CHAPTER V

CONGRUENCES

§ 1. Congruences and their simplest properties. Let a and b be
two integers. We say that a is congruent to b with respect to the modulus
m if the difference of @ and b is divisible by m. Using the notation intro-
duced by Gauss, we write

1) a =b (mod m).
Thus formula (1) is equivalent to the formula
m|a—b.

It is clear that, if two integers are congruent with respect to the modu-
lus m, then the division of either of them by m gives the same remainder
and vice versa.

There is an analogy between congruence and equality (this justifies
the use of the symbol =, similar to the symbol of equality). We list here
some of the more important properties which illustrate this analogy:

L. Reflewivity means that every integer iy congruent to itself with
respect to any modulus; i.e.

a = a (mod m)

for any integer a4 and any natural number m. To prove this it is suffi-
cient to observe that the number a—a = 0 is divisible by every natural
number m.

II. Symmetry means that congruence (1) is equivalent to the con-
gruence b = a (modm). To prove this it is sufficient to note that the
numbers a—b and b—a are either both divisible or both not divisible
by a natural number m.

IIL. Transitivity means that, if

¢ = b (modm) and = ¢ (modm),

then

6 = ¢(modm).

icm

§ 1. Congruences

To prove this we apply the identity
a—c¢ = (a—b)+(b—¢c)

and recall the fact that the sum of two numbers, each of them divisible
by m, is divisible by m.
Similarly, it is very easy to prove some other properties of congruence.
We prove that two congruences can be added or subtracted from each
other provided both have the same modulus.
Let
(2) a = b (modm)

and ¢ = d (modm).

In order to prove that a-te =b+d (modm) and a—c = b—d (modm)
it is sufficient to apply the identities

a+c—(b+d) = (a—Db)+(c—d)
Similarly, using the identity
ac—bd = (a—Db)e+(c—d)b,

and (a—e)—(b—da) = (a—b)—(c—d).

we prove that congruences (2) imply the congruence
ac = bd (modm).

Consequently, we see that two congruences having the same modulus
can be multiplied by each other.

The theorem on the addition, subtraction and multiplication of two
congruences can easily be extended to the case of any finite number of
congruences.

The theorem on addition of congruences implies that the sum-
mands can be transferred, with the opposite sign, in just the same way as
in equations, from one side of a congruence to the other. This is because
that operation is equivalent to the subtraction of the transferred
summand from each side of the congruence.

It follows from the theorem on the multiplication of congruences
that a congruence can always be multiplied throughout by any integer and
that each side of a congruence can be raised to the same natural power.

But it is not always legitimate to divide one congruence by another
(even if the quotients are integers). For example the congruences 43
= 18 (mod10) and 12 = 2 (mod10) do not imply the congruence 4
= 9(mod10).

Tt follows immediately from the theorem stating that a divisor of
a divisor of an integer is a divisor of that integer that, if d | m, then the
congruence a = b (modm) dimplies the congruence a =D (modd).

The law of transitivity of congruences together with the theo-
rem on the addition and multiplication of congruences implies that in


Yakuza


188 CHAPTER V. Congruences

o given congruence we can replace any summand or factor by any other
congruent to . ’

This rule is not valid for the exponents. For example the congruence
2% == 4 (mod B) cannot be replaced by the congruence 2' = 4 (mod5)
though 6 =1 (mod5).

Now, let

fz) = 42"+ 48" . 44, 0+-4,

be a polynomial of the nth degree with integral coefficients. Let m be
a natural modulus and a, b integers such that a = b (modm). The theo-
Tems on the natural powers and on the multiplication of congruences
justify the following sequence of congruences:
440" = 4,b"(modm),
40" = A, 5" (mod m),
Ay 10 = 4, ;b (modm),
4, = 4, (modm).
Adding them up, we obtain
A"+ A 0™ 4 A, et A,
=440 A, b4, (modm),

ie. f(a) =f(b)(modm). We have thus proved the following
TepoREM 1. If f() 4s @ polynomial in = with integral coefficients,
then the congruence a = b(modm) implies the congruence f(a) = f(b) (mod m).
o _‘Al.l'ﬂlustra.tion of the use of theorem 1 is provided by the rules of
divisibility of a number by 9, 7, 11, 13, 27, 37.
Let N be a natural number. The usual representation of the number

N by its digits in the seale of 10 is in fact s representation of N in
the form

N =0,10"" 6,10+ ... 4-¢, ,10-¢,.

Let

(3) F@) = eo™ ey .. eyt Cn«
Then f(x) is a polynomial with integral coefficients and
(4) f(10) = N.

In virtue of theorem 1, since 10 = 1(mod9), we have
() F(10) = f(1) (mod 9).
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But f(1) ==¢;,+¢y+...+¢, and, consequently, by (4) and (3),
N=c+e+...4 6, (mod9),

which proves that any natural number N differs from the sum of its
digits (in the scale of 10) by a multiple of 9. In particular, N is divisible by
9 if and only if the sum of its digits is divisible by 9.

In general, if sy denotes the sum of the digits of N (in the scale
of 10), fhen for natural numbers N and N’ we have

N = sy(mod9), N’ = sy (mod9),
whence NN’ = sysy, (mod9). Since also NN’ = syy. (mod9), then syy.
= Sy8y- (mod9). This relation between the sums of the digits of the
factors and the sum of the digits of the product serves as the basis for
the well-known test of multiplication by the use of 9.

By (3) and by the congruence 10 = —1(mod11), theorem 1 implies
that f(10) = f(—1)(mod11), whence, by (4) and (3), we obtain

N = ¢;—¢Cy-+c3— ¢+ ... (modll).

This gives the rule of divisibility by 11.

Now we are going to find the rules of divisibility by 7 or 13. Denote
by (¢16s...6,)1, the number whose digits, in the scale of 10, are ¢y, ¢y,
.oy Cp; this notation is really necessary in order to distinguish a number
from the product of its digits ¢,0,...¢,. Every natural number can be
represented in the form

N = (Cn—26n16n)10 (€n3Cn4Cn_3)10- 1000} (Cpn3Cn_7Cn_g)10°1000%4-...

Since 1000 = —1(mod7) and 1000 = —1(mod13), we obtain the con-
gruence
N = (en-26s—160)10— (Cns0n—sCns)r0t (CrsCnzCn_g)ro—--. (M0 T)

and a congruence identical to the above with the modulus 7 replaced
by 13. These congruences give the rules of divisibility by 7 or 13. For
example, ’

N = 8589879056 = 56 —879-+589—8 (mod7) and (mod13).
Since the number on the right-hand side of these congruences, equal to
—242, is divisible neither by 7 nor by 13, we see that the number N

is not divisible by 7 or by 13.
The rules for 27 and 37 are based on the fact that

1000 = 1(mod27) and (mod37).
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From this the rules are obtained in a complete analogy with the previous
ones. For example, we have

N = 24540509 = 5094540+ 24(mod27) and (mod37).

The number on the right-hand side of this congruence is 1073. So we
may write again 1073 = 73+1(mod27) and (mod37). Number 74 ig
divisible by 37 but it is not divisible by 27, consequently the same is
true about number N.

EXERCISES. 1. Find the last two digits of the number 21000,

Solution. We have 210 = 1024 = 24 (mod 100). Hence 20 = 24* = 76 (mod 100).
But 76% = 76(mod 100), whence, by induction, 76% = 76(mod100), % =1, 2, ...
Therefore 21000 = 2200 = 76% = 76(mod 100). Thus we see that the last two digits
of number 219¢ are 7 and 6.

2. Prove that for an integer # at least one of the following six congruences is
valid (cf. Erdés [11]): 1) # = 0(mod2), 2) = 0(mod3), 3) z= 1(mod4),
4) » = 3(mod8), 5) z = 7(mod12), 6) v = 23 (mod 24).

Proof. If an integer & satisfy neither 1) nor 2), then it is not divisible by 2 or
by 3, and thus it is of the form 24f+-7, where £ is an integer and 7 is one of the num-
bers 1, 5, 7, 11, 13, 17, 19, 23. Then, as can easily be verified, the number z =
24t +-r satisfies one of the congruences 3), 3), 5), 3), 4), 3), 4), 6).

Remark. P. Erdés [11] has proposed the following problem: given any natu-
ral number n, does there exist a finite set of congruences which uses only different
moduli greater than n and such that every integer satisfies at least one of them?
H. Davenport [1] conjectures that the answer is positive but, he says, it is not easy
to see how to give a proof. P. Erdos himself has proved this for n = 2 (he has given
the set of such congruences, the moduli being various factors of 120). D. Swift has

gh‘ren the proof for » = 8 (he has found the set of such congruences, the moduli
being various factors of 2880). :

3. Find the last two digits of number 9%°.

Solution. We easily find that with respect to the modulus 100 the following
congruences hold

2 9
P=38l, 9*=81"=61, ®=61"=21, 9°=21-9=80, 90 =189.0=1.

‘We then .hzwe 9? = 9(mod 10), whence 99 = 10549, where % is a natural number.
Hence, since 9= 1(mod100), it follows that 9%° — 910F+9 — g0 89 (mod 100),
which proves that the last digit of number 9°° is 9 and the last but one is 8.
4. Find the last two digits of number 9%
Solution. It follows from exercise 3 that 99° = 9(mod 10). Coﬁsequenﬂy 99’ =
= 10{-+9, where ¢ is a natural number, whence 9999 = 91049 = 9% = 89 (mod 100).
. 9
Thus we see that the last two digits of number 9° are identical with those of 9%,

Remark. According to W. Lietzmann [1], p. 118, the number of digits of this
number has more than a quarter of a million digits.

Gauss is said to have called this number “a measurable infinity™.
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§ 2. Roots of congruences. Complete set of residues. Let f(x) be
a polynomial of the nth degree with integral cocfficients and let m be
a given modulus. Any number # = a for which f(a) = 0(modm) is called
a root of the congruence

(6) f(z) = 0 (modm).

If follows from theorem 1 that if @ is a root of congruence (6), then any
number which is congruent to & with respect to the modulus m is also
a root of (6). Therefore it is justified to regard the whole class of such
roots as a single oot of the eongruence. This root can of course be repres-
ented by any number of this class.

Every integer is congruent with respect to modulus m to precisely
one number of the sequence

(7) 0,1,2, .., m—1.

In fact, let a be a given infeger and let r = a—-m[;—b]. Number r is an
integer congruent to & with respect to m. Sinee t—1 < [{] <t for real
numbers ¢ we have %—1 < [’%’] < 1%, whence 0 <r <m. Thus we

see that number r belongs to sequence (7), and consequently every natu-
ral number « is congruent (with respect to m) to at least one of the num-
bers of sequence (7). Since, on the other hand, any two of the numbers
of (7) give different remainders while divided by m, every integer a is
congruent precisely to one of the numbers of (7). This number is called
the remainder of number & with respect to modulus m.

All integers which are congruent to the same remainder r with respect
to modulus m are of course of the form mk+r, where k is an integer
and wvice versa.

In order to solve congruence (8) (where f(z) is & polynomial with inte-
gral coefficients) it is sufficient to find which of the numbers of sequence
(7) are roots of the congruence. Thus we see that (6) can be solved by fini-
tely many trials. This shows that, apart from the difficulties of a purely
technical nature, we are able either to solve congruence (6) (where f(x)
is a polynomial with integral coefficients) or to prove that f(z) has no
roots.

EXAMPLES. 1. We solve the congruence
(8) 75— 322+ 2 = 0(mod7).

‘We have to find which of the numbers 0, 1, 2, 3, 4, 5, 6 satisfies (8). Sub-
stituting 0 and 1 in (8), successively, we see that 1 is and 0 is not a solution of (8).
Similarly, substituting 2, we see that 2 is not a solution of (8). For number 3 we may
proceed as follows. We see that 3% = 2(mod7), whence 3¢ = 4(mod7) and 3* =12 =5
(mod7). Therefore 3°—3-3242=5—3-242=1(mod7), and thus number 3 is
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not a solution of (8). For number 4 we have 4 = — 3(mod7), whence 45= —35
= —5(mod7) and so 4°—3-42+2= —5—38-24+2 = 3(mod7); consequently the
number 4 is not a solution of (8) either. For number 5 we have 5 = — 2(mod7),
whence 5% = — 2° = 3(mod7) and 5°—3:52+2=38—38-442 = O(mod?7), and so
number 5 is a solution of (8). For number 6 we have 6 = — 1(mod?7), whence 65—
—3:6°42=—1—3+2 =5(mod"7), and so 6 is not a solution of (8). We have
thus shown that congruence (8) has two roots, 1 and 5. Therefore every integer x
which satisfies congruence (8) is of the form 7k+1 or 7k+5, where & is an arbitrary
integer.
2. We now solve the congruence

(9) 22+ 2 = 0(mod?2).

Here the only thing that we have to do is to verify whether (9) is satisfied by
numbers 0 and 1. We see that both of them satisfy the congruence (9), which proves
that every integer = is a solution of (9). This also follows from the remark that num-
bers #* and z are always either both odd or both even, and so their sum is always even.

We say that a congruence which holds for every integer holds identically. The
example presented above shows that for a congruence which holds identically the
coefficients not necessarily all are divisible by the modulus.

