CHAPTER III

PRIME NUMBERS

§ 1. The primes. Factorization of a natural number m into primes.
Any number > 1 which has no natural divisors except itself and 1 is called
& prime number, or simply a prime. A necessary and sufficient condition
for a natural number m > 1 to be a prime is that m should not be the product
of two natural numbers less than m. In fact, if m is a prime, then it cannot
be the product a-b of two natural numbers less than m, since, if it could,
the numbers o and b would be greater than 1 and therefore the number
m would have a divisor greater than 1 and less than m, which would con-
tradict the assumption that m is a prime. This proves the necessity of the
condition. On the other hand, if the number m is not a prime, then it
has a divisor a such that 1 < ¢ < m and hence m — a-b, where b must
be a natural number less than m, since ¢ > 1. Thus the number m is the
product of two natural numbers, each of them less than m. Thus the
sufficiency of the condition is proved.

Thus the definition itself provides a method by means of which
one can decide whether a given natural number # > 1 is a prime or not. In
fact, it suffices to divide the number n by the numbers 2,3,...,n—1
Successively and see whether any of these numbers divides the num-
ber n; if none of them does, then (and only then) the number # is a prime.

A natural number which is neither 1 nor a prime is said to be com-
Dposite. Such a number is representable as the product of two positive inte-
gers each less than the number in question. Consequently if » is a compo-
site number, # = ab, where @ and b are natural numbers each less than
n; it_ follows that each of the numbers a , b is greater than 1. Interchang-
ing, if necessary, ‘ﬁhe réles of ¢ and b, we may assume that a < b, whence
a* < ab =n, and consequently a < Vn. Hence we have

TEEOREM 1. If 6 natural number n is composite, then it has a divisor
a such that 1< a << Vn.

It follows that in order to decide whether a natural number » >1

is a prime it sufﬁ_‘ees to divide it by numbers greater than 1 and not
greater than Va, sueccessively.
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‘We now prove

THEOREM 2. Ewvery natural number > 1 has at least one prime divisor.

Proof. Let » be a natural number > 1. Obviously the number n
has some divisors greater than 1, since the number » itself is such a divi-
sor. Denote by p the least of them. If » were not a prime, then we would
have p = ab, where a, b would be natural numbers greater than 1 and
less than p. Thus the number a would be a divisor of » at the same time
greater than 1 and less than p, contrary to the definition of p. Therefore
p is a prime and this completes the proof of theorem 2.

As an immediate consequence of theorems 1 and 2 we have

CoROLLARY 1. Ewery composite number n has at least one prime divi-
sor < I/'n.

COROLLARY 2. Every natural number >1 ds the product of a finite
number of prime factors. (Clearly, trivial products of one factor are not
excluded).

Proof. Suppose to the contrary that corollary 2 is untrue. Then there
exists a least natural number » >1 which is not the product of prime
numbers. In virtue of theorem 2 number » has a prime divisor p and
n = pn;, where n, is a natural number. We cannot have n, = 1; for,
in that case we would have » = p and the corollary 2 would be true.

Therefore n, >1 and n# = pn, > n,. Hence n, < n, and from the
definition of number # we infer that n, is the product of prime numbers.
Then, however, the number % = pn, is also the product of prime numbers,
contrary to the definition of number #. Thus the assumption that corol-
lary 2 is untrue results in a contradiction. Corollary 2 is thus proved,

A question arises whether there existy a method which would enable
us to represent a given natural number as a product of prime numbers.
We show that, although the calculations involved may be very long,
such a method does exist. It is sufficient to prove that for a given natural
number one can either find the required factorization for the number
n itself or reduce the problem to finding such a factorization of a num-
ber less than n.

If » is a natural number > 1, then, dividing it by 2, 3, ..., n succes-
sively, we find its least divisor which, as we know, is a prime p. We then
have n = pn,, where #, is a natural number. If n;, = 1, then n = p and
the desired representation is completed. If n, > 1, then in order to find
the representation of » it suffices to find the representation for the num-
ber n,, less than n. Continuing, we proceed similarly with =, in place of n.
It is clear that after a finite number of steps less than n we ultimately
obtain the representation of number # as a product

n = pp'p”...p% 1
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of prime factors. If in this product some identical factors occur, then
replacing them by the powers of suitable prime numbers we can rewrite
the representation in the form

) n=grgrt. . g

where ¢y, gs, ..., g, are all different prime numbers, i.e. for instance,
G <g<..<g and @ (¢4=1,2,...,5) are natural numbers. Such
representation of a natural number # is called the faclorization of n into
prime numbers.

In factorization (1) of number » the numbers ¢;, g, ..., ¢s are all
the prime divisors of the number n. In fact, if the number n were divis-
ible by a prime number g different from the numbers g, ¢z, ..., g,
then, for ¢ =1,2,...,s, we would have (g, ) =1, since the prime
number ¢ has only two divisors, ¢ and 1, and g # ¢;. Therefore any two
different prime numbers are relatively prime. We would also have
(9,¢¥) =1for ¢ =1,2,...,s, whence, in virtue of (1) and theorem 6*
of Chapter I, (¢,n) =1, contrary to the assumption that » is divisi-
ble by g.

We see that the numbers ¢; (¢t =1, 2,...,s), as well as the number
of them, are uniquely determined by number » (as the prime divisors
of n). Moreover, also the exponents a;, as, ..., o, are uniquely determined
by n. In particular, the number ¢, can be defined as the greatest natu-
ral number for which ¢f|n, since in the case ¢i'*' |n we would have
¢: | ¢5*...¢5* | m, which is impossible. Therefore, since we have assumed
that ¢, g;, ..., ¢; is an increasing sequence, factorization (1) is unique.

This leads us to the following

TueoREM 3. Any natural number can be represented in one and only
one way as a product of primes. (Clearly enough two factorizations are
regarded as being identical if they differ in the order of the factors).

As has been proved above, for every natural number n >1 we are
able to find the factorization into primes effectively provided we are
not daunted by long ecalculations, which may possibly oceur.

In some cases these are too long to be carried out even with the aid
of the newest technical equipment. For instance this happens in the case
of the number 2% —1, which has 31 digits. (We know that this number
is composite.) We do not know any of its prime divisors, although we do
know that the least of them has at least 8 digits. We do not know any
of the prime divisors of the number F,, = 22 -1, either. It is not known
whether this number is a prime or not. We know a prime divisor of the
number Fi,, namely 5-241, though we do not know any other
of its prime divisors, which, as we know, do exist.

An example of a number which can easily be proved to be compo-
site but none of whose prime divisors are known is the number .
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THEOREM 4. If a natural number n is greater than 2, then between
n and wn! there is at least one prime number.

Proof. Since n > 2, the number N = n!—1 is greater than 1, whence,
in virtue of theorem 2, it has a prime divisor, p. Number p cannot be less
than or equal to =, since, if it could, it would divide 1, which is impos-
gible. Consequently p >n. On the other hand, p < N, p as a divisor
of N. Thus we conclude that n <p <n!—1 <=n!, which completes
the proof.

It follows that for each natural number n there exists a prime num-
ber greater than m; therefore there are infinitely many prime numbers.
In particular, there exist prime numbers having at least ten thousand
digits, but we do not know any one of them. The greatest prime number
which is known so far is the number 2"*** —1; it has 3376 digits. The proof
that it is' a prime number was carried out in 1963.

EXERCISES. 1. Given a prime each of whose digits (in the decimal expansion)
equals 1, prove that the number of the digits must be prime. (The converse impli-
cation is not true).

Proof. Let » be such a number having s digits in the decimal expansion, each
equal to 1; suppose that s is a composite number, i.e.s = ab, where a, b are natu-

ral numbers, each greater than 1.

10°—1 10%—1 10°—1
= But 10%—1]10%— 1, whence

10%—1 . . 109—1  10%—1
is a natural number > 1, since a > 1. Since b > 1, we have 5 < n

‘We then have n = .

=M.

1
, less than » and

10—
From this we conclude that number n has a divisor

greater than 1, which is impossible. This completes the proof.

To see that the converse implication does not hold we note, for example, that
111 == 3-37 and 11111 = 41-271. We do not know whether the sequence 11, 111,
1111, ... contains infinitely many terms which are prime numbers. M. Kraitehik [2]
(Chapter III) has proved that number (10%-—1)/9 is a prime, and D. H. Lehmer
[1] has proved that number (10%?—1)/9 is composite.

2. Prove that there exist infinitely many natural numbers which are not of
the form a?+p, where a is an integer and p a prime.

Proof. Such are for instance the numbers (3n 4 2)2, where n = 1, 2, ... Suppose,
to the contrary, that for a natural number n we have (3n+2)* = a®+p, where a
is an integer and p a prime. Then, plainly, ¢ cannot equal 0; consequently, we may
assume that @ is a natural nnmber. Then 3n+2> a, 80 3n+2—a> 0. But p
= (83n+2—a)(3n+-2-+a), whence 3nt+2—a =1 and 3n--2+a = p, which implies
that p = 6n+3 = 3(2n+1), which is impossible.

Remark. It can be proved that for every natural number % there are infinitely
many k-powers of natural numbers which are not of the form a4 p, where a is an
integer and p a prime. (cf. Clement [2]).

As verified by Euler, each odd natural number =, with 1 < n < 2500, is of the
form n = 202+, where a is an integer and p a prime. This is not true for n equal
to 5777 and 5993, cf. Dickson [8], Vol. I, p. 424. I do not know whether there exist

Elementary theory of numbers 8
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infinitely many odd natural numbers that are not of the form 2a*-+p, where a is
an integer and p a prime.

3. Prove that every number of the form 8"+ 1 is composite.

Proof. For each natural number n we have 2741|287+ 1 =8+ 1 and, clear-
ly, 1 < 2"41 < 8"+ 1. This proves that the number 8"+ 1 is composite.

Remark. We do not know whether there are infinitely many prime numbers
of the form 10"+1 (n = 1,2,...), or whether every number of the form 12"-1
is composite (n > 1).

§ 2. The Eratosthenes sieve. Tables of prime numbers. It is an im-
mediate consequence of corollary 1 of § 1 that, if a natural number n > 1
is not divisible by any prime number < ]/;1:, then » is a prime number.

It follows that in order to obtain all the prime numbers which occur
in the sequence 2,3,4,...,m, where m is a given natural number, it
suffices to remove all the multiples kp of the prime numbers p < Vm
with ¥ > 1 from the scquence. Thus, in particular, to obtain all the
primes occurring in the scquence 2, 3, ...,100 it is sufficient to remove
from the scquence all the numbers greater than 2,3,5 and 7 and
divisible by at lcast one of these numbers.

An easy method of finding consecutive prime numbers was given
by a Greek mathematician Eratosthenes. We consider the sequence
2,3,4,... Then, since 2 is the first prime number p,, we remove from the
sequence all the numbers greater than p, and divisible by 2. The first
of the remaining numbers is 3 = p,. We now remove all the numbers
greater than p, and divisible by p,. The first of the remaining numbers
is 5 = ps. Suppose that after the nth step we have found the nth prime
number p,. We remove from the sequence all the numbers gredter than
P, and divisible by p,. The least number which has not yet been re-
moved is the n-+1-th prime number.

If the sequence of the natural numbers from 2 onwards is replaced by
the scquence of natural numbers 2, 3, ..., ¥, the above procedure termi-

natcs after “he kth step, where p, is the greatest prime number < VN.

Thus we obtain p, = 2, p, =3, p, =5, p, =7, ps =11, ps = 13,
Pr =17, py =19, py = 23, p1y =29, Py5 = 97, Py = 541, pyg = 1223,
Prooo = T9LT, Doy = 9973, P1ose = 10007. It has recently been computed
that Pegeooe = 104395301 («f. Editorial Note [1]). D. Blanufa [1]
has found the following simple geometric interpretation of the Erato-
sthencs sieve. In the Cartesian system of coordinates the set 4 of points

1
(0,5), m =1,2,..., and the set B of points (n+1,0), n =1,2,..,

are considered. Bach point of the set A is connected with each point of
the set B by a straight line. Then the set of the abscissae of the inter-
sections of the straight lines with the straight line y = 1 is precisely the
set of composite numbers.

'e
icm

§ 2. The Eratosthenes sieve 115

1
In fact, the equation of the line joining points (0, —) and (n+1, 0)
m

is #{(n+41)+my = 1. This line intersects the line ¥ = —1 at the point
whose abscissa is # = (m+1)(n-+1). But, since m and n are natural
numbers, # is a composite number. Conversely, if # is a composite num-
ber, then # = (m+1)(n-+1), where m,n are natural numbers, and
consequently it is the abscissa of the intersection of the line joining

1
the point (0,—) and the point (n41,0) with the line y = —1,
m

There exist printed tables of the prime numbers less than eleven
millions. Cf. D. N. Lehmer [1]. In that table for each natural number
not greater than 10170000 the least prime divisor greater than 2,38,5, 7
is given. Cf. also Kulik, Poletti, Porter [1], where the primes of the
eleventh million are listed.

Jacob Philip Kulik, a mathematician of Polish origin (born in 1793
in Lwéw, died in 1863 in Prague), prepared a manuseript (to the writing
of which he devoted 20 years of his life) under the title Magnus Canon
Divisorum pro omnibus numeris par 2, 8, 5 non divisilibus et numero-
rum  primorum interjacentium ad Millies cemtum, millia accuratius ad
100330201 usque. Authore Jacobo Philippo Kulik Qaliciano Leopoliensis
Universitate Pragensi Matheseos sublimioris Prof. publ. ac ord. At present
the manuseript is owned by the Vienna Academy of Sciences. This manu-
script was used when the table for prime numbers less than twelve mil-
lions were being prepared. (Some mistakes in it were then corrected.)

