.

Proof. Let (4, ) = d. Since a > b, we have a = a1d, b = b;d, where (a1, b;) =1
and @; > b;. Suppose that p is a prime divisor of number a®— b". Then p|a*—b"
= d"(a}— b%). If p|d®, then p|d and hence pla—b, and the theorem is proved. Sup-
pose that p|al— 7. Then, since (@), 8,) =1, we have (@, p) = (b, p) = 1. Let
p be a primitive divisor of number af—b¢ (this means that plad—5S and pt al— b
for 0 < m < 5). We note that then 8|n. In fact, suppose that u is not divisible by 6.
Then # = kS+r, where % is an integer > 0 and 0 < r < §. But pla}—8, and so
plaf— b8, In virtue of the identity

afHr_ ptr = (gho_ b¥%) a” -+ %8 (o — %)

we have p]bf"(a’;— b7), which, in view of (0,, ) = 1, implies that plaj—b] for
0 <7 < 8, contrary to the agsumption that p is a primitive divisor of number af—— b’f.
If 6 <, then 8|n and plafl—bhja™—p™ for 7, =8, ny[n and n, < n.
Let 8 = n. Then, in virtue of the theorem of Fermat, p[af—l» 1, ;p]bf—l— 1, whence
plal~1—pP-1, Consequently, n = 8|p—1 and so p is of the form nk41.
3. Prove that, if a, b, n are natural numbers a > b, n> 1, then every prime
divisor of number o™ b™ is of the form 2nk+1, where k is an integer, or is a divisor

of number a™ 4™, where 7y is the quotient obtained by dividing the number
by an odd number greater than 1.

The proof is analogous to that in the preceding exercise.

§ 5. Proof of the existence of infinitely many primes in the arithmet-
ical progression nk--1.

THEOREM 11. If p is o prime and s & natural number, then there exist
infinitely many primes of the Jorm 2p°k+1, where k is a natural number.
Proof. Let p be a prime and let s be a natural number. We set
27°7 et ¢ denote an arbitrary prime divisor of number aP-! -+
+a"+...+a+1. If ¢ were congruent to 1(modg), then q | a4 a?~2 4
+...ta+1=p(modg);soq|p, which, in view of the fact that p and ¢ are
primes, would imply ¢ = P, and so a” =1(mod p), that is, 97 = 1(modp).

a4 =
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But, in virtue of theorem 5% of Chapter V, we have 27 = 2(modp), whence,
by induetion, 27° = 2(modp), and this would show that 1 is congruent
to 2(modp); so p |1, which is impossible. We have thus proved that
a == 1(modg), ie. that or* ! 1(modg). Let 6 denote the exponer}t to
which 2 belongs with respect to modulus g. Since q]a?—1, ie. 2% =1
(mod g), we see that 6!p° and, since by or*t ;—:vil(modq). the relation
81 p*! is impossible, & must be equal to p°. In wrtge of the corollary to
theorem 9, we have & |¢(q), ie. p°}g—1. By 2¥ 51(1.\10dc_/)3 we see
that number ¢ is odd and, consequently, g—1 is even. If p LS g prime >.2 .
then (p, 2) = 1 and so, in view of p° | ¢—1, we see that 2p° | q——ls,‘ which
shows that ¢ = 2p°k+ 1 for a natural number k. If p = 2, then 2° | ¢—1,
whence ¢ = 2°k-+1, where k is & natural number. )

Thus we have proved that if p is odd, then there exists j&t least one
prime number of the form 2p°k-+1; if p = 2, then .there exists at least
one prime of the form 2°k4-1. Since s is arbitrary., this proves t]hle'orem 11.

The proof of a more general theorem is slightly more difficult:

THEOREM 11%. For any natural number n there ewist infinitely many
prime numbers of the form nk-+1, where k 15 & natural number.

Proof (due to A. Rotkiewiez [5]) (¢f. Estermann [2]). First we note
that in order to prove the theorem it is sufficient to show that for any
natural number # there exists at least one prime '1111mber of the form
nk+-1, where %k is a natural number; for this ixlnphes that for @ny ?Wo
natural numbers n, m there exists at least one prime of the form nmi+1,
where ¢ is & natural number, and this prime is, elearly, > m and of the
form nk-1 (where %k is a natural number). ‘ it

It is also plain that without loss of generality we may suppose sn;i
n > 2 (for in the sequence of odd numbers there exist (as we know) -
mtelie?ajipgl‘;’?;g:?. % be the factorization of number n into prime

ith i <p<... <.
f%togflpxse ’rgllll&t fq(;r any prime divisor p of number a"—1 nulljﬂzer n
belongs to an exponent < n with respect to the modulus p. Le

(21) P, =] [—1"?,
din

where u is the Mobius function (cf. Chapter IV, § 10). ‘We represent ea,c.]?3
of the factors n®—1 as the product of its prime factors. Then produt?
(21) becomes the product of prime factors; the exponent of any of gheién;r:s
an integer, positive, negative, or zero. Let p be one of th;)se prime factors.
Then there exists a natural number d | n such that p | »°—1. Since 4 | :,,
then, a fortiori, p | n"—1 and (n,p) =1. Let 8 denote the exponenzi 3
which # belongs with respect to modulus p. It follows from the assumptio
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that 6 < n. As an immediate consequence of theorem 9, we see that among
the numbers n®—1, where d|n, numbers divisible by p are precisely
those for which o6 |d holds, i.e. those for which d = 6k, where %

is a natural number such that 6k | », that is % | 7—; Since p [ n"—1, we
have ¢ |n, whence we infer that #/6 is a natural number > 1 (because
d<m).

