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It follows from the assertion proved at the end of § 12 that there
exist arbitrarily long sequences of consecutive natural numbers such that
none of them is square-free. Among every four consecutive natural num-
bers at leagt one is not square-free (since at least one of them is divisible
by 4 = 22). One can prove that there exist infinitely many triples of
consecutive natural numbers such that each of the numbers is square-free.

It can be proved that each natural number > 1 is the sum of two
square-free natural numbers and in infinitely many ways a difference
of such numbers (cf. Sierpiviski [36]). It is also true that each sufficient-
ly large natural number is the sum of the square-free number and the
square of a natural number (Esterman [1]; cf. Nagell [1], Erdés [13]).

We prove .

TrxorEM 19. Each natural number n can be uniquely represenied
in the form n = k%, where I and 1 are natural numbers and 1is square-free.

Proof. For a given natural number n, let % denote the greatest natu
ral number such that %2 | n. We have n = k2, where 7 is a natural num-
ber. If 7 were be not square-free, then we would have 7 = 72, where 7, s
are natural numbers and » > 1. Thus » = (k)% and consequently (kr)? | n,
where kr >k, contrary to the definition of %.

Now suppose that n = kil,, where k,,1; are natural numbers and
I, is square-free. Let d = (k,%;). We have %k = dh, k; = dh,, where
h,hy are mnatural numbers and (h,h,) =1. Since = = d*h%l = @*hil,,
we have 'l = hil, and, since (h®,h}) =1, by theorem 5, we obtain
h* |1, which proves that h = 1, since I, is square-free. This implies that
k =dh = d. But since d|k;, we have %k|k,, whence % <k, which,
in virtue of the definition of % and the equality n = %1, implies &k = %,
whence also | =1;.
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CHAPTER II

DIOPHANTINE ANALYSIS OF SECOND AND HIGHER DEGREES

§ 1. Diophantine equations of arbitrary degree and one unknown.
The name of Diophantine analysis bears a branch of the theory of numbers
concerning equations which are to be solved in integers. The equations
themselves are called Diophantine. They are named after a Greek mathe-
matician Diophantus who lived in Alexandria in the third century A. D.
and occupied himgelf with problems reducible to the equations of the
above-mentioned type.

We start with the equations of arbitrary degree and one unknown.

Suppose that the left-hand side of an equation is a polynomial with
integral coefficients, i.e. let the equation be of the form

(1) ' a2+ @ 8" A G B Gy, = 0,

where m is a given natural number and a,, a,, ..., 6, are integers with
ay# 0 and @, # 0.
If there is an infeger # satisfying equation (1), then

(aﬂwm_l'i'alm, _2+'-~+a’m-—l)w = —ly .

- It follows that the integer # must be a divisor of the integer a.,, there-

fore, since the integer a,,, being different from zero, has finitely many
divisors, all the integral solutions of equation (1) can be found in finitely
many trials. We just substitute the divisors (positive and negative as
well) of a,, successively in equation (1) and select those which satisfy
the equation. If @, = 0, then clearly # =0 is a solution of the equation.
The other solutions are obtained by considering the equation

@ a8t Gy =0,

whose solutions are found in analogy to the previous case whenever
Gy 5% 0. If @p_; = 0, then the equation turns into an equation of degree
m—2 and we repeat the same reasoning.

As an example we consider the equation

o +o+2 =0.
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Ag follows from’ the above, the solutions of the equation are to be
found among the divisors of the integer —2, and these are 1, —1, 2, —2.
We see that only the number —1 satisfies the equation; thus it is the only
integral solution of our equation.

The reasoning just presented shows that there are no real difficul-
ties, apart from the technical ones, in finding all the integral roots of
& polynomial with integral coefficients, even when the polynomial is of
a higher degree. This situation is quite different from what appears in
algebra, where, as we know, the formulae for the roots of polynomials
of the third and fourth degree are very complicated and for some poly-
nomials of degree higher than four the roots cannot be found by algebraic
methods at all.

Similarly, the task of finding all the rational roots of polynomial
with integral coefficient does not involve any real difficulty. As a matter
of fact, suppose that a rational number r satisfies equation (1) with inte-
gral coefficients aq, ay, ..., @,. We may suppose that @, # 0, and more-
over, excluding the possible root z = 0, that a, % 0. The number r
can be represented in the form of a = k/s, where s is a natural number,
k an integer and (k,s) =1.

From equation (1), for © = k/s, we obtain

k™ = — (@ F" T B BT - 8™ )8,

8™ = — (k™ B st A G 8™ N R
The first of these equalities proves that s | @, k™, which, since (%,s) =1,
implies s | @o. The second shows that % |a,s™, whence, in virtue of

(k,8) = 1, we obtain % | a,,. Thus the rational solutions of the equation
can be found in finitely many trials: we substitute for # irreducible

fractions ’ where the %’s are divisors of the integer a,, and the s’s are

natural divisors of the integer a,, and select those which satisfy the
equation.

§ 2. Problems concerning Diophantine equations of two or more
unknowns. We present here some questions which can be asked about
the integral solutions of an equation of two or more unknowns.

We list them in order of increasing difficulty:

Given an equation of two or more unknowns:

1. Does it have at least one integral solution?

2. Is the number of its -integral solutions finite or infinite?

3. Find all its integral solutions.

There are equations for which the answer to none of these questions
isknown. We do not know, for ingtance, whether the equation 434 48+ 2% =

icm
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= 30 has any integral solution at all. We know four integral solutions
of equation #°+y°+2® =3, namely (z,y,2) =(1,1,1), (4,4, —35),
(4, —B,4), (—5,4,4), but we do not know whether they are all the
integral solutions of this equation. The difficulty of this problem was
compared by L. J. Mordell [5] with the difficulty of deciding whether
the sequence 1,2,,...,9 appears in decimal expansion of =.

It is known that the equation #°+y®+ 2% = 2 has infinitely many
solutions in integers, e.g. (z,y,2) = (14 6n3 1—6n°, —6n2), where n
is an arbitrary natural number. We do not know, however, all the inte-
gral solutions of this equation.

On the other hand, one can prove that the equation 234 y3-42% = 4
has no integral solutions. In fact, the only possible values for the remainder
obtained by dividing the cube of an integer by 9 are 0, 1, and 8. Hence
the only possible values for the remainder obtained by dividing the sum
of the cubes of two integers by 9 are 0, 1, 2, 7, 8, and similarly divid-
ing the sum of the cubes of three integers we obtain as the only possible
values for the remainder the integers 0, 1, 2, 3, 6, 7, 8 but neither
4 nor 5. Thus not only the equation #*4- 43+ 2* = 4 but also the equation
#*4y*+2% =5 has no integral solutions «,y,2 (more generally, the
equation 2+ y®+2% =k, where & divided by 9 gives the remainder 4
or 5, has no integral solutions).

‘We know that the equation #°+4y%4-2°® = 6 has integral solutions
x,¥y,%, for instance (z,y,?) =(—1, —1,2), (—43,—B58,63), (—55,
—235, 236), but we do not know whether the number of the solutions
in integers is finite.

Sometimes the difficulties of finding all the integral solutions of
an equation are purely of technical nature; i.e. we know the method
for finding the solutions but the calculations it involves are too long
to be carried out; for instance, such is the case with finding the solutions
of the equation xy = 2191—1 in integers. One can prove that it has one
solution in & and y, each greater than 1 (%), but we cannot find it. Clear-
ly, there exists a method for finding that solution: namely we may
divide the number 2'92—1 by numbers less than 210—1, successively,
and seleet those numbers for which the remainder is zero. The ealcula-
tions it involves, however, are much too long for the present technical
means.

On the other hand, we do not know any method permitting us, even
after long calculations, to decide whether the equation #®+ y%--23 = 30
is or is mot solvable in integers. It is easy to prove, however, that the.
equation hag no solution in positive integers; the proof of this we leave
to the reader.

() See Chapter X, § 3.
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§ 3. The equation x2-y2 = 22. 'We are going to consider a particu-
lar equation of the second degree with. three unknowns,
(2 o -y? = 2,
called the Pythagorean equation.

As is known, this equation iy particularly important in trigonometry
and analytic geometry, and a special case of it, for # = y, is connected
with the simplest proof of the existence of irrational numbers.

We are going to find all the integral solutions of equation (2). We
exclude the obvious solutions, in which one of the numbers @, ¥ is zero.
Among the remaining ones we may consider only those which are natu-
ral numbers, since the change of the sign at an unknown does not affect
the equation. If the numbers #,y, 2 are natural and satisfy equation
(2), then we say that (z, v, 2) is a Pyihagorean iriangle. I have devoted
to such triangles a special book, of. Sierpinski [35].

A solution of equation (2) is called a primitive solution if the numbers
®,Y,# are natural and have no common divisor greater than one.

If &, 9, { is a primitive solution of (2), and d an arbitrary natural
number, then

(3) z=d& y=dy, 2z=4d

is also a solution of equation (2). In fact, if £2+4 2 = {2, then multiplying
both sides by d* and using (3) we obtain equation (2).

Conversely, if #, ¥, 2 is a solution of equation (2) in natural numbers,
then, putting (z,y,2) =d we have s =d&, y =dy, # = d{, where
(§,7m,0) =1 (cf. Chapter I, theorem 3%). Then, in virtue of (2) we have
(@£)'+(dn)* = (4. Dividing this equation throughout by d we see
that the natural numbers £, 5, { constitute a primitive solution of equa-
tion (1).

We say that a solution of equation (2) in natural numbers z,y, 2
belongs to the dth class if (z,y,2) =d.

In virtue of what we have stated above, in order to obtain all the
solutions in natural numbers belonging to the dth class, it suffices to mul-
tiply all the primitive solutions of equation (2) by d. Thus, without loss
of generality, we may confine ourselves to finding only the primitive
solutions of equation (2).

Suppose that @, y, 2 is a primitive solution of equation (2). We prove
that one of the numbers %, y is even and the other is odd. Suppose that
this is not the case, i.e. that both of them are either even or odd. In the
first case the number #2+4* = 22 would be even, and thus also the num-
ber z would be even, and hence the numbers %, ¥, 2 would have & common

divisor 2, contrary to the assumption. In order to show that the second
case is also impossible we prove that

icm

3. The equation z*+y* = 2? 394

Dividing the square of an odd natural number by 8 we obtain the
remainder 1. .

In order to see this we note that an odd number can be written in
the form 2k—1, where % is an integer. Hence (2k—1)* = 4k*—4k+1
= 4k(k—1)+1. But one of the numbers ¥ and ¥—1 must be even; thus
it is divisible by 2, whence the number 4%(%k—1) is divisible by 8, and
thus dividing (2k—1)2 by 8 we obtain the remainder 1, as required.

Consequently, dividing the sum of the sguares of two natural num-
bers by 8 we obtain the remainder 2, which, in virtue of what we proved
above, shows that the sum of the squares of two odd natural numbers is
not the square of an odd number. It cannot be the square of an even num-
ber, either, since in this case it would be divisible by 4, and so the re-
mainder obtained by dividing it by 8 would be 0 or 4.

Thus we have proved that formula (2) cannot hold for z,y being
0dd and #z being an integer. It follows that if «, y, 2 is a primitive solution
of equation (2), then one of the numbers #, y, say ¥, is even, and the other
one, z, is odd. The remaining solutions are simply obtained by interchang-
ing # and .

If in a given solution of equation (2), the number ¥ is even and the
number @ is odd, then the number # is odd. Equation (2) can be written
in the form

(4) y* = (2+2)(e—2).

The numbers z+# and z—a, as the sum and the difference of two odd
numbers respectively, are both even. Consequently,

(3) 2tz =24, 2—a=2b,

where ¢ and b are natural numbers. Hence

z=a+b, o=a—>.