Another example of a congruence which holds identically is the congruence
@3~ = 0(mod3). In fact, 33— = (x— 1)z (x4 1), whence, since of three conse-
cutive integers one is divisible by 3, we deduce that z*—x =0 (mod 3) for any
integers x.

3. The fact that (9) holds identically implies that the congruence «?4 241
= 0{mod2) has no solution. Similarly, the congruence 2® = 3(mod8) does not hold
for any integer z, since the square of an odd integer yields the remainder 1, when
divided by 8 while the remainder obtained from the division of the square of
an even number by 8 is 0 or 4.

Let m denote a given modulus, k¥ a given natural number << m and
@y, @y, ..., @ different non-negative integers <m. We ask whether
there exists a polynomial f(z) with integral coefficients such that the roots
of the congruence f(z) = 0(modm) are precisely the numbers a,, a,, ..., a
(or numbers congruent to any of them with respect to m).

If m is a prime, then, clearly, the required function is f(») = (x—a,) X
X(r—ay)...(z—ar). If m =4 and 6y, a,, ..., a4, &k <4, are given non-
negative different integers < 4, then, as can easily be verified, the roots
of the congruence (z—a,)(®@—a,)...(2—a;) = 0(mod4) are the num-
bers a;, G, ..., a; (or numbers congruent to any of them with respect
to 4). However, as has been proved by M. Chojnacka-Pniewska [1],
there is no polynomial f(x) = aya"+a,2"'+...+a,_2+a, for which
the congruence f(2) = 0(mod 6) is satisfied by numbers 2 and 3 and
not satisfied by any other integer < 6.

In fact, suppose that f(z) is such a polynomial. Then f(2) = f(3) = 0 (mod, 6),
whenee 3f(2)— 2f(3) = 0(mod6). We have 3-2% = 2-83% = 0(mod6) for any k=
Hence 3f(2) = 3an(mod6) and 2f(3) = 2an(mod6). Therefore 3f(2)—
—2f(3) = an(mod8), whence an= 0{mod6), 5o f(0)= 0(mod6). We have thus

proved that the congruence f(x) = 0(mod 6) has a root z = 0, contrary to the agsump-
tion that 2 and 3 are its only roots.

=1,2,..
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It can be proved (cf. Sierpiriski [15]) that if m is a composite num-
ber # 4, then there exist two integers a and b which, divided by m, give
a remainder different from zero and such that if f(z) is a polynomial with
integral coefficients, then the congruences f(a) = f(b) = 0(modm) imply
the congruence f(0) = 0(modm).

From this we easily deduce that if m is a composite number +# 4,
then there exists a polynomial of the second degree f(z) = 22+ a,2-}-a,
with integral coefficients for which the congruence f(z) = 0(modm)
has more than two roots.

There is a close connection between congruences and a type of the
Diophantine equations, namely equations which are linear with respect
to one of the unknowns. In fact, in order that an integer x may satisfy
congruence (6) it is necessary and sufficient that there should exist an
integer y such that f(z) = my. Thus congruence f(z) is equivalent to
the Diophantine equation

fl@)—my = 0.

An argument analogous to that which we used in the case of the alge-
braic congruence of one unknown shows that if the left-hand side of
a congruence is a polynomial in several variables with integral coeffi-
cients, then, if we do not take into account the difficulties of a purely
technical nature, we are able to solve the congruence.

For example, in order to solve the congruence in two variables

flz,y) = 0 (modm)

where f(z,y) is & polynomial in variables z,y, it is sufficient to find
which of the m? systems », ¥ with # and y ranging over the set of inte-
gers 0,1,2,...,m—1, satisfy the congruence. (In fact, this follows
easily from the remark that if a = ¢ (modm) and b = d (modm), then
f(a, b) =f(c, &)(modm)).

A simple numerical example of what we have just said is provided by the
congruence

z*4-y* = 1(mod5).

As we can verify directly it has 8 solutions: (z,y) = (0, 1),(0, 2), (0, 3), (0, 4),
(1, 0), (2, 0),(3,0), (4, 0). Thus all the solutions of this congruence are the integers

@,y such that one of them is divisible by 5 and the other is not.
It is also easy to see that the congruence

23493 423 = 4(mod9)

is insolvable. This is because the cube of an integer is congruent with respect to the
modulus 9 to one of the numbers 0, 1, — 1, and so the sum of three cubes cannot be
congruent to 4.

Elementary theory of numbers 13
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§ 3. Roots of polynomials and roots of congruences. If an equation
f(z,y)-= 0, where f(z,y) is a polynomial with the integral coefficients,
has a solution in integers #, y, then, of course, for every natural num-
ber m there exist integers », y such that the number f(x, y) is divisible
by m, ie. such that the congruence f(z,y)= 0(modm) is solvable for
each natural number m. Hence it follows that if there exists a modulus
m such that the congruence f(z, y) = 0(modm) is not solvable in integers,
then the equation f(#,y) = 0 has no solutions in integers.

For example the proof that for natural numbers n the equation
224-1-—3y" = 0 is insolvable in integers follows from the fact that the
congruence #?+1—3y™ = 0(mod3) has no solutions, this being a simple
consequence of the fact that the square of an integer differs from the mul-
tiple of 3 either by 0 or by 1, whence the left-hand side of the congruence
divided by 3 yields the remainder 1 or 2 but not 0.

It is not true, however, that for any polynomial f(z,y) with inte-
gral coefficients for which the equation f(z,y) = 0 has no solutions in
integers @, y there exists a modulus m such that the congruence f(z,y)
= 0(modm) is insolvable.

For instance the equation

(2z—1)By—1) =0
has no solutions in integers #,y; the congruence
(22—1)(8y—1) = 0(modm),

however, is solvable for any natural number m. To see this we recall
the well-known fact that a natural number m can be written in the form
m = 2"-'(22—1), where k,» are matural numbers. Number 2%+!1}1
is, a8 we know, divisible by 2-+1 = 3, and so there exists a natural num-
ber y such that 2%+'+1 = 3y. Consequently (2z—1)(3y—1) = 2+,
which proves that the congrnence under consideration is solvable.

It is easy to prove a stronger and more general assertion. If a,, a,
are two natural numbers such that (a,, a,) = 1, by, b, are arbitrary inte-
gers, then the congruence

(@124 b,) (@,2-+b,) = 0(modm)

is solvable for every natural number m (cf. Skolem [n.

It is easy to prove that the equation 232 —219y? = 1 has no solu-
tion in integers #, y. This is because the cogruence 222 —219y2 = 1 (mod3)
is insolvable. (In fact, if # is an integer, #* divided by 3 gives the remainder
0 or 1, and so, since 219 = 3-73, number 222 — 219y* differs from a mul-
tiple of 3 by 0 or 2, and consequently it eannot be congruent to 1 with
respect to modulus 3.)
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It is a little more difficult to prove that the equation 2x2—219y2
= —1is insolvable in integers. T. Nagell [7] has deduced this from a more
general theorem, the proof of which is difficult. However, the congruence

202—219y® = —1(modm) is, as he says (ibid. p. 62), easily proved to
be solvable for any natural number m.

We present here the proof of the fact that the equation 22— 219y = —1
is insolvable in integers z,y due to A. Schingel.

Suppose, to the contrary, that the equation is solvable in integers z, y. Then,
of course, neither of the numbers z, y can be zero, consequently, we may assume
that #, y are positive integers. Moreover, we assume that the solution x,y is chosen
in such a way that y is the least among the corresponding numbers in all the solutions
of the equation in natural numbers. Let

@, = |2032— 3066y|, y, = — 28zt 293y.

As is easy to verify, we have 22— 219y; = 22— 219>, Consequently, the numbers
@y, Yy satisfy the equation. We cannot have s, = 0, and so %, is a natural number. We

293
cannot have y; < 0 either, since if we had, we would have z > 25 Y, whence

85849 y? Y
2, d 222 — 21 ——, whence —1 > ——,

784 ¥ 2nd so 9" > 3gg- Whemeo —13> 400
sible. Thus we see that =, , 4, are natural numbers. By assumption, y < y;, so — 282+
92 73

2
+293y > y, whenee z < E—é—y =Y therefore 22

2

2 >

which is impos-

5329
< ——y® and 222—218y%
49
—73 73 . : .
< Ty P — T < —1, confrary to the assumption that z,y I8 a solution

of the eguation. We have thus proved that the equation has no solutions in
integers z, y.

We now prove that the congruence
202 — 21992

= —1(modm)

is solvable for any natural number m.

Let m be a natural number. We put m = mym,, where m, = 11°
(ais an integer >0) and (mg,11)=1. Let @, = 5-13°0™)-1 4 — 13¢m)-1,
Sinee (13,m,) =1, by the theorem of Buler (see Chapter VI, p. 243)
183%™ = 1(modm,). Consequently,

13° (247 —219y7) = 2-25-13%0™)_919.13%m)

=2-25—219
—13%(mod m,),

we obfain 22} — 2192

whence, in virtue of the equality (13,m,) =1,
= —1(modm,).

Now let @, =7-117"2~%, § =11%")~1 Since (11, m,) =1, we have
1172 = 1 (modm,), whence

117 (205 — 219y3) = 2-49-11%%™) _9719.171%(ma)

2-49—-219
—11*modm)
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and so, by (11,m,) =1, we obtain 22—219y} = —1(modm,). Now,
sinee (my, my) = 1, in virtue of the Chinese remainder theorem (cf. Chap-
ter I, §12), there exist integers s,y such that

# =z (modm,), &= x,(modm,),

y =y (modm,), ¥ = y,(modms,).

Hence 22" —219y® = 2 — 2194 = —1(modm,) and 20" —219y* = 222
—219y: = —1(modm,) and so, since (myymg) =1 and m = mym,,

22" —219y* = —1(modm),

which shows that the congruence is solvable for any natural number m.
We are going to solve another example of a congruence, this time
a congruence whose left-hand side is not a polynomial. The congruence is

(*)

Since 2°=1(mod3), we have 92%+% — 2%(mod3) for all non-negative
integers # and % = 0,1,2,... Since (x4 31)2 = #*(mod3) for any inte-
gers x, 1, we see that if # is a solution of congruence (x), then z--6¢,
t=120,1,2, ...,1s also a solution of (x). Among the numbers 0,1, 2, 3,4,5
only 2 and 4 are solutions of congruence (+). Thus all the solutions of
the congruence are numbers 24 6¢ or 4-+6t, where ¢t =0,1,2,...
Remark. A number which is congruent to a solution of congruence
(*) with respect to its modulus may not be a solution of (+), e.g. number 5.

2% = ¢2(mod3).

§ 4. Congruences of the first degree. Let
(10)

where m is a given modulus and a, b are given integers. As we have
learned in §2, congruence (10) is equivalent to the diophantine equa-
tion

11)

az = b(modm),

ar—my =b.

It follows from Theorem 15 of Chapter I that in order that equation (11)
be solvable in integers =, y, it is necessary and sufficient that (a, 4) | b.
Consequently, this is also a necessary and sufficient condition for solva-
bility of congruence (10).

Suppose now that this condition is satisfied. We are going to look
for the method of finding both all the solutions of congruence (10) and
their number. Let d = (@, m). So the number b/d is an integer. Let x,
be one of the solutions of congruence (10) and let # be an arbitrary solu-
tion of it. We have az, = b(modm) and, by (10), we see that a(z—x,)

= 0(modm). Consequently, m | a(z—x,), whence n l t—‘(m——m,,). But

dld
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m

3 must

since, in virtue of d = (a, m), the relation (Zl’g) =1 holds,
m
divide ®—ux,, whence o = g,+ Et’ where ¢ is an integer.
Conversely, taking an arbitrary integer for ¢ and an arbitrary root
m

@, of congruence (10) and putting » = 2,4+ 4

t, we obtain a root of

congruence (10), since aw = am,} —%tm = a%y = b(modm).

Now, let ¢ take the values 0 2 1,2,...,d—1, sucecessively. We prove
that no two among the numbers

12) o =wo+1;5z

are congruent to one another with respect to the modulus m.

In fact, if o= o, (modm), then by (12) we would have B+ %L

= 2,+ %—u(modm) and consequently l:;—(t—u) = mz, where z is an

integer, whence {—w = dz, which is impossible whenever i, % are dif-
ferent numbers of the sequence 0,1,2,...,d—1.
Finally, we show that each root of congruence (10)
with respect to the modulus m to one of the roots @,
fined in (12)).
In fact, if « is a root of congruence (10), then for an integer ¢ we have

is congruent
By ooy gy (de-

T = mo—l—%t. Let 7 be the remainder obtained by dividing £ by d. (So

r is one of the numbers 0,1,2,...,d—1.) We have ¢ = r+du, where
% is an integer. Hence z — a:o+%t = ,+ %11 (r+du) = z,+ %r—kmu
= -+ mu, whence # = z, (modm), as we have to prove.

Putting together the results just proved we obtain

THEOREM 2. A congruence of the first degree ax = b(modm) is sol-
vable if and only if b is divisible by the greatest common divisor d of the
coefficient of & and the modulus m. If this. condition is satisfied, then the con-
gruence has precisely @ roots non-congruent with respect to the modulus m.