Let 1 be the greatest exponent for which p* divides n°—1. We have
p'|n°—1 and p**'4w’—1. If for a natural number % |n/6 we have
¥ 0¥ 1, then, by the identity

n*—1
w—1

= (@Y =)+ () =)+ 1)+ R,

p | k, which is impossible, sinee % | » and (n, p) = 1. Therefore, for every
natural number % | n/8, 4 is the greatest exponent such that p*[n®—1.
From this we infer that in the facforization of number (21) the exponent
7
of the prime p is > Au (:S.I;) But, since n/6 is a natural number > 1,
k|2

l

by formula (32) of Chapter IV, § 10, we see that > ,u(%) = >u(k)=0.
%2 B2
3 8

Since this is valid for any prime factor p» of number (21), we see that
P, =1. But by (21) we have

292) Py =[] @ -1y = [ @?—1y®

din 412;05...95

—

because, as we know, u(d) = 0 whenever d is divisible by the square of
a natural number >1. Let b = % 4 G We have b>n>2
and b%%% = ", thus, by (22)

P, = H (bata2s/d__ 1)

@18y25...95

We see that P, is the guotient of two polynomials in & with integral
coefficients. Now we are going to find the least exponents of b that appear
in the numerator and in the denominator of this quotient. We consider
two cases separately: that of s being even and that of s being odd. In
the former cases the least natural exponent of b in the numerator is ob-
tained for d = g;¢;...¢;. Consequently the exponent is equal to 1. As
it is easy to see, the numerator divided by b leaves a remainder equal
either to b—1 or to »*—b+1. In the denominator, however, in virtue
of the inequalifies ¢, < g, < ... < g,, the least exponent is obtained

icm
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for d = ¢.0;-..q,- Consequently the exponent is equal to ¢;. The deno-
minator divided by b” yields the remainder 1 or #*—1. But, since P, =1,
this leads to a contradiction because, since b > 2, numbers b—1 and
»¥—b-+1 are different from numbers 1 and »*—1. If s is odd, then the
least exponent on b that appears in the numerator is obtained for
d = ¢20s. .. (s the same for the denominator is obtained for d = ¢,4q,...¢s,
which, as before, leads to a contradiction.

Thus, as we see, the assumption that for any prime divisor of the
pumber " —1 number # belongs to an exponent less than » with respect
to modulus p leads to a contradiction.

Therefore number #"—1 hag at least one prime divisor o such that n
belongs to the exponent n with respect to the modulus p. But (n, p) =1,
and so, by the theorem of Fermat, p | n’~'—1, whence, by theorem 9,
n|p—1, ie. p =nk+1, where k is a natural number.

‘We have thus shown that for every natural number » > 1 there exists
at least one prime number of the form nk-+1, where & is a natural num-
ber, whence, as we learned above, theorem 11* follows,

Ag an application of theorem 11* we give a proof of the following
theorem of A. Makowski (ef. Chapter V, §7):

For any mnotural number k > 2 there exist infinitely many composite
natural numbers n such that the relation n | a™F—1 holds for any integer a
with (a,n) =1.

Proof. Let k& = qfl¢52...95, where ¢; < g5 < ... < g, be the factor-
ization of a natural number % > 2 into prime factors. In view of theorem
11* there exist infinitely many prime numbers p >k each of the form
(¢—1)(gs—1)...(¢s—1)t+1, where ¢ is a natural number. We are going
to prove that if p is any of those numbers, then number n = kp is a com-
posite number, whose existence thet heorem asserts.

In fact, we have

n—k=k(p—1) = ¢'g2... £ (a—1)(ga—1)... (g —1)?

= 1 0s---L: (R)E,

whenee, in virbue of the theorem of Euler and the theorem of Fermast,
we infer that for (e, n) = 1 the number ¢™*—1 ig divisible by % and p,
and so it is divisible by kp = n.

Another application of theorem 11* is this. We call a sequence p,
p-+2, p-+6 whose elements are all primes a triplet of the first category
and a sequence p,p-+4, p-+6, whose elements are all prime numbers,
a triplet of the second category.

‘We prove that if from the set of primes we remove those primes
which belong to triplets of the first or of the second category, then
infinitely many primes still remain in the set.
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In fact, as follows from theorem 11%, there exist infinitely many
prime numbers g of the form ¢ = 15k 1 where % is a natural number.
Trivially, for any of the ¢’s we have 3 |¢-+2, 5|q+4,3|q—4,5|¢g—6.
Therefore, since g > 15, the numbers ¢4 2, g+4, ¢—4 and ¢—6 are
composite. Hence it follows immediately that ¢ cannot be any of the
numbers which belong to any triplet of the first or of the second category.
In fact, if ¢ were any of those numbers, i.e. if either g =p or ¢ =p-+2
or ¢ =p+6 and the numbers p,p+2, p+6 were prime, then, in the
first case, the number p+2 = ¢-+2 would be composite, in the second
case, the number p+6 = ¢g+4 would be composite, and finally, in the
third ease the number p = ¢—6 would be composite. Thus we see that
none of the eases is possible. Similarly, if the numbers p, p+4, p+6
are prime, then, if p =¢, p+4 =g¢-+4 is a composite number, if ¢
=p+4, then p+6 =¢+2 is composite, and, finally, if ¢ =p+ 6,
then p = ¢—6 is composite.