These equalities imply that the numbers ¢ and b must be relatively prime,
since otherwise they would have a common divisor 6 > 1, and then we
would have 2z = ké, # = 1§, where & and I would be natural numbers.
Hence y? = z*— 2 = (k2—12) 6%, whence the number y* would be divis-
ible by 6% and consequently, ¥ by 8 (cf. Chapter I, § 6, corollary 2), which
is impossible, since @, ¥, # is a primitive solution; therefore J > 1 cannot
divide all the numbers #,y, 2.

By assumption, the number ¥ is even, consequently y = 2¢, where
¢ is & natural number. In virtue of (3), equation (4) implies the equality
4¢? = 4ab, whence

(6) c® = ab.
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But since (a, b) = 1, in virtue of theorem 8 of Chapter I, equality
(6) implies that each of the numbers a,b is a square. That is ¢ = me,
b = n?, where m, n are natural numbers and (m, n) = 1 (since (a, b) = 1).
Hence
2=a+b=m+n? @=0—b=m-n?
and, since ¢® = ab = m®n? and y = 2¢,
Y = 2mmn.

We have thus proved that if @,y, 2 is a primitive solution of equation
(2) and y is an even number, then

(7) 2 =mr—nt, y=2mn, z=m2+a?

where m,n are natural numbers, (m,n) =1 and of course, m>n,
because @ i a natural number. Moreover, one of the numbers m, n is
even, the other is odd. In fact, they eannot both be even, since they are
relatively prime. They cannot both be odd either, since, if they were,
then, in virtne of (7) all the numbers @, y,2 would be even, which is
impossible, since (z,y,2) =1. Thus 2|mn, which implies that the
number y = 2mn is divisible by 4.

We prove that the converse is also true: if m, # are two relatively
prime natural numbers, m > n, and one of them odd and the other even,

then the numbers #, ¥, # obtained from m, n by formulae (7) constitute
5

a primitive solution of equation (2).

To o this we note first that the numbers x,y, 2 obtaincd from
formulae (7), m,n being natural and m >n, constitute a solution of
equation (2). We simply cheek that

(8) (m®—n?)*+ (2mn)* = (mi4-n2)2.

Now, using the fact that the numbers m, n are relatively prime, we prove
that (z, y,2) = 1. If this were not the case, then there would exist a com-
mon divisor 6 > 1 of the numbers #,y, 2. The number § could not be

even, since the number z = m24n2 , @8 the sum of an odd and an even
number is odd. But in virtue of (7),

9) 2mr =utz, 2% =s—u;

therefore the numbers m? and n2 would both be divisible by 4, which is
clearly false, since the equality (m,n) =1 implies (m2, nt) =1.

Formulae (9) prove that to different numbers m , % there corres-
pond different solutions »,y, 2.

The results we have just obtained can be formulated in the following

3. The equation a?+y> = 22 41

TaeoreM 1. Al the primitive solutions of the equation x*+-y? = 22
for which y is an even number are given by the formulae

(10) p =m2—mnt, Yy =2mn, z=m>+nd,

where m, n are taken fo be pairs of relatively prime natural numbers, one
of them even and the other odd and m greater than n. -

As has been noticed by J. Ginsburg, [1], in order to find, for a given
primitive solution of the equation 22+ y? = 22, the numbers m,n satis-
fying the conditions of theorem 1 (sometimes called the .gmemtors of
the solution) it is, of course, sufficient to represent the rational number
(x-+2)/y in the form of the irreducible fraction m/n. )

In order to list systematically all the primitive solutions of equation
(2) we take values 2,3,4,... for the number m successively anq then
for each of them we take those numbers » which are relatively prime to
m, less than m and being even whenever m is odd. _

Here is the table of the first twenty primitive solutions listed accord-
ing to the above-mentioned rule.

m| n | ®x |y z | area m| w | @ | y | 2 | area

4 5 6 7] 6 13 84 85 546
‘; ; :; 12 13 30 8| 1 63 16 65 504
4 1 15 8 17 60 8 3 55 48 73 1320
4| 3 7 24 25 84 8, 5 39 80 89 1560
5 2 21 20 29 210 8| 7 15 | 112 | 113 840
5 4 9 40 41 180 9! 2 Vil 36 85 1386
6 1 35 12 37 210 9! 4 65 |, 72 97 2340
6 5 11 60 61 330 91 8 17 144 | 145 1224
7 2 45 28 53 630 10 1 99 20 | 101 990
7 4 33 56 65 924 10 3 91 60. | 109 2730

As we know, in order to obtain all the solutions in natl}ra,l numbers
of equation (2) one has to multiply each of the primitive solut.lons by n.atu-
ral numbers 1, 2, 3, ... successively, and then add the solutions obtaal}ed
from the previous ones by interchanging  and y. Moreover, every solu'tlon
in natural numbers of equation (2) is obtained in this way precisely

‘once.

As follows from identity (8), substituting natural numbers m,n
with m > n in formulae (7) we obtain solutions in n&t}n'al pumbers‘of
equation (2). But even adding all the solutions obtained in tl}ls way with
the numbers # and v interchanged we do.not get all the golutions in na}:u-
ral numbers of equation (2). E.g. we do not obtain from (7) the SOhItl.Oll
9, 12, 15, since there are no natural numbers m and n < m for which
15 = m24-n?; for, none of the numbers 15—1°% = 14, 15—22 =11, 15—
—3?2 = 6 is the square of a natural number.
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All the solutions of equation (2) are given by the following formulae

@ = (m*—n*)l, y=2mnl, 2= (m2+nl,

where m, n < m and ! are natural, provided the solutions with numbers
# and ¥ interchanged are added to them. The above-mentioned formulae,
however, give the same solution for different systems of the natural
numbers m,mn,l; for instance, the solution 12, 16, 20 is obtained
for m =2, n=1,1=4 as well as for m =4, n =2,1=1, and the
solution 48, 64, 80 is obtained for m =8, n = 4,1 =1, as well as for
m=4, n=2,1=4and for m =2, n =1, I =16.

The first of the solutions listed in the table presented above is the
solution -of equation (2) with =, y, 2 being the least possible natural num-

" bers. Moreover, in this solution the numbers s ; ¥, # are consecutive natu-
ral numbers. It is not difficult to prove that this is the unique solution
of equation (2) consisting of consecutive natural numbers. In fact, if
three consecutive matural numbers n—1,n,n+1 satisfy the equation
(n—1)*+n? = (n+1)?, then n? = 4n, whence, dividing both sides by =,
we obtain % = 4, ie. the solution 3, 4, 5.

It is easy to prove that the equation 3”4 4™ = 5" has no solutions
in natural numbers n except one, # = 2.

For, we have 344 > 5, whence # = 1 cannot be a solution of the
equation. Further, we have 32442 = 5?2, whence, for n>2, 5" =5
3" = 3% L 4 52 > 3282 42 472 — 371 4™ Therefore 3" 4"

# 3" for n > 2.

It would be not diffieult to prove a more general statement, namely

that if 42452 = ¢2, then a™+b" < " for all n > 2.

It is also true that the equation 3°- 4 = 5° has no solutions in natu-
ral numbers x,y, 2 except one, & = Yy =z =2, but this is not so easy
to prove.

L. Je§manowicz [1] has proved that the only solution of each of
the equations

B+12Y =137, 7T°424Y =257, 974 40Y =41°, 11°460Y — 61°
in natural numbers z,y,2 is z = Yy ==& =2. He asks whether there
exigt natural numbers ¢, b, ¢ such that a>-5* = ¢* for which the equation
a”+b = ¢ has a solution in natural numbers z,y,2z different from
z=y=2=2 (cf. Ko Chao [3], [4], [5]).

It is known that there exist infinitely many Pythagorean primitive
triples (a, b, ¢), such that the equation -5 = ¢® hag no solutions in
natural numbers @, y, z except one: z — y =z =2 (Lu Wen-Twan [1],
Jézefiak [2], Podsypanin [1]).

cm

3. The equation a*+y* = 2° 43

1t has been proved above that for each primitive so.lgtion of equation
(2) that one of the numbers »,y which is even is divisible by 4. Thus,
a fortiori, in every solution of equation (2) in integers z,y, z at least one of
the numbers ,y is divisible by 4.
We prove that in every solution of equation (2) in integers ai least one
of the numbers @,y s divisible by 3.
In the contrary case, we would have z = 3k+1, y =3l+1, k anfl
7 Dbeing integers. Hence a2*+y* = 3(3k2+312:1:2ki:‘31)+2. But ‘thxs
cannot possibly be the square of a natural number, gince the square of‘
a number divisible by 3 is divisible by 3, and the square of an mtegm2
which is not divisiblegby 3, that is a numbgr of the form (3t41)
= 3(3t421)+1, divided by 3 yields the remal.nder 1. ' )
Now we are going to prove that in e?)e'ry. 'mtege'r# solution of equation
(2) at least one of the numbers x, Y,z is divisible by 5. o
To prove this we consider first an arbitrary integer m .whlch' is 110?3
divisible by 5. We have m = 5k 1 or m = 5k 12, where k is :m mtegei.
Tn the first case m? = 5 (Bk*42k)+1, in the seco].fld jmz = 5(bk i‘i‘k)’-i'_m'
Consequently, dividing by 5 the square of an integer mot (?1v181the
by B we obtain the remainder equal to 1 or 4. Thur?‘ applying i e
above remark to the numbers #,y,2, Wwe see that if none of he2
numbers «,%,2 were divisible by 5, then .eawh of the numbersﬂala
and 4* divided by 5 would yield the remainder 1 or 4, Wgzlence )Oe
number #*+9y® divided by 5 would produce the rema.lyder 2, 3, .01f -
Since x2-y% = 2%, the first two cases are, .clearly, 1m1.)0s31b1;a, 0;,
dividing the number #? by 5, we cannoct obtain thfs remamdezh torthe:v
Hence, the third possibility must oceur, anfl ) 1’th$ proves ha ¢
number 22, and hence the number 2, is (.11V1§‘511?1§ by 5. Thus JGV}:
conclude that if neither of the numbers x,y is divisible by 5, then the
number # is divisible by 5.
Since (3, 4, B) is a Pythagorean triangle, we see t.ha,t the numr]gfi
1, 2, 3, 4, 5 ave the only natural numbers » for W?nch ;hfh a,is; 1le
that in every Pythagorean triangle at least one of the sides of the triang
is divisible by n is true. , ' \
Now we are going to consider the »solumf)ns of equation (2)
for which two of the numbers @, ¥, # are consecutive na.tl'lraflvnumléelf&
Clearly, the solutions belonging to this clags are prmntw?. ” e-
refore z is an odd number, and so z—y =1 can bold only if y
is even. .
Consequently, by (10), m?--n*—2mn = 2—y = 1, or eqmﬁlzn:lz,
(m—mn)? =1 which, since m > n, implies that m—n =1, i.e. m = +1.
Hence # = m:—n? = (n-+1)2—n*=2n+1, ¥y = 2n(n+1), 2=19
= 2n(n41)+1.
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Thus all the solutions of equation (2) in natural numbers z, y, 2 with
z2—y =1 are given by the formulae

z=2n+1, y=2=2n(n+1), z2=2mmn+1)+1 for n=1,2,3,..
We list the first 10 solutions of this kind:

n | x l y l P n ] % y I F]
1 3| 41 5 6 | 18 | 841 85
2 I 5 I 12‘] 13 7.1 15 | 112 | 113
3 I T 24 25 8 | 17T | 144 | 146
¢ | 9140(41 9 | 19, 180I18l
5111 I 60 | 61 10 | 21 | 220 ! 221

And here are some other solutions of this kind:

nlm{y

! z n ! S y ]' z
1] 21 220{ 221 20| 41 840 841
100 201 20200 | 20201 200 | 401 80400 80401
1000‘2001 2002000 { 2002001 2000 | 4001 | 8004000 | 8004001

and so on (Willey [1]).
The next section is devoted to the solutions for which r—y = +1.