In particular, if 4 and m are relatively prime numbers, then d=1,
Hence the following

CoRroLLARY. If the coefficient of @ is relatively prime to the modulus m,
then the congruence of the first degree az = b{modm) has precisely one root.
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If a congruence az = b(modsm) is solvable and if (e, m) =d >1,
then another congruence is obtained from i, namely

e b mw h a m
Em =E(mod7), where (_01—’7) =1.
Therefore, while solving a congruence of the first degree (in case the con-
gruence is solvable), we may always assume that the coefficient at the
unknown and the modulus are relatively prime.

C. Sardi [1] has given the following method for solving such con-
gruences. Let aw = b(modm), where a>1 and (a,m)=1. Further,

m
let a, = m—a[}—]; clearly 0 < a; < a, since m is divisible by a. Hence
- m
multiplying the congruence by —[;] throughout we obtain a,2 =

m
—b[;](modm), i.e. a congruence in which a, < a. Proceeding in this

way, we ultimately obtain a4, =1, ie. the congruence @ = ¢(modm)
whose unique solution is clearly # = ¢.

§ 5. Wilson’s theorem and the simple theorem of Fermat. Let p
be an odd prime and D an integer not divisible by p.
Any two numbers m,n of the sequence

(13) 1, 2,3, ..., p—1

are called corresponding if and only if the congruence
(14)

holds. It follows immediately from the definition that, if m is a num-
ber corresponding to %, then % is a number corresponding to m.

‘We now prove that for each number of gequence (13) there is pre-
cisely one number corresponding to it. Let m be a number of sequence
(13). In order that a number # of sequence (13) may be a corresponding
number to m it is necessary and sufficient that the congruence mz = D
(modp) should hold. In virtue of the relation mz = D(modp) (where
m is a number of sequence (13)) and in accordance with the corollary to
theorem 2, the last congruence has precisely one root. Therefore we see
that in the sequence 0,1, 2,3, ..., p—1 there is one and only one num-
ber which satisfies the congruence. It cannot be the number 0, since D
is not divisible by p. From this we infer that in sequence (13) there is
precisely one number which satisfies the congruence, as we were to show.

It may happen that corresponding numbers are equal. Then con-
gruence (14) assumes the form m? = D(modp). This is possible only if
there exists a square which differs from D by a multiple of p; the

mn = D(modp)
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number D is then called & quadratic residue for the modulus
p. In the converse case, that is, if none of the squares is congruent
to D with respect to the modulus p, we say that D is a quadratic non-
residue for p. In other words, a number D not divisible by p is called
a quadratic residue or a quadratic non-residue depending on whether
the congruence #*= D(modp) is solvable or insolvable.

Tirst we consider the case where D is a quadratic non-residue for
a prime modulus p. Then each pair of corresponding numbers m, n con-
sigts of two different numbers of sequence (13). Therefore all the numbers
of sequence (13) can be divided into pairs of corresponding numbers, the
number of the pairs being equal to (p —1)/2. Writing down the congruence
of the form (14) for each of the pairs we obtain the sequence of (p—1)/2
congruences

myn, = D(modp),
myny = D(modp),

Mp_1 p_y = D(modp).

2 2

Then multiplying these congruences and noting that the product
My Ty Mg Mg . M p_y Wp_y Aiffers from the product of the numbers of sequen-

5

ce (13) atb mos{; in the order of the factors, we obtain the congruence

1
p—1) =D

as) Y (modp).

Now we consider the case where D is a quadratic residue for the
modulus p. Then the congruence
(16) 72 = D (mod p)
is solvable. Let us calculate the number of the numbers of (13) which
satisfy congruence (16). Since we have assumed that congruence (16)
js solvable, in the sequence 0,1, 2, ..., p—1 there is at least one number
% which is a solution of (16). It cannot be k¥ = 0, since, according to our
general assumption, D is not divisible by p. Consequently the number
% is one of the numbers of sequence (13) and therefore p —k is also a num-
ber of this sequence. It is different from %, since, as we have assumed,
p is an odd number. For the number I =p—Fk we have I* = k*(modp),
whence the congruence %* = D(modp) implies I* = D(modp).

Thug in the ease where D is a quadratic residue for p we see that
in sequence (13) there are at least two different numbers which satisfy
congruence (16). We prove that there are precisely two such numbers.
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Suppose that a number » of sequence (13) satisfies congruence (16).
Since * = D(modp), we have 42 = k*(mod p), which proves that p | 22— g2
= (#—k)(z+%k). But, since p is a prime number, the last relation
implies that cither p |#—%k or p |2+k. If p | 2—%, then, since @ and
k belong to scquence (13), we see that # = k. If p [#+%, then, since
0<o<pand 0 <<k<pandsold <a+k<2p, we see that a-+% = p,
whence s =p—k =1.

‘We have thus proved that % and I are the only numbers of sequence
(13) which satisfy congruence (16). Hence, if a number D which is not
divisible by an odd prime p is a quadratic residue for the modulus p, then
congruence (16) has precisely two roots.

Now we remove the numbers % and I from sequence (13). None of
the remainirg p—3 numbers satisfies congruence (16), so they can be
divided into (p—3)/2 pairs of corresponding numbers. We thus obtain
(p—3)/2 congruences

myn, = D(modp),

MMy = D(modp),

Mp_3Npy = D(modp).
2 2

Since M =k(p—k)= —kt = —D(modp), we may add the econ-
gruence

kl = —D(modp)

to the corgruences above and multiply all the congruences. Then the
product of the lft sides of the congruences is equal to (p—1)!. Thus
the congruence
1
(17) (p—1) = —p* 7"
is obtained.
We sce that either (15) or (17) holds depending on whether D is
& quadratic residue for the modulus p or not.
Putting together (15) and (17 ), We write

(mod p)

1
(18) -1t = £0*" " (modp),

where on the right-hand side the sign — or + ig taken, depending on
whether D is a quadratic residue for P or not.

In particular, for D =1 we see that, since number 1 is a quadratic
residue for every p,

(19) (p—1)! = —1(modp).
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wn

The proof of (19) makes use of the assumption that p is an odd
prime number and it fails for p = 2, but we can immediately verify that
the result is still trune since (2—1)! =1 = —1(mod2). Thus we have
proved the following )

THEOREM 3 (Wilson). If p is a prime number, then the number
(p—1)+1 is divisible by p.

The converse is also true. In fact, if p is & natural number >1 and
if (p—1)!4-1 is divisible by p, then p is a prime. To sce this we suppose
to the contrary that p is not a prime. Then there is a divisor ¢ of p such
that 1 < ¢ <p. The number (p—1)!+1, being divisible by p, must
also be divisible by ¢, but since ¢ <p, ¢ <p—1, s0 ¢ | (p—1)!, whence
¢ |1, which is a contradiction. Hence

THEOREM 3°. A necessary and sufficient condition for & natural num-
ber m > 1 to be a prime is that the number (n—1)!41 is divisible by n.

This shows that, from a purely theorctical point of view, we are
able to decide for a given natural number # >1 whether it is a prime
or not using only one division.

It follows from theorem 3 that for a prime p the number w, =
{{p—1)!-+1}/p is a natural number. C. E. Froberg [2] has calculated
the remainders obtained by dividing w, by p for the prime num-
bers p < 50000. The primes for which p2 | (p—1)!+1 are called Wilson
primes. It follows from the tables given by Froberg that among the
primes p < 50000 there are lonly thrce Wilton primes, namely 5,
13 and 563.

From theorem 3* and the remark that for n > 2 the relations (n—1)!
=m—2)(n—1) = — (n—2)!(modn) hold we deduce

THEOREM 3P (Leibniz). In order that a natural number n>1 be prime
it 48 necessary and sufficient that (n—2)! =1(modn). (By 0! we under-
stand of course number 1.)

It can be proved that ¢ natural number p >1 is a prime if and only
if there exists a natural number n < p such that (n—1)!(p—n)! = (—1)*
(modp) (ef. Dickson [8], vol. I, p. 64). -

It is clear that if # is a natural number such that » | (n—1)!, then
n 18 a composite number. It is easy to prove that if #is a composite num-
ber =4, then » | (n—1)! '

In fact, if » is a composite number, then there exist natural numbers a and b
such that n = ab, 1l <a <n,1 < b <n.Ifa s b, then a and b are different factors
of the product (n— 1)! and, consequently, n = ab divides (n— 1)!. If ¢ = b, then
n = a? and, since © is & composite number = 4, a > 2. Hence it follows that n = a?
7 2a and therefore a and 2a are different factors of the product (n— 1)!. Thus (n— 1)!
is divisible by 2a?, whence, a fortiori, it is divisible by a? = n. For n = 4, however,
we have (n— 1)! = 8! = 6 = 2(mod4).
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It follows immediately from theorem 3 that there ewist infinitely
many natural numbers n for which n!4-1 is a composite number. Such are
for instance the numbers # = p—1, where p is a prime > 3. (For, (p—1)!
>2(p—-1) =p+(@—-2)>p)

A. Schinzel [16] has proved that for every rational ¢ # 0 there
exist infinitely many composite integers of the form en!41.

‘We do not know, however, whether there exist infinitely many prime
numbers of the form n!41. For n < 26 the only prime numbers of this
form are the numbers 1!4-1 =2, 2!41 =3, 11!4-1 = 39916801 ().
‘We do not know whether the number 27!41 is prime or not.

It is not known whether there exist infinitely many natural numbers
k such that the number P, = p;p,...p5+ 1 is a prime. Neither is it known
whether there exist infinitely many %’s for which P, is composite. The
following five numbers P; are prime: P, =3, P, =7, Py = 31, P, = 211,
Py = 2311, but Py =59-509, P, =19-97-277, Py= 347-27953, P,
= 317-703763, P,y = 331-571-34231 are not prime.

It follows from theorem 3° that there emist infinitely many notural
numbers n such that the number n!—1 is composite. Such are, for instance,
all the numbers # = p—2, where p is a prime > 3. We do not know
whether there exist infinitely many primes of this form. If # < 23, num-
bers n!—1 are prime only for n = 3, 4, 6, 7, 12, 14, 20. We do not know
whether numbers 23!—1 and 24!—1 are prime or not. Number 25!-—1
is composite; it is divisible by 149.

Formulae (15) and (17) together with theorem 3 give

TeEOREM 4. If an integer D is not divisible by an odd prime p, then

-1

(20) D = 1£1(modp),

where the sign -+ or — is taken depending on whether D is a quadratic resid-
ue for the modulus p or not.
Hence, raising each side of (20) to the second power, we obtain
TEEOREM 5. If an dnteger D s mot divisible by a prime p, then

(21) DP~! = 1(modp).
This is the simple theorem of Fermat, given by him without a proof
in 1640. The first proof was given by J. Ivory in 1806.

The proof of formula (20) fails if p = 2, but we can immediately
verify that (21) still holds; for D, being non-divisible by p =2, must
be odd, and so D = 1(mod2).

In particular, it follows from theorem 5 that, if p is an odd prime,

(!) An outline of the proof is to be found in a book of A. Ferrier, [1], p. 30.
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then the number 2°~'—1 is divisible by p. Investigations have been
made in order to find the numbers p for which 2°~'—1 is divisible by
p2 For p < 10° only two such numbers have been found, namely p = 1093,
p = 3511. (Hausner and Sachs [1], c¢f. Riesel [2]).

A simple application of theorem 5 gives a solution of any econgruence
of the form az = b(modp) provided p is a prime and « is not divisible
by p. In fact, © = ¢® b is a solution because, by theorem 5, a!
=1(modp), whence az = a’'b = b(modp).

An immediate consequence of theorem 5 is

THEOREM 52 If p is @ prime number, then for every integer o we have
pla’—a.

Conversely, theorem 5 can easily be obtained from theorem 5° In
faet, if @ is an integer not divisible by a prime p, then the relation p | a”—a
=a(a®1—1) implies p|a®'—1, that is o' = 1(modp).

The theorems of Wilson and Fermat can be formulated together
in a single theorem (ef. Moser [4]):

THEOREM 6. If p is a prime and a an integer, then

pla”+(p—1la.

In fact, if theorem 3 holds, then (p —1)! = —1(modp), consequently,
a’ -+ (p—1)la = a®—a{modp), which, in virtue of theorem 5%, gives
a’—a = 0(modp), whence formula (22) follows.

On the other hand, if theorem 6 holds, then for @ =1 formula (22)
gives theorem 3. Therefore for every integer a the congruence a”-+
+(p—1)la = a®’ —a{modp) holds, whence it follows that (22) implies
a? —a = 0(modp). So theorem 5* is valid, and this, as we know, is
equivalent to the theorem of Fermat.

It is also easy to prove that the theorems of Fermat and of Wilson
taken together are equivalent to the following

THEOREM 6% If p is a prime and a is an integer, then
p|(p—1)a’+a.

In this connection we wish to add that T. Szele [1] has proved the
following generalization of theorem 5%:

For every natural number m and every integer a the number > u(d) a™?
is divisible by m. dim

(22)

Hence, in particular, for each integer & and two different primes
p and q we have pg|da™—a”—a"+a.

We derive another simple corollary from theorem 5:

THEOREM 7. There emist infinitely many prime numbers of the form
4k+1 (where &k s a natural number).
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Proof. Let n be an arbitrary natural number >1 and let
N = (nl)*+1.