§ 6. Proof of the existence of the primitive root of a prime num-
ber. Let p denote a given prime number. By the corollary to theorem 9,
the terms of the sequence

(23) 1,2,3, ., p—1

belong (modp) to the exponents which are divisors of number o(p)
=p—1. For each natural divisor § of number p—1 denote by u(d)
the ‘number of those elements of sequence (23) which belong to exponent
fS with respect to modulus p. Since each of the elements of sequence (23)
-i relatively prime to p, they must belong to an exponent & which is
a divisor of number p—1. Consequently,

D w(8) =p—1.

sjp—1

Since, in view of theorem 7, 3 ¢(8) = p—1, we have
S|p—1

(24) D p(d—v(8) =o0.

S|p—1

) We are going to prove that y(8) < ¢(8) for 6 | p—1. Plainly this
is @e for y(8) = 0. Suppose that (8) > 0, i.e. that sequence (23)
contains at least one number « which belongs to exponent & with respect
Fo modulus p. We then have a’ = 1(modp). Consequently, number «
i3 one of the roots of the congruence '

(25) 2°—1 = 0(modp).

iom
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be the remainders obtained by dividing the numbers & k=1,2,...,9)
by p. Numbers (26) are different because otherwise, if 7, = ry,;, Where
k,1 are natural numbers and k+1< 4, then p| g = o (d—1),
whenece, taking into account the relation (a,p) =1, we infer that
P ]al—l, ie. o = 1(modp), which is impossible because a belongs to
exponent § with respect to modulus §, and 1is a natural number less than
é (in fact, k+1 << 6 and k > 1 give I < 8). According to the definition
of numbers (26), for &k =1,2,..., 0 the relation 7, = ¢*(modp) holds.
Hence, in virtue of o’ = 1(modp), we have 7}, = (a’)* = 1(modp), which
proves that numbers (26) are roots of congruence (25). Congruence (25),
however, is of th degree and satisfies the conditions of Lagrange’s the-
orem (theorem 13, § 8, Chapter V), so it cannot have any other solu-
tion than that given by the & numbers (26).

On the other hand, any of the numbers # that belongs to exponent
5 with respect to modulus p satisfies congruence (25); so it is one of the
numbers (26). Our aim is to find numbers 7 which belong to the expo-
nent & with respect to the modulus p. We prove that they are precisely
the numbers 7, for which (k,d) =1.

Suppose that (k, ) = 1. Then the number r;, a8 & root of congruence
(25), belongs to the exponent &' < § with respect to the modulus p.
Therefore 2 = 1(modp). But r, = a*(modp), whence @ = 1(modp).
We see that number k6’ is one of the roots of the congruence a® = 1(modp).
Hence, by theorem 9, 8 | k4, which in virtue of the assumption (k, 6) =1,
gives 8| 6’, and this, by ¢’ < §, proves that ¢’ = 6. Thus we see that
if (%, 6) =1, then 7, belongs to the exponent § with respect to the modu-
lus p.

Now, suppose the converse, ie. that (&, 8) = &> 1. Let % = k. d,
8 = 8,d, where 6, < 4. Then kb, = Ty @8y, = k6.

Consequently,

w1 = " = a"? = (a’)1 = 1(modp).

This shows that r{l = I(modp), where &, < d, and so the number 7y
cannot belong to the exponent § with respect to the modulus p. We have
thus proved that the condition (k, 8) = 1 is both necessary and suffi-
cient in order that number 75 should belong to the exponent 8 with respect
to the modulus p. In other words, it hag turned out that numbers 7y of
sequence (26) which belong to the exponent & with respect to the modu-
lus p are precisely those whose indices % are relatively prime to d. The
number of them is clearly @(8). Thus if (for a given natural divisor &
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of number p—1) (8) > 0, then y(8) = @(8). It follows that all the sum-
3nands of (24) are non-negative, which, in virtue of the fact that the sum
is equal o zero, proves that each of the summands must be equal to zero.
Hence, trivially, () =¢(5) for 6|p—1.

We have thus proved the following

THEOREM 12. Let p be a prime and & a natural divisor of the number
Pp—1. Then there are precisely o(d) different numbers of the sequence
1,2,...,p—1 that belong to the emponent 3 with respect to the modulus P.

As an important special case, for & = p—1, we obtain

COROLLARY. Huery prime number p has @ (p—1) primitive roots among
the terms of the sequence 1, 2, ey p—1.