§ 4. Integral solutions of the equation #?+y2 = 22 for which B—1y
= 1. Among the primitive solutions of equation (2) listed in §3 we see
two solutions of the kind defined in the title of this section, namely:
3, 4, b and 21, 20, 29. It is easy to prove that there are infinitely many
such solutions. This follows immediately from the fact that if for natural
numbers 2 and 2z the equality #?4-(2+41)2 = 22 holds, then

(30+ 224 1)2-+ (34 22+ 2)2 = (4ot 3o+ 2)2.

In fact, (Bw+2z-41)2+4 (3wt 22+2) = 18224 24az+ 822 4 18z 12245,
but since x4 (z-L-1)2 =2%, we have 22+2z+1 =22, whence
(B2 +2241)2+ (804 224-2)2 = 16224 2424 922+ 160+ 122+ 4
= (4o + 32 2)°,

Thus from a given Pythagorean triangle whose catheti are con-
secutive natural numbers we obtain another Pythagorean triangle with
the same property. Starting with the triangle 3, 4, 5 we obtain by this
procedure a triangle whose sides are 3:3+4-2-5+1 =20, 21 and 4-3+
+3:5+2 = 29. Similarly, from this triangle we get the triangle whose

4. Integral solutions 45

gides are 3-204-2-2941 =119, 120 and 4-204+3-294+2 =169. We
list the first six triangles obtained in this way:

3 4 5

20 21 29
119 120 169
696 697 985
4069 4060 5741

23660 23661 33461

Tt would not be difficult to prove that this procedure gives triangles
with the greater cathetus alternatively even and odd.
Tet @, =3, y, =4, 3 =5, and for n =1,2,3... seb

(11) #ppy = 3w, 422 t1,  Ynp = Tpgrt1ly  Fng = 4w, + 32,1 2.

We prove that (#a,¥n, %) (0 =1,2,..)) are all the Pythagorean
triangles for which the catheti are consecutive natural numbers.

LEMMA. If natural nwmbers @,z sotisfy the equation
(12) 2+ @12 =2
and if >3, then

(13) . @y = 3w—22+1, 2y = dz—4a0—2
are natural numbers satisfying the equation

(14) w4 (wo+1)* = 2o,

and zg < 2.

Proof. In virtue of (13) we have
B (1) = 203+ 20+ 1 = 180’4 8" — 24wz +- 186 —122+5,

? & = 1604 92" — 24wz + 162 — 124 4.

Since, by (2), 22 = 2#°+42z-+1, we have 1622+ 922—'24wz.-i— 16934—
~12z+47= Szﬁ-}—Z’lSm’—Mmz—l— 18z — 122+ 5 which, by (1B), implies él ).1

TIn view of (13), we see that in order to prove that #,, 2, are natura
and that z, < one has to show that .

3x—2-+1>0 and 0< Be—4du—2<2,

or, equivalently, that

(16) o< 30+1l, B8z>4wt2 and 2<2e+1.
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Since # > 3, we have x? > 3z = 2x-+2 > 2243, whence, by (12),
422 =822+ 8p+4 = 92?8+ 4 —a2? < 922+ 8w+ 4 — (204 3) = 902 — 62+
+1 = (3z+ 1), consequently 22 < 3241 and since 2 > 0, 22 < 40-}1;
therefore 2 < 2¢-1. This, by (12) and the fact that x> 0, implies

922 = 1822418z 9 > 160216044 = (44 2)?,

whence 3z > 42+ 2, and this completes the proof of formulae (16) and
at the same time the proof of the lemma.

Now suppose that there exist Pythagorean triangles (z,x-+1,2)
which are different from all the triangles (zy,#,-1,2,) defined above.
Among them there exists a triangle (x, y, 2) for which # is the least. Then,
clearly, # cannot be less than or equal to 3, since if it could, we would
have (z,y,2) = (3, 4,5).

Let
17)

u=3x—2-+1, v=3z—45—2.

In virtue of the lemma (u, w41, o) is a Pythagorean triangle and
v < #. Thus, since # was the least among all #’s of all the Pythagorean
triangles different from the triangles (w,, 2,+1, #,), for some n we have,
U =Py, V= 2, and
Byy = dut-2041,
Hence, by (17),
Tppy =3B —224+1)+2B82—4x—2)+1 =2,

Zpy1 = 4(80—224+1)+3(82—40—2)+2 = 2.

Ynel = Tug1+1, 8y = 44+ 3042,

So the triangle (, $—l—'1, #) turns out to be one of the triangles (2, Y., 24),
contrary to the assumption. Thus we have proved that the triangles
(@n, 2o+1,2,) (n =1,2,...) are all the Pythagorean triangles for which
the catheti are consecutive natural numbers,

It can be proved that if the infinite sequences u,, u,, ... and vy, v,, ...
are defined by the conditions w, =0, %; =38, Uny = 6Uy~—Up ;1 +2
forn =1,2,...and vy =1, v, =5, ¥y = 60,—0, ; for n =1,2,...,
then up+ (u,+1)° =2} for n» =1,2,..., and (u,,u,+1,v,) iy the
nth triangle of sequence (11).

One can algso prove that if (1—1—1/.5:)2"’““1 = a,,-i—b,.l/g where n

— n e — n
=1,2,..., a, and b, are integers, then (%'HZ 2 ,a,. (2 2 ,b,,) is

the nth triangle of sequence (11).

Now we suppose that the natural numbers # and # satisfy equation
(12). Since one of the numbers #, #+1 is even and the other is odd, # is
0dd and, clearly, z > #+1 and also 2% < (2w-+1)2. Therefore ¥ = z—a2—1
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and v = (2x-+1--2) are natural numbers; thus, in virtue of the
identity

femo—l)E—a) (m+ E:ﬂf

2

= i—(z2—m2—(m—}—1)2)

2
and the equality #2--(2-+1)* =22, we have

(18) Ju(u+1) = .

The number %, = 4u(«-+1), where « is a natural number, is called a triasn-
gular number (of, later § 16). Formula (18) shows that the triangular num-
ber t, is the square of a natural number.

Thus every solution of the equation 22+ (z-+1)? =2? in natural
numbers gives a solution of equation (18) in matural numbers u and v
simply by putting v =2z—&—1, v = s+ (1—2)/2. The converse is also
true: if natural numbers u and v satisfy equation (18), then putting
# =u-+2v, 2 =2u+20+1 and using the identity

(0 20)2 -+ (2 + 204+ 1) — (2u-+ 20+ 1)2 = 4{v2— Ju(u+1))

we obtain a solution of the equation #*+(z-+1)> =2* and w = 2—2—1,
» = }(2n+1—2). As we have seen, these formulae transform all solutions
of the equation 24 (w-+1)? = 2% in natural numbers , 2 info all the
solutions of equation (18) in natural numbers » and v, or, equivalently,
into all the triangular numbers which are squares of natural numbers.
Tt follows that there are infinitely many triangular numbers of this kind.
‘We present here the first six triangular numbers which are the squares
of natural numbers obtained from the first six solutions in natural num-
bers of the equation x2+4(x-+1)%* = 2% :

f,o= 12, fy = 62, t = 352, tyyy = 2042, by = 11892, foge = 6930°%.
It follows from the identity
(19) (22—20—1)2—2(20—2-+1)—1 = 2(z2—m2‘(m+1)2)

that if natural numbers »,# satisfy equation (12), then, setting

(20) a =2—20—1, b=2s—2+1,
we obtain
(21) 02—2b% =1,

where a, b are natural numbers; in fact, since, in virtue of (12), we have
2 < 2z-+1, thus 4¢* > (25+1)?, whence 22> 20+1.
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Formulae (20) are, obviously, equivalent to the following ones:

(22) o =b+ia—1), z=a+b.

If numbers a and b are natural and satisty equation (21), then @ is plainly
an odd number greater than 1, and the numbers given by (22) are natural.
Moreover, since (20) implies (22), then, in virtue of (21), (20) and (19),
we see that the numbers # and = satisfy equation (12).

From this we conclude that from the set of all the solutions in natu-
ral numbers #, 2 of equation (12) we obtain, using formulae (20), all the
solutions of equation (21) in natural numbers ¢ and b.

For example, the first four solutions just presented of equation
(12) give the following solutions (a,b) of equation (21): (8,2), (17, 12),
(99,70) (577, 697). -

Conversely, from all the solutions of equation (21) in natural numbers
we obtain, using formulae (12), all the solutions in natural numbers of
equation (12).

§ 5. Pythagorean triangles of the same area. From the list of Py-
thagorean triangles presented in § 1 we infer that the triangles (21, 20, 29)
and (35, 12, 87) have the same area (= 210) and that these are the two
least primitive Pythagorean triangles with different hypotenuses and the
same area. Taking into account non-primitive triangles with hypotenu-
8es < 37 we obtain other 8 triangles (6, 8, 10), (9, 12, 15), (12, 16, 20),
(15, 20, 25); (10, 24, 26), (18, 24, 30), (30, 16, 34), (21, 28, 35) of
area 24, b4, 96, 150, 120, 216, 240, 294, respectively. Thus we see
that there is no pair of triangles among the Pythagorean triangles with
hypotenuses < 37 such that both triangles of the pair have the same
area, except the pair (21, 20, 29), (35, 12, 37).

We note that two Pythagorean triangles of the same ares and the
equal hypotenuses are congruent. In fact, it (ay, by, 0;) and (a,, by, ¢5)
are such triangles and a, > by, a, > b,, then, by hypothesis, a,b, = a,b,
and ¢, = ¢, whence a;-+b] = a;+b} consequently, (@ —01)% = (a;—b,)?
and (a;+0,)* = (a,+b,)?, whence a,—b, — G3—by and a;4b; = a,+b,,
which implies a4, = a, and b, = by, as asserted. From the list in §3 we
select the Pythagorean triangle (15, 112, 113), whose area is 840 — 4-210.
This area is 4 fimes greater than the area of the triangles (21, 20, 29)
and (35, 12, 37). Thus multiplying each side of each of these triangles
by 2 we obtain the triangles (42, 40, 58) and (70, 24, 74) respectively

with the area equal to 840. So we have obtained three Pythagorean trian-
gles

(15, 112, 113), (42, 40, 58), (70, 24, 74)

all having the same area.
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Not all of these triangles are of course primitive. Tt is known that
the least number being the common value of the area of three primitive
Pythagorean triangles is 13123110 and the triangles are

(4485, 5852, 7373), (19019, 1390, 19069), (3059, 8530, 9089).

The generators of the corresponding solutions of the Pytaghorean equation
are (39, 38), (188,5), (78, 55), respectively.

It is of some interest to know whether there exist arbitrarily large
systems of Pythagorean triangles with different hypotenuses and the
same area.

The answer to this question is given by the following theorem of Fer-
madt.

TEBOREM 2. For every natural nwmber w there ewist n Pythagorean
iriangles with different hypotenuses and the same area.

This theorem follows by induction from the following

Levwa. If we are given n Pythagorean triangles with different hypo-
tenuses and the same area and if for at least one of the triangles the hypote-
nuse is odd, then we can construct n-1 Pythagorean triangles with different
hypotenuses and the same area such that Jor at least one of the iriangles the
hypotenuse is odd.

Proof. Let n be a given natural number. Suppose (ay, by, ¢x) with
ap <bp <oy k=1,2,...,n, ave n given Pythagorean triangles, all
having the same area, and such that ¢’s, & = 1,2, ..., n, are all differ-
ent and ¢, is odd. Set

(23) a’llc = Ocl(b%""ﬁ)a’k; b;c = 201(1’?—(1%)’%; cilc = 201(b?—ai")0k,

for k=1,2,...,n
and

(24) a;H-l = (bi—ai ), va1+1 = 4a,bydi, 0;».4.1 = 4aibi+ci.

For ¥ =1,2,...,n the friangles (a, by, c;) are plainly Pythagorean
triangles, since they are similar to the triangles (ay, by, ), % = 1,2, ..., n,
respectively. But also (any;,bny1, €ny1) is & Pythagorean triangle. This
follows immediately from (24), the equation ai-+3? = ¢ and from the

eagily verifiable identity
(bz_ a2)4+ 16a2b2 (az__}_ b2)2 — (4a2b2+ (a2+ b2)2)2 .