Number N is, of course, odd and >1. Let p denote the least prime
divisor of the number N. By (23), p > n. Being odd, » is of the form
4k--1 or 4k-+3. By (23) again, we have

(n!)? = —1(modyp),

(23)

whence, raising each side of the congruence to the (p—1)/2-th power,
we obtain (nl)*~! = (—1)®"P2(modp). But «! is not divisible by p,
and so, in view of theorem 5, we have (n!)’~' = 1(modp), whence

Lo
)2

(24) (=17 = 1(modp).

We cannot have p = 4k+3 because, if we could, formula (24) would
give

30D _

(—1) (=1 =

whence p | 2, which is impossible. Therefore p must be of the form 4%J-1.

We have thus proved that for every natural number n >1 there
exists a prime p >n of the form 4%-+1. (More precisely, we have pro-
ved that such is every prime divisor of number (23).) Theorem 7 is thus
proved.

As far as the numbers 4k+ 3 are concerned, it is very easy indeed
to prove that there are infinitely many primes among them. In fact,
let n denote an arbitrary natural number >3 and let

(25)

—1=1(modp),

N, =nl—1.

¥, is an odd number > 1, and so each of its prime factors is odd. If each
of them is of the form 4%-1, then number N,, as the product of (not
necessarily different) numbers of the form 4%--1, is itself of the form
41+1. But this, in view of (25) and the fact that n > 3, is impossible.

Thus we have proved that for every natural pumber n >3 there
exists a prime number p > n of the form 4%-+3. Hence

TeEOREM 7% There are infinitely many primes of the form 4k-+3
(where  is a natural number).

For a given real number z>1 denote by =y(x) the number of
primes <z of the form 4k-+1; by z,(z) denote the number of primes
< @ of the form 4%+ 3. Let A (%) = m4(z) —m, (2). In 1914 J. B. Littlewood
proved that there exist infinitely many natural numbers n such that
4(n) >0 and that there are infinitely many = for which A(n) < 0. It
seems curious that until recently none of the numbers » for which A (n)<0
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were known. With the aid of the electronic computer EDSAC, J. Leech
[1] has calculated the numbers A(n) with n < 3000000. Thus he has
shown that the least natural number n for which A(n) < 0 is n = 26861.
For this # we have x,(n) = 1473, =,(n) = 1472, and so 4(n) = —1.
It has been found that 4(623681l) = —8, A(627859) = 4(627860) =
= ... = A(627900) =0, A4(2931071) = 256 (cf. Shanks [2]).

It follows from theorem 5 that if p is a prime number, then &'
= 1(modyp), where ¢ =1,2,...,p—1. Adding up these p—1 congru-
ences, we obtain

1Pt 9Pl L (p— 1P = p—1(modp).
Hence
pi1PT 2" A (p—1)P L
for any prime p. G. Giuga [1] has conjectured that this relation does

not hold for eomposite numbers and proved this for p < 10000,
The theorem, which follows, is a corollary to theorem 3.

THEOREM 8. If p s @ prime of the form 4k--1 (where k is a natural
number), then

e

Proof. Since (p—1) = 2k, we have the equality 1-2-3...3(p—1) =
y 1 p+1
u )E(p——l)(p—m...

(mod p); hence we obtain

(—1)(—°)...(— 5 5

[(E)g]‘il.gm?“l o p+1
2 2 2

this gives formula (26).
On the basis of theoremy 8 we prove the following
THEOREM 9 (Fermat). Every prime number p of the form 4k-+1 s
a sum of two squares.
p—l),.
2

In virtue of theorem 8, we have p | a®+1, a being of course relatively
prime to p. In view of the theorem of Thue (cf. Chapter I, §13) with p
in place of m, there exist two natural numbers #, y, each < l/p, such that
for a suitable choice of the sign + or — the number az -ty is divisible
by p. Hence it follows that the nmmber a2z®—y? = (az—y)(axty) is
divisible by »p.

e+ o? = (a2 1)2? is divisible by p (since p | a®+1). Consequently
the number #2442 = a4 2?—(a2w?—y>?) is divisible by p. But, since
@,y are natural numbers < Vp, they are < Vp, beeause p, being a prime,

vp—1)=(p—1)! = —1(modp), and

Proof. Let p be a prime number of the form 4k1-1 anda :(
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is not & square of a natural number. Thus #2442 is a natural number > 1
and < 2p and, moreover, it is divisible by p, so it must be equal to
P, i.e. p = 2?4y, This proves that p is the sum of two squares of nat-
ural numbers. .

A number which is not of the form 4%-4-3 (not necessarily prime)
can not be the sum of two squares. The argument is that, since the square
of an integer is congruent to 0 or 1(mod4), the sum of any two squares
must be congruent to 0, 1 or 2 but never to 3. This shows that among
prime numbers only the number 2 = 12-4-1% and the primes of the form
4k+1 are the sums of two squares.

According to H. Davenport [1] (pp. 120-122) four constructions
for the decomposition of a prime of the form 4%k-+1 are known. They
are due to Legendre (1808), Gauss (1825), Serret (1848) and Jacobsthal
(1906), respectively. The most elementary of them all (to formulate though
not to prove) is the following construction, due to Gauss. If p=4k+1
is & prime number, we take integers z,y such that

z = (2K)!/2(k)*(modp) and y= (2F) % (mod p),

with 2] < §p, |yl < 4p. Then p = #2+92. A proof has been given by
Cauchy and another by Jacobsthal, but neither of them is simple. The
calenlation which leads to the numbers z, ¥ is not easy. To illustrate this,
take p =29. Then =z =14!/2-(7!)? = 1716 = B5(mod29), y =14lz =
= 14!'b = 2(mod29), whence z = 5, y=2.

We do not know whether there exist infinitely many primes p such
that p =224 (w+1)%, where & iz a natural number. A positive answer
follows from conjecture H (cf. Chapter IIT, § 8). For example, we have
5 =12422 13 =22132, 41 =42452, 61 = B24-62, 113 = 72482, 181
=92+10%, 313 =1224-132, 421 = 1424152, 613 =172+182, 761
=192} 202,

As can easily be observed, the conjecture that there exist infinitely many primes,
each of them being the sum of two consecutive squares, i8 equivalent to the conjecture
that there exist infinitely many primes p for which 2p = a®+1, where a is a natural
number. To see this we suppose p = 2+ (z+1)%, where  is a natural number, then
2p = 234+ 1)2 41, Conversely, if 2p = a?-}-1, where a is a natural number, then,
for p > 2, the number ¢ must be 0dd > 1, and g0 g = 2z+4-1, where % is a natural
number. Hence 2p = (2o+1)*+1, that is, p = o+ (z-+1)%.

It follows from conjecture H that there exish infinitely many
primes p such that p = a?+ b2, where g and b are prime numbers. For
example, 13 = 22432, 29 = 22452, 53 — 22472, 173 = 224132, 293
= 2241172, 1378 = 224372,

It also follows from conjecture H that there exist infinitely many
primes, each of them being the sum of three consecutive squares of natural
numbers. For example, 29 = 22 32.1 4%, 149 = 62472482, 509 = 192+
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+1324-142%, 677 = 1424-1524-162, 1877 = 24212521262, In this con-
nection, we note that conjecture H implies that there exist infinitely
many prime numbers, each of them being the sum of three different
squares of prime numbers. For example, 83 = 32-+52172, 179 = 32+
724-112, 419 = 3241124172, 563 = 32524232, (It is easy to prove
that one of the squares must always be equal to 32.)

Another corollary which can be derived from conjecture H is that
for every natural number % there exist infinitely many natural numbers
z such that 2*+n® are primes.

It can be proved that for every natural number n there exists a prime
p such that p = a24-b% with ¢ > n and b > n (cf. Chapter III, § 7, and
the papers quoted there).

If a prime number is the sum of two or four squares of different prime num-
bers, then, as can easily be verified, one of the primes must be equal to 2. If a prime
is the sum of three squares of different primes, then one of the primes must be equal
to 3. However, it follows from conjecture H that for every natural number n there
exists a prime ¢ > ppyz such that the number p =pi+jpi+l+_'pfl+2+pﬁ+3+ ¢ is
a prime. For example, we have 373 = 3?52 721124+ 13%, 653 = 52+ 721124
+132417%,1997 = 7341124 1824 172 372,

‘We now prove that the decomposition of a prime into the sum of
two squares of natural numbers, if it exists, is unique apart from the or-
der of the summands. We prove a slightly more general

TaEOREM 10. If @ and b are natural numbers, then the representation
of a prime p in the form p = az®+by?, where x,y are natural numbers,
of it ewists, is umique, apart from the obvious possibility of interchanging
@ and y in the case of a = b = 1.

Proof. Suppose that for a prime o

27 P = aw’+by" = ani+byi,

where ,y,®,,y; are natural numbers. Clearly, (z,¥) = (2., ) = 1.
From (27) we have

p? = (axw,+byy,)*+ ab (2y; —yo:)? = (awz;—byy.)*+ ad (zy, + y@,)?.
But
(awa; + byy,) (y, -+ ya,) = (a2 + by*) @9, + (a4 by oy = p (@191 +2y).

Consequently at least one of the factors on the left-hand side of this equal-
ity must be divisible by p. If p | aze,+ byy,, then the first of the above
formulae for p? gives ay, —yx, = 0. Therefore #/y = ®,/y,, which, in
view of (#,y) = (@1, ¥,) = 1, proves that & = m,, y = y. If p | oy, +92,,
then the second of the formulae above for p2 shows that p? > abp?, which
is possible only in the case of & =b = 1. But then xz,—yy, =0, and
80 #/y = 4,/®,, which, in virtue of (#,y)= (2, ¥,) =1, shows that
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® =14,,y = 2;. Then the decompositions p = 24y and p =4+t
differ only in the order of the summands. Theorem 10 is thus proved.

An immediate corollary to theorem 10 is that if a natural number
admits two (or more) different representations in the form awx®4by2,
where #, ¥ are natural numbers, then it must be composite. The converse
theorem is not true. Namely number 14 has a unique representation in
the form 14 = 2x2-3y?, where #, y are natural numbers (z =1, y = 2)
and the number 15, though composite, has no representation in the
form 15 = 2224 3y?, where #, y are integers. Number 18 has a unique
representation in the form 18 = %2+ y2?, where #,y are natural num-
bers (namely # =y = 3). Bach of the numbers 25 and 45 has a unique
representation (apart from the order of the summands) in the form %242,
where z,y are natural numbers, namely 25 = 3242, 45 = 324 62.
However, the following theorem holds:

TrEOREM 11. A natural number of the form 4k+1>1 is a prime if
and only if it admits a unique representation (apart from the order of the
summands) as the sum of two squares of integers > 0 and in this unique
representation the squares are relatively prime.

Proof. Suppose that the number p = 4k-+1 is a prime. Then, by
theorems 9 and 10, number p admits a unique representation (apart
from the order of the summands) of the form p = #2--y2, where x, y are
natural numbers. Obviously, there are no representations of number
p other than the sum of two squares of integers because, if there were,
one of the squares would be equal to zero, and so p would be the square
of a natural number, which is impossible. It is obvious that in the repre-
sentation p = 22492 the numbers @,y must be relatively prime; for
otherwise, if (#,y) =d > 1, we would have d?|p, which is impossible.
We have thus proved that the conditions of the theorem are necessary.
In order to show that they are also sufficient, we prove the following

LevwmaA. If each of two given natural nwmbers of the form 4k-+1 with
k> 01s the sum of two squares of iniegers, then their product does not satis-
fy the conditions of theorem 11.

Proof of the lemma. Suppose that m = a’+b°, n = *+d°,
where a, b, ¢, d are integers. We have

(28) mn = {ac+ bd)2+ (ad—be) = (ac—bd)2+ (ad-- be)?.

Suppose that the two decompositions, just obtained, of number mn differ
only in the order of factors. Then either ac-bd = ad-be or ac+bd =
= lac—bd|. In the first case we have a(c—d) = b(c—d). But ¢ # d,
gince otherwise, i.e. when ¢ =d, we have n = 2¢2, which contradicts
the fact that » is an odd number. We then have ¢ = b. But this is also
impossible, since m is an odd number. In the other case, i.e. when
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ac--bd = |lac—bd|, we have either ac+bd = ac—bd or ac+bd = bd—ac.
Then in the first of these cases bd = 0, andsob =0ord =0.I b =0,
then m = a?, where a > 1 and mn = (ac ) 2--(ad)?, where ac and bd have
a common divisor > 1, consequently number mn does not satisty the con-
ditions of the theorem. In the second case we have ac =0, and s0 ¢ =0
or ¢ = 0, whence, in analogy to the previous case, we infer that the
mumber mn does not satisfy the conditions of theorem 11. Thus it only
remains to consider the case where decompositions (28) differ not only
in the order of the factors. In this case, however, number mn clearly does
not satisfy the conditions of theorem 11. The lemma is thus proved.