A glanfze at the proof of the theorem shows that if g is a primitive
root of a prime p, then all the primitive roots of p that belong to sequence

(23) are to be found among the remainders vielded by the division by p
of those terms of the sequence

95 8 ¢ ooy £

whose exponents are relatively prime to p—1.
. Denote by y(p) the least primitive root of a prime p. The follow-
ing table shows the values of the function »(p) for odd primes p << 100:

P 3‘5;7‘11]13]17 19 | 23 29]31 37 | 41

I BRI

<«

252]3 2{6

P 43[47’53’59]61’67 71| 73 79’83 89 | 07
»(p) 3]5[2]2[2‘2 70 5 3[2 3[5

'It ‘hS'LS been proved that limy(p) = co (Pillad [7]) and even that, for
infinitely many p, y(p) > clogp (cf. Turdn [1]). On the other hand, we do
nqt knm?v \?v]}ether there exist infinitely many primes for which Iiu_mber
2 isa Ifnmmve root. E. Artin has conjectured that every integer g £ —1
which is not a square is a primitive Toot of infinitely many primes (cf.
Hasse [1], p. 68). This can be deduced from the conjecture H (ef. Schin-
zel and Sierpinski [3], pp. 199-201).
» The table presented above shows that ¥(p) < 7 for any prime p < 100.
For p <191 we also have y(p) < 7, but p(191) =19. If p < 409, then
?(®) <19, but »(409) = 21. For primes p < 3361 we have y(p)’< 21
?fut ?(3361)’ =22. For p <5711 we have y(p) < 22, but y(5711) = 29.’
[1]2,7 ;sp .a: fggrjl:og'SSSI, then y(p) < 29, but (5881) = 31 (ef. 'Wertheim
Ef_ g is. a primitive root of a prime P, then the numbers ¢°, g2, g2, ...
2§ divided by p leave different remainders, each of them, 11,1 a(’idi-
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tion, being different from zero. Consequently, the number of the remainders
is equal to the number of the numbers ¢°, ¢, ¢°, ..., ¢*%, i.e. it is equal
to p—1. Therefore, for any number z = ¢°, ¢',..., 4°~2, there exists
a number y of the sequence 0,1,2,...,p—2 such that ¢V = z(modp).

Now we are going to establish all the natural numbers m > 1 which
have primitive roots. The situation is described Dby the following
theorem:

A natural number m > 1 has primitive roots if and only if it is one of
the numbers

2, 4, 1% 2p°

where p is an odd prime and a a natural number. The number of primitive
roots of any number m of this form is p(p(m)) (cf. Sierpifski [12], p. 193).

As an application of the theorem on the existence of primitive roots of odd
prime numbers, we shall find all the natural numbers m for which the congruences
a =b(modm) and ¢ = d(modm) imply the congruence a°= b%(modm) for any
positive integers a,bd,c,d.

Tor simplicity, we call the above-mentioned property of number m property P.
Suppose that a natural number m has property P. Let o denote a given integer. In
virtue of the obvious relations m|a—a and m|{(m+1)—1 we then have m|a™*+!—aq,
i. e. m|a(a™—1). On the other hand, suppose that number m is such that for any
integer @ we have m|a(a™—1). Let a,b,¢,d be integers such that mjea—b and
m|e—d. If ¢ = d, then, by m|a— b, we have m|a’— 4. Suppose that ¢ # d. Inter-
changing, if necessary, the roles of ¢ and d, we assume that ¢ > d. Then, since m|c—d,
¢ = d+mk, where % is a natural number. We then have a]a® and a™—1|a™F— 1.
Moreover, it follows from m|a(a™— 1) that m|a®(a™*—1) = a°—a%. But, in virtue
of m|a—b, we have m|a®— b, which, by the formula m|a®— a? gives m|a®— e,
We see that number m has property P. We have thus proved that a necessary and
sufficient condition for a number m to have property P is that for any integer o,
m]a(a™— 1). .

Now, our aim is to find all the numbers m that have property P. Trivially, num-
bers 1 and 2 have property P. Suppose that m is a natural number > 2. If m were
divisible by a square of a prime number, then, for a = p, we would have P*lp(p™—1),
which is impossible because (p, p™— 1) = 1. Consequéntly, number m must be a prod-
uct of different prime factors; being greater than 2, the product must contain a prime
odd factor p. Let g denote a primitive root of the prime p. Since p |m|g(g™—1) and
(,9) =1, we find that p|g™— 1. But since g belongs to the exponent p—1 with
respect to modulus p, we have p— 1{m. Therefore number m is even and is the prod-
uct of at least two different prime factors 2, and p. If m is the product of precisely
those two different prime factors, then m = 2p. Since p— 1im and (p—1,p) =1,
we have p—1|2; so, in view of p > 3 (since p is an odd prime), we conclude that
p = 3 and consequently m = 2-3 = 6. Number 6 indeed has property P because,
a8 we know, for any integer a we have 6](a— 1)a(a+1) = a(a®*—1) and a*— 1la—1,
whenee 6]a(af— 1).