We now prove that the triangles (ay, by, cz), where k = 1,2, ..., n+1,
satisfy the remaining conditions.

Let A be the area of each of the triangles (ax, by, ¢}, k =1, 2, ..., n.
We then have a;b = 24 for k =1,2,...,n. The area of the triangle

Elementary theory of numbers 4


Yakuza


50 CHAPTER II. Diophantine analysis

(@, bry 03} With & =1,2,...,n is, by (23), equal to }azb; = 2¢}(bi~
—a})apby = 463 (B} —ai)*4. The area of the triangle (dn,1, bpy1, Cry)
is, by (24), equal to an,1bpyy = 2(0i—ad)cta b, = 4c}(b}—a}) 4. Thus
the triangles (ay, by, ¢x), Where & =1, 2,...,n--1, have the same area.

To see that the hypotenuses of the triangles (ay, by, ¢;), Where k
=1,2,...,n, are all different, we note that the numbers¢;, k =1, 2, ...
..., %, a8 the hypotenuses of the triangles (as, by, ¢;) are all different.
Besides, by (23), o (k < n) are all even numbers. On the other hand, in
virtue of (24), the number ¢, is odd, sinee ¢, is odd. Thus we have
proved that the numbers ¢, where k = 1, 2, ..., #, n--1, are all different.
This completes the proof of the lemma,

The simplest special case of the lemma is obtained for » = 1. The
least Pythagorean triangle to which the lemma can be applied is, of course,
the triangle (3, 4, 5). Using the lemma we obtain the following two
triangles of the same avea: (aj, by, ¢;) and (a,. by, ¢;), Wwhere, according
to formulae (23), by the equality 2(b3—aj)e; =2-7-8 = 70, we have
a; =3-70 = 210, b; = 4-70 = 280, ¢ = 5-70 = 350 and, in virtue of

formulae (24), ay = (4 —38%) =49, b, = 4-3-4-5° = 1200, ¢; = 4-3%-42}

+4-5* =1201. This gives us two Pythagorean triangles, (210, 280, 350)
and (49, 1200, 1201), with different hypotenunses (and one of them odd)
and the same area equal to 29400. Applying the lemma again to the trian-
gles just obtained we obtain three Pythagorean triangles with different
hypotenuses and the same area, the sides of which, however, are all gre-
ater than 1019, On the other hand, by the use of different methods we have
already found three Pythagorean friangles whose sides are less than
10% There exist also four Pythagorean triangles with different hypote-
nuses and the same area whose sides are less than 10°. These are (518,
1320, 1418), (280, 2442, 2458), (231, 2960, 2069), (111, 6160, 6161)
and the area of each of them is 314880. And here are five Pythagorean
triangles of this kind with sides less than 10°: (2805, 52416, 52491),
(3168, 46410, 46518), (5236, 14014, 28564), (6006, 24480, 25206), (8580,
17136, 19164); the area of each of them is 73513440.

Of course there exist only finitely many Pythagorean triangles with
a given area 4; for the catheti of such a triangle must be divisors of
the number 24. On the other hand, it follows easily from the lemma
proved above that there ewist infinitely many non-congruent rectangular
triangles whose sides are rational and areas equal to 6.

In fact, it follows from the proof of the lemma that if we are given
n Pythagorean triangles with different hypotenuses, one of them odd,
and such that the area of each of the triangles is 4, then there exist n+1
Pythagorean triangles with different hypotenuses, one of them odd,
and such that the area of each of the triangles is Ad2, where d is a natu-
ral number. Starting with the triangle (3, 4, 5) and applying the lemma
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n—1 times we obtain # Pythagorean triangles with different hypotenu-
ses, the area of each being equal to 6m?2, where m is a natural number
(depending on n). Dividing the sides of these triangles by m we obtain
# non-congruent rectangular triangles whose sides are rational and areas
equal to 6. Since n was an arbitrary natural number, we see that the num-
ber of non-congruent rectangular triangles whose sides are rational and
areas equal to 6 cannot be finite, so there are infinitely many such trian-
gles, as asserted.

We note that it is easy to prove that for each natural number » there
exist >mn mutually non-congruent Pythagorean triangles having peri-
meters of the same length.

In fact, no two non-congruent primitive Pythagorean triangle are
similar, but the number of them is, as we know, inifinite. Let us take n
such non-congruent triangles (ay, by, ¢;) (& = 1,2,...,n) and set ap+ b+
oy =g, for k=1,2,...,n. Let

, ;8 &8

' 7 Cr$§
8 =8185...84, G = y e =——y Gp=— fork=1,2,...,n.
Sy Sy I
’ s r’
We then have ay+by+¢, =s for k =1, 2, ..., and, moreover, no two

of the Pythagorean triangles (az, by, ;) (% =1,2,...,n) are similar;
consequently, they are not congruent.

The list of all the primitive Pythagorean triangles with perimeters
less than 10000 in length has been given by A. A. Krishnawami [1]. Two
triangles missing in this list have been found by D. H. Lehmer [7].
In particular, the number of triangles with perimeters not greater than
1000 in length is 70, and there are 703 triangles with perimeters not
greater than 10000 in length.

It is easy to prove that for each natural number s there exist g pri-
mitive Pythagorean triangle whose perimeter length is the sth power
of a natural number. In fact, let ¢ be a natural number > s > 1 and let
m =2"", n = (2%—1)°—m. Since, in view of £>s, we have

1\ 1\ s

(-a) =05 >

then, using s >1, we observe that (26—1)°> 2°~%f, Consequently =

is a natural number and it is less than m (since (2t—1)" < 2% — 2m).

It is obvious that (m, n) = 1. Now finding the numbers @, ¥y, 2 from

formulae (9) we obtain a Pythagorean triangle whose perimeter length

is the number #+y+2 = 2m(m+n) = [2t(2t—1)T. For s = 2 we obtain
the triangle (63, 16, 65), whose perimeter length is 12%

It is easy to find all the Pythagorean triangles whose areas are

equal to their perimeter lengths (see de Comberousse [1], pp. 190-191).

1
3’
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The sides x,y,2z of such a triangle must satisfy the equations
22 4+y? =2 and oa+ytz=Lay.

Bliminating z we obtain the equation

(25) (#—4)(y—4) = 8.

This implies that z—4 | 8. We cannot have #—4 < 0, because in
the case #—4 = —1 or #—4 = —2 we would have y—4 = —8 or
y—4 = —2, respectively; this, in turn, would give y = —4 or y =0,
which is obviously impossible. Bub if #—4 = —4 or z—4 = —8, then
2 <0, which is also impossible. Thus we conclude that x—4 > 0 and
therefore, by 2—4 | 8, we see that #—4 =1, 2, 4 or 8, whence s — 5, 6,8
or 12. Consequently, using (25), we obtain y = 12, 8,6 or 5. This leads
us to the conclusion that there are precisely two non-congruent triangles,
namely (5, 12, 13) and (6, 8, 10). The area and the length of the peri-
meter of the first is 30, of the other 24.

It is easy to prove that there exist infinitely many Pythagorean
triangles whose sides are rational and areas equal to the lengths of their
perimeters. It can be proved that all such triangles (u,v, w) are given
by the formulae

2(m—+n) 4m 2 (m?+ n?)
U = —_—, P = —_—, W= ——
n m—n (m—mn)n

H

where m and n < m are natural numbers.

§ 6. On squares whose sum and difference are squares. Now we
consider the problem of existence of natural numbers x,4,z ¢ sabis-
fying the following system of equations

(26) g)z_*_yﬂ p— zB’ wz__,yz = {2,

In other words, we are going to answer the question whether there exist
two natural numbers # and y such that the sum and the difference of
their squares are squares. The answer is given by the following theorem
of Fermat.

THROREM 3. There are no two natwral numbers such that the sum and
the difference of their squares are squares.

Proof. Suppose that there exist natural numbers z and y such that
@?+4? = 2% and 2®—y? = {2, where # and ¢ are natural numbers and, of
course, # > t. Among all the pairs @,y there exists a pair for which the
number 2?+y*is the least. Let », y denote such a pair. We must have
(#,9) =1.Foritd |z and d |y with d > 1, then, in virtue of o2yt =22,
#*—y* =%, we would have d2|2%, d2|*, whence d|z and d|t, but
this would -imply that the equation can be divided throughout by @2,
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contrary to the assumption that @, y denote the solution for which the sum
224y is the least. If follows from (26) that 2z% = 2*4-#*. Therefore the
numbers # and ¢ are both odd or both even. Hence the numbers 2+
and 2—1 are both even and therefore }(z-+i) and }(¢—1?) are natural
numbers. If d|%(z+%) and & |4(z—17) and 4 is greater than 1, then
d | 2z, which in virtue of

241\ [z—t)\?
(27) o = (B (5,
implies d* | #* and so d | . Consequently, since 2+ y2 = #2, we also have
dly, which is clearly impossible since (2,%) =1.
Thus

(28) (z;—t’ zgt) 1

From (28) and (27) we infer that the numbers ¥(z-+1), ¥(#—1), « form a
primitive solution of the Pythagorean equation, which by theorem 1, im-
plies that there exist relatively prime natural numbers m,n with
m >mn, one of them even and the other odd, for which either

${z—1) =m2—n2, }(z+1)=2mn
or

$(z+41) = m2—n?, f(z—1t) = 2mn
hold. Since 2y* = 22—12, in either case we have

2y? = 2(m*—n2)4dmn, whence y2 = (m*—n?)dmn.

As the number y is even, y = 2k, where % is a natural number. Using
the formulae for y2 we obtain

(29) (m2—n2)ymn = k2.

Since (m,n) = 1, we have (mLn,m) =1, whence (m2—n2,m) =1
and (m*—n?, n) = 1. From (29) we infer that, according to the corollary
of theorem 8 of Chapter I, each of the numbers m2— 2, m, n is the square
of & natural number, thus m = a2, n = b2, m®2—n? = ¢, where a,b, ¢
are natural numbers. From (m,#n) =1 and from the fact that one of
the numbers m,n is even and the other is odd we infer that (m4-n,
m—mn) = 1. In fact, every common divisor of the odd numbers m+n
and m—n is even, but it is also a divisor of the numbers 2m and 2n, thus,
gince (m,n) =1, it equals to 1. From the equalities (m-+n,m—n) =1
and (m-+n)(m—n) = m2—n? = ¢ (by the already mentioned corollary)
it follows that the numbers m-+n and m-—n are squares. Thus, since
m = a®, n = b2, the numbers a2-- b2 and a®— b? are squares. But a®+- b2 =
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=m+n < 2m < 2mn < $(e+1) <2< 22 = 22+y%, whence a2ld?<
< #*4-y?, contrary to the assumption concerning the pair z,y.

Thus the assumption that there exist natural numbers for which the
sum and the difference of their squares are squares leads to a contradiction.
This completes the proof of theorem 3.

On the other hand, there exist infinitely many pairs of natural
numbers @,y for which there exist natural numbers z and ¢ such that
22+y? =224+1 and #°—y? =241. For ingtance, if ¢ is even then for

'y

#=--+1,y =¢* we have

Py = (P 2P+, 2'—y? = (g2 — g1,
We also have (2n2)24(2n)2 = (2n24-1)2—1 for n = 1,2,... There exist
other pairs of natural numbers #; y such that for some natural numbers
#,t We have a* + y* = o’ —1, *—y* =21, e.g. 212412 = 1421,
212—-12% = 10%2—1. It is not difficult to see that there exist pairs of nat-
ural numbers #, y for which we can find natural numbers # , & such that
2?4y =22+1 and p—y2 =21, e.g. 1324-11%* = 17241, 132112
= T2—1 or 8924 79% = 11921, 89%— 702 = 4121,

It follows from theorem 3 that the system of equations
®) iyt =t 2P 2R = o
has no solutions in natural numbers LyY, U, V.