'We now return to the proof of the sufficiency of the conditions of
theorem 11. Suppose, to the contrary, that a number s = 4k+1>1
satisfies the conditions of theorem 11 and is not a prime. Let p be an
arbitrary prime factor of the number s. Clearly p is an odd number. If
p were equal to 4143, then, since by assumption s =.a‘3+ b2, thare
(a,b) = 1, we would have a* = —b%(modp), whence, raising each side
of the last congruence to the 3(p—1) = (2k-+1)-th power, by theorem 5,
we would obtain 1 = —1(modp), i.e. 2|p, which is impossible. Thus
we see that p must be of the form 4i4-1 and therefore, by theorem 9,
p is the sum of two squares of natural numbers. Hence each prime factor
of the number s is the sum of two squares of integers, whence, by (28),
each divisor of s has the same property. If the number s could be com-
posite then it would be a product of natural numbers n,m >1, each
of them being the sum of two squares of integers and of the form 441
(since it is the product of prime factors of this form). Therefore, by the
lemma, the number s = ma does not satisfy the conditions of theorem 11,
contrary to the assumption. Theorem 11 is thus proved. ]

Here is an application of theorem 11. If one has to decide whether
a given natural number n of the form 4%k-+1 is a prime or not one forms
the sequence of numbers

n—0%, a1, .., n—(Vn])?
and checks which of these numbers are squares.

In this way, applying theorem 11, T. Kulikowski, with the aid ofgthe fslec’crtznin
computer EMC of the Warsaw Polytechnie, has found that the number 23— 7 isa prime
because it admits precisely one representation as the sum of two squares of integers,

239 7 = 64045% 1 7386847

and the integers are relatively prime. .

Tt is known that the mumbers 2%"—7, n = 4,5, ..., 38, are composite. The
problem whether there exist prime numbers of the form 9% — 7 was formulated by
P. Erdss in 1956. We see that the answer is positive.

4
Elementary theory of numbers
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EXERCISES. 1. Prove that natural numbers > 1 and n4-2 form a pair
of twin primes if and only if the congruence

(29) 4{(n—1)1+1)+n = 0 (modn(n+ 2))

holds (Clement [1]).

Proof. Suppose that the numbers n and n+42 are both prime numbers. In
view of theorem 3, we have (n— 1)!-+1= O(modn) and (n4+1)!4+1= 0(modn- 2).
But, since n = — 2(modn--2) and n+1= —1l(modn-+2), we see that {(n4-1)!
= (n— 1)12(modn+2). From this we infer that the left-hand side of (29) is divisi-
ble by = and that 4((»—1)!+ Dtn=(@n+1)12+4 24+n+2 = 2((n+ 1)+ 1)+n+
4.2 = 0(modn-+2). Therefore the left-hand side of (29) is also divisible by n-+2.
But since the numbers n, n+2 are different primes, then the left-hand side of (29)
is divisible by the product n{n+-2); hence we see that formula (29) holds.

Now, suppose that for a natural number » > 1 congruence (29) is valid. If
n~were even, i.e.if n = 2k, where kis a natural number, then we would haven—1 >k,
whence k|(n—1)! and 2k|{n—1)!4. Consequently (n—1)!4 = 0(modn), which,
in view of (29), would imply 4 = O(modn) and this would give 2k|4, whence k|2
and g0k = 1 or k = 2 and consequently n = 2 or n = 4. But it is easy o verify that
congruence (29) i valid neither for » = 2 nor for n = 4. Thus we see that congruence
(29) implies the congruence (n—1)l+41 = 0(modn), and this, by theorem 32, shows
that n is a prime number. Finally, since, as we have shown above, for natural num-
bers » the congruence 4((n— 1)i+1)+n =2((n+ 1)1+ 1)(modn+2) holds, we
deduce from (29), using the fact that n--2 is odd, that the congruence (n--1)!-+
+1=0(modn+2) is valid. Hence, applying again theorem 3% we conclude that
n-+2 is a prime. We have thus shown that n, n+2 is a pair of twin primes.

2. Prove that if # = a?4b® = ¢*+d?, where a,b,¢,d are natural numbers
such that a > b, ¢ > d, a>¢, (&, b) = (c,d) = 1, then the number

ac+bd
(30) §= (ac+bd, ab-+ed)

is a divisor of number n such that 1 < d<m.
Proof. If n = a®+b®=c?+d?, then

31 {n” = (ac+bd)? -+ (ad— be)? = (ad+bo)*+ (ae—bd)®,

(ac -+ bd) (ad+ be) = n(ab-+cd).

Hence n|{acbd)(ad+bo). If nac+bd, then by (31) we have ad—be = 0, whence
a/b = ¢/d, which, since (a,b) = (¢,d) =1, gives a = ¢, contrary to the assumption
that a > ¢. If n]ad+be, then, by (31), ac— bd = 0, whence a/b = d/c, which, by
(a,b) = (¢, d) = 1, gives a = d, contrary to the assumption that ¢ > ¢ » d. Num-
bers n; = ac-+bd and na = ad+be are not divisible by n, which, in view of the rela-
tion n|myne of exercise 2, § 6, Chapter I and formula (31) implies that the mumber
§ is a divisor of the number n and 1< d < m.

3. Prove the following theorem of Liouville [1]. If p is a prime > 5, then the
number (p— 1)!-+1 is not the k-th power of p for any natural number k.

Proof. As we have proved above, if 4 natural number n is composite 7 4.
then n|{n— 1)!. Therefore, if p is a prime > 5, then p— 1}{(p— 2)!, whence (p— 1)*|
|(p—1)!. On the other hand, it follows from the binomial formula applied
to (14 (p— 1) = p¥, where k is a natural number, that (p—1)*|1+-k(p— 1)— p=.
If (p— 1)1-+1 = p¥, then (p— 1)*|k({p—1)— (p—1)! would hold, which, by the for-
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mula (p— 1)2](p— 1)!, would give (p— 1)*|k(p— 1), and s0 p— 1|k, whence k > p—1
and consequently (p—1){41 = p¥ > pP-1, which is impossible since, of course,
(p—1)! < (p—1)P72.

4. Prove that if p is a prime > 5, then the number (p— 1)!+1 has at least
two different prime divisors.

Proof. By theorem 3, the number (p— 1)!+1 has at least one prime diviser p.
But, since in view of exercise 3 it is not the k-th power of p for any natural num-
ber %k, it must have another prime divisor.

5. Prove the theorem of Lerch [1] stating that if p is an odd prime number,
then

17149914 4 (p— 1P = p -+ (p— 1)l (mod p).

-— I
Proof. Let p be an odd prime number. By theorem 3 the number (p_L—};l_
P

is an integer. Let » be the remainder obtained by dividing it by p; thus we have
(p—1D)i4-1
P

for a =1,2,...,p— 1 the number

= r(modp). Hence (p—1)! = pr— 1{modp?). In view of theorem 5,

aP-1l—
is integral, let ro be the remainder

obtained by dividing it by p, thus

P11
e = 1z (mod p) .

Hence
(32) aP-1 = prg-+ 1(modp?).
From this we obtain
((p—1)P-1 = 1P-1.2P-1_ (p—1)P=) = (pri+ 1) (pr2+ 1) (PPt 1)
=14p(y+r+ ...+ 7pm1) (modp?).
But, since (p— 1)! = pr—1(modp?), we see that
((p— D1 = (pr—1)P~! = 1— (p— L)pr = 1+pr(modp?).
Now, comparing the formulae for ((p— 1)!)P~1, we obtain
plr+rat...+rpy) = pr(moeds?),
whence, by (32),
1P-1490-14  L(p—1P~t=p(rit+ret.. . trp-1)+p—1
=prdp—1=(p— 1)!+p(modp?).

6. Prove that every prime number p > 5 is a factor of the number 7y = 111...1
written in the scale of ten with the use of p— 1 digits, each of them equal to 1.

Proof. Let p be a prime number > 5. Then (10, 7) = 1 and 8np = 10°~1— 1.
In view of theorem 5, 10P—1 = 1(modp), whence p|9ny. But, since (p, 9) = 1 (for,
p is a prime > 5), we must have p|np.

7. Prove that if p is a prime and ¢ an integer, then there exist infinitely many
natural numbers x which satisfy each congruence of the following infinite sequence:

* i @ = ¢(modp), 2% = ¢(modp), ¢° =c(modp), ...
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Proof. Let p be a prime and ¢ a given integer. Since (p, p— 1) = 1, then, as
is known, there exist infinitely many natural numbers & > 1 such that # = ¢(modp)
and 2= l(modp—1). Henece o = l(modp—1) for £k =1,2,... Consequently
2% = 14 (p— 1)l, where, in view of #> 1, Iz is a natural number. Hence P
= g (z%)P~1(modp). If plc, then » = 0(modp) and, clearly, x satisfies each of con-
gruences (*). If ¢ is not divisible by p, then (¢, p) = 1 and, since % = ¢(modp),
(%, p) =1 and (¢%,p) = 1. Hence, by theorem 5, we obtain (z%)P—! = 1(modp)
and so =g = c(modyp) for any & = 1, 2, ... Substituting 1, «, 2%, ... for &
successively, we obtain ().

Congruences like () have been investigated also for arbitrary positive mo-
duli (Schinzel and Sierpinski [4]).

8. Find all the natural numbers each of which admits precisely one representa-
tion as the sum of the squares of two relatively prime natural numbers. (Of course
we do not consider two representations as being different if they differ only in the
order of the summands.)

Solution. We are going to prove thati the numbers in guestion are precisely
the powers (the exponents being natural numbers) of the primes of the form 4%--1.

Leuua 1. If p is a prime of the form 41, then, for k= 1, 2, ..., number p*
admits precisely ome representation as the sum of the squares of two relatively prime
natural numbers. ’

Proof of lemma 1. In virtue of theorem 11 the lemma is true for & = 1. Let
k denote an arbitrary natural number and suppose that the lemma is true for number %.
Then there exist natural numbers ¢ and d such that (¢,d) = 1 and p" =24 d2.
It follows from theorem 11 that there exist natural numbers 4, b such that (@, b) = 1
and such that p = a?-+-b%, Hence

(33)  pFH = (@4 b%) (%) = (ao+bd) + (ad— be)* = (ad+be)? -+ (ac— ba)?.

1f each- of the numbers ad— be and ac— bd is divisible by p, then ad = b¢ (mod p) and
ac = bd(modp), whence a’cd = b%cd(modp), 8o p|ed(a®— b%). But since pr = ¢+ d?
and (¢, d) = 1, neither of the numbers ¢ and & can be divisible by p. Consequently
p|a®—b?, which together with the relation p|a?+ 5% gives p|a and, since p = a2+ b2,
p!b, contrary to the assumption (a,b) = 1. Therefore at least one of the num-
bers ad— be and ac— bd is not divisible by p. If this is the number ad— be, then by
(83) the number ac+-bd is not divisible by p either. Then the numbers ac+bd and
ad— be are relatively prime, since, as follows from (33), each of their common factor
is & divisor of p*+* and, as we have just seen, p does not divide any of them. Similarly,
if ac—bd is not divisible by p, then the numbers ad-+be and ac— bd are relatively
prime. Thus in any case formula (33) gives a representation of p¥+! as the sum of the
squares of two relatively prime natural numbers. This, by induetion, proves that
for every k = 1, 2, ... the number p* is the sum of the squares of two relatively prime
natural numbers. .

We now suppose that for a natural number % the number p* admits two dif-
ferent representations as the sum of the squares of two relatively prime natural num-
bers. Let p* = o*+b2 = >+ @, where (a4, b) = (c, d)=1landa>b,ec>d, a>ec.
‘We have

(34) P¥ = (ac+bd)+ (ad ~ be)? = (ad+bo) + (ac— bd)?,
and

{ae +bd) (ad+ be) = (ab-I-ed)p*.
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Hence, at least one of the numbers ac--bd and ad+-be is divisible by p. If both were
divisible by p, then, by (34), we would have ad = be(modp) and ac = bd(modp),
whenee pled(a®—b?), and, sinece p* = ¢*4+-d2 and (¢c,d) = 1, we would also have
pla*—b?, which, in virtue of pla®+b*, would give p|2a®, whence, since p is odd,
pla. But hence, in view of p|a*+b?, we would also obtain p|b, which contradicts
(@, b) = 1. Thus precisely one of the numbers ac-+bd and ad- be is divisible by p.
But since their product is equal to a multiple of p¥, the one that is divisible by »
must be divisible by p*. If p¥|ac+ bd, then, by (34), ad— be = 0, whence a/b = ¢/d,
which, by (a,d) = (¢,d) = 1, implies ¢ = ¢, contrary to the assumption. If 13"{
jad+be, then, by (34), ac— bd == 0, whence a/b = dje, which, in virtue of (a, b)
= (¢, d) = 1, implies o =d, contrary to &> ¢ » d. Lemma 1 is thus proved.

It follows that in order to prove the theorem it suffices to prove that if an
odd natural number admits a unique representation (apart from the possibility of
interchanging of the summands) as the sum of the squares of two relatively prime
natural numbers, then » is a power with a natural number exponent of a prime of the
form 4%+ 1.

In order to do this we first prove the following

LeMMA 2. If m and n are two odd natural numbers which are relalively prime and
such that each of them is representable as the sum of the squares of two relatively prime
natural numbers, then the product mn admils at least two represeniations as the sum of
the squares of two relalively prime natural numbers whick differ not only in the order of
the summands.