An article about J. P. Kulik and his work together with his portrait
has recently been published by I. Ya. Depman [1]. For the history of
tables of prime numbers, see ibid. pp. 594-601.

In 1959 C.L. Baker and F. J. Gruenberger made microcards containing
all the prime numbers less than 104395301, cf. Baker and Gruenberger [1].

§ 3. The differences between consecutive prime numbers. As in the
preceding section let p, denote the nth prime number and let d, = Prp1—
—Pa for # =1,2,... The first hundred of the terms of the infinite

sequence di, d,, ... are the following:
1, 2, 2 4, 2 4, 2, 4 6 2
6, 4, 2, 4, 6 6 2 6 4 2
6, 4, 6, 8 4, 2, 4, 2, 4, 14
4, 6, 2, 10, 2 6 6 4 6 6
2, 10, 2, 4, 2, 12, 12, 4, 2, 4
6, 2 10, 6 6 6 2 6 4 2
10, 14, 4, 2, 4, 14, 6, 10, 2, 4
6, 8 6 6 4 6 8 4 8 10
2, 10, 2, 6 4 6, 8 4 2, 4
12, 8, 4, 8 4, 6 12, 2, 18, 6
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Number 2 is the only even number which is a prime (since even
numbers greater than 2 are divisible by 2, they are composite). Thus
numbers p,, for n>1 are odd and, consequently, the numbers &, = p,,; —
— P, are even.

Looking at the table presented above (p.115), one can raise the
question whether for each mnatural number % there exists ab least one
number n for which d, = 2k? We do not know the answer to this question.

We present here the table of the least natural numbers » for which
d, = 2k with 2% < 30 together with the prime numbers p,, pn,; such
that pp—p. = 2E.

2k 1 n 1 Pn | Prg1 2k ] n l Pn | Pny1 2k { n l P lp"“
! |

2! 2 3 5 12 ‘ 46 | 199 211 22 | 189 | 1129 | 1151

41 4 7 11 14 30 | 113§ 127 24 | 263 | 1669 | 1693

6| 9 23 29 16 | 282 | 1831 | 1847 26 | 367 | 2477 | 2503

8; 24 89 I 97 18 | 98 | 528 541 28 | 429 | 2971 | 2999

10( 34 | 139 | 149 20 J 154 | 887} 907 30 | 590 | 4297 | 4327

(Cf. D. H. Lehmer [10].)

It has been found that the least consecutive prime numbers whose
difference is 100 are the numbers 396733 and 396833. The table of the
numbers d, with n << 600 has been given by P. Erdos and A. Rényi [1] (2).
The table of d, with n <1233 has been given by M. Colombo [1].

The table of the least numbers p, for which p,,,—p, = 2k with
2%k < 156 has been given by D. H. Lehmer [10].

Over a hundred years ago the conjecture was raised that for every
even number 2k there exist infinitely many natural numbers n such
that d, = 2k (de Polignac [1]). For & = 2 this conjecture is equivalent
to the conjecture that there exist infinitely many pairs of twin primes,
i.e. pairs of consecutive odd numbers n each of which is a prime. The first
ten such pairs are 3 and 5, 5 and 7, 11 and 13, 17 and 19, 29 and 31,
41 and 43, 59 and 61, 71 and 73, 101 and 103, 107 and 109. H. Tietze
has given a table of twin primes less than 300000 presenting the greater
number of each pair. They are 2994 in number (Cf. Tietze [1] and also
Friichtl [1]. See also Selmer and Nesheim [1], where the numbers # are

(!) There are some mistakes in the table:
instead of dyge = 12 it should be dass = 2,
instead of dj;4 = 6 it should be dsjy = 4,
instead of dssg = 18 it should be dyg = 28,
instead of dys = 18 it should be dys = 28.

It should be also dsy = 2.
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given for which 6n+1 and 6n-—1 are both prime and less than 200000.
Compare also Sexton [1] and [2].) D. H. and E. Lehmer [1] have found
that there are 152892 pairs of twin primes less than 30000000. The
greatest of the known pairs of twin primes is the pair 10249649 and
10%2-4-9651.

It can be proved that the problem whether there exist infinitely
many pairs of twin primes is equivalent to the question whether there
exist infinitely many natural numbers n for which n2—1 has exactly 4
natural divisors.

‘We note here that in order to obtain from the sequence of conse-
cutive integers 1,2,...,n the prime numbers p for which also p-+2 is
prime one has to remove for each composite number % the number k— 2
provided all the composite numbers have already been removed (for in-
stance by means of the Erathostenes sieve) from this sequence (c¢f. Go-
lomb [1]).

W. A, Golubew has asked whether for a natural number » there
is at least one pair of twin primes between %% and (n--1)%.

It has been proved that the series of the reciprocals of the prime
numbers of the pairs of twin primes is finite or convergent (Brun [11]) (2).

The sum of the series

GHI+FG+D +@+R) +E+H) + G+
has been calculated with an accuracy to three decimal places by E. S.
Selmer [1]. In § 14 we shall see that the series of the reciprocals of all
the prime numbers is divergent.

., Another question to which the answer is not known is whether
there exist infinitely many primes p for which p, p+2, p+6 and p-+8
are all prime numbers. A quadruple of the primes of this type is called
simply a quadruplet. The first six consecutive quadruplets are obtained
for p =5, 11, 101, 191, 821, 1481. G. H. Hardy and J. E. Littlewood
[1] found that there are 165 quadruplets less than 1000000. O. R.
Sexton [3] settled the number of those contained between 1000000 and
2000000, which is 295. It has recently been found by W. A. Golubew
[1], [2], [38], [4] that there are 897 quadruplets less than ten millions.

It is easy o prove that for a given quadruplet such that the least
of the primes it contains is greater than 5 any two numbers entering
into it differ only in their least digits, which are 1, 3, 7 and 9, Tespecti-
vely. Clearly, each quadruplet forms two pairs of twin numbers.

However, there are pairs of twin numbers not separated by a prime
number which do not form a quadruplet. Such are the pairs 179,

(*) An “elementary” proof of the theorem of Brun is to be found in a book of
E. Landau [2].
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181 and 191, 193, for instance. The latter form a quadruplet with the
pair 197, 199. The pairs of twin numbers 419, 421 and 431, 433 are not
separated by any prime number; neither of them forms a quadruplet with
any other pair of prime numbers. The pairs of twin numbers 809, 811, 821,
823 and 1019 1021, 1031, 1033 have the same property.

It seems a natural question to ask whether there exists an arbitra-
rily large number of consecutive pairs of twin numbers not separated by
prime numbers. We know a number of triplets of such pairs. Such are
for instance 179, 181; 191, 193; 197, 199 or 809, 811; 821, 823; 827,
829 or 3359, 3361; 3371, 3373; 3389, 3391 or 4217, 4219; 4229, 4231;
4241, 4243 or 6761, 6763; 6779, 6781; 6791, 6793. We also know an
example of four such pairs: 9419, 9491; 9431, 9433; 9437, 9439; 9461,
9463.

It can be proved that if p = 5 and the numbers P, p+2, p+6 and
p+8 are prime, then, dividing p by 210, we obtain 11, 101, or 191 as
the remainder. .

Turning back to the numbers d, we note that it is eagy to prove
that they can be arbitrarily large. In fact, let m denote an arbitrary
natural number greater than 1. Let Pn be the greatest prime number
< m!+1. The numbers m!+k are composite for ¥ =2,3,...,m (since
klm!+k for k =2,3,...,m). Therefore Payr =ml4m+1 and con-
sequently d, = p,,;—p, > m.

On the other hand, we cannot prove that the numbers d,, (n =1, 2,...)
tend to infinity. There are natural numbers # such that d, = d,,,. For
instance, n = 2, 15, 36, 39, 46. There are also matural numbers # for
which d, =d,,, = dn.5: for ingtance n = 54, 464, 682, 709, 821, 829,
However we do not know whether for each natural number % there exists
& natural number # such that d, = Oppy =Cpipg = ... = Do

P. Erd6s and P. Tursn [2] have proved that there exist infinitely
many natural numbers » such that dy < dyyy and also infinitely many
numbers # for which d,, >dyyy.

It has been proved that for every two natural numbers m and %
there exists a natural number 7 such that each of the numbers By Oy oen
«+3 Gnyx 18 greater than m. In other words, there exist arbitrarily many
consecutive prime numbers such that the differences of the successive
ones are arbitrarily large (Erdos [8]). The differences of consecutive
prime numbers were the subject of extensive investigations by G. Ricei
(ef. Rieei [1], [2]).

§ 4. Goldbach’s conjecture. Under this name the conjecture that every
even number greater than 2 is the sum of wo prime numbers is known.
The conjecture has been verified directly for the even numbers up to
100000 (cf. Pipping [3], 4. ‘
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In 1959 Y. Wang [1] proved that each sufficiently large even num-
ber is the sum of two natural numbers of which one has at most two prime
factors and the other at most three; this greatly improving the first
result of this kind obtained by Brun [2] in 1920. Recently, Wang [2]
has proved that every sufficiently large even number is the sum of 2 prime
and a natural number which has at most four prime factors.

It follows from Goldbach’s conjecture that every odd integer has
infinitely many representations of the form p+q—r, where p,q,r are
prime numbers. This result, not easy to prove, is due to J. G. van der
Corput [2]. He also proved that almost every even numbers is a sam of
two odd prime numbers. This means that for each positive number &
for every sufficiently large natural number N the number of even natural
numbers << N which fail to be sums of two primes is less than &N (van
der Corput [1]).

According to A. Desboves [1] every natural number < 10000 of the
form 4%+ 2 is the sum of two primes, each being of the form 4%--1. This
of course could be true only if number 1 were regarded as a prime.
Thus, in particular, 2 =141, 6 = 1+5, 14 =1+413, 38 =1+37,
62 = 1461.

Another problem closely connected with the conjecture of Goldbach
is whether for a given even natural number 7 the number G(n) of all
possible decompositions of n into the sum of two prime numbers increa-
ses to infinity together with the number n. N. Pipping [1], [2] has cal-
culated the function G(n) for even natural numbers n less than 5000 and
some others. We have G(4) = G(6) =1, G(8) =2, G (10) = 3,6(12) = 2,
G(14) =3, G(16) =G (18) = G(20) = 4, G(22) = 5, G(24) =6. Fur-
ther, we have G(158) = 9 and the tables suggest that G(2n) > 10 for
2n > 158. Similarly @(188) = 10 and it seems plausible that ¢(2n) > 10
for 2n >188. The least even number 2u for which @(2n) =100 is 840;
actually we have G(840) = 102. The greatest number 2% for which G(2n)
< 100 is probably the number 2n = 4574.

It follows from the conjecture of Goldbach that each odd number
greater than 7 is the sum of three odd primes. In fact, if » is an odd natu-
ral number > 7, then n—3 is an even number > 4. Consequently, in
view of Goldbach’s conjecture, it is the sum of two primes, each of them
odd of course. Thus every odd natural number greater than 7 is the sum
of three odd primes.

We do not know whether every odd number > 7 is the sum of
three odd primes though the diffienlty in solving this question is only of
a technical nature, since I. Vinogradov proved in 1937 that for odd natu-
ral numbers greater than a certain effectively computable constant «
the answer is positive. Later K. (. Borozdkin [1] proved that a <
exp(expl16,038) < 3%, In view of this result it suffices to answer the
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problem for odd numbers n with 7 <n < &, which for a given natural
number is a matter of simple but perhaps tedious computations,

The situation is quite different as regards the question whether
every even number is a difference of two prime numbers. Here no method
of solution is known, even as tedious as that of the previous problem.

A. Schinzel [13] has proved that Goldbach’s conjecture implies that
every odd number >17 is the sum of three different primes. It follows
from the results of Vinogradov that each sufficiently large odd number
is such a sum. The conjecture that every even number > 6 is the sum
of two different prime numbers can also be proved to be equivalent to the
conjecture that every natural number > 17 is the sum of three different
prime numbers (Sierpinski [227).

In 1930 L. Schnirelman [1] proved elementarily that there exists
@ number s such that every natural number >1 is representable as the
sum of at most s primes. Yin Wen Lin [1] has proved by refining Schnirel-
man’s method that every natural number, from some point onwards, is the
sum of 18 ab most primes. From the theorem of Vinogradov (quoted above)
we see that every sufficiently large natural number is representable as
the sum of at most four primes; Vinogradov’s proof, however, is not
elementary.

It can easily be proved that there exist infinitely many natural
numbers which cannot be represented as the sums of less than three
primes (compare exercise 2 below).

It bas also been conjectured that every odd number > 5 is the sum
of a prime number and a number of the form 2p, where p iz a prime
(Dickson [8], vol. I, p. 424).

EXERCISES. 1. Prove that every natural number > 11 is the sum of two
composite numbers.

Proof. Let n be a natural number greater than 11. If » is even, i.e. n = 2k,
then & > 6 and n— 6 = 2(k— 3), which, in view of the fact that & > 6, shows that
n— 6 is a composite number. If 2 is odd, i.e. n = 2k+1, then & > 6 and so n—9 =
= 2(k—4) is a composite number.

2. Prove that there exist infinitely many natural odd numbers which cannot
be represented as the sum of less than three primes.

Proof. Such are, for instance, the numbers (14%+-3)%, where k=1,2, ...
In fact, the numbers themselves are not primes. They cannot be represented as the
sum of two primes either; for, if they could, then, since they are odd, one of the
primes would be equal to 2, which would give (14k+43)2 = 2+ p, where p would
be a prime. Hence p = 7(28%2-L 12k+1), which is impossible.