‘We now suppose that m is a produet of three (necessarily different) prime
factors, i.e. m = 2p, p,, where 2 < p; < p,. A8 We know, p;— 1|m that is p;— 1|2p; P,
But p,—1> 1 (since p, > 2) and also p;—1 < p, <p,. The prime p, cannot be
divisible by p;— 1 and therefore p,— 1]|2p,, whence, in analogy to the previous case,
we infer that p, = 3, and so m = 6p,. In virtue of the relations p,— 1{m = 6p,
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and (p;—1,p,) = 1, one has p, — 1|6, which, by the faet that p, > py, i.e. that
Py > 3 and so py—1 > 2, gives either p,—1 =3 or p,—1 = 6. But p,— 1 = 3 is
impossible because p, is a prime, so p,— 1 = 6 is valid, whence p, = 7 and conse-
quently m = 2-3-7 = 42. As can easily be verified, number 42 indeed has property P.
In fact, as is known, 6 ;a(a®— 1) holds for any integer a, whence a fortiori 6}a(a®— 1).
If a is not divisible by 7, then, in virtue of the theorem of Fermat, 7|a— 1, whence
again 7;a(a**~1). Thus we see that for any integer a the relations 6|a(a2— 1) and
7ja(a**—1) simultaneously hold, which, by (6, 7) = 1, gives 42|a(a*>— 1), and this
proves that number 42 has property P.

Further we suppose that m is a product of four prime factors. That is that
m = 2p, PPy, Where 2 < p; < p, < pg. Then, as in the above argument, we infer
that p; — 1|2, whence p; = 3; similarly, p,—1|2p;, = 6, whence p, = 7; and finally,
P3—1i2p;py = 42. Therefore, since p; > p, = 7, it must be true that p,—1 =7,
14, 21 or 42, which, in virtue of the fact that p, is a prime, implies p,— 1 = 42, i.e.
Pg = 43, whence m = 1806. It is easy to see that number 1806 has property P because,
a8 we have just proved, 42|a(a**— 1) for any integer a, whence a fortiori 42 |a(a!8%— 1).
If a is divisible by 43, then we have 43|a(a'®—1); if a is not divisible by 43, this
relation is a simple consequence of the theorem of Fermat, because then 43|a%2— 1,
whence a fortiori 43|a'®— 1. The relations 42|a(a'8%— 1) and 43!a (4186~ 1), valid
for any integer a, give by (42, 43) = 1 and 1806 = 42-43 the required relation
1806|a(a'®6— 1), which proves that number 1806 has property P.

Finally, we suppose that m is a product of more than four prime factors. That
i8 m = 2p;p,...pk, Where k >4, 2 <p; <P, < ... <pr. As we have seen above,
91 =3, p, =1, p; = 43. Further, ps— 1|m, whence, as can easily be found, ps—
— 112p,9,p3. i.e. p4— 1/1806. On the other hand, p,— 1>p,— 1 = 42, and, moreover,
ps—1 is even. Even divisors of the number 1806 = 2-8-7-43 which are greater than
42 are the numbers 86, 258, 602, 1806. Therefore p; must be one of the numbers
87, 259, 603, or 1807, but none of them is prime. We have 87 = 3-29, 259 = 7-37,
603 = 3%-67, 1807 = 13-139. Thus we see that the assumption that a number m
is a product of more than four prime factors leads to a contradiction.

We have thus proved the theorem of J. Dyer Bennet [1], stating that the num-
bers 1, 2, 6, 42, 1806 are the only omes whick have property P. Consequently, they
are the only meoduli m for which the congruences a = b(modm) and ¢ = d(modm)
imply @ = b%(modm) for any positive integers a, b, ¢, d.

As is easy to notice, numbers m which have property P are precisely those square-
free integers m for which A(m)|m, where i(m) is the minimum universal exponent
with respect to the modulus m (cf. § 4).

EXERCISE. Prove that number 2 is not a primitive root of any prime number
of the form 22”1, where n is a natural number > 1.

Proof If p is a prime number and p = 2241, then 22" 1(modp). But
p—1=29"> o+l for n>1 because, as can easily be proved by induction, 2"
>n+1 for # = 2,3, ... Consequently number 2 belongs to an exponent < p—1
with respect to the modulus p and is not a primitive root of p.

§ 7. An nth power residue for a prime modulus p. If p is 2 prime,
# & natural number > 1, then an integer 4 is called an n-th power residue
for the modulus p whenever there exists an integer # such that 2" = a
(modp). Clearly, the number 0 is an nth residue for the modulus p for
any prime p and integer #. Therefore we generally assume that any nth
power residue we are concerned with is different from zero.
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From the purely theoretical point of view, there exists a method
for establishing whether a given natural number a = 0 is an nth power
residue for a given modulus p. In fact, it is sufficient to check whether
there exists a number z in the sequence 1,2,...,p—1 which satisfies
the congruence z” = a(modp).

In this connection, we have the following

THEOREM 13 (Euler). An integer a which is not divisible by a prime
p 45 an n-th power residue for a prime modulus p if and only if the relation

(27) o018 = 1 (modp) with d=(p—1,n)

holds.

Proof. Suppose that an integer s, which is not divisible by a prime
9, is an nth power residue for the modulus p. Then there exists an inte-
ger x, of course not divisible by p, such that a = 4" (modp). Hence

(28) a(jo—l);d = (mn)(pal)]d - (m'p—l}njd.