Proof of lemma 2. Suppose that m and n are relatively prime odd natural
numbers and a, b, ¢, d are natural numbers such that (a, b) = (¢, d) = 1, m = a®+ 3%,
n = ¢4 d. Suppose that a > b, ¢ » d. We then have

(35) mn = (ac-+bd)®+ (ad— be)® = (ad+be)?+ (ac— bd)*
and
(36) {ac+bd) (ad -+ be) = cdm -+ abn.

The decompositions of number mn into the sum of squares given by (35) are
different, The proof follows from the fact that if ac+bd = ad-be, then we would
have (a—b)(¢c—d) = 0, and 80 @ = b or ¢ = d, which is impossible hecause the
numbers m and n are odd; if ac-+bd = ac— bd (number ac—bd is > 0, since a > b,
¢ > d), then we would have ac = 0, which is impossible. Thus to complete the proof
of lemma 2 it is sufficient to show that (ac+bd, ad— be) = 1 and (ad+ be, ac— bd) = 1.
If {ac-+bd, ad— be) > 1, then the numbers ac+bd and ad— be would have a common
prime divisor p. Hence, by (35), p|mn and so plm or p|n. If p|m, then, by (36),
we would have p|abn, which, in view of p|m and (m,n) = 1, would give p|ab, so
pla or p|b, which, in virtue of p|m = o*+b*, would give p|u and p|b, contrary to
the assumption that (@, d) = 1. If p|n, then, by (36), p|cdm, which, in view of
(m,n) = 1, would give p|ed, which in virtue of p|c®+d* and (¢, d) = 1, leads to
a contradiction again. The lemma is thus proved.

Suppose now that an odd number » has a unique representation as the sum of
the squares of two relatively prime natural numbers, Let n = a?-b? be this unique
representation and let p denote a prime divisor of the number n. Then p is, plainly,
an odd number. If p = 4%k-1+3, then raising each side of the congruence
a® = — B (modp) to the }(p—1) = (2k-+1)-th power we obtain aP~!= —pP~!
(modp), but, in view of the relations (a,d) = 1 and (a, p) = (b, ) = 1 and theo-
rem 5 we have a?~! = bP~! = 1(modp). Hence 1 = — 1(modp) that is p|2, which
is impossible. Thus every prime divisor of number n is of the form 4k -+ 1. Therefore
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the factorization of » into primes is of the form # = QL. . g3k, where a3, 02, ..., 2k
and & are natural numbers and each of the primes ¢; (i =1,2,..., k) is of the form
44+ 1. If k = 1, then there is nothing to be proved. Suppose that &> 1. Then since
any two of the numbers 471, g%, .., g3k are relatively prime, lemma 1 implies that
each of them is the sum of the squares of two relatively prime natural numbers. Then
lemma 2 shows that the number ¢21¢32...¢fk1 is the sum of the squares of two rela-
tively prime numbers and, since (g1¢52. .. g% 71, k) =1, number g gl gk =n
has at least two different representations as the sum of the squares of two relatively
prime numbers, contrary to the assumption about number n. Therefore we must
have k = 1, and this completes the proof (cf. Sierpinski [28]).

§ 6. Numeri idonei. Under this name we understand numbers &
which have the following property: if an odd integer #» >1 admits a
unique representation (apart from the obvious possibility of interchanging
the summands) in the form %24 y3d, where %,y are non-negative inte-
gers and in this unigue representation the summands are relatively prime,
then n is a prime (%).

Tt follows from theorem 11 that 1 belongs to the class of these numbers.
Euler gave the following 65 examples of these numbers. 1, 2, 3, 4, 5, 6,
7, 8, 9, 10, 12, 13, 15, 16, 18, 21, 22, 24, 25, 28, 30, 33, 37, 40, 42,
45, 48, 57, 58, 60, 70, 72, 78, 83, 88, 93, 102, 105, 112, 120, 130, 133,
163, 168, 177, 190, 210, 232, 240, 253, 273, 280, 312, 330, 345, 357, 385,
408, 462, 520, 760, 840, 1320, 1365, 1848.

Numbers ¢ have been investigated up to 2500000 (J. D. Swift [1])
but no numerus idoneus greater than 1848 has been found.

S. Chowla [1] proved in 1934 that the number of numeri idonei is
finite; later he and W. E. Briggs proved that there is ab most one
greater than 10% (ef. Chowla and Briggs [1]). More information on
numeri idonei is to be found in a paper of J. G. Melnikov [1].

§ 7. Psendoprime and absolutely pseudoprime numbers. It follows
from theorem 5® that if = is & prime, then n | 2*—2. Chinese mathemati-
cians claimed 25 centuries ago that the converse theorem is also true. In
fact, this is true for the natural numbers n < 300 (2). Number 341, how-
ever, is a composite number, it is equal to the product 11-31, and 341
|231—92. In fact, since 11 and 31 are odd primes, by theorem 5 we have
910 =1(mod1l) and, clearly, 2" =1(mod3l). Hence 2% =2-2% =
= 2(mod11) and 2%! = 2(mod31). Therefore number 23'—2 is divis-
ible by 11 and by 381, and so it is divisible by the product 11-31 = 341.

() The definitions of these numbers given by many authors are in general
incorrect. A correct, though more complicated, definition of the numbers (which be
has called Euler numbers) has been given by F. Grube [11

() It is worth noticing that in the years 1680-81 Leibniz also claimed that
the number 2"— 2 is not divisible by = unless it is a prime. His assertion, however,
was based on a false argument. (Cf. Dickson [8], vol. I, p. 64.)
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Composite numbers n for which n|2"—2 are called pseudoprimes.
The pseudoprimes < 2000 are the following: 341 =11-31, 561 =3-11-17,
645 — 3-5-43, 1105 = 5-13-17, 1387 =19-73, 1729 = 7-13-19, 1905
— 3-5-127. D. H. Lehmer [5] and P. Poulet [2] have found all the
0dd composite numbers » < 10° for which = | 2"—2.

THEOREM 12. There are infinilely many pseudoprime numbers ().

LEmva. If n is an odd pseudoprime, then the number m = 2" —1
is also an odd pseudoprime. Clearly m > n.

Proof of the lemma. Suppose that n is a psendoprime. Then
n is 2 composite number and consequently there exists a divisor ¢ of »
such that 1 < g < n. We then have 1 < 27—1 < 2"—1 = m. From this
we infer that m is & composite odd number. According to the assumption
n is an odd number; therefore, since the fact that n is a pseudoprime implies
that (2"—2)/n is an integer, we see thab number (2" —2)[n is an even
integer. From this we deduce that 2n | 9" 2, whence n | 2"'—1. Con-
gequently, for an integer k, we have 9"1—1 = kn. Hence 2" = 972
— 9% and so 2™ —1 = (2")%—1, which implies that 2" —1|2""—1
and bence, immediately, m | 2™—2, ie. m Is a psendoprime number.
It is clear that m >n, since, by n>2 (n is a composite number),
we have 2" > n-+1, and so m > n. The lemma is thus proved.

Theorem 12 is an immediate consequence of the lemma and the
fact that there exist odd pseudoprime numbers, for example n = 341,

TUntil 1950 only odd pseudoprimes were known. D. H. Lehmer was
the first to find an even pseudoprime number. This is » = 161038. It
was by no means easy to find this number, however, the proof that in
fact it is a psendoprime is quite elementary and simple.

A straightforward verification shows that n = 2-73-1103, n—1
— 32.99.617, 2°—1 =17-73, 2¥—1 =233-1103-2089. Since 9[n—1
and 29 |n—1, we see that 2°—1]2"'—1 and 9% 12" '—1. From
this, keeping in mind the relations 73]2°—1 and 1103 |2% —1, we conclude
that the number 2°'—1 is divisible by 73 and 1103. Hence, & fortiori,
number 2"—2 is divisible by 73 and 1103. But this is an even number,
and so it must also be divisible by 2. Hence, looking at the factorization
into primes of number n we see thatn | 9™ _ 2 This shows that »is a pseudo-
prime number.

N. G. W. H. Beeger [1] has proved that there exist infinitely many
even pseudoprimes, and later A. Rotkiewicz [2] has proved that the
following assertion is also true. For arbiirary natural numbers o and b
there emist infinitely many even numbers n such that n | a"b—ab”™. This in
turn, implies that for every natural number o there exist infinitely many

(1) Cf. Cipolla [1], D. H. Lehmer [5], Sierpinski [61.
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even numbers n such that »|a"—a (1). A. Rotkiewicz [6] has proved
that there exists infinitely many pseudoprime numbers of the form
az+b (# =0,1,2,..), where a, b are relatively prime integers; ¢ > 0.

The pseudoprime numbers are sometimes called Poulet numbers,
since, as we have already mentioned, Poulet has given the tables of these
numbers. The numbers whose every divisor @ satisfies the relation 4 | 2823
are called super-Poulet numbers (ef. Dupare [2]). An example of a super-
Poulet number is the number n = 2047. In fact, we have 2047 = 21—
—1 —23-89, whence, by theorem 5% 11|21—2, so 211—1 |21 —2,
and this proves that 2047 is a pseudoprime number. The natural factors
of 2047 are the numbers 1, 23, 89 and 2047. Hence, since by theorem 5*
2312%2—2 and 89 |2¥—2, we see that 2047 is a super-Poulet number.
There exist Poulet numbers which are not super-Poulet. For example,
561 = 3-11-17. In fact, the number 560 is divisible by 2, 10 and 16;
from this and from theorem 5 it follows that 3]22—1]2%—1,
11]210—-1]2%—1,17|2"°—1|2%°~1. Hence 561 = 3-11-17| 2 —1 |
21 2. which shows that 561 is a Poulet number. However, number 33,
though it is & factor of number 561, is not a divisor of number 238 —2;
for, 2%—2 is not divigible by 11. (In fact, 2% = 1(mod1l), whence
23 = 1(mod1l1), and so 23% = &(mod1ll) and 23*—2 = 6(mod1l).) Thus
561 is not a super-Poulet number.

It follows from theorem 5% that a Poulet number which is the
product of two different prime factors is a super-Poulet number. Therefore
it seems interesting to know whether there exist infinitely many pairs
of different primes p,q such that pg|2°?—2. The answer to this
question is positive. It follows from the more general theorem of
A. Rotkiewiez [1]:

Given three arbitrary natural numbers a,b,s. There exist infinitely
many natural numbers n which are the products of s different prime
factors and such that )& '—0p L.

This theorem implies that for arbitrary natural numbers ¢ and s
there exist infinitely many natural numbers =, each of them being the
product of s prime factors, such that n]a”—a (for s = 2, ¢f. Schinzel
[11], for 4 =2 see D. H. Lehmer [5], Erdos [11]). This implies, of
course, that there exist infinitely many super-Poulet numbers. ‘

On the other hand, it can be proved that there exist infinitely many
Poulet numbers which are not super-Poulet (cf. exercise 1 below).

A composite number n is called an absoluiely pseudoprime number
if for every integer ¢ number a"—a is divisible by n.

) (*) Cf. Rotkiewicz [3]. The author proves that for every natural number o < 13
d:ffer?nt from 4 and 8 and every natural number s > 3 there exists an even number
n which is the product of s different primes and is such that n|(a+2)"—1— am~ 1.
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An absolutely pseudoprime number is, a fortiori, a pseudoprime,
the converse implication, however, not being true.

For example, as we have already seen, number 341 is a pseudoprime,
but it is not an absolutely pseudoprime number becaunse number 1131 —11
is not divisible by 31, whence a fortiors, it is not divisible by 341. (In fact,

we have 112 = —3(mod 31), whence 111 = (—3)° = —243 = 5(mod31).
Therefore 111! == 55 = — 7(mod31). But, since 1120 = 1(mod31), 113
=11 = —7(mod31), whence 113%—11 = —18(mod31).)

Tt is easy to prove that if » is the product of & different primes
@ a5 -+-) Gy Where k is a natural number >1, and if ¢—1|n—1,
i=1,2,...,k, then » is an absolutely pseudoprime number. In fact,
theorem B proves that, if ¢ =1, 2,..., % and an integer & is not divisible

by g;, then ¢; | a%'—1. Bence, since ¢;—1|n—1, ¢;|6"'—1 and we

have ¢; | " — a. The last relation is, of course, true also in the case where
i | a.

! Henee it follows that number 561 = 3-11-17 is an absolutely pseudo-

prime number; for, number 560 is divisible by 2, 10 and 16. It can be

proved that 561 is the least absolubely psendoprime number.

It is easy to see that for every natural number m if n = (6m-+1)x
X (12m 1) (18m 1), number »—1 is divisible by 36m, whence, a fortiori,
it is divisible by 6m, 12m and 18m. Thus, in consequence of what we have
stated above, we see that, if the numbers 6m+1, 12m-+1 and 18m-1
are prime, then n = (6m-+1)(12m-+1)(18m--1) 4s an absolutely pseudo-
prime number (Chernick [17).

We do not know whether there exist infinitely many absolutely
pseudoprime numbers. However, from conjecture H (Chapter IIIL, § 8)
we infer that there exist infinitely many natural numbers m such that
each of the numbers 6m -1, 12m-+1 and 18m+1 is a prime. Thus we see
that conjecture H implies the existence of infinitely many absolutely
pseudoprime numbers.