Remark. It can be proved elementarily that there exist infinitely many odd
numbers which are sums of three different primes but are not sums of less than three
different primes (ef. Sierpinski [307).

3. Prove that the conjecture of Goldbach is equivalent to the conjecture that
every even number > 4 is the sum of three prime numbers.

icm

§ 4. Goldbach’s conjecture 121

Proof. It follows from Goldbach’s conjecture that for a natural number n > 1
we have 2n = p+¢, where p and ¢ are prime numbers. Hence 2(n+1) = 24+p+q,
that is, every arbitrarily chosen even number > 4 can be represented as the sum of
three primes. On the other hand, if every even number > 4 is the sum of three
primes, i.e., if for # > 2 we have 2n = p+g+r, where p, g, r are primes, then at
least one of the numbers p, ¢, r must be even, and consequently equal to 2. Suppose
that, for instance, » = 2. Then 2(n—1) = p+g¢ for n— 1> 1, which implies the
conjecture of Goldbach.

4. Prove that none of the equations 22 +y° = 2%, 22+ 2 +2> = 2, 22 492 422+

+#* = «* is solvable in prime numbers.

Proof. For the first of the equations the result follows from the fact, proved
in Chapter II, § 3, that for any solution of the equation in natural numbers at least
one of the numbers must be divisible by 4.

Now suppose that there are primes x, y, 7, ¢ for which the equation &* 4- y% + 22=¢?
is satisfied. As was proved in Chapter II, § 10, at least two of the numbers x, y, z
must be even; since they are primes, each of them is equal to 2. Thus 12— 22 = 8.
But since 2, ¢ are primes and obviously odd ones, the equality (f—z)(t--2) = 8 implies
that ¢—z > 2 and consequently ¢4z < 4, which is impossible, since ¢,z are odd
primes.

Finally suppose that there exist primes =,y,z,¢, v satisfying the equation
2+ y?+ 2241 = u?. Clearly, the number % must be greater than 2, and thus it is
odd. Therefore at least one of the numbers z, y, 2, { must be odd. If precisely one of
them were odd, say ¢, then we would have ¢ = y = z = 2, whence 12+#> = w2 and
consequently (i— u)(f--u) = 12, whence, since t—u > 2, f+u% < 6. But this is
impossible since u, ¢ are different odd primes. In the other case, i. e. if three of the
primes z, y, #, t were odd, and the fourth of them were even, then u? = g2+ 321 22+
would be of the form 4k+3, which is impossible.

5. Find all the solutions of the equation z®+32+22+#+u® = +* in primes
z,Y,2,t,uw,v wWith s <y<z<i<u<o.

Solution. There is precisely one such solution, namely 22422 4224 224 32 — 52,
for it is easy to prove that only one of the numbers =, y, 2, £, u, can be odd. So we
have 4-224u? =, whence (v—u)(v+u) =16, v—u> 2, v+w<8, 50 u = 3,
v =5.

§ 5. Arithmetical progressions whose terms are prime numbers.
Axithmetical progressions consisting of ten different prime numbers
are known, for instance 1994210k, for k¥ =0,1,2,...,9.

V. Seredinsky has found that the numbers 60060k-+4943 (k =0,
1,2,...,12) form an arithmetical progression consisting of 13 different
prime numbers. We do not know, however, whether there exists an arith-
metical progression consisting of a hundred different prime numbers.
‘We shall prove that if such a progression existed then the difference of
its terms would have more than thirty digits.

To this end we prove the following theorem.

THEOREM 5. If n and r are natural numbers, n > 1 and if n terms of
the arithmetical progression m, m-+7,...,m+(n—1)r are odd prime
numbers, then the difference r is divisible by every prime number less than
n (cf. Dickson [8], vol. I, p. 425).
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Proof. Suppose that m, n>1 and r are given natural numbers
and that each of the numbers m, m+r, ..., m-+(n—1)7 is an odd prime
number. We must have m < n, since otherwise the composite number
m~+mr =m(1+7r) would be a term of the arithmetical progression.
Let p denote a prime number less than n and let 7y, 7y, ..., 7,_, be the
remainders obtained by dividing the numbers m, m+7, ..., m+(p—1)r
by p, respectively. The latter are clearly less than p and moreover
they are all different from zero, since otherwise one of the prime num-
bers being greater than m > n > p would be divisible by the prime p,
which is impossible.

Therefore the remainders can take only the values 1,2,...,p—1,
which are p—1 in number. From this we infer that for some two inte-
gers k and [ such that 0 <% <1< p—1 we have r, = r;. Consequently,
P | (m+1lr)—(m+kr) and hence p | (I—k)r. But 0 <l—k<p—1 < p,
and therefore p | 7. Since p was an arbitrary prime number less than n,
the theorem follows.

From Theorem 5 we derive the following

COROLLARY. If there ewists an increasing arithmetical progression
consisting of n > 2 prime numbers, then the difference of this sequence is
divisible by the product P, of all the prime numbers less than n, and conse-
quently it is = P,.

In particular, the difference of an arithmetical progression con-
sisting of three different prime numbers must be > P, = 2. There exists
precisely one arithmetical progression consisting of prime numbers whose
difference is 2, namely 3, 5, 7.

It is known that there exist infinitely many arithmetical progressions
consisting of three prime numbers each. The proof of this fact, however,
is difficult (¢f. van der Corput [2] and Chowla [27).

The problem of the existence of infinitely many such arithmetical
progressions is, clearly, equivalent to the qumestion whether the equation
Pp-+7r =2¢ has infinitely many solutions in prime numbers p,q,r, with
p #r. It follows from the conjecture H (cf. § 8) that for every natural
number n and every prime number p >>n there exist infinitely many increas-

ing arithmetical progressions, each consisting of » terms which are prime

numbers, the first term being p.

Here are now some examples of arithmetical progressions consisting
of three prime numbers whose first terms are equal to 3: 3, 7, 11; 3,
11, 185 3, 13, 23; 3, 17, 31; 3, 23, 43; 3, 31, 59; 3, 37, 71; 3, 41,
79; 3, 43, 83.

The difference of an arithmetical progression consisting of four prime
numbers must be > P, = 6. There are known many arithmetical pro-
gressions consisting of four prime numbers each and having the difference
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equal to 6, e.g. 5, 11, 17, 23; 11, 17, 23, 29; 41, 47, 53, 59; 61, 67,
73, 79. It follows from the conjecture H that there are infinitely many
such progressions, consisting, in addition, of consecutive prime numbers.
In particular, such are the progressions 251, 257, 263, 269; 1741, 1747,
1753, 1759.

The difference of an arithmetical progression consisting of five dif-
ferent prime numbers must also be greater than or equal to 6. There exists
precisely one arithmetical progression consisting of five different prime
numbers whose difference is equal to 6. This is 5, 11, 17, 23, 29. To
see that indeed there is precisely one such progression, we note that
among five numbers forming an arithmetical progression whose difference
is 6 one term must be divisible by 5. Similarly, we easily prove that there
exists precisely one arithmetical progression consisting of five prime
numbers whose difference is 12 — this is the progression 5, 17, 29, 41,
49 — and that there is no progression with the difference 18 or 24. How-
ever, it follows from the conjecture H that there exist infinitely many
arithmetical progressions consisting of six prime numbers each and
having the difference equal to 30. E.g. 7, 37, 67, 97, 127, 157; 541,
571, 601, 631, 661, 691. :

It follows from the above corollary that in every arithmetical pro-
gression consisting of seven prime numbers the difference must be divis-
ible by 30. If is easy to prove that there is no arithmetical progression
consisting of seven primes whose difference is less than 150. However,
there is precisely one arithmetical progression whose difference is 150;
namely 7, 157, 307, 437, 607, 757, 907. The reason for this is that in
every arithmetical progression consisting of seven natural numbers at
least one of them must be divisible by 7.

In virtue of the corollary the difference of an arithmetical progres-
sion consisting of ten different prime numbers must be = P,y = 210.
A progression whose difference is equal to 210 is formed by the numbers
199210k, where £ = 0,1,2,...,9. It follows from the conjecture H
that there are infinitely many such progressions.

In virtue of the corollary the difference of an arithmetical progression
consisting of a hundred prime numbers would have to be divisible by the
product of all prime numbers less than a hundred, and thus it would
have more than thirty digits (in the scale of ten). We are not able to find,
at least for the time being, any such arithmetical progressions. We do not
know any proof of the existence of such an arithmetical progression either.

§ 6. Primes in a given arithmetical progression. Here is a problem
on primes in arithmetical progressions of different type than those con-
sidered in § 5: for what natural numbers ¢ and b does the arithmetical
progression ak+b, k =1, 2, ..., contain infinitely many prime numbers?
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It is clear that, if (@,d) =d >1, then there is no prime in the
arithmetical progression ak+b, k¥ =1, 2, ..., because, for any k,ak+b
=d(ka/b+b/d) is a composite number (a/d, b/d arve natural numbers).
Therefore a necessary condition for the existence of infinitely many
primes in an arithmetical progression ak-5 is that (@, b) =1.

In the year 1837 Lejeune Dirichlet proved that this condition ig
also sufficient. The proof given by Lejeune Dirichlet is not elementary.
Later the proof was simplified. The simplest proof of this theorem (though
still very complicated) makes up chapter VIII (p. 73-78) of the book
by E. Trost [3].

We shall prove in the sequel several particular cases of this theorem:
in Chapter V with a =4, b =1, 3 (theorems 7 and 7a), in Chapter VI
with & = 1, ¢ being arbitrary (theorem 11a), in Chapter IX with a = 8.
b=3,5,7 (theorems 1,2,3) and with ¢ — 5, b =4 (theorem 4).

The following two theorems are equivalent:

T. If & and b are natural numbers such that (@, b) =1, then there ewist
infindtely many primes of the form ak-+b, where k is o natural number.

T1. If @ and b are natural numbers such that (@, b) =1, then there exists
at least one prime number P of the form ak-+b where k is a natural number ().

Proof. Trivially, T implies T,. Tt is sufficient to prove the converse,
that is, that T; implies T. We may suppose that a > 1 because for ¢ — 1
the theorem follows from the fact that theorem T holds. Let a,b be
two given natural numbers such that (@ay8)=1. Then, of course,
(a™,b) =1. Hence, by theorem T,, there exists a prime p such that
? =a"k+b, for a natural number %. But, since ¢ >1, a™ > 2™ > m.
Hence p >m. Thus we have proved that for any natural number m
there exists a prime of the form ak-+ b which is greater than m. This shows
that there exist infinitely many primes of this form.

It will be proved later (Chapter V, theorem 9) that every prime of
the form 441 is a sum of two perfect squares. Using this result we prove
the following corollary of theorem T:

COROLLARY. For every natural number n there evists a prime p such
that p = a®-+b2, where a,b are natural numbers each greater than .

Proof. Let n be a natural number. According to T, there exists
& prime ¢ >n which is of the form 4t—1. Then, clearly

(40 +0f @+ gt (n g, g) = 1.

(1) The proof of the equivalence of theorems T and T, was given by me in the
year 1950 (ef. Sierpinski [12], D. 526). Six years later the problem of the equivalence
of theorems T and T; was formulated in The Amer. Math. Monthly as E 1218 (1956)
P- 342; and solved ibid. by D. Zeitlin (1957, p. 46), cf. V. 8. Hanly [1]. '
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Hence, by theorem T, we infer that there exists a natural number % such
that the number

P =442+ ¢ ... (" + )k —¢

is a prime, necessarily of the form 4¢4-1.

Thus the existence of the numbers «, b such that p = a2+ 5%, where
a < b, is proved.

Suppose @ < n. Then

b =p—a =4I+ @+ ...+ 0’k — (a*+q)
=@+ 4@+’ ((a—1P+ g ((@+17+q)... (@ + 9% —1)),

where both the factors on the right-hand side of the equality are rela-
tively prime. Consequently they must be squares, but this is impossible
because the second of the factors is of the form 4¢—1. Thus we come to
the conclusion that b>a>n, and this completes the proof of the
corollary.

‘We note here that, according to a theorem of E. Hecke [1], for any
two real numbers ¢ > d > 0 there exists a prime p such that p = a%4b*

a R
where a, b are natural numbers and ¢ >—b— > d (cf. Kubilyus [1]).

§ 7. Trinomial of Euler x24-2-1-41. It is easy to prove that there
is no polynomial f(#) = a,a™+a,2™ '+...+an_ 7+ a, with integral
coefficients and a, > 0 for which the numbers f(z) would be prime for all
integral values of . In fact, as is well known, for sufficiently large =, say
for # > x,, the function f(z) is increasing. If for some z, > @y, f(2;) = p
is & prime number, then, as can easily be verified, p | f(#,-~p), which, in
virtue of f(z,+p) > f(»,) = p, implies that f(z,+p) is a composite
number.

It has also been proved that there is no rational function whose all
values would be prime numbers for all integral values of the argument
(Buck [1]).

However, there are polynomials of degree two with integral coeffi-
cients taking prime values for long sequence of consecutive natural num-
bers. For example such is the polynomial of Euler f(z) = &*+ao-+41,
whose values are prime numbers for # = 0,1,...,39. To see this we
note that f(x-+1) = f(x)+2(z+1). From this we easily infer that
for # =0,1,2,... the values f(x) are the partial sums of the series
414-2-1+2-24+2-34-... Thus we obtain the values 41, 43, 47, 53, 61, 71,
83, ..., 1601. As can be checked in the tables of prime numbers, each
of these numbers is a prime. Since f(—#) = f(z—1), also the numbers
f(—=z) are prime for # =1,2,...,40. Thus for # = —40, --39, ...,
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—1,0,1,...,39 the function f(s) takes the values which are all (not
necessarily different) prime numbers. The function f(z) has another
interesting property: for integral values of & there is no divisor d with 1
< d < 41 dividing f(z).