Since d|#» and, by the theorem of Fermat, #~' = 1 (modp), from (23)

we infer the truth of (27). Thus we see that the condition is necessary.
Suppose now that formula (27) holds. Let ¢ be a primitive root

of the prime p. As we learned in § 6, there exists an integer 7 such

that 0 <h <p—2 and a = g"(modp) which, in virtue of (27), proves

that ¢""~9% =1(modp). Since g is a primitive root for the prime

1)

h(p— . .
p, the last relation implies that p—1| %«——, which gives d|{k and so

h = kd, where k is a non-negative integer. According to the definition,
d = (p—1,n), which, by theorem 16 from Chapter I, proves that there
exist two natural numbers #, v such that d = nu—(p—1)v, whence
kd = knu—Fk(p—1)v. But, in virtue of the theorem of Fermat, g"~"*
= 1(modp). Hence, using the relations a = g"z g"d(modp), we find
o= agfP-V° = gHEE-Ur - g — (FURmed p), which proves that a
is an mth power residue for the prime p. This proves the sufficiency of
the eondition. Theorem 13 is thus proved.

If a is an nth power residue for a modulus p, then, clearly, every
number a that is congruent to a(modp) is also an nth power residue for
the modulus p. Therefore the number of nth power residues for a given
modulus p is understood as the number of mutually non-congruent (modp)
nth power residues for the modulus p.

The - following theorem holds:

THEOREM 14. If p is @ prime, n a natural number and & = (n, p—1),
then the number of different n-th power residues for the modulus p (number 0
snoluded) s (p—1)/d+1.

Elementary theory of numbers 7
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Prooi. Let g be a primitive root for the modulus p. Let d = (p—1, n),
n = dm, p—1 = ds, where m, s are natural numbers and (m,s) = 1.
Let k, I be any two numbers of the sequence 1, 2, ..., s such that k > 1.
If ¢ = ¢ (modyp), then p | " —g™ = ¢"(¢*""—1), s0, by (p, 9) =1.
g% = 1 (modp). Hence, since g is a primitive root for the prime p,
p—1](k—10*, which, in virtue of the relations n = dm, p—1 =ds,
gives s|(k—Il)m; so, since (m,s) =1, s|k—1, which is impossible
because & and 1 are two different numbers of the sequence 1,2,...,s.
Thus we conclude that the numbers g*, ™, ..., ¢ divided by p yield
different remainders. Moreover, each of these numbers is an nth power
residue for the modulus p (since the congruence z" = g’"‘(modp) has
an obvious solution # = §). Therefore there are at least s different nth
power residues for the modulus p, each of them different from zero.

Now let @ denote an arbitrary sth power residue for the modulus
p different from zero. Then there exists an integer z (clearly not divis-
ible by p) such that 2™ = a(modp). As we have learned, in the sequence
0,1,...,p—2 there exists a number y such that # = ¢' (modp), whence
a = g™ (modp). Let r denote the remainder obtained by dividing y by .
We then have y = ks-+r, where %k is a non-negative integer and 0 <
<r < s. Hence ny = nks--ur. But, since n = dm, p—1 = ds, we have
ns = (p—1)m. Consequently, ny = k(p—1)m-+nr, whence a = ¢"¥ = ¢"
(modp), and this shows that there are no nth power residues for the mo-
dulus p different from zero other than 1, 4", g¢™,...,¢" V". Since sn
= (p—1)m, residue 1 can be replaced by the residue ¢™. We have thus

-1
proved that for a given prime modulus p there exist precisely (Jiﬁ) -+1
Nyp—

different nth power residues.

As an immediate corollary to theorem 14 we have the following
proposition: in order that for a given natural number n every integer be an
n-th power residue for a given prime modulus p it is necessary and suffi-
cient that n be relatively prime to p—1.

Accordingly, in the case of » =3, in order that every integer he
a third power residue for a prime modulus p it is necessary and suffi-
cient that p should not be of the form 3%-+1, where % is @ natural num-
ber, i.e. that it be either one of the numbers 2, 3 or of the form 3%--2,
where % is a natural number.

It is easy to prove that there are infinitely many primes of the form
3k+2. In fact, let n denote an arbitrary natural number and let
N = 6nl—1. Clearly, N is a natural number > 1. It is easy to see that
any divisor of the number ¥ is of the form 6%+ 1 or 6%k — 1. Not all prime
divisors of N are of the form 6k-+1 since, if they were, their product
would be of this form, which is trivially untrue since N is not of this
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form. Consequently, number N has at least one prime divisor p = 6k—1,
where % is a natural number. The relation p | N = 6n!—1 implies that
p > n. This, since n is arbitrary, shows that there exist arbitrarily large
primes of the form 6k—1 = 3(2(k—1)+41)+2, as was to be proved.

It can be proved that if » is a prime and m a natural number > 1,
then in order that every integer be an nth power residue for the modulus
m it is necessary and sufficient that m be a produect of different primes,
none of the form nk-+1 (where % is a natural number) (cf. Sierpinski [9]).

EXERCISE. Prove that if p is a prime, # a natural number and d = (p—1, n),
then the nth power residue for the prime p coincides with the dth power residue for
the prime p.

Prooif. By d = (p— 1, n) we have d|p—1, so d = (p— 1, d) and consequently,
by theorem 13, a necessary and sufficient condition for an integer a, not divisible
by p, to be an nth power residue for the modulus p is the same as that for a to be
a dth power residue for the modulns p. Therefore the sets of nth power residues and
dth power residues for the modulus p coincide.