The numbers 6m+1, 12m-+1 and 18m-1 are primes simultaneously
for m =1, 6, 35, 45, 51. This yields the following absolutely pseudo-
prime numbers: 1729 = 7-13-19, 294409 = 37-73-109, 211-421-621,
271-541-811, 307-613-919.

Here are other absolutely pseudoprime numbers:

5-29-73, 5-17-29-113, 5-17-29-113-337, 5-17-29-113-337-673,
3-17-29-113-337-673-2689, 7-23-41, 7-31-73, 7-73-101,
7-13-31, 7-13-31-61, 7-13-31-61-181, 7-13-31-61-181-541,
7-13-31-61-181-541-2161, 18-37-61, 13-37-91, 13-37-241,
13-61-397, 13-97-421, 43-3361-3907.

If o is an absolutely pseudoprime number, then, of course, n | 2" —2
and n | 3"—3. We cannot prove, however, that there exist infinitely many
composite numbers for which »|2"—2 and n|3"—3.
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If » is an absolutely pseundoprime number and @ is an integer
relatively prime to =, then, since @*—a = a(e"'—1) is divisi-
ble by n, number ¢"~'—1 must be divisible by n. Composite numbers
# such that n | a™'—1 holds if (&, n) = 1 are called Carmichael numbers.
Carmichael was the first to notice the existence of these numbers in 1909.
We see that any absolutely pseudoprime number is a Carmichael
number. It can be proved that the converse is also true. One can
prove that a natural number n is a Carmichael number if and only
if n = q:¢s...qx, where k¥ >3 and ¢, ¢s, ..., g are different odd prime
numbers such that ¢;—1|n—1,¢=1,2,...,%k (c¢f. Carmichael [2], [3],
Sispanov [1], Duparc [1], Knodel [1], Erdos [17], Sierpinski [12],
pp. 186-188).

There are natural numbers » > 2 such that for every integer a
n!a"*—a. For example n = 193,

Since 195 = 3-5-13, it is sufficient to prove that for every integer ¢ number
a®— q is divisible by 3, 5 and 13. Let p denote any of the numbers 3, 5 or 13. Then,
as is easy to verify, p—1]192, because 192 = 4.48. If p|a, then clearly p|a'®®—a.
If p does not divide a, then, by theorem 5, p | 4P~ —1, and consequently, since p— 1|192,
p|a®®—1, whence p|a'®®— a. Therefore, in either case, the relation p|a'%— 4 holds
for any integer a and p = 3, 5, 13. Hence 195{a!**—a for any integer a.

Similarly, since 399 = 3-7-19, 18]396, 1028 = 3-11-31, 30| 1020, we can easily
prove that for any infeger o we have 399|a*7—a, 1023|al0%— g,

If » is a natural number > 3 such that » | a"*—a for every inte-
ger a, then, of course, for (a,n) =1 we have n | a®*—1. Numbers » > 3
for which n]a*3—1 holds for (a,n) =1, have been considered by
D. C. Morrow [1], who has called them D numbers. We prove that there
are infinitely many D numbers. As a matter of fact, we show that every
number of the form n = 3p, where p is a prime > 3, is a D number.
Ifp=38,ie if n =9, we verify directly that 9 | a®—1 for any a with
(a,9) =1. Suppose that p is a prime >3, and a is an integer such
that (a,8p) =1. Then, a fortiori, (a,p) =1, and so, by theorem 85,
p1a"7'—1, whence p | "~ —1. But, since (a,3p) =1, the number &
is not divisible by 3 and the number p —1 is even (since the number pisan
odd prime), therefore 3 | ¢®®~) —1. This shows that the number a®—%—1
is divisible by p and by 3; consequently, since (p,3) =1, it is also
divisible by 3p. Thus we arrive at the conclusion that 3p| a3 -1
holds for any @ with (a,3p) =1, and this means that 3p is a D
number.

A. Makowski [8] has proved a more general theorem, namely that
for any natural number % > 2 there exist infinitely many composite
numbers 7 such that for every integer a with (@, ny =1 the relation

n|a**—1 holds. {The proof of this theorem will be given in Chapter
VI, §5.) '
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EXERCISES. 1. Prove that there are no even super-Poulet numbers.

Proof. Suppose, to the contrary, that 2» is a super-Poulet number. Then
27|22 — 2, whence n|2¥~1—1, and this shows that n must be an odd number. Since
9n is a super-Poulet number, n| 2"— 2, whence, since 7 is 0dd, n|2"~1— 1. Consequently,
gince n|27—1—1, n|2¥—1_9n-1 = on—1(2%_ 1), Hence, using again the fact that
n is odd, we obtain »|2"—1, which, compared with »{2"—2, proves that » = 1,
which is impossible, since 2n is a composite number.

We have already mentioned Beeger’s theorem that there exist infinitely many
oven Poulet numbers. In view of exercise 1 these numbers cannot be super-Poulet.
Thus we see that there exist infinitely many Poulet numbers which are not
super-Poulet.

2. Prove the fact, observed by 8. Maciag, that n = 2-73- 1103-2089 is a pseudo-
prime number.

Proof. We have n = 2089m, where, in accordance with what we have proved
above, m is a pseudoprime number and 9|m—1, 29|m—1. Hence n—1 = (m—1)x
X 2089 -+ 2088. Since 2088 = 28-32-29, by 9|m— 1 and 29|m— 1, we infer that 8{n—1
and 29|n— 1. Hence, since 2°—1 = 7-73 and 2%—1 = 233-1103-2089, it follows
that 73|27=1—1, 1103]{27—1— 1 and since 2089|2%— 1, 2089|2"—*— 1. Now, looking
at the factorization of number n into prime factors, we see that »[2"—2.

3. Prove that there exist infinitely many Mersenne numbers which are
Poulet numbers.

The proof follows immediately from the lemma in the proof of theorem 12
(and the fact that there exist odd Poulet numbers, for example 341).

However, we do not know whether there exist infinitely many Mersenne numbers
which are super-Poulet numbers.

4. Prove that the relation m|2"— 1 cannot hold for a natural number n > 1.

Proof (due to A. Schinzel). Suppose to the contrary that = is a natural number
greater than 1 such that n|2%— 1 holds. Let p be the least prime divisor of the num-
ber n and & the least natural number for which p|28— 1. Since p > 1, we must have
&> 1. Moreover, the relation p|2%— 1 implies §|n. For, if n divided by & leaves the
remainder 7 with 0 <r < 8, then m = kd+r, whence 271 = 2F02r—1. I.Sut,
since p|29—1 we have 2% = 1(modp), whence 2"—1 = 2"— 1(modp) and so, since
p|2%— 1, we have p|2'— 1, contrary to the definition of é. In virtue of the theorem
of Fermat, p|2P—1— 1 (this is because n and, consequently, p are odd). Hence th.e
definition of § implies that 6 < p— 1 which gives 1 < § < p, contrary to the defi-
nition of the prime p.

Remark. It is easy to prove that there exist infinitely many natural numbers
n such that n]| 2%+ 1, for example, such are the numbers » = 3% wherek = 0,1, 2,...
It is also not difficult to prove that there exist infinitely many natural numbt?rs n
such that #|2%+ 2. In fact, we see that it is trivially true for » = 2, and, if » is an
even natural number such that #|2" 42 and n— 1|2+ 1, then the number m = 2"+ 2
safisfies the relations m|2™+2 and m— 1|24 1. Thus we obtain the numbers
7 =2,6,66,... A. Schinzel has proved that there are no natural numbers n > 1
such that n|2"—141,

5. Prove that there exist infinitely many composite numbers n which satisfy
the relation n|a®"!—a for any integer a.

Hint. It is easy to prove that it suffices to put m = 2p, where p is an odd
prime.
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§ 8. Lagrange’s theorem.

FL‘EEOREM 13 (Lagrange). If n s a natural number and f(z) is a poly-
nomial ¢‘)f. degree n with respect to & with integral coefficients ; if, moreover
the coefficient of a™ is not divisible by p, then the congruence f(w) = 0(mod p;
kas at most n roots.

_Proof. It follows from the corollary to theorem 2 that theorem
13 18 true for n = 1. Let n denote an arbitrary natural number > 1 and
suppose that theorem 13 holds for polynomials of degree n—1. Let

h 0 .
f(mzﬁ.:.auf +a,2" '+ 4 a,_ 104 a, be a polynomial with integral
coefficients such that a, is not divisible by a prime number » and
that the congruence ? Teppese

(37) Flz) = 0(modp)

h?ls Jl;lnore than » roots. Then there exist n--1 numbers oy, x5, . y Ty

which are different roots of congruence (37). Thus, in particul s flon

= 0(modp). We have ) ’ ! e J(o)
F@)—f(w,) = aq(a" —a})+ ay (a" ' — S y_y (B — ).

~ But, since

o —af = (z—2,) (2" + wk_2m1+-~-+mllc—l)1
this gives

(38) f@)=f(@) = (@—21)g(x),

where ¢(x) is a polynomial of de; i i

€ gree n—1 with respect to # and integral
f;oefﬁcmr.xt{i..Moreover, the coefficient of 2™ is @, which, by assumptigon
is not divisible b-y p. Thus, by (38) and the fact that flz) = O(mod;p)’
congruence (37) is equmivalent to the congruence

(39)

3

(z—a@1)g(x) = 0(modp).

GOnsequent}y, each of the numbers »,, x,, .. -y Tny1 18 @ ToOb Of congruence
({3’9). For 1=2,3,...,n4+1 we then have P | (@;—m,)g(2;), which
since @, 2, SRECRE different roots of congruence (37) ir:lfﬂies thaé
Pplg(m) for ¢ =2,3,...,n+1. This proves that the cox’ngruence g(x)
= 0(mod p) has at least n different roots, which contradicts the assump-
tion that theorem 13 holds for polynomials of degree n—1 !

From this we conclude that congruence (37) cannot have I;aore than
n roo’ss,.a,nd this, by induction, completes the proof of theorem 13

It is essential for theorem 13 that the modulus P is prime. For
e-xa,{nple, the congruence 22—1 = 0(mod8) has four roots: 1, 3 .5 75
similarly, the congruence #2+ 3212 = 0(mod 6) has four roots 1’, 2,, 4,, 5:

h ugh the eadmg (‘uOBfflC‘lentr in eith € re y
tho 1 > ither of >
of the CODgTu nces 18 lativel
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It can be proved that if m is a composite number, then only in the
case m = 4 the following theorem holds: if f(x) is a polynomial of degree
n with integral coefficients such that the leading coefficient is relatively prime
to m, then the congruence f(z)= 0(modm) has at most n different roots
(ef. Sierpinski [12], pp. 180-131).

COROLLARY. If a congruence of degree n, with integral coefficients and
a prime modulus p has more than n roots, then all the coefficients are
divisible by p.

Proof. Let (37) be a congruence satisfying the condifions and let

f@) = aga™+a;8" 7 4ot B

Suppose that among agy oy, -..y Gn there are coefficients which are not
divisible by p, and let a,, be the first term of the sequence &g, 4y, ..., 4y
which is not divisible by p. Then for every integer z we have

F(#) = U@ ™t G 1 8" A G2+ 0, (m0dD).

Tf n = m, then f(z) = a,(modp), and, since congruence (37) has more
than n Toots, there exists an integer # such that f(«) = 0(modp), whence
a, = 0(modp). This shows that m must be <n. Consequently the poly-
nomial @,a™ ™4 ...+ t_@-+a, satisties the conditions of theorem 13,
and 5o it has at most n—m < n different roots, contrary to the assumption.
The corollary is thus proved. :

Tf all the coefficients of a congruence are divisible by the modulus,
then, of course, the congruence holds identically. The converse, however,
is not true. For example, the congruence 2+ = 0(mod2) holds iden-
tically. Similarly, by theorem 5% the congruence 2" — 2 = 0(mod17)

holds identically.

A simple application of theorem 5 leads us to the conclusion that
every congruence, where the modulus is a prime p, is equivalent to a con-
gruence of a degree not greater than p. In fact, by theorem 5% for
every integer x# we have
and 80 oOD.

P = m(modp), o' =ua?(modp),

This shows that any power =>p of the unknown & ean be replaced by

a power <p—1 of =
THEOREM 14. If m = ab, where a, b are relatively prime natural num-
bers, then the number of the roots of the congruence

(40) f(@) = 0(modm),

where f(z) is a polynomial in x with integral coefficients, is equal to the
product of the number of the roots of the congruence

(41) f(=®) = 0{mod a)
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and the number of the roots of the congruence

(42) f(#) = 0(modd).

Proof. If & is a root of congruence (40), then it is a root of each
of the congruences (41) and (42). The reason is that, if m [ f(2), then,
a fortiori, a | f(z) and b | f(x). Thus we see that to each Toot of congruence
(40) there corresponds a pair u, v, 4 being a root of congruence (41)
and » being a root of congruence (42). (To be more precise: # is the re-
mainder obtained by dividing # by a, v is the remainder obtained by
dividing # by b.) It is easy to verify that different pairs u, correspond
to different roots of congruence (40). In fact, if to two different roots
@, y corresponds the same pair u, v, then ¢ = y(moda) and # = Y (modbd),
which, in virtue of (a,b) = 1, implies m = ab |z—y and consequently
¢ = y(modm), contrary to the assumption that the roots 2,y are dif-
ferent.