In fact, suppose that for an integer # we have d | f(x), where 1 < d
< 41. Let r be the remainder obtained by dividing # by d. Then # = kd -+ 7,
where kis an integer and 0 < » < d. But since f(kd+r) = kd(kd+2r4-1)+
+f(r), the relation d | f(x) implies 4 |f(r); however this leads to a con-
tradiction. In faet, in virtue of 0 <7 << d < 41, we must have 0 <7 < 39;
therefore, as we know, f(r) is a prime number > 41, and so it cannot have
@ divisor d such that 1 < d < 41. Thus for an integer » the number f (z)
has no divisor d such that 1 < d < 41.

This property is particularly relevant to finding whether for a given
natural number & > 40 the number f(x) is a prime. For z = 40 we have
f(40) = 40-41441 = 412, so the number f(z) is composite. The num-
ber f(41) = 41-42441 = 41-43 is also composite. If & > 40 and, if the
number f(z) isec omposite, then, by (r+1)? = 22--2z+1 and 441
= f(x), we obtain f(#) < (#-+1)2. Therefore the number f(x) has a prime
divisor p < #+1 and, in virtue of what we proved above, 41 <p < &
(since dividing f(x) by # we obtain the remainder 41). Thus, in particu-
lar, the number f(42) = 42-43+41 is prime; for, plainly, it is not divis-
ible by 41, the only prime number » for which 41 < p < 42.

According to B. Trost ([3], p. 41), for # running up to 11000 the
function f(x) takes 4506 different values that are prime numbers.

We do not know whether in the sequence fl@) (x =1,2,...) there
are infinitely many prime numbers. (The answer in the affirmative fol-
lows from conjecture H, cf. §8.)

It follows from the properties of the trinomial f(#) that the trino-
mial g(z) = f(# —40) = 22— 79541601 takes values that are (not neces-
sarily different) prime numbers for # = 0,1,2,...,79. (We have g()
= g(79—1) for all ¢.)

It has been proved by D. H. Lehmer [3] that if there exists a natu-
ral number A greater than 41 such that the trinomial #2544 takes
values which are prime numbers for all z — 0,1,2,..., A—2, then 4
must be greater than 125-107 and H. Heilbronn and B. Linfoot [1] have
proved that, if A exists, it is unique.

For # =0,1, ..., 28 the values taken by 622+ 6z 31 are all differ-
ent prime numbers of the form 6k+1; they are contained hetween 31
and 4909 with the limits included (C. Coxe, cf. van der Pol and Speziali
[1]). The values of the binomial 2x%4-29 are prime numbers for — 28
<z < 28.

'It can easily be proved that there exist polynomials of degree n
taking prime values for z — 0,1,...,n; however we do not know any

icm

§ 7. Trinomial of Euler 127

polynomial of degree two or higher in variable z about which we could
prove that it takes prime values for infinitely many values of 2. In par-
ticular, we do not know whether the binomial 2241 has this property.
W. A. Golubew [5] has presented a list of all natural numbers z < 20000
for which the numbers #24 1 are prime. D. Shanks [1] has found that
there are 11223 numbers » < 180000 with this property. P. Kuhn [1]
has proved that there exist infinitely many numbers #*+1 composed
of at most 3 primes (cf. Wang [3]) and B. M. Bredihin [1] has proved
that there exist infinitely many primes of the form a24-y24-1.

If a polynomial f(z) with integral coefficients takes prime number
values for infinitely many 2’s, then, plainly, the cocfficient a, at the
highest power of variable # must be positive, since for sufficiently large
values of # the polynomial has the same sign as ay. Furthermore, the po-
lynomial f(z) cannot be the product of two polynomials with integral coct
ficients, since otherwise for sufficiently large values of # the number
f(z) would be composite. Therefore the polynomial f(z) is irreducible.
However, these conditions are not yet sufficient for f(z) to take prime
number values which are even for at least one value of #. In fact, the poly-
nomial #2424 is irreducible (it has no real root) and for all intcgers
2 the numbers #*+x-+4 are composite — they are ¢ven natural numbers
greater than 4, since, as we know, the number 22+ = (2+1)x is even
and non-negative.

In 1857 W. Bouniakowsky [2] formulated the fillowing ccnjcctuve:

If f(z) is an drreducible polynomial with integral cocfjiients and if N
denotes the greatest common divisor of the numbers f(z), © running over
all iniegers, then the polynomial f(x)|N takes prime number values for in-
finitely many o’s (cf. Dickson [8], vol. I, p. 333).

For instance, consider the polynomial f(z) = 22+ 2+ 4. Since f(0) =4,
f(1) = 6 and, as we already know, f(») is an even intcger for intcger =,
then for & running over all integers the greatest common divisor of the
numbers f(z) is 2. Consequently it follows from the conjecture of Bounia-
kowsky, that for infinitely many integers z the number z(z--1)/2-+2
is prime.

§ 8. The conjecture H. Let s denote a natural number and let f, (),
fa(#), ..., fs(#) be polynomials whose coeffivients are intcgers. Suppose
that there exist infinitely many natural numbers # for which each of the
numbers f(x,), (@), ..., fo(z) is a prime. As we lcarned in § 7, the poly-
nomials f;(z), ¢ =1,2,...,s, must be irreducible and the leading coef-
ficient of each of them must be positive. Accordingly, for sufficiently
large values of # all the numbers f;(»), ¢ =1, 2, ..., s, can be arbitrarily
large. As can easily be verified, this implies that there is no natural num-
ber d>1 which divides the number P(z) = f,(2)f2(®)...fs(x) for any
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natural value of 4. In fact, if such a number could exist, it would be the
divisor of the product of s arbitrarily large prime numbers, which is impos-
sible.

‘We have thus proved that if s is a natural number and (@), folm),
.-y Js(#) ate polynomials whose coefficients are integers and if for infini-

tely many natural numbers x the numbers fi®), fa(®), ..., fo(x) are
prime, then the polynomials must satisty the following condition:
CoxpIrioN 8. Bach of the polynomials fi(z) (i = 1,2,...,8) 4s irre-

ducible, its leading coefficient is positive and there is no natural number
d>1 that is a divisor of each of the numbers P(z) = fi(#)f:(@)...f: (2),
x being an integer.

In 1958 A. Schinzel formulated the following conjecture:

Coxaecrure H. If s is a natural number and if fi{@), fa(®), ..., fo(@)
are polynomials with integral coefficients satisfying condition S, then there
exist infinitely many natural values of w for which each of the mumbers
fi(®), falw), ..., fs(x) s prime (cf. Schinzel et Sierpifiski [3], p. 188).

For the case of linear polynomials f; an equivalent conjecture was
formulated earlier by L. E. Dickson [1].

We present here some of the corollaries which follow from conjec-
ture H.

Let n be a given natural number and let fila) = 2" +1, fo(z)
=743, fu(0) = 2" 47, £,(0) =" +9. For P(a) = f,(@)fu(0)f (0, (0)
we have P(0) =1-3-7-9 and P(1) = 2-4-8-10. Consequently, (P(O),
P(l)) =1. Therefore condition S is satisfied and conjecture H gives
the following eorollary:

For every matural number n there exist wnfinitely many notural num-
bers x for which each of the numbers 41, 743, e +7, o 19 s
a prime (Sierpinski [33]).

This implies that there exist infinitely many quadruplets of prime
numbers (cf. § 3), and that there are infinitely many prime numbers
of the form 21 as well as of the form 2¢41. W. A. Golubew has
calculated that there are only four natural numbers z less than ten
millions for which each of the numbers 2241, @*4-3, 2247, 2249 is
a prime. These are # = 10, 1420, 2080, 2600.

Nowlet k denote an arbitrary integer and let f, (x) = @, fa() = x-+2F%.
For p(z) = fi(x)fo(#) we have P(1) =2k+1, P(2) = 4(k+1). Since
clearly (2k—|-1, 4(k+1)) =1, the polynomials satisfy condition S. Con-
sequently, according to conjecture H, there exist infinitely many natural
numbers  for which the numbers P =2 and ¢=z--2k are both prime
numbers. Hence 2% = P—q, which proves that the number 2% admits
infinitely many representations as the difference of two prime numbers.
This means that the conjecture H implies that every even number has
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infinitely many representations as the difference of two prime numbers.
It can also be deduced from conjecture H that every even number hag
infinitely many representations as the difference of two consecutive prime
numbers (cf. Schinzel and Sierpiniski [3], p. 190).

It follows from conjecture H that if @ and b are natural numbers
such that (a,bd) =(a,b(b+2)) =1, then there exist infinitely many
prime numbers p of the form ak-5, where % is a natural number, such
that p+2 is a prime number. In fact, let f,(s) = aw+5, folw) = a4
+b+2. For P(z) = fi(2)fs(z) we have P(0) = b(b+2), P(1) = (a+b)x
X(a+b0+2) and P(1)4+-P(—1) = 2a2+-2b(b+2). If there exists a prime
number ¢ such that g | P(z) for all integers «, then, if b is odd, P(0), and
consequently g, are odd; and if b is even, then, in view of (a ,0) =1,
a is odd; thus both a-+b and a+b+2 are odd and, consequently,
P(1) is odd, which implies that also ¢ is odd. Therefore, in any case,
g is odd. Since we have assumed that ¢|P(0), i.e. q|b(b+2) and
q | P(1)+P(—1), we have ¢ | 2a® and consequently, since q is 0dd, ¢ | a.
But this is impossible since (a, b(b+2)) =1. Thus we see that condi-
tion 8 is satisfied. Therefore it follows from conjecture H that there
exist infinitely many natural numbers # for which the numbers fi()
= az-+b and f,(x) = ar+4-b+-2 are prime. The corollary is thus proved.

It i3 easy to see that the condition {a, b(b-+2)} = 1 is also necessary
for the existence of infinitely many prime numbers p of the form ak--b
for which also the number p{2 is a prime.

Let k be an arbitrary integer and let f; (#) = @, fo(#) = 2k 14 2.
For P(#) = fi(w)fs(®) we have P(1)=2k+3, P(—1) = —(2k—1).
Since (2k—1,2k+3) =1 for every integer %, we see that the polyno-
mials satisfy condition S. Then, according to conjecture H, there exist
infinitely many natural numbers # for which the numbers ¢ = and
® = 2k+14 2z are both prime.

Hence 2k+1 = p—2g. Thus conjecture H implies that every odd
integer (>0, = 0 or < 0) has infinitely many representations as the
difference of a prime number and the double of a prime number.

G- de Rocquigny [1] has asked whether every integer divisible by 6
is the difference of two primes of the form 6%-+1. The positive answer
to this is & corollary of conjecture H. In fact, for f,(x) = 6z-+1 and fa(@)
= 6x+6k+1, P(z)=fi(s)f2(#) we have P(0)=6k+1, P(—k) =

—(6k—1) and, as is known, (6k—1, 6k-+1) =1 for all integers %.

It follows from conjecture H that there exist arbitrarily long arith-
metical progressions whose terms are comsecutive prime numbers (ef.
Schinzel and Sierpinski [3], p. 191).

There are many other corollaries which can be derived from con-
jecture H, e.g. the conjecture of Bouniakowsky (cf. Schinzel and Sierpif-
ski [3] and Schinzel [157]).

Elementary theory of numbers 9
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EXERCISE. Prove that conjecture H implies the following assertion. Given
two relatively prime integers @ and b such that one of them is even and.a > 0. Then
there exist infinitely many prime numbers p such that ap-b is a prime.

Proof. Let fi(x) = azx+b, fo(z) = z. For P(z) = fi(x)f2(®) we have P(1)
=a+b, P(—1) = a—b, and since one of the numbers a, b is even, the other, in
virtue of (a, b) = 1, is odd and so from (a, b} = 1, it follows that (a-l—{),g— b) = 1.
Therefors (P (1), P(—1)) = 1 and this shows that condition § is satisfied. Conse-
quently, from conjecture H we conclude that there exist infinitely many x for which
both fa(z) = & and fi(z) = ax+b are prime numbers, and this is what was to
be proved.

§ 9. The function n(x). For any real number # we denote by 7 ()
the number of primes not greater than . We then have a(l) =0,n(2)=1,
z(3) =n(d) =2, =(6) =x(6) =3, #(7) =nx(8) =mx(9) = 7(10) =4,
®(100) = 25, %(1000) = 168, =(10000) = 1229, =(10%) = 9592, 7 (10°)
= 78498, 7=(107) = 664579, =(10°) = 5761455. In 1958 D. H. Lehmer
[11] calenlated that =(10°) equal 50847534 (this was a correction of
the result of Bertelsen obtained in 1893) and 7 (10") = 455052512 (ef.
Locher-Ernst [17).

Obviously we have n(p,) = for n =1, 2,... P. Erdés hag found
(cf. Trost [3], pp. 52-53) quite an elementary proof of the inequality

logn
>
@) w(n) = ZTog?

n=1,2,...