In particular, it follows that if p is a prime of the form 4k+-3, where k = 0,
1,2,..., then (since 2 = (p— 1, 4)), the quadratic residues for the modulus p coin-
cide with the 4th power residues for the modulus p.

§ 8. Indices, their properties and applications. In §4 we defined
a primitive root of a natural number m as an integer g which belongs
to the exponment g(m) with respect to the modulus m. It follows that,
as we know, the numbers ¢°, gt, ..., g?™ ' are all incongruent (modm).
Since the nunmber of them is @(m), this being equal to the number of the
numbers relatively prime to m which appear in the sequence 1,2, ..., m,
then for any integer z relatively prime to m there exists precisely one
number y in the sequence 0,1, 2, ..., (m)—1 such that ¢ = z(modm).
We say that y is the index of » relative to the primitive root g. It is de-
noted by ind, @, or, if no confusion is likely to ensue, by indz. We call
g the base of the index.

Now we fix a natural number m > 1 which admits a primitive root
g and consider the indices indz of integers z relatively prime to the num-
ber m. We prove the following properties of indices:

I. The indices of integers which are congruent (modm) are equal.
(Needless to say, the primitive roots are assumed to be equal and the
integers to be relatively prime to m.)

Infact, if a = b(modm) and, g% = a(modm), then ¢™** = b(modm).
But, as we know, since (b,m) =1, the congruence ¢” = b(modm) has
precisely one root among the numbers 0,1,...,p(m)—1, and this is
indb; we conclude that inde = indb.

Therefore in the tables of indices the values of inds are given only
for natural numbers z less than the modulus (and relatively prime
to it).
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II. The index of the product is congruent (mod¢(m)) to the sum of the
indices of the factors, i.e.

(29) ind(ad) = inda+indd (mode(m)).

In fact, according to the definition of indices, we have g2ds = 4
(modm), ¢™® = b(modm) (whenever @ and b are relatively prime to m).
Hence, multiplying the last two congruences, we obtain

gierndd = gh(modm).
But since ¢ = g} (modm), we infer that
(30) g} = gindatindd(yy, o3 ),

Suppose that for any non-negative integers u,» the congruence =g
(modm) holds. If p >, then m|g*(¢**—1), which, in virtue of the
fact that (g, m) = 1, implies ¢"77 =1 (modm). Number g, as a primitive
root of m, belongs to the exponent @ (m) with respect to the modulus m.
Hence, by theorem 9, it follows that e(m) | p—».

The last relation remains true also in the case where # < v. Thus,
from (30) congruence (29) follows.

The property just proved is easily generalized to any finite number
of factors. Hence

IIT. The index of the n-th power (n being a natural number) is con-

gruent (modg(m)) to the product of n multiplied by the index of the base.
We have )

inde" = ninde (mode (m)).

Now we are going to establish the relation between indices taken
with respect to different primitive roots of a fixed number m. According
to the definition of the index, we have

o = g% (modm).
Hence, using properties I and III, we obtain
ind,a =ind,a-ind,g(mode(m)),

where y is a primitive root of m. Hence

In order to change the base of indices it is sufficient to multiply each
of them by a fized number (namely by the index of the former base relative
Yo the new base) and find the residues for the modulus ¢(m) of the products.

TEEOREM 15. In order that a number a, which s not divisible by p,

be a quadratic residue for an odd prime p, it is necessary and sufficient
that inda be even.
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Proof. Suppose that indja = 2k, where k is a non-negative inte-
ger. We have gﬂ" = a(modyp), which shows that the congruence % =
a (modp) has a root # = g*. Therefore number a is a quadratie residue for
the modulus p.

In the sequence 1,2,...,p—1 there are, of course, 3(p—1) num-
bers whose indices are even. (The proof follows from the remark that the
indices of the numbers of the sequence coincide with the mumbers
0,1,2,...,p—2 in a certain order; among 0,1,2,...,p—2, however,
there are precisely 4(p—1) even numbers.) Bach of these numbers is then
a quadratic residue for the prime p. But, by theorem 14 (with d =
(2, p—1) = 2), there are only %(p—1) quadratic residumes in the se-
quencel, 2, ..., p—1. From this we infer that none of the numbers with
odd indices can be a quadratic residue for the prime p. The theorem is
thus proved.

It is an immediate consequence of theorem 15 that none of the
primitive roots of an odd prime p can be a quadratic residue to .

‘We note that an analogous theorem for an nth power residue with
n greater than 2 is not true. For example, among the indices relative
to the modulus 5 there are only two, 0 and 3, divisible by 3, and each
of the numbers 1,2,3,4 is a 3rd power residue to 5. (In fact, 1 =13
(mod5), 2 = 33(mod5), 38 = 23(mod5), 4 = 4*(mod5)). For the modu-
Ius 7 the numbers 1 = 14(mod7), 2 = 24(mod 7), 4 = 3*(mod7) are 4th
power residues; among the indices relative to the modulus 7, however,
there are only two, 0 and 4, divisible by 4.

Indices are applied in solving congruence.