Now suppose that 4 is a root of congruence (41) and v a root of con-
gruence (42). Then, since (@, d) = 1, in virtue of the Chinese remainder
theorem (cf. Chapter I, §12), there exists an integer # such that

z=wu(moda) and w= v (mod b),
whence, by theorem 1, f(z) = S(u)(moda) and f(z) = J{v)(mod d). But,
since f(u) = 0(moda) and f(v) = 0(modd), we have f(z) = 0(moda)
and f(z) = 0(mod?); consequently, since (a,b) =1 and ab = m, f(x)
= 0(modm).

Thus we have shown that to each pair (%, v), where % is a root of
congruence (41) and o is a root of congruence (42), there corresponds a root
of congruence (40). This proves the existence of a one-to-one correspon-
dence between all the roots (non-congruent with respect to the modulus
m) of congruence (40) and all the Pairs %, v consisting of the roots of con-
gruences {41) and (42), respectively. Thus we see that the number of the
Toots of congruence (40) is equal to the number of the pairs u, v, where

% I8 a roob of congruence (41) and v i8 a root of congruence (42). Hence
theorem 14 follows.

COROLLARY. If m = goigee. .. i s the factorization of am integer m
into primes, then the number of the roots of congruence (40) s equal to the
product of the numbers of the roots of the Sollowing % congruences:

F@) = 0(modgp), fo)= O(modgs?), ..., flo)= 0 (mod g3).
This gives a method of reducing the solution of a congruence with

respect to an arbitrary modulus m to the solution of congruences with
Tespect to moduli each of which is g power of a prime number.
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EXERCISE. Prove that for every natural number » there exists a modulus
m such that the congruence 2?® = 1(modsm) has more than = roots. .

Proof. If p is an odd prime, then the congruence 22 = 1(modp) has preci-
gely two roots, 1 and p—1 (ef. § 5). It follows fror'a the corollary to the_orem 1:_1 that
the congruence 22 = 1(modp,ps...ps4+1) has precisely 2° roots. T]msn it remains to
find a natural number s such that 2° > n. For example, the congruence 2 = 1 (:nod 105)
has 8 roots, since 105 = p,pyps. (The roots are 1, 20, 34, 41, 64, 71, 76, 104,

§ 9. Congruences of the second degree. Let us consider a congruence

of the second degree
(43)

where m is a given natural number, and @, b, ¢ are given integers. We as-
sume that a =t 0(modm), since otherwise if & = 0(modm), (43) be-
comes a congruence of degree less than sz(?. ) ‘

Since the relation m | ax®+ bx+-¢ is equivalent to the relation 4am |
| 4a(aw®+bx+c), congruence (43) is equivalent to the congruence

ax®-+bo- ¢ = 0(modm),

(44) 4a(ax?+ br+c) = 0 (moddam).

Let D = b2—4ac. Then, in virtue of the identity
4a(az?+ bx+-6) = (2ax+ b)2— (b2 — 4ac),
congruence (44) can be rewritten in the form

(45) (2az-+b)? = D (mod dam).

Let # be a root of congruence (43) and let 2 = 2ax+b. Then, by (45),
2 is a root of the binomial congruence

(46) 22 = D(mod4am).

Thus, we see that to each root x of congruences (43) corresponds a root
3l 46). _ ]
o C?[l;gr;?ie‘;e tE) e)sta,blish the converse correspondence, that is, to ﬁ.nd
for a given root z of congruence (46) all the roots @ of (43) to Whmhb
the root z corresponds, we have to solve the congruence 2am-}-b
= z(mod4aem). (This, as we know, is solvable Wheneve'r (2a, 4am) | z——l ,
i.e. whenever 2a | 2—b.) Thus we arrive at the conclusion that the1 ss. u-
tion of a congruence of the second degree Gaﬂil be ?'educed to the 52611 1(;2
of a congruence of the first degree and a binomial con.gruenee (46).
view of the remark in the corollary to theorem 14, the solution of congruence
(46) reduces to the solution of the congruences

(47) 22 = D(modp*),

where p is a prime and a is a natural number.
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We are going to solve congruence (47) now. At first we suppose that
2| D. Then D = p*D,, where u is a natural number and D, is not
divisible by p.

I p>a, then D= 0(modp®) and so (47) becomes the congruence
22 = 0(mod p®), which is easy to solve.

It 4 < a, the congruence (47) is equivalent to the equation

& = p*(Dy+ 1",

where ¢ i3 a suitably chosen integer and the number D,--#p°* is not
divisible by p (becanse D, is not divisible by p). Hence we infer that I3
is the highest exponent of p for which p* divides 2% Consequently, 4 must
be an even number. We then write x = 21, where 4 is a natural number.
Hence z = p*, and so, by (48), # = Dy4p®*. This yields the con-
gruence

(48)

24 = Dy (modp™*).

Thus we see that the solution of congruence (47) reduces to the solution

of a congruence of the same type, the right-hand side of which is not

divisible by p. We then suppose in congruence (47) that D == 0(modp).

If 2 satisfies this congruence, then, a fortiori, it satisfies the congruence
#* = D(modp),

which proves that D is a quadratic residue for the modulus p. From this
we conclude that a necessary condition for the solvability of congruence
(47) (with D not divisible by p) is that D should be a quadratic residue
for the modulus p. We prove that this condition is also sufficient. For
this purpose, it is of course sufficient to prove that, if the congruence

(49) 2 = D(modp™1),

where ¢ is a natural number > 1, is solvable, then congruence (47) is
solvable as well.

The cases where p is odd and p =2 are treated separately.

At first we suppose that p is odd. Let ¥ be an integer satisfying
congruence (49). Then

(50) ¥ = D(modp®1).

Hence it follows that the number

¥—D

is an integer. Denote by z the root of the congruence

(52) 2zy+M = 0(modp).

(81) M=
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The solvability of (52) follows from the fact that since D is not di-

visible by p, ¥ is not divisible by p, whence, since p is odd, 2y is not

divisible by p. Let 2 =y+9p°'w. Hence 2* = P 2"y Lk,

Since, by (51), ¥* = D-+Mp*?', we see that

(53) & = D+ (2uy - A)p*~ -+ ptp*t

holds. In view of (52), number 2zy+ M is divisible by p. In virtue of

2a—2 = a+(a—2) >« (since a>1), p°|p*>. Therefore, by (53),

# satisfies congruence (47). Thus we have shown that the condition is

sufficient. We formulate the result as follows:

THEOREM 15. Congruence (47), where p is an odd prime, a a natural
number and D an integer not divisible by p, is solvable if and only ¢f D
is a quadratic residue for the modulus p.

‘We now prove that under the conditions of theorem 15 congruence
(47) has precisely two roots. -

If z is a root of congruence (47), then, clearly, the number 2,
is also a root of that congruence. Moreover, # and #, are not congruent with
respect to the modulus p° since, if they were, we would have p° | 22, which,
since p is 0dd, would give p* | # and hence p | D, contrary to the assump-
tion. Thus we see that there exist at least two different roots of congruence
(47): # and 2,. We are going to prove that they are the only roots of (4_7).
Suppose that ¢ is a root of congruence (47). Then #* = D(modp”), which
by 2* = D(modp“) implies #* = 2*(modp®). Hence p°|(t—2z)(i+2). If
the numbers {—z and i-}-2 were both divisible by p, then p | 2#, which:
gince p is odd, would give p | 2z and hence p | D, contrary to the assump-
tion. Consequently, one of the numbers {—z and {42 is not divisible by p.
If 42 is not divisible by p, then p* | t—z, that is, t = #(modp?), if {—=
is not divisible by p, then p|¢+#, whence = —z(modp"). Thus we
see that each root of congruence (47) is congruent. with respect to the
modulus p* either to z or to —=z. This proves that congruence (47) has
precisely two roots.

Now, let p = 2. Then for a =1 formula (47) gives 2? = D(mod?2),
where D, which is not divisible by 2, is odd. An immediate consequence
of this is that in this case the congruence has precisely one solution,
namely z = 1.

For a =2 the congruence has the form z* = D(mod4). But. the
square of an integer is congruent with regpect to the modulus 4 e1th§+r
to zero or to 1. Hence, since D is odd, the congruence is solvable only in
the case where D is of the form 4%k--1. Then, as can be veritied directly,
the congruence has two solutions, 2 =1 and 2z = 3. _

For a = 3. the congruence is of the form 2* = D(mod8). Since D
is odd, number z must also be odd, whenece, since the square of an odd
15
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Elementary theory of numbers


Yakuza


226 CHAPTER V. Congruences

integer is = 1(mod8), we see that for the congruence to be solvable it

is necessary that D should be of the form 8%k-+1. As is easy to verify, the

condition is also sufficient and the congruence has four solutions: 1, 3, 5, 7.
Now let a>3. We have to consider the congruence

(54) # = D(mod?2%)

where a > 3.

We see that congruence (54) implies the congruence 2 = .D(mods3).
For the latter to be solvable it is necessary that D = 8%k+1. We prove
that this, in turn, is a sufficient condition for the solvability of (54). To
do this suppose that D = 8k-+1 and that the congruence

(55) 22 = D(mod 2*~%)

is solvable. (This, as proved above, is true for a = 4.) Then there exists
an integer y such that y* = D(mod2*?) and, since D is odd, y, of course,
must also be odd. Let

y'—D

(36) "=

Then M is an integer. Further, let # be the root of the congruence

(87) 2y M = 0(mod2),

of the first degree with respect to . This is solvable since the coefficient y
of the unknown and modulus 2 are relatively prime. Let 2 = y4+22° 2. In
virtue of (56) we have

(58) 22 — y2+$y2a—1+m222a—4 =D+($y+M)2u~l+w222zz—4‘

But, in view of (57), the number zy-+M is even, whence (zy--M)2°!
= 0(mod2") and, in virtne of 2a—4 = a+(a—4) > a (which is valid
because a>4), 2'2* is divisible by 2° Consequently, #2%* =0
(mod2%). Thus we see that (58) implies (54), which proves that for any
a >3 the solvability of congruence (55) implies the solvability of con-
gruence (54). But since, as we have assumed, D = 8%+1, the congruence
#* = D(mod 2?)is solvable; hence, by induction we see that (for D = 8k+1)

congruence (54) is solvable for the natural numbers a>3. We have
thus proved the following

THEOREM 16. In order that the congruence 2? = D(mod2%), where
D is odd and a is o natural number, be solvable, it is necessary and suffi-
cient that D should be of the form 2k-+1, 4k+1 or 8k+1 depending on
whether « =1, a =2 or o> 2.

We now prove that for a > 3 congruence (54) (with D = 8k-4-1)
has precisely four roots.

icm
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‘We have proved that (under the assumptions made) the congruence
has at least one root. Denote it by 2,. Let 2 be an arbitrary root of congru-
ence (54). We have zj = D(mod2°), whence, by (54), 2°" | (2 —2g) (2 25)-
Since D is odd, the numbers z and 2, are also odd, whence it follows that
the numbers z—=z2, and s}z, are even. They cannot hoth be divisible
by 4, since if they were, number 2z would be divisible by 4, and so 2 |2,
which is impossible. Thus one of the numbers z—z,, z-z, is not divis-
ible by 4. If z—=z, is not divisible by 4, then number }(z—z,) is odd.
But, since 2°7 | $(z2—2,)(2+2,), we have 2°'|z+2,, and consequently
2 = —2,+2°', where ¢ is an integer. If ¢ is even, then z = — z,(inod2°%);
if ¢ is 0dd, then z = —#,+2° ' (mod 2%). Now we consider the other case,
ie., that 242, is not divisible by 4. Then the number {(z-}-2,) is odd,
whence, in virtue of 2°' | (z—2,) }(2+2,), We infer that 2°' | z—z,, and
50 # = %,+2°'u, where % is an integer. If u is even, this gives z =,
(mod2%); if % is odd, then z = 254 2°"!(mod2%).

‘We have thus proved that any root zof congruence (34) must satis-
fy one of the following four congruences:

— 2,2 (mod 2%,

2 = 2,+ 2" (mod 2%).

2z = —2,(mod 2%, =
(59)
z = 2o(mod 2%),
This shows that the number of the roots cannot be greater than four.
On the other hand, it is easy to verify that each number given by any of
the congruences (59) satisfies congruence (54) (whenever it is true for z,)
and, since for a >3 any two of these numbers are not congruent with
respect to the modulus 2° we see that they are different roots of con-
gruence (54).
The results we have obtained can be formulated in the following
THEOREM 17. In order that the congruence 2* == D(modm), where
D is an integer and (D, m) =1, be solvable it is necessary and suffi-
cient that 1° D should be a guadratic residue for every modulus that is an
odd prime factor of number m and 2° D should be of the form 4k-+1 for m
divisible by 4 but not divisible by 8 and of the form 8k-+1 for m divisible
by 8. The number of the roots of the congruence is equal to 2***, where 1 4s
the number of odd prime factors of the number m and u = 0 for m not divis-
ible by 4, u = 1 for m divisible by 4 but not divisible by 8, and, finally, p = 2
for m divisible by 8.
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