As we proved in Chapter I, § 14, every natural number has a unique
representation in the form %21, where % and I are natural numbers and,
moreover, the number I is square-free. For each of the # numbers
1,2,...,n, we have k% < n; 80, a fortiori, k* < n. Therefore & <Vn.
Consequently the number % can take at most Va different values.
The numbers I, being square-free and less than 7, can be represented
as products of different primes each not greater than n,i.e. as products
of primes belonging to the sequence P13 Day vy Domy- The number of
such products (including number 1) is 27, Consequently the num-
bers ! can assume at most 9™ different values. Therefore the mum-
ber of the produmets Ik (where 1 is square-free) each being not greater
than =, is at most ¥n2™™. Since every natural number <m is repre-
senfable as such a product, we have n < Vn2"™. Hence Va < 2°®
and, further, taking the logarithm of both sides of the last inequality,
we obtain }logn < m(n)log2, which proves formula (2).

Later on (in §14) we shall prove stronger inequalities for the function
7(n). The main interest in equality (2), however, is aroused by the sim-
plicity of its proof.

Let % denote an arbitrary natural number and let n = p;. By for-
mula (2), in view of = (py) =k, we have k >logp,/2log2. Therefore

21
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pr<2%fork=1,2,.., which, in virtue of the fact that 2%* i a com-

posite number for every k=1,2,..., proves the inequality
(3) P <2 for k=1,9,..
EXERCISES. 1. Prove that for natural numbers n the inequality
@ a(n—1) z(n)
n—1 n

holds if and only if n is a prime. For n being composite numbers we have

w(n— 1) 7z {n)
) n—1 n

Proof. If n is a composite number, then m(n) = m(n— 1) and inequality (5)
follows.

If » is a prime number, then #(n) = mw(n—1)+1, whence

) a(n)  =(n—1) =i(1_ n(n—l))'
n n—1 n n—1

But since z(k) <% for b =1,2,..., (6) implies (4).

2. Given a natural number m, find all the solutions of the equation w(n) =m
in natural numbers x.

Solution. These are the natural numbers for which pm < n < Pmy1. Thus
for a given mnatural number m there are Pm41—Pm solutions.

§ 10. Proof of Bertrand’s postulate (Theorem of Tchebycheff).
For a given real number z we denote by [«] the greatest integer <.
Thus, in particular, we have Bl=0,[—%1=—1, V2] = 1, [#] =3.
It follows from the definition that for all real numbers # we have z—1
< [#] <. The equality [#] = z holds if and only if # is an integer. If
k is an integer, then for the a’s that are real numbers we have [z-4-%]
= [#]4%. For any real numbers #,y we have, of course, [2]+[y]
<[z+y]. Bg.

0=[I+EI<[3+41=1 bub [31+[4] = [3+3] =o.

THEOREM 6. The emponent of a prime p in the factorization into prime
numbers of n!, where n is o natural number, 1s

(1) a=[§]+[z%]+[pﬁa]+...

Proof. Let n, k be two given natural numbers and » 2 prime number
< 7. The numbers of the sequence 1,2,...,n which are divisible by p*
are of the form Ip¥, where I is a natural number such that Ip* < n, that
is I < n/p”. The number of I’s is, of course, [n/p*]. On the other hand,
it is clear that the exponent a of the prime p in factorization into prime
numbers of the number »! is obtained by adding to the number of the
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terms of the sequence 1,2,...,n which are divisible by p the number
of the terms divisible by p® and then the number of the terms divisible
by p* and so on. This gives formula (7).

As a simple application of theorem 6 we calculate the number of
zeros at the end of the number 100!.

According to formula (7) (for » =100 and p = 2) the exponent
of the number 2 in the factorization into prime numbers of the number

100! is
1007 1007 . [100
[7]+[??]+[*2T]+ —504-251124-6+3+1 = 97.

The exponent of number 5 is

100 100
— — | = = 24.
[ B ]+[52] 20+4 ¢

Hence it follows that number 100! has 24 zeros at the end in its decimal

expansion.
LEvMMA 1. For natural numbers n > 1 we have
2n 4"
(8) > .
(’" ) 2Vn
Proof li 4 #
. I i 8) holds f =2 =6>——.
roo nequality (8) holds for = because (2) > 2vs

Suppose that inequality (8) holds for a given natural number #». We then
have

2@n+1)4"  2@ntL)4r g+
(m+1)2Vn  Vinmn+1)Vat+1 2Vatl

(2 -2

and so, since (2n-+1)2>4n(n-+1), we infer that 2n+1>Vin(n+1).
From this the proof of inequality (8) for » > 1 follows by induction.

Levma 2. The product P, of the prime numbers < m, where n is o
natural number, is not greater than 4™.

Proof. The lemma is of course true for » =1 and n = 2. Let n
denote a natural number >2. We suppose that the lemma holds for
the natural numbers < n. If # is an even number > 2, then P,
=P, ;. Hence the lemma holds for the number =. If, however,
7 = 2k+1, where k is a nabtural number, then each prime number
p such that k42 <p < 2k+1 is a divisor of the number

ohr1,  (2k+1)2k(@2k—1)...(k+2)
® ( k )= 1-2...% :
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In view of the fact that

> (57 + (57]) =45

b
we have

2k+1 k

(i) < &

Consequently, the product of all the (different) prime numbers
such that k-+2 <p <2k+1 is a divisor of number (9) not greater
than 4%. But since, by the assumption that the lemma is valid for num-
bers less then n, the product of the prime numbers < %+41 is less than
4*+1, we have P, = Py, < 47451 = 4%+ = 4™ Hence P, < 4". Thus,
by induction, the lemma follows.

LemmA 3. If p 48 a prime divisor of number (2:) with p > V2n, then

the exponent of p in the factortzation into primes of number (2:) s equal to 1-

By theorem 6 the exponent of the prime p in the factorization into

2
primes of number (2n)! is [2_n] +[ n]-{—[—zﬁ] +... and in the factor-
P

2l Lpe
ization of the number n! the exponent on a prime p is B;] + [ﬁ] +
n
-
In virtue of
() = @n)!
n) T (nh)e

the exponent of the prime p in the factorization into prime numbers of

-2 -6

the number (2:) is

SR

pasct r=1 *=1

fp>V2n, thenp = Von only in the case where n = 2. Therefore for
— 2n n

n == 2 we have p > 1/2n, whence a = [E—]~2 [?7 < 2. Consequently,

a< 2, that is o <1 (since o« iz an integer). This proves lemma 3 for
n % 2. For n = 2, however, we verify it directly; we have (;) =2-3.
Levma 4. Bach divisor of number (2:) which is of the form p", p being

a prime and r a natural number, is not greater than 2n. We have

(?;:”) < (2n)em,
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Proof. For a prime p such that p" | (2:), the exponent of p in the

s 2\ . . .
factorization of ( :) into primes is

- 2n] [n ])
a = —|—=2l=ll=r.
,; ([ 2 1)
, 2n "
If 9" were >2n, then we would have [?]_2[_"] =0 for k>
P
r—1 5
o n
o= Sl
4 \LP ¥
But since, for all real o, [22]—2[z] < 1, the last equalitj would imply

that a <r—1, which contradicts the fact that a > r. Therefore p” < 2x.
To prove the second part of the lemma we note that since in the fac-

consequently

2

torization of number (n"') only the primes < 2n can occur, we have (2n)
w

< (2n)"®. The lemma is thus . proved.
Lemya 5. If n is a natural number >2, then none of the pmmes p

for which $n <p <n can be a divisor of number (2'")

Y 2n n :
Proof. If 3n < p <, then =2 < 3and 7 > 1. Therefore [2_7"] <2,

n ) . 2n
[E] > 1, which gives [—E)—] —4[1—)] =0 (. For £ >1 we then have

" 2n 9 . .
p* >5n* and  consequently e <5 <1 for 7» > 4. ‘Therefore

e

2n n - . .
[?]——2[?] =0 for all 2>1 aand‘ n> 4. Hence we conclude

that for n > 4 the exponent of the prl.me p in the factorization into
2
primes of number (:) is zero, which means that (i) is' not  divis-

ible by p. This proves the lemma for n > 4. To prove it for the remain-
ing cases, that is for » =3 and n =4 we check that the inequalities

#n < p <n imply p =3 and that 3 is not a divisor either of (g) = 20
or of (2) =70. Lemma 5 is thus proved.

(*) In fact for real numbers & we have [22] <'2%, 2[2]> 20— 1, whence
[22]~2[z] < —1, and consequently, since the left-hand side is an integer, we have
[2x]—2[2] = 0.
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LemMMA 6. The exponent of a prime number p such that n < p < 2n in

the factorization into primes of the number (“;:”) 8 equal to 1.

2n n 2
Proof. For n < p < 2nwe havel < ? <2, ; < 1. Therefore [ E]
P

7 2n  2n 2
=1, |—-]=0.For & > 2 we have — < — < —. Therefore, for n > 1
Ly " T pt ‘ ’

2
—2 << 1 and, consequently, [p_ﬂ =0, whence of course []%] = 0. Hence

the exponent a of the prime p in the factorization of number (27:‘)
into primes is equal to 1. Clearly, for # = 1 there is nothing to prove,
since n < p < 2n cannot hold for m =1. The lemma is thus proved.
LeMMA 7. For natural numbers n >14 we have =n(n) < 3n — 1.
As can easily be verified, we have n(14) =6 = E—1 Consequently

lemmsa 7 is true for » = 14. Suppose that » is a natural number not less

7
than 15. In the sequence 1,2, ..., n the even numbers 4, 6,8, ..., 2 [5]
are composite. Their number is clearly [,’;‘ ] —1. Moreover, in the sequence

1,2,...,n for n > 15, there are other composite numbers which are odd,
namely 1, 9, 15. Thus

a(n) <n —(P%] —1+3) —n— [g] —2<g 1

(becanse [g] > 2 —1). Thus n(n) < g —1 for m > 15, and this com-

pletes the proof of the lemma.
Levma 8. Let R, denote the product of the primes p such that n < p

< 2n. In the case when there are mo such primes, let R, =1. Then
4ni3

10 R,>—————=

(o) 2Vn(2n)V™?

holds for all n>= 98.
. 2
Proof. If follows immediately from the definition of R, that R, | (nn) .

Consequently (2:) = Q,R,, where Q, is a natural number. Hence, by lemma
6, we infer that none of the numbers p with # < p < 2n appears in the
factorization into primes of the number Q,. It follows that each of the
primes p which does appear in this factorization must be < =, hence,
by lemma 5, it must be < §n.
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The product of all the different pri
. primes p such that p | @, is, th
greater than the produet of the primes of which none is g’re;ter’ theafl’ Zl»lfbt
Fn.

Therefore, by I i 2
; Dy lemma 3 and the relation @, | ( ,,:L) ; the exponent of

a prime number p in the factorization of the number @ into primes

be. greatfzr than 1 only in the case where p < V2n. The number of seag
pnmejs is in virtue of lemma 7 (with [l/éﬁ] in place of n — :]:1
substitution is justified because, since n > 98 , we have ¥2n > 14) 1 .
than ¥ 2n /2. By lemma 4 the product of the powers of the prim(; a.p)pe:fis

ing in th torization i i
g e factorization into primes of the number (2:) is < (2m)PR

Wi bai £ e - .
e obtain o course the same mequahty for the PIOdqu of the pow
OWeErs
of the primes appeaﬂmg in the facbmlzablon into promes of number Qn‘

Hence it follows that @, < 4*#(2n)', But since (2”) =Q,.R,, in
n - n+bny

- .
virtue of Lemma 1 we obtain Q,R, >4"/2Vn and thus formula (10)

follows.
LeMva 9. For natural numbers & > 8 we have 2° >18(k+1)

Proof. We have 2° = 256
= 256 >18-9. If 2%
=254 29F : >18(k+1), then 2%+ —
= 242" > 1804184 184-+18 > 18486 = 155 Ty dhem 2% =
on, the lemma follows. - Thus, by indue-
Lmyuma 10. For real numbers @ > 8 we have 2° ~ 18z

Proof. For areal number » >
. = 8 we have [z] >
27> 2 > 18([2]+1) > 18z, whence 2% > 1£as3 a
;EMMA 11. For natural numbers % >6 we have 2% >6(k+1)
roof. In view of lemma 9 it is sufficient to prove lemma 1‘1 for

k=6and% = 7. To do thi
Fol 8 we check that 2° =64 > 6-7 and 9" — 128

8. Hence, by lemma, 9,
as$ required.

LuMuma 12. For real numbers > 6 we have 9° > 6w
The proof is analogous to that of lemma 10.
;JEMM: 13. If n is a natural number > 648, then R, > 2n
r : . - . - " )
e 4;/)3 0 Iul/VEeW c:/ii_iemma 8 it is sufficient to prove that if # > 648
}/2_/ > 4n¥n(2n)""2. To do this we note that, if n>648/ th ’
n{6 > 6 and, by lemma 12, 2V ~ ¥/ , e i side
© the worer 1o w1 s s =V 2n, whence, raising each side
fo_tho Bover Vam, obtain 2" > (2u)"*R. But, since, in virbue of
Wh/ence én/xe :ve]z/ 2n[9 > f/ , by the use of lemma 10 we objca.in 2% >e 4':(1,)
> dnV4n > 4nVn. Thi i n =y
The lomms 3 e e 18, for n > 648, gives 47 ~. 4nV'n(2n)"R,
Levma 14. If n > 648

. then bet,
different prime nambors, ’ ween n and 2n there are at least two
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Proof. Tt follows from the definition of R, that if there were ab
most one prime number between # and 2n, then we have B, < 2, which,
for > 648, is impossible because of lemma 13.

TEEOREM 7. If n is @ natural number >5, then between n and 2n
there are at least two different prime nuwmbers.