Let p be a prime, and a, b numbers not divisible by p. Consider the
congruence

ar = b(mod p).
By‘ properties I and IT

inde4-ind# = ind b(mod p—1),
whence
indz = indb—ind a(modp—1).

The number ind# is thus the remainder left by the difference indb—
—inda divided by number p—1. Thus, knowing the value of indz,
we find # by = ¢™%(modp). Of course, to apply this method in prac-
tice one should have the tables of indices (modp).

' Now let a be an integer which is not divisible by p, and » a natural
exponent. Consider the congruence

2" = a(modp).
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By properties I and III it follows that the congruence is equivalent
to the congruence

nind# = ind a(mod p —1).

Thus the problem of solving binomial congruences reduces to that of sol-
ving linear congruences.
Consider an exponential congruence

a® = b(modp),

where a, b are integers not divisible by the prime p. The congruence is
equivalent to the linear congruence

winda = indb(modp —1).

ExAwpres. We are going to tabulate the indices (mod13). Acecord-
ingly, first we have to establish a primitive root of 13. We begin with
the least possible number 2.

We find the residue (mod13) of the consecutive powers of number 2.
Clearly, it is not necessary to caleulate number 2" for every natural expo-
nent n; for, if 7y, is the remainder obtained by dividing 2* by 13, then the
remainder yielded by 2*+! divided by 13 is equal to the remainder of 27y.
In this way we find 2=2,2°=4,2°=8, 2=3, 2° =6, 2° =12,
=11, 2°=9, =5, 2=10, 2" =7, 2% =1(mod13).

This proves that 2 is a primitive root of 13. We tabulate the num-
bers @ according to their indices ind,# =% (where %k =0,1,...,11)
as follows:

indyw| 0| 1] 2]3]4

5

el 7’8|9]10|11
4|s]3|s[12]11|9|5|10]7

@ 1 2

By the use of this table we can tabulate the indices according to the
numbers =1, 2,...,12 as follows:

3|4[5|6‘7|8|9[10|11|12
4|2!9|5]1113}s{10‘7|6

Given a congruence

. 1 2

indyz | 0 | 1

62 = 5(mod13).

We have ind6+indz =ind5 (modl12), whence indz =ind5—ind6
(mod12). As we check in the second table, ind5 =9 and ind6 =5,
thus we find inds = 9—5 = 4(mod12), and so indz =4 and, using
the first table, we infer that & = 3.

Comnsider the congruence

2® = 3(mod13).
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We have 8ind# = ind3(mod12). On the other hand, by the tables pre-
seuted above, we see that ind3 =4, whence, putting indz =y, we
obtain the congruence 8y = 4(mod12). This is equivalent to the rela-
tion 12 | 8y—4, which, in turn, is equivalent to 3 |2y—1, ie. to the
congruence 2y = 1(mod3). Hence 4y = 2(mod3). But, since £ =1(mod3),
y = 2(mod3) and therefore y = 23k, where % is an integer. Numbers
of this form that belong to the sequence 0,1, 2,...,11 are the numbers
2,5,8 and 11. Consequently, they are the values of y = indw. Using
the first table for # we find the values 4, 6, 9 and 7. Thus we see that the
congruence has precisely four solutions, 4,6,7,9.
Finally, consider the congruence

6% = 7(mod13).

We then have #ind6 = ind 7 (mod12). As we check in the second table,
ind6 =5, ind7 = 11. Thus the congruence turns into the congruence
32 = 11(mod12), which is satistied only for # = 7, provided the a’s
are taken out of the sequence 0,1, ...,11. Consequently, all the solu-
tions of the congruence are numbers of the form 7--12k, where k
=0,1,2,...

EXERCISES. 1. Prove that for any odd prime modulus p relative to any prim-
. 1
itive root of p,! the equalities ind(—1) =ind(p—1) =3 (p—1) hold.

Proof. In virtue of the theorem of Fermat, for any primitive root g of an odd
1 1
5@-1) s®-1) .
prime p the relation plgP~l—1= (g* —1)(g? +1) holds. But sines

;- . to-n
plgi(Zj " —1 is impossible (because g is a primitive root of p), plg? +11is
1
3 W= - 1
valid, i.e. g‘-’“7 Vo (modp), which shows that ind(—1)=73(p—1).

2. Prove that a necessary and sufficient condition for an i:nteger g rela,tiw.fely
prime to an odd prime p to be a primitive root of p is the validity of the relation
g®-1M=£ 1(modp) for any prime divisor g of the number p—1.

Proof. If for a prime g the relations g|p— 1 and g®—V/¢= l(m?dp) hold, t‘he.n
g belongs to an exponent < (p—1)/g <p—1 and, consequently, g is not a primi-
tive root of p. Thus the condition is necessary. ) . )

On the other hand, suppose that an integer g relatively prime to p is not a
primitive root of p. Then the exponent § to which g belongs with respect to modulus
pis <p—1. As we know, & must be a divisor of number p—1, whence number
{p—1)/6 is a natural number > 1, and so it has a prime divisor g. We then have
gl(p—1)/8, whence §|(p— 1)/q and, since p| g°— 1 (because g belongs tu? the explonqent 8
with respect to the modulus p), then a fortiori plg@-DE—1, je gf-D =1
{modp). The condition is thus sufficient.
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