In fact, if for some natural numbers =, y, «, v formulae (i) hold, then
w4y =92, ul—y? =g, contrary to theorem 3.

COROLLARY 1. There are no natural numbers a, b, ¢ such that at— bt = c2,

Proof. If the numbers a, b, ¢ conld be found, then we might agsume
that (a,b) =1; for, if (a,d) =d>1, then putting ¢ = da,, b = db,
we would have d‘(ai—b}) = ¢2, whence d%}c, 80 ¢ = d%, and there-
fore ai—b} =¢}, where (a;,b) =1. Thus assuming (a, b) =1,
we have (a2, %) = 1, whence in virtue of the equality bt4-c¢? = at, the
numbers b2, ¢, a* form a primitive solution of the Pythagorean equation.
Then from theorem 1 we infer that there exist natural numbers m 5 My
m>mn, such that a* =m24n® and either b* = m2—m? or b® — 2mm
The first case is impossible, since it contradicts theorem 3. In the second
case we have a?4b% = (m-4-n)? and a2— b2 = (m~mn)?, which also contra-
dicts theorem 3. This completes the proof of corollary 1.

It follows that there are no natural numbers Sor which the swm and the
difference of their squares are both the k-th multiples of squares of natural
gwmbers, for otherwise we would have a?—p¢ = (kuv)?, contrary to corol-

ry 1.
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By corollary 1 the difference of the fourth powers of natural numbers
is not the square of a natural number; the produet, however, of two dif-
ferent differences of this kind can be the square of a natural number;
for instance

(30— 20)(118—2%) = 0752,  (21—1%)(28'— T4) = 20402,

(54— 4%)(214—20%) = 35672,  (9'— T%)(11*—2%) = 7800%.
CorOLLARY 2. There are no natural numbers x,Yy,z satisfying the
equation ot y* = 2t (this is the Ferma Last Theorem for the exponent 4,
ef. §18).
Proof. If the numbers #, ¥, z existed, then we would have 2!—y*
= (#?)2, contrary to corollary 1.

Corollary 2 can also be expressed by saying that there is no Pytha-
gorean triangle whose sides are squares.

K. Zarankiewicz has asked whether there exists a Pythagorean
triangle whose sides are triangular numbers (i.e. numbers &, = n(n-+1)/2).

The answer to this question is obtained simply by checking that the
numbers tygy = 8778, #15 = 10296, f,, = 13530 form a Pythagorean
triangle. We do not know whether there exist any other Pythagorean
triangle with this property. However, there exist infinitely many Py-
thagorean triangles whose catheti are consecutive friangular numbers.
As a matter of fact, in §4 we have proved that the equation «?4
4-(24+1)2 = 22 has infinitely many solutions in natural numbers z, 2.
Fér each such solution #, 2, we easily check that 6,15, = [(20+1)2]2.
For example we have 13 = 35%, t5,+1; = (41-29)2. It is known that
there exist infinitely many primitive Pythagorean triangles whose cathe-
ti are triangular numbers. To this class belongs the triangle (t;, fy, 53).

If for some natural numbers a,b, ¢ we have -+t =1, then, as
can easily be verified, we also have ((2a-+1)2—1f+((2b+1)2—1)
= ((2¢+1)2—1}’. Thus the equation (#2—1)2+(y2—1)* = (#*—1)* has
a solution in odd natural numbers z, ¥, 2, e.8. = 263,y = 287, 2z = 329.
The equation has also another solution in which not all numbers #, ¥, 2
are odd; e.g. # =10, y = 13, 2 = 14. We do not know whether this
equation has infinitely many solutions in natural numbers > 1.

It is easy to prove that there is no primitive Pythagorean triangle
such that adding 1 to ifs hypotenuse we obtain the square of a natural
number. In fact, the hypotenuse of a primitive Pythagorean triangle
is, by theorem 1, of the form m2+4n?, where one of the numbers m, n
is even and the other is odd ; consequently, dividing the number m2+4n2-+1
by 4, we obtain the remainder 2, whence we infer that m24-n*+-1 cannot
be the square of a natural number.
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It is eagy to prove that the equation
(@1 (P —1)* = (24 1)2
has infinitely many solutions in patural numbers #,y, 2. This follows
iramediately from the identity
((2n +2m)* — 12+ (204 1P —1) = ((2n*-F 2n)* 4 1)?

for m =1,2,..., which, in particular, gives (42—1)24-(32—1)2 =
(414102, (12— 1)2-+ (5~ 1)3 = (1294 1), (242— 14 (T3 1)2 = (T34 1),
‘We note that the numbers 2n2-+2# and 2n+1 can always be regarded
a8 the catheti of a Pythagorean triangle, for

(@n®+2n)24- 20+ 1)2 = (2024 2n41)2  for

Also the equation

n=1,2,...

(@ —1)*4 (%) = (22—1)2

has infinitely many solutions in natural numbers. This follows from
the identity

((8n* =1 — 1)+ ((20)f) = ((8n*41)*—1)

Thus, in particular, (72—1)24-(8%)% = (92—1)2,

However, there is no Pythagorean triangle for which by substract-
ing 1 from each of its catheti we would obtain the squares of natu-
ral numbers. The reason is that, as we know, in each Pythagorean triangle
at least one of the catheti is divisible by 4. N

It can be proved that for each Pythagorean triangle (a, b,¢) and
for each natural number n there exists a triangle similar to the triangle
(@, b, ¢) and such that each of its sides is the mth power of a natural
number with m > n. To construct this triangle it is sufficient to multiply
each of the sides of the triangle (a, b, ¢) by 2Ur*-Dp#rn-NEn+yanien—1)
Using the fact that a*--b2 = ¢2, one easily sees that

for n=1,2,..

(( aZPpr—NEn-+1) nen—1) )zn)z + ( ( i1 czn2)2n+1)2
— ((azn—lbz(n—1)n62n2—2n+1)2n+1)2 .
Thus in particular for n = 2, if a2-1 52 = ¢, then
((a’4b506)4)2+((u5b708)3)2 —_ ((a3b405)5)2-

It is not known whether there exist natural numbers » ¥, %, % such
that ot y*4-2* = #. It is known that the equation hag no solutions in
natural numbers »,y,2,t with ¢ less than 10000 (Ward [2]). Tt is
interesting o know that 304120+ 27444 315 = 353¢ (Norrie, 1911)
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and 133*+134¢ = 5944158 (Euler, 1778). We do not know whether
the equation #*+-y*+ 241 = has infinitely many solutions in natu-
ral numbers »,y, 2, t,  such that (z,y,2,8) = 1. Apart from the solu-
tion mentioned above there are precisely 7 other solutions of this equation
with » <4309 and (»,y,#2,t) = 1 (Leech [2]), e.g. 24044 340% 430+
+599* = 651* (J. O. Patterson 1942).

On the other hand, there exist infinitely many quadruples By, 2,1
such that (@,y,2,%) =1 and 2*+y* = 44 #* (¢f. Carmichael [4], p. 82,
Leech [3]).

We also have

22 4 = 58,
484 64480 91 - 144 = 158,
164 8441244 3244 644 = 65¢.

Turning baek to corollary 1 we note that the equation #f—y* = 2% has
solutions in natural numbers. In fact, for a natural number % we have

(k (k4 — 1)2)4—((704—" 1)2)4 — ((kl_ 1)3}3 .

Thus, in particular, for % =2, 450¢—225¢ = (15%), B. Swift [1] has
proved that the equation 2*—y* = 2® has no solutions in natural num-
bers z,y,2z such that (z,y) =1.

ComrOLLARY 3. There are mo three squares forming an arithmetical
progression whose difference is a square.

Proof. If for natural numbers #,y,#,¢ the equalities y2—a® = 2
and 2*—y?® = 1% were valid, then y2—12 = 2%, y24-12 = 22, contrary to
theorem 3.

COROLLARY 4 (Theorem off Fermat). There is no Pythagorean triangle
whose area is the square of & natural number ().

Proof. Suppose, to the contrary, that such a triangle (a, b, ¢) exists.
Then a?+b% = ¢* and ab = 242, where d and ¢ are natural numbers.
Without loss of generality we may assume that & > b, since the case
a =15 could not possibly occur because 2a% = ¢* is impossible. Hence
02+ (2d)? = (a+b)?, ¢*—(2d)® = (a—D)?, contrary to theorem 3.

‘We leave to the reader an easy proof of the fact that there are no
two rationals, each different from zero, such that the sum and the dif-
ference of their squares are the squares of rational numbers.

Similarly, it is not difficult to prove that there are no rational num-
bers a, b, ¢, all different from zero, such that a*— bt = ¢2.

(*) C. M. Walsh devoted a long paper to this theorem [1]. The paper con-
tains detailed historical references as well as many remarks by the author himself.
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To see this we suppose, on the contrary, that such numbers a,b,c
exigt. We may of course assume that they are all positive. So @ = lm,
b=r[s, ¢ =wufv, where I,m,r,s,%,v are natural numbers. Since
at—D* = ¢2, we see that (l{;s)‘i—(m;m)‘1 = (uvm?2s?®)?, contrary to corol-
lary 1.

It can easily be proved that there are no three squares of ratiomal
numbers, all different from zero, which form an arithmetical progression
in which the difference is the square of a rational number. It follows
that there is no rational number # for which each of the numbers z,z+1,
z42 is the square of a rational number.

§ 7. The equation o4 y* = 22. Tt seems to be a mnatural question
to ask whether there exist Pythagorean triangles in which both catheti
are squares. The answer to this question is given by the following theorem
of Fermat and is negative.

THEOREM 4. The equation
(30) Topyt =

has no solutions in natural numbers x s Y,y 2.

Proof. Suppose, on the contrary, that equation (30) has a solution
in natural number and let 2 denote the least natural number which square
is the sum of the 4-th powers of two natural numbers @,y. We have
(z,y) =1; for, otherwise, i.e. when (z, y) = d > 1, we would have ¢ = dw,,
Y = dy1, @y,9; being natural numbers, whence * = @*(z?+4%), and
cousequently d*|2?, which, as we know, would imply 42 | 2, 80 2 = d%,,
# being a natural number. Therefore, by (30) @i+ =22 < 2%, con-
trary to the assumption regarding z. Thus, since (#,9) =1 implies
(2, %) = 1, the numbers 22, y?, » form a primitive solution of the Py-
thagorean equation

(1) @)+ ()2 = 2.

In view of theorem 1 one of the numbers #* and ¥?, say ¥?, is even
and
(32) 2 =mi—nt, y=2mn, z= mi4-n2,

where (m,n) =1, m > n, one of the numbers m,n being even and the
other odd. If m is even and » is odd then in the Pythagorean equation
#*+n? = m?, as a consequence of (32), both » and = are odd. But the
last statement leads to a contradiction. In fact, in virtue of what we
proved in § 3, the square of an odd number by 8 leaves the remainder 1,
consequently, the left-hand side of the equation z2---n2 — m? divided by 8
would give the remainder 2 and hence it could not be 2 square. Thus
m i§ 0dd and n = 2k, where k is a natural number. Since (m,n) =1,
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we have (m,k)=1. Then, from the second equality of (32), we
conclude that y? = 22mk, consequently y is even and so y =21,
whence 1? = mk. Sinee (m, k) = 1, by theorem 8§ of Chapter I, the num-
bers m and k are the squares of natural numbers, ie. m = a?, k=02,
where e,b are natural numbers. We have # = 2% — 22, Hence, by
(32), w*4-n* = m?, which in virtue of (m,n) =1 implies (w,n) =1.
Therefore the numbers x, #, m form a primitive solution of the Pytha-
gorean equation, which, in view of theorem 1 and the fact that n is even,
implies that

(33) no=2mn,, m=mit+ni,

where m,, n; are relatively prime natural numbers.