Proof. For n = 6 the theorem is clearly true, since between 6 and
12 there are two primes, 7 and 11. Thus, in virtue of lemma 14, the the-
orem is to be proved for natural numbers n such that 7 <n < 648.
Tn order to do this it is not necessary to verify the theorem for each of
the natural numbers 7,8, ..., a = 647 directly. It is sufficient to define
a sequence of prime numbers go, 15 -+ Im such that g, = 7, % < 2¢k—2
for ¥ =2,3,...,m and gm_>6. Let n denote an arbitrary natural
number such that 7 < n < a. The first term of the sequence o, §1; -+-) Im
is < m and the last but one term is >a > . Thus there exists a greatest
index k with & < m—1 such that g, < n. We have E+2 <my, 1< Qg1
and thus, in virtue of the relation ge., < 2, < 20, between n and 2n
there are at least two prime numbers ¢z.; and Giis-

By the use of the tables of prime numbers we can eagily check that
the sequence defined above is the sequence 7, 11, 13, 19, 23, 37, 43,
73, 83, 139, 163, 277, 317, 54T, 631, 653, 1259.

As an immediate corollary to theorem T we derive

TaEorEM 8 (Tchebycheff). If n s @ natural number >3, then be-
tween n and 2n—2 there is at least one prime number.

Proof. For n = 4 and n =5 the theorem is true, since between
4 and 6 is the prime 5, and between 5 and 8 is the prime 7. If n > 5, then,
in virtue of theorem 7, between n and 2n there are at least two prime
numbers. If the greater of them is ¢ = 9n—1, then the other must be
< 2n—2, since 2n—2, for n > B, is a composite number. We then have
n<p<2n—2. I g < 2n-—1, then, since p < ¢, We obtain also
n<p<2n—2.

Theorem & was conjectured by P. Bertrand in 1843 and first
proved by P. Tchebycheff in 1850. The proof given above is a modi-
fication, due to L. Kalmér, of the proof by P. Erdds [1].

COROLTARY 1. If n is o natural number > 1, then between n and 2n
there is at least one prime number.

Proof. In virtue of theorem 8 the corollary is true for natural num-
bers 3. To verify it for n =2 and n = 3 we check that between the
numbers 2 and 4 is the prime 3 and between the numbers 3 and 6 is the

prime 5. o
In 1892 J. J. Sylvester 1] proved the following generalization of

corollary 1:
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If n>k, then in the sequence ny,n+1,n-42,...,0+%k—1 there
exists ab least one number which has a prime divisor >k From this
corollary 1 is obtained for » = k-4-1. This generalization was proved
also by I. Schur [2] in 1924. A shorter and more elementary proof of
it was given by P. Erdss [2] in 1934 (cf. Erdss [157).

CoroLLARY 2. For natural nmumbers & >1 we have pj < 2F.

Proof. We have p, = 8 < 22, If, for a natural number k, p < 2F,
then, using corollary 1, we see that between 2° and 2°*! there is at leagt
one prime number, which is of course greater than p;. Thus we must
have py,, < 2F+! and, by induction, the corollary follows.

We note that corollary 2 is stronger than inequality (3) of §9; its
proof, however, is mueh more difficult.

CoROLLARY 3. In the factorization into primes of number n! with
n >1 there is at least one prime facior whose exponent is 1.

Proof. For n =2 the corollary is trivially true. If n = 2% > 1,
where % is a natural number > 1, then, by corollary 1, there exists a prime
number p such that & < p < 2k, whence P <n<2p and consequently
P is a divisor of only one of the factors of the product 1,2,...,%. On
the other hand, if # = 2%41, where k is a natural number, then there
exists a prime number p such that % < P < 2k < m, whence 2k < 29
and therefore 2k4+1 <2p, i.e. p<n <2p, which proves corollary
3 amalogously to the previous case.

As an immediate consequence of corollary 3 we have

COROLLARY 4. For natural numbers n > 1 number n! is not a k-th
power with k > 1 being o natural number.

Now, from theorem 7 we derive

THEOREM 9. For natural numbers k> 3 we have pr., < 2py.

Proof. Let & denote a natural number > 3. We then have py, > py=5.
In virtue of theorem 7, between Pr and 2p; there are at least two differ-
ent prime numbers, but, since the least two prime numbers greater than
D are Py, and py,,, we must have Prys < 2py and this is what was to
be proved.

We note that, conversely, theorem 9 immediately implies theorem 7.
In fact, suppose that theorem 9 is true. Then if n denotes an arbitrary
natural number > 6, ie.n > 7 » We have p, = 7 < n. Let Pz be the great-
est prime number such that Pr < n. We then have % > 3 and DPre1 > 0.
Therefore, by theorem 9 Drys < 2P, < 2n. Thus we see that between
n and 2n there are at least two prime numbers, p, 11 and pg,,. Thus all
that remains is to verify theorem 7 for n — §.

We have thus proved that theorems 7 and 9 are equivalent in the sense
that one can easily be deduced from the other.

icm
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COROLLARY 1. We have pp,, < 2p; for k=1, 2,...

Prooif. For k =4,5,... corollary 1 follows immediately from the-
orem 9. We verify corollary 1 for k =1,2,3; p, = 3 < 4 = 2p,, Ps =
5 <6 =2p,, p, =7 <10 = 2p,. ‘

COROLLARY 2. For natural numbers & > 1 we have Drrr < Prt+Dror-

Proof. For k> 3 the relation follows immediately from theorem
9; for, Prys < 204 < Prt+Pryr (since Py < pr.y). We verify that it is also
true for ¥ =2 and % = 3. In faet, p, =7 < 3+5 = P+ p; and p; =
11 < 547 = ps+p,.

EXERCISES. 1. Find the natural numbers # such that » is the sum of all the
primes less than n.

Solution. It is clear that the least possible natural number of this kind is
5 = 2+ 3. Suppose, further, that # > 5 and that » is the sum of all the prime numbers
less than n. If py is the greatest prime number less than u, then, since n > 5, we have
pr > 5. Consequently k > 2 and py+p3+...+pr = % < Pry1- Sinee k> 2, corollary
2 of theorem 9 gives pry1 < Pr—1-+pr and consequently P+ ps+ ...+ Pk < Pr—1+ Pk,

which is clearly impossible. Thus we conclude that only number 5 satisfies the
condition of the exercise.

1 1
2. Prove that if »> 1 and % are natural numbers, then the number ;;4— _

n+t1
1 s
+ ...+ cannot be an integer.
n+
. 1 1
Proof. If the number in question were an integer we would have - + fn_ﬁ +
1 1 1 1 E+1
_— i — < , we would ob-
B o P > 1, whence, since p + iy + ot prgg

tain k1> n, and consequently k¥ > n. Let p denote the greatest prime number < n+
+ k. We have 2p > n 4 k; for, in view of corollary 1 of theorem 8, between p and 2p there
i8 a prime g, and for 2p < n+%k, we would have p < ¢ < n-+k, contrary to the defi-
nition of p. Since & > n, we have n+% > 2n, and, by corollary 1, there is a prime
between n and 2n. Hence 7 < 2n < n+k and the definition of p implies that r < p.
Baut, since n < 7, we have n < p < n+% < 2p. It follows that among the summands
1

n-+1
ible by the prime p. From this we easily infer that the sum in question cannot be
an integer. In fact, reducing the fraction to the same denominator n(n-1)...(n+%),
we see that all the numerators but one are divisible by the prime p, this being
also a divisor of the denominator. Thus we have proved that none of the par-
tial surus of the harmonic series %—}—%-}—%-}-... can be an integer provided we do not
take into account the trivial case where the sum consists only of the first term.

3. Prove that corollary 1 of theorem 8 is equivalent to the following assertion T:

T. Every finite sequence of comsecutive natwral mumbers which contains at least
one prime nwmber contains also at least one number prime to each of the remaining terms
of the sequence (cf. Zahlen [1]).

Proof. Let
(63) k, k+1, ..., 1

of the sum ~l— -+ 4o _-II—‘k‘ there is only one whose denominator is divis-
n n
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be a sequence of consecutive natural numbers and p the greatest of the primes con-
tained in this sequence. If 2p were < I, then, according to corollary 1 of theorem 8,
there would exist a prime number ¢ such that p < ¢ < 2p < I, contrary to the defi-
‘nition of p as the greatest prime number of the sequence (i). Accordingly, we have
1 < 2p. Hence, as can easily be seen, the number p is prime to each of the numbers

1,2,...,1 different from p, and conseguently, it is of course prime to each term of .

(i) different from p. We have thus proved that corollary 1 to theorem § implies the-
orem T.

Now we suppose that theorem T holds. Let % > 1 be a natural number. Accord-
ing to theorem T, in the sequence

(i) 2,3,..., 2n,

containing the prime 2, there exists at least one number p which is prime to each
of the remaining terms of the sequence. First we note that p must be a prime num-
ber. In fact, if p = ab, where ¢ and b are natural numbers each > 1, then the num-
ber a < p belongs to sequence (i) and is not relatively prime to . Further, if p were
< m, then 2p < 2n and the number 2p = p would belong to (ii) and 2p would not be
relatively prime to p. Thus we have p > n. But, since 2 < 2n, p belongs to sequence
(ii). Moreover p # 2n because n > 1 and p is a prime. From this we conclude that
7 < p < 2n. We have thus proved that theorem T implies corollary 1 of theorem 8,
which, together with the first part of the proof, shows that theorem T and corollary 1
of theorem 8 are equivalent in the sense that one can easily be deduced from the
other.

4. Tsing corollary 1 of theorem 8 prove that for natural numbers % and = > 2k
the least % numbers > 1 divisible by none of the numbers 2,3,...,n are primes.

Proof. If n > 2F, then n? > 2%y and, since, in virtue of corollary 1 of theorem 8,
between any two consecutive terms of the sequence 7, 2n, 22n, ..., 2%n there is at
least one prime number, between n and n? there are at least k& different prime num-
bers. Then of course between n and n? there exist at least & numbers not divisible
by any of the numbers 2, 3, ..., n. Each of these & numbers is a prime, since, if 1
is such a number and I = ab, where a, b are natural numbers > 1, g < b, then we
cannot have a < » (since I is not divisible by any of the numbers 2, 3, ..., n); thus

we must have b > a > n, whence I = ab > n2, which is impossible. From this the the-
orem follows at once.

§ 11. Theorem of H. F. Scherk.

THEOREM 10 (H. F. Scherk). For every natural number n and a
suitable choice of the signs -+ or — we have

(11) P =1dprdpet... 4Py, + Pan_1
and
(12) Pong1 =1Epitp L Py + 2,

These formulae were found by H. F. Scherk [1] in 1830, proof of
H. F. Scherk’s formulae was published by 8. 8. Pillai [1] in 1928. The
proof that will be presented here was published by me in 1952 (Sier-
pifski [14]). A similar proof was published by R. Teuffel [1] in 1955.
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Proof. We say that an infinite sequence g, ¢,,... has property P
if it is an increasing sequence of natural numbers, odd except the first
term, such that
(13) =2, 0:=3,¢:=5, =7, =11, ¢ =13, ¢ =17
and

(14) O < 2¢, for n=1,2,...

In particular, in view of corollary 1 of theorem 9, the sequence g, = p,
(for n =1,2,...) has property P. Accordingly, to prove the theorem of
Scherk it is sufficient to prove that for a suitable choice of the signs for-
mulae (11) and (12) are valid for any sequence which has property P.

LemvA. If ¢y, g5, ... 48 an infinite sequence having property P, then
for n =3 every odd natural number < Qoni1, 8 of the form +qtg.+...
weo = Qon_yt+ Qon provided the signs - or — are switably chosen.

Proof of the lemma. It follows from (13) that the lemma is true
for n» = 3, since

1= —gi+ g+ gs—0— 9+ 11 = ¢ —g2—Qs— s+ 25+ Gss

8 =q—¢— 0+ 00+ 4s B=t—+s+ta—0+%
5=+t 0—G— 9%+ % 1= —¢+gt+tbtea—e+0
T=—g1— G~ LT8Gt 17T =g+ ¢s—9a— %t a5+ e

9 =q+ G+,

‘We note, that for n = 2 the lemma is not true beeause for no choice
of the signs + or — would give us 5 = +2434£5+7.

Now suppose that the lemma is true for a mnatural number = >3
and let 2k—1 be an odd natural number < gum,s. In view of (14) we
have (on,; < 20mis and consequently —gmys <2k—1—Gonys < fonya-
Therefore for a suitable choice of the gigns + or — we have 0 <
+(2k—1—anys) < Qanys. In virtue of (14), we have gon,, < 2¢5m 41 and
consequently

— Qo1 < 2 —1— Gonys) — Gon1 < Gangas
and, moreover, for a suitable choice of the signs -+ or — we have
(15) 0 < +{£(2k—1—Ganys)~ Gons1} < Gons1-

Bach of the numbers gu,.; and g, is odd, and so the number in the
middle of inequalities (15) is an odd natural number < gsm.,. Conse-
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quenﬁly, by the use of the inductive assumption, we conclude that for
a suitable choice of the signs -+ or — we have

L@ —1—gonre) —Gonr} = 4 Tttt G-
Hence, if the signs + or — are suitably chosen, we have
2k—1=+qgtqt... Font Qoni1+ Ganys,

which proves the lemma, for n+1 and at the same time, by induction
for all natural numbers » = 3. '

COROLLARY. For a suitable choice of the signs + or — we have

(16) Gni1 = @Gt .. Gon 1+ Gon.

Proof of the corollary. Since @on.1 18 an odd natural number
then for » >3 formula (16) follows immediately from the lemma,. Folt
n =1 and n =2 a straightforward computation shows that, in virtue
of (13), ¢ =gi+g, and g = g,— gy + g5+ g,.

Now, we are going to prove formulae (11) and (12).

Proof of formula (12). For » > 3 the number
by (14), an odd natural number < @eny1. Therefore, applying the lemma,
we see that for a suitable choice of the 8igns + or — we have Gon 1‘,
;!lzn“l = £tk a1+ o, Whenee (with % =ppi=1, 2:-‘--)
(‘)rmula, (12) follows. For # =1 and # = 9 a straightforward computa-
tion 'shows that g, =1—q;42¢, ¢ = 1—¢+9:—g3+2¢,. Formula
(12) is thus proved for all natural numbers 7.

Proof of formuls (11). In virtne of
and we see that fmi2~Qmi1—1 I8 an odd natural number >0 and

< @an;1- Now, applying the lemma, we see that for n > 3 i
choice of the signs 4 or — we ha,ve = % and » sitable

Goni1—Gan—1 is,

(14) we have Gangr < 2ans

Gy~ =+t gt g 1+ g,
whence

(7) gz =ltqEgt... 4+ Ton—1t Gon+ Qo1+

Moreover, by (13), we see that

2 =1+q, g =1—q+g¢a+g,,
vzl;lch proves formula (17) for n — 0,1 and 2. Consequently formula
(17) is valid for n = 0,1,2,... and therefore (for s =p;, 4 =1,2,..)

formula (11) ho =
Droved (11) holds for m =1,2,3,... The theorem of Scherk is thug

% =1+0—ga—gs+ g+ g5,
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§ 12. Theorem of H. E. Richert.
Lemya 1. If m,, m,, ... 48 an infinite increasing sequence of natural
numbers such that for a certain natural number k the inequality

(18) for

holds, and if there exist an integer a > 0 and natural numbers r and s,y
= My Such that each of the numbers

(19) a+1,

is the sum of different numbers of the sequence M., Myy ..., Myype_1, then
for s, =8, 1+my,, each of the numbers

(20) a+1,

18 the sum of different numbers of the sequence my, My, ..., My, and,
MOTEOVEr, Sp = My ryy-

Proof of lemma 1. Suppose that the conditions of the lemma are
satisfied. Let n denote a natural number of sequence (20). If n < a-+5,_y,
then there is nothing to prove, sinece, by assumption, » is the sum of dif-
ferent terms of the sequence m, Ma, ..., My, r_;. Suppose then that
n >a-+8_;. Since s,_; > my,,, we have n > a-+1-+m;,,. Consequently
n—my,, 2> 6-+1. Moreover, since n is a term of sequence (20), we have
n<a+s = a+8_1+Myyp. S0 n—my,, <o+, ;. Therefore the num-
ber n—my,, is & term of sequence (19) and, consequently, it is the sum
of different numbers of the sequence m;, My, ..., Myyp_y. It follows that
n is the sum of different numbers of the sequence my, Ma, ..., My p.
Further, in virtue of (18), we have My, .1 < 2Mpyy, 50 8 = 81+ My >
21y 2= Myypyy. The lemma is thus proved.

LeMMA 2. If My, My, ... 48 an infinite sequence of natural numbers
such that formula (18) holds for a natural number k and if there exist an
integer a = 0 and & natural number s, > My, such that each of the numbers

(21) at+1l, at+2, .., ats,

is the sum of different terms of the sequence my, Ms, ..., My, then every

natural number > a is the sum of different terms of the sequence m;, My, ...
Proof of lemma 2. Suppose that the conditions of the lemma are

satisfied. Applying lemma 1 with r =1,2,...,1 succesively, I being

a natural number, we conclude that each of the numbers

(22) a+1l, at+2, ..., ats

is the sum of different terms of the sequence m, Mg, ..., Mg, Bub
since 8, > 8,3, ¥ =1,2,...,1, we see that for every natural number »
there exist a natural number I such that » < a-s;. Consequently, every
natural number # > a is one of the numbers of the sequence (22), pro-

My < 2y P>k

at+2,

XS] a'+8r—1

at+2, very 08,
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vided the number 7 is suitably chosen, accordingly, it is the sum of differ-
ent terms of the infinite sequence m,, m,, ... The lemma is thus proved.

Now, let m; = p; with ¢ = 1,2, ... In virtue of corollary 1 of theo-
Tem 9, the conditions of lemma 2 are satisfied for @ = 6, 8,=13, k= 5;
this is because 13 = p,; and each of the numbers 7 y8,...,19 ig the sum
of different prime numbers < p;.

In fact, 7=2+5, 8 =345, 9 =247, 10 =3+7, 11 =11,
12=5+17,13 =2411,14 =3+11,15 = 24+547,16 = 5+11, 17 =
2434547, 18 =811, 19 =3+5--11. Of course we do mnot
exclude the trivial sums consisting of one term only: number 11 is not the
sum of two or more different primes. As a corollary to lemma 2 we obtain

THEOREM 11. Buvery natural number > 6 is ¢ sum of different prime
numbers (Richert [1], [2]).

Now suppose that m; = Diya. The conditions of lemma 2 are satistied
for a =9, ¢, =19, k = 6, since 19 = py = m, 80 §, = Mg, and, more-
over, each of the numbers 10, 11, ... ,28 is the sum of different odd
prime numbers < mg =19. In fact, we have 10 = 3L 7,11 =11, 12
=547, 13, 14 =3+411, 15 =345+47, 16 =5+11, 17 =17, 18
=5+413, 19 =3454+11, 20 = T+13, 21 =345+13, 22 = 5417,
28 =3+4+7+13, 24 =114+13, 25 = 54 7+13, 26 =354+ 7411, 28
=3+5+7-+13. Thus we obtain

) TEROREM 12. Hvery natural number > 10 is @ sum of different odd
prime numbers.

If we admit also pumber 2 as & summand of the sums, we get

) THEOREM 13. BEvery natural number =12 is a sum of two or more
different prime numbers.

As can easily be seen, number 11 is not a sum of two or more dif-
fel:ent prime numbers. Number 17 is not a sum of two or three different
prime numbers (but 17 =243+5-+17). One can also prove, using ele-
me?:ltary methods only, that there exist infinitely many odd numbers
which are not the sums of less than three prime numbers.

Here are four theorems due to A, Makowski [6]:

Boery natural number ~ 35 is a sum of different i

74

of the form 4k—1. 70 prime. mumbers
Every natural number ~ 121 s a sum of different j
2 0’

of the form 4k+1. e prime mumbers

Every natural number > 161 is q sum of different X
tie s f different prime numbers of

Every natural number > 205 is a sum of differe i

24
o form T f different prime numbers of

The lower bounds given in the theorems are i
) sharp, ie. cannot be
replaced by still lower oneg. P
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§ 13. A conjecture on prime numbers. Several years ago I formula-
ted the following conjecture P.

CoNyECTURE P. If the numbers 1,2, 3, ..., n2 with n > 1 are arranged
in n rows each containing n numbers:
i, 2, 3, ..., n
n+1, n+2, n+38, ..., 2n
(23) 2n+1, 2n+4+-2, 2n43, ..., 3n
(n—1)n+1, (n—1)n4-2, ceey n?

then each row contains af least one prime mumber (Schinzel et Sierpif-
ski [3]).

The first row of table (23) confains of course (n >1) number 2.
The assertion that for n > 1 the second row contains at least one prime
number is another formulation of corollary 1 to theorem 8. It easily fol-
lows from the inequality of J. B. Rosser and L. Schoenfeld (cf. § 15) that
for n > ¢ each of the first % rows contains a prime.

As can be verified on the basis of the tables of A. E. Western [1]
and D. H. Lehmer [10] conjecture P is true for 1 < n < 4500. Since the
last two rows of table (23) consist of numbers (n—1)2, (n—1)2+1, ..., n2,
conjecture P implies that between two consecutive squares of natural
numbers there are at least two prime numbers. Further, since in every
interval whose end-points are cubes of two consecutive natural numbers
there are two squares of two consecutive natural numbers, we see that
conjecture P implies that between the cubes of any two consecutive
natural numbers there are at least two prime numbers. The last state-
ment has not been proved yet, but it follows from the results of A. E.
Ingham of 1937 that the number of primes between #3 and (n-+1)3 tends
to infinity with «.

As an immediate consequence of conjecture P we obtain the assertion
that between any two triangular numbers there is at least one prime num-
ber. Namely, if we arrange natural numbers in rows in such a manner
that in the nth row we put # consecutive natural numbers, i.e. if we form
the table

1
2, 3

4, 5, 6

7, 8, 9, 10

11, 12, 13, 14, 15

then each but the first of its rows contains a prime number. We do not
know whether the above statement ig true.

Elementary theory of numbers
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In 1932 R. Haussner [1] formulated a conjecture that, for o natural
number k, between two consecuiive multiplies of the prime mumber p; both
less than i, there is at least one prime number. This conjecture was veri-
fied by Haussner for prime numbers p; << 100. Conjecture P for a prime
n is an immediate consequence of the conjecture of Haussner. As has
been noticed by L. Skula, conjecture P implies that for every natural
number # > 1 also (n-+1)-th row and (n-}-2)-th row of table (23) contam
at least one prime number each.

In fact, it follows from conjecture P for the number »--1 that among
the numbers n2—1, n?, ..., n(n-+1) there is at least one prime number
and, since for # > 2 the first two terms of the sequence are composite
numbers, at least one prime number is to be found among the numbers
n241, n*+2,..., (n+1)n. (This of course is also trme for n = 2.) It
follows from conjecture P for the number n+ 1 that among the numbers
n*+nt1, 224+ n+2,...,(n+1)* there is at least one prime number;
thus, clearly, there is a.t least one prime number among the numbers
n:4+n—1,n%+n,...,n%-+2n (since the number (n+1)? is composite).

‘With reference to table (23) is should be mentioned that A. Schinzel
has formulated a conjecture that, if n is & natural number >1 and &
a natural number less than n and relatively prime to n, then in the k-th
column of table (23) there is at least one prime number. In other words,
if ¥ and n are natural numbers relatively prime and k¥ < n, then
among the numbers

k, k+n, E4+20, ..., k+(m—~1)n
there is at least one prime number. A. Gorzelewski has verified this for
the natural numbers n <100 (cf. Schinzel [157).

It is necessary to note here that Yu. V. Linnik proved in 1947 the
existence of a constant C such that if (¢, %) =1 and 1 <% < n the least
prime number in the arithmetical progression k,%k-+n,k--2n,... is
less than =°. Pan-Cheng-Tun [1] has calculated that ¢ < 10000 (cf.
also H. Fluch [1]).

As observed by A. Schinzel [15], a conjecture somewhat stronger than
conjecture P can be formulated. Namely, one can conjecture that, if =
is a real number > 117, then between z and a;-i—v/m there is at least one
prime number. This conjecture, P,, follows from A. E. Western and D. H.
Lehmer’s tables for 117 < & < 20.3-10°. It was Legendre who formu-
lated the conjecture that for sufficiently large numbers « there is at least
one prime number between x and z+Vz.

We now show how conjecture P for n > 117 iz derived from conje-
cture P;. Let n denote a natural number > 117 and let % be a natural
number less than n. We have kn > 117 and so, by conjecture P,, there
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exists a pnme number p such that kn < p < kn--Vin. But, since k < n,
we have Vin < n; consequently there exists at least one prime number
among the terms of the sequence kn-+1,kn-+2 ; (k+1)n. Since this
is valid for every natural number % < %, we see tha’n (for n > 117) in cach
row of table (23) from the second onwards there is at least one prime
number. (In the first row, however, for n > 1 at least the prime 2 0CCurs.)
Thus we see that conjecture P for n > 117 follows from conjccture Py.
For »n < 117 conjecture. P has been proved by a stralghtforwald veri-
fication.

As observed by A. Schinzel [15] a still stronger conjccture fhan P,
can be formulated, namely that for each real number z > 8 bctween
z and 2+ (logz)? at least one prime number occurs. If we sct 7 = p,
with # >4, then we obtain the inequality p,,,— ~Pn < (logp,)* for all
7 > 4. It was H. Cramér [1] who conjectured that hm(pn+l— Pa) [(logp,)?
=1.

There is another conjecture about the difference of two consceutive
prime numbers, namely the following conjccture of N. L. Gilbreath for-
mulated in 1958. We form a table of natural numbcrs in this manner:
in the first row we write the differences of consccutive prime numbcrs
(i.e. the numbers p,.;—Pn, # =1,2,...), in the sccond row we write
the modules of the differences of the consecutive numbers of the first
row. In each of the following rows we write the modulcs of the differ-
ences of the consecutive terms of the preceding row. The conjecture
of Gilbreath is that the first term of each row is equal to 1.

Here is an example of the first 10 rows obtained in this way:

1, 2,2 4,2 4,2, 4, 6, 2
1,0,2,2 2 2 2, 2 4
1,2,0,0, 0,0, 0, 2
1,2, 0,0, 0, 0, 2

The conjecture of Gilbreath has- been wverificd for the first 63418
rows with the aid of the electronic computer SWAC. In general it has
not been proved as yet (cf. Killgrove and Ralston [1]).