Since n = 2%, we have b® = m,n,, whence, from (m,, n,) =1,
we infer that the numbers m,, n, are squares, 5o m, = a2, n, = b? and
since m = a*, using (33) we conclude that a* = m}-+n? = o+ b:. But
a<a?=m<m*nt =z, whence @ <2, contrary to the assumption
regarding 2. Thus the assumption that equation (30) has solutions in
natural numbers leads to a contradiction. This completes the proof of
theorem 4.

It follows from theorem 4 that there are no Pythagorean triangles
in which both catheti are squares. It could also be proved that there
is no Pythagorean triangle in which both catheti are cubes, but the
proof is much more difficult.

With reference to theorem 4 we notice that

12441544 204 = 4812,
More generally, it can be proved that if #2-49% = 22, then
(34) () + (@) + (ye)* = (2 —awiy?)2.

If (»,y) = (x,2) = (y,2) =1, then, as one easily can prove,
(zy, @z, y2) = 1. Therefore from (34), in view of the fact that there exist
infinitely many primitive solutions of the Pythagorean equation, we
infer that the equation

- ut Lot = wt

has infinitely many solutions in natural numbers ¢, «, v, w, with (¢, «, v)

‘We note that 2¢- 44} 64+ 74 = 632. Moreover, as we have shown in
§ 5, the sum of four biquadrates can be the fourth power of a natural
number. On the other hand, we are unable to prove or disprove Euler’s
conjecture that the sum of three biquadrates cannot be the fourth power
of a natural number.
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In connection with the above we note that the system of equations
Tyt = 28, a?ytde? = 2

has infinitely many solutions in natural numbers z,y, 2, f.
We deduce this from the identities

(MA—1) - (2n 1)+ (R34 2n)f = 2(n2 L n4 1),
(nP—1)0+ (20 £1)24 (n2420)2 = 2(A2 L n+1)2,

and the identities

(4n)t+ (3n2+ 20— 1) (30— 2n—1)¢ = 2(3n241)4,
(4n)2+ (3024 2n—1)2 -+ (802 — 2n—1)® = 2(3n2+1)2.
In particular, '
304-B41-8% = 2-T%, 32452482 =2.72,
744844154 = 2.13%, 72482115% = 2.132,

'With reference to theorem 4 we note that the equation x4yt = 22
has trivial solutions in natural numbers, namely » = Y, 2 = 2%, 2 being
an arbitrary natural number. As was shown by Legendre, these are the
only solutions of this equation in natural numbers. In fact, if we could
have @*+y* = 2* for some natural numbers @, Y,z with o £y, say
% >y, then the numbers «, y would both be even or both odd. Consequent-
ly, @ = $(#*+y?) and b = }(x*—y?) would be natural numbers. Hence
2 =a+b, Y2 =a—b, 2° = gt yt = 2(a*+-b*) and, consequently, a2
+b% =22, a®—b? = (y)?, contrary to theorem 3.

It follows that there are no three different natural numbers whose fourth
powers form an arithmetical progression.

(The proof that there are no three cubes forming an arithmetical
progression is more difficult, cf. §14.)

It is easy to see that the equation 2*--y* = 8¢2 has no solutions
in natural numbers. This is because the equation 22+ y2 = 322 is mnot
soluble in natural numbers.

Also the equation o*-+y* = 422 is insoluble in natural numbers. To
see this we write it in the form syt = (22)* and use theorem 4. Simi-
larly #*4-y* = 922 is insolvable in natural numbers.

We now prove that the equation at-- y* = 522 has no solutions in
natural numbers. We may, clearly, suppose that neither of the numbers
%, Y s divisible by 5, consequently each of them is either of the form 5k +1
or 5k 2. Since (5k4+1)% = 5(5%2 4 2k)+ 1, (Bk+2)* = 5(Bk2+-4k+1)—1,
we conclude that the square of each of the numbers @, y is of the form
3k=1. Therefore, dividing the fourth power of each of the numbers x,y
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by 3, we obtain the remainder 1. Consequently, dividing «*+ y¢ by 3, we
obtain the remainder 2, thus 2*4-y* = 522 does not hold.

It can also be proved that if % is a natural number = 8§ such that
3 <k <16, then the equation #*+y* = kz® is insolvable in natural
numbers. On the other hand, the equation #*--y* = 172* has a solution
in natural numbers namely # =2, y =2 =1. The equation w4yt
= 82* has only a trivial solution in natural numbers, namely # =y = 2k,
where k is a natural number, z = 22/2.

It follows from the identity

(a8 — 3ab?)*+ (3a%h — b®)2 = (a2 h2)3

that the equation #*-y* = 28 has infinitely many solutions in natural
numbers @, y,2. It is easy to prove that the numbers

@ =8n(nt—4), y=mn*—24n2416, = =n2l4,

where 7 is an odd natural number > 1, are relatively prime and satisfy
the equation 2+ y2 = 2t. .

§ 8. On three squares for which the sum of any two is a square.
Given a solution #, y, # in natural numbers of the Pythagorean equation.
We put

(35) o =g(dy2—22), b =y(de2—22), ¢ =days.
Since x%4-y* = 22, we have
@b =2 =4yt +2)2, bP4o? = yP(datta2)e.

Thus from a given solution of the Pythagorean equation in natural num-
bers we obtain natural numbers @, b, ¢ such that the sum of the squares
of any two of them is the square of a natural number. The numbers a, b, ¢
are then the sides of a rectangular parallelepiped such that the diago-
nals of its faces are natural numbers.

In particular, putting 2 =3, y =4, 2=05 we find

a =117, b = 44, ¢ = 240, a?+b? = 1252, a2+ ¢ = 2672, b2} ¢ = 2442,

These numbers were found by P. Halcke in 1719.

It can be proved that there exist natural numbers @, b, ¢ for which
the sums of the squares of any two of them are squares and which cannot
be obtained from any solution of the Pythagorean equation by the use
of formulae (35). In particular, this is the case with & = 252, b = 240,
¢ =275, a®+b*= 3482, a®}c® = 373%, b2} ¢? = 3652; for, ¢ cannot
be ‘equal to 4wyz, and, on the other hand, since # <2,y <z, the
value for ¢ must be the greatest of the values for a,b,¢ obtained
from (35).
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As we know, in a solution %,v,w of the equation ud-v? — w? at
least one of the numbers u,v is divisible by 3 and at least ome is
divisible by 4. Therefore, if the sum of the squares of any two of the
numbers a, b, ¢ is a square, then at least two of the numbers a,b,e
must be divisible by 3 and at least two of them must be divisible by 4.
(Otherwise, if, for instance, the numbers o and b were not divisible
by 3, then the sum of the squares of them would not be a square.) Conse-
quently not all pairs formed from the numbers a, b, ¢ obtained from (35)
are relatively prime. It can be proved, however, that if @,y,2 18 a pri-
mitive solution of the Pythagorean equation, then for the numbers a,b,c
obtained from (35) we have (a,b) = L. This proves that there exist
infinitely many systems of the numbers a, b, ¢ such that (@, b,¢) =1
and that the sum of the squares of any two of them is a square.

It is easy to prove that if @, b, ¢ are natural numbers such that the
sum of the squares of any two of them is a square, then the numbers
ab, ac, be have the same property.

M. Kraitchik devoted to the search of such triples a, b, ¢ Chapters
IV-VI of his book [3].

We do not know whether there exist three natural numbers a,b,c
such that each of the numbers

a*+b%,  a’t-c?, B2 4c2 and a4 bR

ig the square of a natural number. In other words, we do not know wheth-
er there exist a rectangular parallelepiped whose sides, face diagonals
and inner diagonal are all natural numbers.

On the other hand, there exist three natural numbers a,b,c, eg.
o =124, b = 957, ¢ = 13852800, such that each of the numbers a?-- b2,
a*+c, b*4-¢ and a®4-b%+¢ is a perfect square (Bromhead .

There exist four natural numbers =, y, 2, ¢ such that the sum of the
squares of any three of them is a square. 8. Tebay (ecf. Dickson [8],
vol. IT, p. 505) has found the following formulae for the numbers of this
kind:

7= (s*=1)(8*—9)(s*+3), y = 4s(s—1)(s+3)(s2+3),
7= 4s(s+1)(s—3)(s24+3), ¢ = (s*—1)(s2—9),
where s is a natural number greater than 3. It can be caleulated that
@yt = ((s+3) (s*4 652+ 9))7,
Py 1 = ((5—1)(s+3) (st — 252+ 108>+ 654 9))2,
N L ((8—1)(8—3)(s4+283+1082—~68—]—9))2,

P22+ = (28(354+ 29 27))2.
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In particular, for s = 4 we obtain = = 1995, y = 6384, z = 1520,
t = 840. Euler found a solution z = 168, y — 280, z = 105, t = 60,
which cannot be obtained from the above mentioned formulae. Euler was
interested in finding three natural numbers x, v, # for which each of the
numbers sy, #+2, y+2is the square of a natural number. He gave
the following example of such numbers:

o = 434657, y = 420968, =z = 150568.

Infinitely many such triples of coprime integers @, ¥,z are known
(ef. Dickson [8], vol. II, p. 449).

To conclude this section we prove that there eists an infinite sequence
of natural numbers @y, s, ... such that each of the numbers a3+ al+...+a2,
where n = 1,2, ..., is the square of a natural number.

We proceed by induction. Suppose that for a nabtural number n
the numbers @, a,, ..., a, have already been defined in such a man-
ner that ai-+ai-...+ a2 is the square of an odd natural number > 1.
So

ai+a+...+ a6 = (2k+1),

where k is a natural number. Of course for » = 1 we can take a, = 3.
Then, using the identity

(2h+1)2+ (2k2 4 2K) = (224 2%+ 1)7,
and putting a,,; = 2k2+ 2k, we obtain
@+ a3+ by, = (284 2k4-1)2,

which again is the square of an odd natural number. Thus the assertion
follows.

Putting a, = 3 we have a, =4, a; =12, a, = 84, a; = 3612 and
so on. Thus

32442 = 52, 324424122 = 132, 324421122 84% = 852,
324 4211224 84236122 == 3613%.

§ 9. Congruent numbers. A natural number 7 is called congruent
if there exists (at least one) natural number # such that each of the num-
bers 22-4-h, 22—h is the square of a natural number.

Suppose that kh is a congruent number. Then there exist natural
numbers z, a, b such that 22+h = a2, 22—h = b2. We have, of course,
a>b and 222 = ¢2-+b2. It follows that both a and b are either even
or odd. Hence both ¢+ b and a—b are even, and thus a+b =2z, a—>b
= 2y, where x,y are natural numbers. We have a4 =a+y, b =z—y
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and, consequently, 222 = a2+ b2 = (x+y)*+ (z—y)? = 222 292, whence
2? = g*+-y?. Moreover, in virtue of the equalities 22+ h = a2, 22— h = b?,
we have 2h = a*—b? = (5+9y)*—(®—y)® = 4wy, whence h = xy. Thus,
if h is a congruent number, then there exists a solution of the equation
224 y* =22 in natural numbers x,y,# such that & = 2zy. Conversely,
if natural numbers z,y,# satisfy the equation #2-y2 = 22, then, as
it can be easily checked, #242xy = (#+£y)2. We sum up the above-men-
tioned results in the following statement:

Every solution of the equation w24y = 2% in natural numbers »,y,
defines a congruent number h = 2wy. Conversely, every congruent number
can be oblained in this way.

It may happen, however, that a congruent number can be obtained
from two, or more, different solutions in natural numbers of the equa-
tion 424 y? = 22 For example, the congruent number 840 can be ob-
tained from any of the solutions 2024212 = 292 and 122--352 = 372,
Here 29%-4-840 = 412, 292—840 =12 and also 3724840 = 472, 372—
—840 = 23%. The number 3360 = 4-840 can be obtained from any of
the solutions 4024422 = 582, 242702 = 742, 1521122 =1132. It
is clear that if % is a congruent number and d an arbitrary natural num-
ber, then hd? is a congruent number. (The converse, however, is not true:
md* can be a congruent number while m is not a congruent number,
e.g. 840 = 210-2% is a ‘congruent number and 210 is not.)

The least solution of the Pythagorean equation in natural numbers,
3, 4, b, gives, of course, the least congruent number which is 2-3-4
= 24 (we have here 52424 = 72, 52 —24 = 1?). The solution (5, 12, 13)
gives the congruent numbers 2:5-12 = 120 (here 1324120 == 172, 132—
—120 = 7%). The non-primitive solution (6, 8, 10) gives the congruent
number 96 (here 102+ 96 = 14%, 102—96 = 2%). The solution (8, 15, 17)
gives the congruent number 240 (here 1724240 = 232, 172240 = 72),
The solution (9, 40, 41) gives the congruent number 720 = 122-5, here
4124720 = 492, 412720 = 312, Dividing both sides of these equali-
ties by 12% we obtain

41\ 5 (49)2 (41)2 58— (31)2
(ﬁ)+ =l & )

The following problem dates from about 1220: find a rational num-
ber  such that both 724-5 and 72—B5 are the squares of rational numbers.
The answer, found approximately about the same date was r = %. There
exists also another solution, which was found in 1931 by J. D. Hill [1].

Mt 3 __ 3344161
This 18 # = 5565 - Here

4728001)\* 113279 \*
oo (G, o= (e,

1494696/ ° ~ \T404696

le
cm
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J. V. Uspensky and M. A. Heaslet [1] have proved that the above
two solutions are the solutions with the least denominators. They have
found another solution, in which the denominator and the numerator

have 15 digits each, and have also Presented a method for finding all
the solutions which are infinite in number.

We present here the proof that there exish infinitely many rational
numbers # for which each of the numbers 7245 and »2

’ —5 is the square
of a rational number.

Suppose that r = z/y, where @,y are natural numbers such that
¥ is even, (v, ) = 1 and each of the numbers 7215 and 72— 5 is the square
of a rational number. Bach of the numbers (22 5y%)[y? and (x%— By2)[y?
is the square of a rational number; consequently, the same is true for the
numbers 224-5y* and #2—5y®. But, since these are nabural numbers,
they are squares of natural numbers, so 24 By? = 22, 22—By® = 2,

Put
(36) y, = TH25Y

20yt

An obvious computation shows that
) ot 292 4\2
A =( +10x%y 25'y)

2ay2t

2y = @*+2B5y* and ¥y, = 2ayst are natural numbers and y; is even
and greater than y. It can be proved that (z,y) = 1.

Thus for each rational number » which is an irreducible fraction
@[y, where & is a natural number, 4 is an even integer, and is such that
both 7245 and r2—B are squares of rational numbers, by (36) we obtain
another rational number r;, having the above-mentioned properties
and such that its denominator is greater than y. It follows that there
exigt infinitely many rational numbers r for which both 72--5 and r*—§
are squares of rational numbers. Starting with the number 7 = %, found

12
by Leonardo Pisano (Fibonacei), by (36) we obtain the number r, = S41L
found by Hill. Then, applying (36) to the number r,, we obtain the number
73, Whose numerator has 27 digits. As we have already mentioned, Uspen-
sky and Heaslet have found a rational number # such that both 25 and
r2—5 are gquares of rational numbers and such that its numerator has 15
digits. From this we see that by the successive use of formula (36) we
do not obtain all the rational numbers » for which 72+5 and 72—5 are

squares of rational numbers, though we get infinitely many of them.

The reason why people have been interested in finding rational
numbers 7 for which 7245 are the squares of rational numbers seems

Elementary theory of numbers 5
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to lie in the fact that for natural numbers & < 5 there are no rational
numbers » for which 72+% are squares of rational numbers. The proof
of this for ¥ =1 and % = 4 follows immediately from theorem 3.

The proof for k = 2 is somewhat more difficult. Suppose that for
a rational number » the numbers 72+ 2 and 72— 2 are the squares of ration-
al numbers. If r = z/y, where #,y are natural numbers, then the num-
bers #2-+2y? and z°—2y? are squares of rational numbers. Hence, since
they are natural numbers, they are squares of integers, and thus there
exist integers 2z and ¢ such that 22+ 2y% = 22, 22— 2y? = 2. Hence 21z°
= 2212, 4y = 2*—1?, whence 442 = (z41)*+ (¢—1t)®.. Consequently,
[22(z2—1)]2 = (22— )2+ (2—1)* = (2y)*+ (¢—1)*. Butb, sinee 2 ¢, this
contradicts theorem 4.

The proof for k¥ =3 is more diffieult.

On the other hand, we have

5\* 7\ 5\ 1\ 337\*
B vo=la) &) =) Gl +r=
(337)2 _ (113)2
120/ ' T \120)°
It is easy to prove that there are no natural numbers z,y, such
that 22y and « - y*? are squares of natural numbers. In fact, if 22+ y = 12,
where x, y, ¢ are natural numbers, then ¢ > x and consequently ¢ > 41,
whenee 12 > #2+2x-+1. Therefore y =i*—2*>20+1>2 and also
2 >4, which is impossible.
On the other hand, there exist infinitely many positive rational
numbers #,y, for which the numbers #*+y and 2--y* are squares of
rational numbers. In fact, for = = (n®—8n)/16(n+1), y = 2»+1,

where %,y are positive rational numbers and n is & natural number
> 8, we have

463\*
120/’

2 2
T

n2—§—2n-8)2
160 +1)

8(n+1)

Turning back to congruent numbers we note that, in view of
their above-mentioned conneetion with the solutions of the Pythagorean
equation and by the formulae for the solutions of the Pythagorean equa-

tion in natural numbers presented in § 3, in order that a number L be
a congruent number it is necessary and sufficient that

= 4mn (m?—n?)l2,

where m,n,1 are natural numbers, (m,n) =1, m > n, and 2| mn.
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We then have
(m2 40212 £h = ((m2—n2 4 2mn) 1)z,

If b is a congruent number, 22--h = a2, 22—h = b2, then the numbers
b2, 22, a® form an arithmetical progression with the difference h. Conver-
sely, if numbers b2, 22, a2 form an arithmetical progression with the differ-
ence h, then h is a congruent number. Thus a congruent number can be
defined as the difference of an arithmetical progression consisting of three
terms, all being squares of natural numbers.

It follows that every arithmetical progression of this kind is of the
form

(m?—n2—2mn)?, (mE4+n2)?2, (m2—n2+2mn)?,

where m,n are natural numbers and m > n.

It can be proved that in order that for a natural number k there ewist
& natwral number x such that k42 and k—ax® are squares of natural
numbers it is necessary and sufficient that k = (4m*+n4)2, where m,n, 1
are natural numbers. (Without loss of generality we may suppose that
the numbers m,n are relatively prime.)

For m =n =1 we have 5422 =32,5—22 =12,

for m =1,n = 2 we have 20442 = 62, 20—42 = 22,

for m = 2,n =1 we have 6542 = 92, 65 —42 = 72,

for m =1,n = 3 we have 8562 = 112, 85 —62 = 72.

§ 10. The equation z2+4y2+22 = {2, We are going to find all the
solutions in natural numbers of the equation

(37) w2+ y2t2% =2,

First of all we note that at least two of the numbers #, y, z must
be even. Suppose to the contrary that all three numbers «, y, z are odd.
Then #3, being the sum of the squares of #, 9, 2, is a number of the form
8k 3, since, as we know, dividing the square of each of the odd numbers
2,4, by 8, we obtain the remainder 1. But this very fact applied to 22,
which is again the square of an odd number, leads to a contradiction.
If only one of the numbers #,y, z were even, the sum 22t y2+4 2% = ¢2
would be of the form 4%+ 2, which is impossible, since the square of an
even number is of the form 4k.

Suppose that the numbers y and 2 are even. So

(38) y =21, #=2m,

where [ and m are natural numbers. From (37) we see that ¢ > z. Setting

(39) t—w=u -
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we obtain a natural number « for which, by (37), (38), (39), we have
(- u)* = 2244124 4m?,

whence, after a trivial reduction, we obtain 2mu-tu? = 4721 4m?, and
further

(40) u? = 412+ 4m2— 20u.

The right-hand side of equality (40), as ‘the algebraic sum of
even numbers, is even. Therefore 2 and, consequently, % are even. So
{41) % = 2m,

where » is & natural number. Substituting (41) in (40) and dividing the
equation thus obtained throughout by 4 we see that

n? = PB4+ m2—ny,
The last equation can be rewritten in the form

2 2_m2
(42) oo Ltmi—nt
n

7

which, in view of (39), implies

l2 2 2

t=24+u =2+2n = ﬂﬂ

n
Moreover, sinee # is a natural number, from (42) we conclude that n? <
< I*+m*. Thus we have proved that all the solutions of equation (37)
in natural numbers #,y, 2, ¢, with even y ;2 can be obtained from the
formulae

B4 m?—n?
f =

i n

(43) , y=2, s—2m, @

124 m2d-n?
-

"

where m, n, 1 are natural numbers and = is a divisor of the sum 72+ m?
less than VZ“-]—m*.

‘We now prove that, conversely, if 1, m, n satisfy the above conditions,
then the numbers «, y, 2, t obtained from (43) form a solution of equation
(37) in natural numbers. The fact that *,Y,2,t are natural numbers is

an immediate consequence of the conditions. To see that they satisfy
equation (37) we use the identity

2 2. ;2
(%l +W,; ~ )E-!-(2l)z-|~(2m)2 o= (—LH:H_HZ){

It is easy to prove that every solution of equation (37) in mnatural
numbers @, y, 2, with even v, z is obtained exactly once by the use of
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formulae (43). For, by (43) we have

m = ’ n =

i/
Z:éy

[EIEN
5

and thus the numbers I, m,n are defined uniquely by =,y,2,t. The
above argument proves the following

TEEOREM 5. All the solutions of the equation
Byt =2
in natural numbers z,y,2,t, with even y,2, are obtained from the formulae

P4-m2— n? -m24-n2
r=—->, y=2I, z2=2m, t=—---—7,
n n

1, m being arbitrary natural numbers, and n being the divisors of 1*--m?
Tess tham VI2+m2. BEvery solution is obiained ewactly once in this way.

Theorem 5 not only states the existence of the solutions of equation
(37) but also gives a method for finding them. It iy easy to see that in
order to eliminate the solutions with interchanged unknowns we may
reject the pairs 7, m for which m > 7 and take only those » for which the
numbers # are odd. But thus we eliminate also all the solutions for which
@,9, 2t are even. To include them again it is sufficient o multiply each
of the solutions with odd # by the powers of 2, successively.

Here are the first ten solutions of equation (37) obtained in this way:

1 m B4+m? n z Y 2 ¢
1 1 2 1 1 2 2 3
2 2 8 1 7 4 4 9
3 1 10 1 9 6 2 11
3 |1 10 3 3| 6 | 2 7
3 | 3 18 1 (1| 6 | 6 | 19
3 3 18 2 7 6 6 11
3 3 18 3 3 6 [} 9
4 2 20 1 19 8 4 21
4 2 20 4 1 8 4 9
4 4 32 1 31 8 8 33

Tt is worth-while to notice that, as has been proved by R. D. Carmi-
chael [4], pp. 39-43, all the solutions of equation (37) in natural num-
bers can be obtained from the identity

33 (3 — 13— p2-t- g2)2-+ 2 (2mm— 2pg)*+ 4 (2mp + 2ng)*
=& ('mz_|_ ’n“—]-{pz—l— qz)z.
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§ 11. The equation 2y = 2. Suppose that natural numbers , 4 ) 2y &y
satisfy the equation oy =2t and let (#,2) =a. Then z = ac, z = ad,
where ¢ and d are natural numbers and (c,d) = 1. Hence acy = adt,
le. ¢y =df and, since (¢,d) =1, we observe that d|y; conesquently
¥ = bd, where b is a natural number, whence ¢ = be. This proves that
if natural numbers %Y, %, satisfy the equation ay = #t, then there
exigt natural numbers @, b,¢,d such that (¢,d) =1 and # = ac, y = bd,
2 = ad, t = be. It is evident that if, conversely, for given natural num-
bers a, b, ¢, d we detine #,Y,2,t by the above formulae, then LYy = 2.
Thus we have proved the following

THROREM 6. All the solutions of the equation &y = 2t in natural num-
bers m,y,2,% are given by the Sformulae

5 =ac, y=>bd, =z=uad, t=be,
where a,b,e,d are arbitrary natural numbers. Moreover, this remains
true when an additional condition (e,d) =1 14s postulated.