§ 14. Inequalities for the function z(z). Now we are going to deduce
some corollaries from lemma 9 of §10 Since R, denotes the product of
prime numbers p such that » < p < 2n and the number of such primes
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is 7(2n)—n(n) (and by corollary 1 of theorem 8, § 10, for every natural
number # at least one such prime p exists) and, moreover, each of those
primes is less than 2, then R, < (2n)™™~"™, It follows from formula
(10) of §10 that for natural numbers n > 98 we have
n/3

(2n)ﬂ(2n)—ﬂ(ﬂ) > _4 ;
2Vn(2n)VeR
taking the logarithm of each gide of the last inequality, we conclude that
for n > 98

n 3login 310g2n)
—3 log4— _
(24) @ (@) —z(n) > 310g2n( o 2n 2n
holds. But, as we know,
1
lim 8% _ 0;
Z00 z

therefore
lim (ﬂ(2')’b) —m(n)) = +oo.

It follows that for every natural number % there exists a natural number
my, such that for n > m,; there are at least k¥ prime numbers between n
and 2n.

Further, since logz/ is, for # > e, a decreasing function of #, we have
for n > 2500

3log4n  3log2n logdn logl/z_'n,
+ =6 +
on 2n 4n Von
log4-2500  logV2-2500
<o (LB 0gY2-250 ) < 0,37;
4-2500 Y2-2500
hence
3log4 3log2:
(25) logd— S8 SUBEM 438 0,37 >1.

2n ¥on
In virtue of (24), formula (25) gives the inequality of Finsler,

(26) w(2n)—=(n) >

n
3log2n !
which holds not only for n > 2500 but, as can easily be verified, for all
natural numbers # >1.

It is even easier to obtain the second inequality of Finsler. We note

that for natural numbers n we have (2:) < 4" (this follows immediately
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from the binomial formula applied to (1+1)™ > (2:)) In view of the

relation R, | (2:) we see that R, < 4" and from the definition of the
number R, we infer that R, > #™™~"™, Congequently, n™®m-"m o 4»
and hence

nlog4 n

7(2n)—=(n) <
logn

5logn

since, as can easily be verified, log4 < I. From this, using (26), we get
(cf. Finsler [1] and Trost [3], Satz 32)

n n
27 —_— < #(2n)—7
(27) 3log2n<7( n)— m(n) < Blogn for n>1.
It follows from (27) that
w(2n) > d for 1
3log2n n=

and, since for n >4 we have #>n/2 >[n/2]>n/2—-1>nf4, and
since log(2[n/2]) <logn, we see that

n [n(2] n
>x(2|%
() /”( [2]) > Sogimj2] ~ 1ologn 1 "4
(28)
(1) > — 1;
* 12logn n=>1

for, as can eagily be verified, the inequality holds for n =2 and
n =3 as well.
‘We are going to prove that

kgl

w(2F) < 2

2
29) klog2

holds for natural numbers k.

As can easily be seen, formula (29) holds for natural numbers k¥ < 6
because log2 < 1. Now suppose it is valid for a natural number % > 6.
In virtue of (27) (with 2¥ in place of n) and formula (29) we have

7.9%

ok+1 7
—_—< 1+—J.
Sklog2 ~ klog2 ( + 10)

(25 < = (2F)+

But, since for % > 6 we have (k+1)(1+5) < 2k,
k42

(k-+1)log2

and thus by induction inequality (29) follows.

ﬂ(2k+1) <
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Now let » dénote. a natural number >1. There exists a natural

number % such that 2F < n < 2%+, whence (k+1)log2 > logn. Hence,

by (29), we have
f oF+2 4n

fo+1
a(n) K= (2°77) < (i 1)log? <

1ogn-
From this we see that

(30) (n) <

for the natural numbers » > 1.
logn

By replacing n by p, in (28) and (30) and by the fact that =(p,) = n
we obtain

Pn 4p,
<n < 3
12log py, logp, ’

.), we infer that

consequently, since p, >n (for n=1,2, ..

nlogn ;
f < 12nlogp,,

Pn >g logpn > and  py
whence logp, < logl2+logn+loglogp,. But, in virtue of. corollary 2
to theorem 8 of § 10, we see that p, < 2", whence logp, < nlog2 and
loglogp, < logn+loglog2. Sincelog2 < 1, for n > 12 we have n > 12log2
and hence logn > log12+loglog2. Therefore, for n > 12, we bhave logp,
< 2logn+logl2+4-loglog2 < 3logn. Consequently, p, < 36nlogn for all
n>12 and, as is easy to verify, also for 2 <n < 12.
Thus we arrive at the final conclusion that

nlogn
4

From formula (28) we derive the following' corollary: ‘

For every natural number s there exists o natural number which
can be represenied as the sum of two prime numbers in more than s differ-
ent ways.

Prooif. Suppose that for a natural number s there is no natural
number which can be represented as the sum of two prime numbers in
more than s ways. Let n denote a natural number >1. Let us consider
all the pairs (p, g) where p, ¢ are prime numbers, neither of them greater
than n. The number of such pairs is clearly [#(n)]>. We divide the set
of the pairs (p, ¢) into classes by saying that (p, q) belongs to the kth
class if p+g = k. Since p <n and ¢ < n, we have k < 2n. By assump-
tion, for a given k < 2n in the kth-class there are at most s different
pairs. Since the number of all the classes is less than 2n, the number of
the pairs (p, ) is less than 2us.

(31) < pn < 36nlogn for n>1.
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Consequently, [#(n)]> < 2ns and since, by formulae (28), [z(n)]?
> n?[122(logn)?, we have 2-12%s(logn)® > n. But, as is known, &° > z3/3!
for all # > 0, whence; for z =logn, we have 6n > (logn)3. Therefore
122s(logn)? > (logn)® for n > 1, whence logn < 122 for all # > 1, which
for sufficiently large n is not true. Consequently the assumption that
for a natural number s there is no natural number which can be repre-
sented as the sum of two prime numbers in more than s ways leads to
a contradiction. The corollary is thus proved. The conjecture has been
formulated that the number of all possible decompositions into the sum
of two primes of an even natural number increases with n to infinity.

Remark. Numbers which can be represented as sums of two primes
in more than one way must be even provided we do not regard two repre-
sentations as being different if they differ only in the order of the factors.
In fact, if an odd number » is the sum of two primes, then of course one
of them must be even, i.e. equal to 2, and consequently the other is n—2
and we see that the representation of » as the sum of two primes is
unique apart from the -order of the factors.

By a slight modification of the proof of corollary 1 one can prove
that for every natural number s there exists a natural number which
can be represented as the sum of three squares of prime numbers in more
than ¢ different ways. P. Erdos [4] has proved that for each natural
number s there exists a natural number which is representable as the
sum (resp. as the difference) of the squares of two primes in more than s
different ways.

It follows immediatelv from (30) that

1im 2 g,
oo M

In consequence of relation (31), for natural numbers » > 1 we have

1ogn+loglogn——1og4 < logp, < logn-4-loglogn-+log36. Hence immedia-

tely
1
(32) lim —&Pn ogps —1
nsco lOgM
Now we are going to derive a corollary from inequality (31). In vir-

tue of (31) we have :
- > L f k=2,3
e T =
P 36klogh © Po

whence for natural numbers n > 2 we deduce that

n
1 1
%g; klogh =
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But, as we know, log(1+42) < 2 for 0 < # <1, whence, for ¥ =2, 3, ...,

1 1
log(k+1)—logk = log (1+ %) < 7

consequently,
log(k+1) 1
1
logk +klogk
and
log (k1) ( 1 ) 1
loglog (% —logl =log——— < log|1 —
oglog (k4 1)—1logloghk = log Togh <log +klogk <7c10g7c

Thus we have

1
————— > loglog(k+1)—loglogk for

k= ey M
klogk 233yem

Henee (for natural # >2) we have
1
,;W > loglog (n+1)—loglog2 > loglog(n-+1)

(since loglog2 < 0).
‘We then have

o1 1

— > —loglog(n+1).
gpk 3g 0glog(n+1)
From this we see that the series of the reciprocals of the consecutive
prime numbers, i.e. the series
’ 1,1 ,1,1,1

ititstitatate,

is divergent.

§ 15. The prime number theorem and its consequences. It follows

from formulae (28) and (30) of § 14 that there exist positive numbers
(eg. o =%, b = 4) guch that

n
a<n(n):@<b

for natural numbers n >1.
In 1896 J. Hadamard and Ch. de la Vallée Poussin proved that

mli?;(:z(w): E:—m-) =1

Nowadays owing to the new methods created by A. Selberg [1] and P.
Erdés [10], this formula, known under the name of the prime number
theorem, can be proved “elementarily”, though the proof is very

(33)
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n
logn
then e.g. A(10%) = 1.159, h(10%) =1.132, A(10°) = 1.104, (10%) = 1.084,

h(107) =1.071, h(10%) = 1.061, h(10°) = 1.053, h(10%0) = 1.048.
A better approximation for the function z(z) is obtained by the

fanction
f at
4 logt
T odi

J. E. Littlewood has proved that the difference = (z)— [ Togt
[

takes infinitely many positive values and infinitely many negative
values for ¢ running over all natural numbers.

Proofs of the theorem of Littlewood and of the other theorems men-
tioned in this chapter, which require analytical methods, can be found
in a book of K. Prachar [1].

In formula (33) setting # = p,, by =n(p,) =n we obtain

complicated. We will not present it here (%). If =(n):

= h(n),

lim nlogp, ~1,
nso0 P
whence, by (32), we get
Pn
34 =1
34 noo nlogn !

and consequently we see that an approximate value for p, is the number
nlogn, provided n is sufficiently large.
It follows immediately from (34) that

lim 2241
s Pn
J. B. Rosser [1] has proved that for all natural numbers » the
inequality p, > nlogn holds.
More information about x(n) than that can be derived from
formula (33) is given by the theorem of J. B. Rosser and L. Schoen-
feld [1] stating that

(35) - < m(n) <

logn—3 logn—i‘

2
for every natural number n > 67.
(*) Cf. e.g. Trost [3], Chapter VII: Flementarer Beweis des Primzahlsaizes,

pp. 66-73; see also Leveque [1], vol. II, p. 229-263, chapter 7: The prime number
theorem.
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Clearly formula (33) follows at once from (35).
But even from inequality (35) we are unable to derive certain
simple properties of the function z(n). For example such is the case
with the theorem of E. Landau (ef. Landau [3], vol. I, pp. 215-216)
stating that =(2n) < 2m(n) holds for sufficiently large numbers n, which
means that there are more prime numbers in the interval 0 < o <n
than there are in the interval n<<® < 2n, provided = is large enough.
In this connection we may agk whether for natural numbers z > 1
and y > 1 the inequality
(36) w(z+y) < n(z)+=(y)
holds. This, clearly, would imply that the inequality =(2n) < 2x=(n) is
valid for any natural n. Inequality (36) has been proved by A. Schinzel
[15] for min(z,y) < 146 and has been verified by S. L. Segal [1] for
#+y <100000. With reference to the function m(z) we note that the
function assigning to & pair of natural numbers % and # the number of
positive integers < & having precisely % prime divisors, resp. k natural
divisors, has also been investigated and the formulas deseribing its
asymptotic behaviour have been found (cf. Sathe [1], Selberg [2], resp.
Leveque [1]). o

Now let a and b be two real numbers such that 0 < a < b. Since,

logaz :
ily b lim =
a8 can easily be seen, B YT 1, by (33), we have
. m(br) b

s (at) @

Consequently, since 0 < a < b, #(bz) > w(az), provided » is large enough.
This proves the following assertion:

If a and b are two positive real numbers and a < b, then for sufficiently
large real numbers x there is at least one prime number between az and bs.

In particular, if ¢ =1 and b =1-1¢ where ¢ is an arbitrary
positive real number, it follows that there is at least one prime number
between n and n(1+ ) provided # is large enough.

Now let ¢y, ¢, ..., ¢, be an arbitrary finite sequencé consisting of
digits. Let a be the number whose digits are €15 Cay .-y Crp. ADplying the
corollary just derived from formula (33) we see that w(an) < (n(a+1)n)
holds for sufficiently large numbers #. Consequently, there exists a natu-
ral number s such that =(a-10°) < n((a—}—l)-l()s). Therefore there exists
& prime number p such that ¢-10°< p < (a--1)-10°. ”

Thus the first m digits of number p are identical with the cor-
responding digits of number a. This means that the first m digits of num-
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ber p are ey, €y, ..., n. Thus, as another consequence of formula (33),
we obtain the following corollary:

For an arbitrary finite sequence c¢i, Cay..., Cn, of digits there exists
a prime number whose first m digils are ¢;,¢s, ...y Cp ().

Let # denote a real number > 0. For sufficiently large natural num-
bers #n we have nz > 2; so m(nz) > 1. It follows from (34) that

. Pana)

7 Iim ————— =1
Co) n—co 7 (N2)log 7T (N2)
But, in virtue of (33), we have

w(nz)logne
im——m—=— =1
(38) @ !

whence lim(logn(nm)—}—loglognm—lognm) =0, W]li(‘]l‘ proves that
N—r00

log 7 (na) _’1

(39) lognz

n—-00
From formulae (37), (38) and (39) we infer that
+ tim Zetm 1.
nwo N

‘We have thus proved that formula (33) implies the fact, observed
by H. Steinhaus, that for .every real number # > 0 there exists an infi-

nite sequence of prime numbers g, g,, ... such that
nso0 W -

Finally, let @ and b be two arbitrary real numbers such that ¢ < b.
It follows from the above corollary to formula (33) that, if ¢ is a suffi-
ciently large prime number, then there exists a prime number p such
that ag < p << bg, whence a < plg < b. .

This proves that the set of the quotients p/q, p and g being prime
numbers, is dense in the set of positive real numbers.

(*) Cf. Sierpifiski [10] and Trost [3], p. 42 (theorem 20), see also Sierpifiski
[24]. There a stronger theorem is proved.
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