It is easy to prove that if the additional condition (¢, @) = 1 is satis-
fied, then the above formulae for ®,Y,2,t give each of the solutions
exactly once.

In order to obtain the solutions of the equation ay = 2i, we could
also proceed as follows: we start with arbitrary natural numbers

Z,2. Then, since the numbers are relatively prime, in

2
(@,2)" (w,2)

x
virtue of the equality — — 3 = ——1% we have ——|y; consequentl
N 9! " @ z,2) |77 COmseduently
y = whence t = —“_ On the other hand. takin bit:
y @) whence @ 0 the other hand, taking arbitrary
. Uz ux
natural numbers for «,z,% and putting 4y = —— ¢t =—"_ e
(@, 2) (@, 2)

obtain a solution of the equation @y = # in natural numbers. Thus,
all the solutions of the equation zy = iz in natural numbers are given
by the formulae y =—m—, t:——qﬂ, where x,2,% are arbitrary
(%, 2) (w, 2)
natural numbers.

It is worth-while to note that if natural numbers ,y,z,t satisty
the equation ay — #t, then o = (z,2)(z,1): (#,9,2,1).

It can easily be proved that all the solutions of the equation my — 22
in natural numbers @,Y,2 are given by the formulae x — ut, y = v,
@ = unt, where u, v, are arbitrary natural numbers. We may assume addi-

vionaly that (u,v) = 1; then each solution 14s obtained evactly once from
the above-mentioned formulae.
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It can he proved that all the solutions of the equation xy = 2° in 'nat‘z;-
ral nwmbers m,y,z are given by the formulae = = wv®, y = ww?,
2 = wvtw, where w,v,t,w are arbifrary f.natuml numbers. _

More generally, there are corresponding formx.ﬂae for the solut;or'xs
in natural numbers #, @, ..., %,, ¢ of the equation By T = ¥ in
which # > 2 and % is 2 natural number (Ward [1], ef. Schinzel [4]).

Tt is easy to prove that for given natural niumbers n and m all the solu-
tions of the equation &:%,...%n = Y1¥s..-Ym 0 natural numbers &, &,
ceey @y Y1y Y2y oeey Ym are given by the formulae

BTy e Dyt
H
(@@« Bp1y Y12 Y1)

Y1l Ym_1?
Ty = N Yms Ym =

I S A ey ’
7 bitrary natural nuwmbers.

Where ®y, Doy evvy Tn1s Y1y Yoy coes Ym_1y T QFE arﬁ .

- HBI}(; azr’e so’mz oi’sher formulae for the solutions of the last equa.tl'on

in which m#n arbitrary natural parameters ¢; (1 =1,2,...,m,j=

1,2,...,n) are involved. These are

(¢=1,2,...,m),

(G=1,2,...,m).

Y =labip. . lip
@ = tljtzj- . 'tm,i

The proof of the fact that for arbitrary natural values o'f the pa;i’a-
meters t;;, 1 =1,2,...,m, j =1,2, e Ty the.formulae glve])Ia, solu-
tion of ’equa.tion Ly y. .. Ty =y1y2...ym. is s.trajlg.htforwa;?d. ogev{gi
the proof that all the solutions are obtained in this way is complica

(Bell [17).
i 23

EXERCISES. 1. Find all the solutions of the equation (z+y+#)® = 2*+¢>+2
in integers %,.y, 2.

Solution. In view of the identity

(@+y 42— @+ 1P +2) = 3z +y) (y+2) (e+a)
it suffices to solve in integers the equation
(@+y)y+2)(2+=) = 0.

But this we do simply by taking arbitrary integers for any two of the unknowns

x, 9,2 and one of the already chosen integers with the opposite sign for the remaining

unknown. .
2. Find all the solutions of the system of equation
PrprR =, Sty =1

(44) z+y+z =1,

in integers @, y,1,z2. )

Sgolutiom It follows from equation (44) that zy 4 y2+2z = 0 and (f”'H’_) (é/—i-zgf
«(x+2) = 0 (compare exercise 1). If for instance x4y = 0, then, T Oquuee:l S
2y +yz+20 = xy+(z+y)z = 0, we infer that xy = O,A whence » : y —t-wo. o thé
if the integers =,y,z.t satisfy the system of equations (44), then
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numbers z, y, z must be equal to zero; the third is equal to £, where ¢ is an arbitrary
integer. Thus system (44) has no solutions apart from the trivial ones.

3. Find all the pairs of natural numbers «, y for which the number 2y is divis-
ible by z+y.

Solution. All such pairs are given by the formulae

(45) z=Tkim+n)m, y= k(m+n)n,
where k is an arbitrary natural number and m, % are velatively prime. It follows
from (45) that zy /(@ +y) = kmn; consequently w+y]my. On the other hand, if for
natural numbers 2, y the relation 2-+y|oy holds, then, putting d = (2, 9), 2 = dm,
=dn, we obtain (m,n) =1 and d(m+n)|d*mn, whence m—+njdmn. Further,
since (m, n) = 1, we have (m4n,mn) =1. Consequently m-4n|d,andgo d = J; (m—+-n)
where % is a natural number. Hence, in virtue of x = dm and Yy = dn, we obtain
formulae (45).
It is also easy to prove that for natural numbers %, m, n with
pair @, y of natural numbers satist
once from formulae (45),

(m, n) = 1 every
ying the condition z-+ylay is obtained Pprecisely

In fact, in view of formulae (45), we observe that, since (m,n) =1, n is an
n

irreducible fraction equal to —. Consequently, the numbers @, y define the numbers

m, n uniquely. So, in virtue of (45),

the number % is also defined uniquely by the
numbers z, y.

4. Find all the solutions of the equation

1 1 1
46) S =
z oy z
in natural numbers z, Y, 2.
Solution. Al the solutions of e
by the formulae

(47)

quation (46) in natural numbers ®,y,#are given

z=Fkm+n)m, y= k(m+n)n,

where k is a natural number and (m,n) = 1. In fact, if natural numbers , y, 2 satisfy
equation (46), then (%-+4)z = ay, whence Z+¥|xy and in virtue of exercise 8 we ses
that formulae (45) are valid for @, y. Therefore z = zy /(@+y) = kmn, which gives for-
mulae (47). On the other hand, it is easy to check that the numbers g, ¥, # obtalned
from formulae (47) satisfy equation (46).

5. Find all the solutions of the equation

& = kmn,

(48)

in integers z, 9, 2.
Solution. Equation (48)

(49)

@+y+e) = a2 g2y

is clearly equivalent to the equation

BY+yzt-20 = 0.

is equal to
mbers 2,y is
» ¥» 2 satisfying equation (48) is
f those numbers are equal to zero. On the other hand,

# equal zero and the third is an arbitrary integer, then,
equation (48) is satisfied. )

if two of the numbers z,y,
clearly,
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Therefore, in what follows we assume that none of the numbers @Y, 8 is equal
to zero. Then, by (49), two of those numbers mustlbe éither both posn:.lve or both
negative and the remaining one must have the opposite sign. Thus, chm}gmg if neces-
sary the signs of the numbers z, y, 2 (which do not a.ffe_et the equation), we may
assume that > 0, y > 0, 2 < 0. From equation (49) we infer that zy = - (x+ y_)z.
This proves that ©+y|xy. But then we can apply formulae (45) of exercise 3, which

. xy
give z = Py

y > 0, then, for some natural numbers &, m,n with (m,n) = 1, we obtain

(50)

—kmn. Thus, if integers x,y,z satisfy equation (48), x> 0,

o =kim+n)m, ¢="kmtnn, == —kmn.

On the other hand, a straightforward computation shows that for every natural
number &, m, n formulae (50) give a solution of equation (48). ’_[jherefore, all the
solutions of equation (45) in integers #, ¥,z with ¢ > 0, y > 0 are given by formu}ae
(50), where k&, m,n are natural numbers. Moreover, we may confine our attention
only to the case where (m,n) = 1. . i

v From this all the solutions of equation (48) in integers x,y,#z can easily be
found.

§ 12. The equation #*—z%2-+y* =2*. The equation

(51) doayityt =

has an obvious solution in natural numbers » = Yy 2= yz,_ where y is
an arbitrary natural number. Suppose that z, ¥, z is a solution of equa,t-;
tion (51) in natural numbers with # s y. Clearly, we may suppose Zha
(z,y) =1, since otherwise, i.e. W]leli (mq, YP=d>1, W(: ha..ve'm. = ;}i;
y = dy,, whence, in virtue of (51), d*|2*, and so z4= dzz,:: Dlyldng (L )
throughout by d*, we obtain (2;,4,) =1 and si—alyityt =< Le
@, ¥, 2 be a solution of equation (51) in natural numbfars such that (=, g)
=1 and x # y. Moreover, suppose that for the solution #, ¥, # the prod-
uct oy takes the least possible wvalue. ) )
We now suppose that one of the numbers =, v, say- Y, 1s.even. Since
(#,y) =1, @ must be odd. Equation (5‘1) can be rewritten in the fogl:n
(@w®— y2)24- (wy)? = 22 with 22—y? 5£ 0 (since z # y). It .follows from ) e‘
relation (x,y) = 1 that (#*2—y?, oy) =1. Moref)ver, gince the number
2y is even, by the formulae for primitive solutions of the Pythagorean
equation we see that there exist natural numbers m, n such tha!; (m, n)
=1, 2| mn, 2?—y* = m2—n?, oy = 2mn. Since @ 18 odd and y is even,
the number #2—y? and hence the number m?—n? is of the form 4441,
‘which shows that m cannot be even and n odd. Therefore # must be even
and m odd. Let y = 2y,, where ¥, is a natural numbt‘ar. By zy = 2mn
we find oy, = mn, where (2,9, = (m,n) =1. In virtue of theorem
6 there exist natural numbers a, b, ¢ such that # = ac, y, = bd, m = ad,
n = be with (¢,d) = 1. Since (z,y,) = (m,n) = 1, t?len, clearly, any
two of the numbers @, b, ¢, d are relatively prime. Sn.me the pumbers
@, m are odd, the numbers a,c,d are odd, whence, since n is even,


Yakuza


74 CHAPTER II. Diophantine analysis
b must be even. Substituting & = ac, y = 2y, = 2bd, m = ad, n = be
in the equation x?—y2 = mP—n?, we obtain (a?+b2)e? = (a4 4% 42,
Let 6 = (a24b2, a2--4b?). We have o | a®4-4b2— (a2+4-b2) = 3b2 and
8| 4(a240%) — (a2 4b2) = 3a2, whence, in view of (a,b) =1, 6|3. But
number 3 is not & divisor of the number a2 b2 ; for, the relation 3 | a2+ b2
together with the relation (a, b) = 1 would imply that neither of the num-
bers a, b is divisible by 3, which in turn would imply that by dividing the
sum of the squares of the numbers a, b by 3 we would obtain the remain-
der 2, which contradicts the fact that 3 | a2-+b2. Thus 6 = 1,ie. (a?4 b2,
a*+-4b%) =1, whence the equality (a4 b%)c? = (@*+ 4b%)d? implies the
relations a®4-b%| d® and ¢*| a®+4b2. On the other hand, (¢, d) =1 im-
plies that d* | a®+5* and ¢® | a®+45°. Hence a®+b® = @2 and @ - 4h? = ¢2,
But (a,b) =1 and equivalently, since a is odd, (a, 2b) = 1. Therefore,
in virtue of the formulae for primitive solutions of the Pythagorean equa-
tion, the equality @2--(2b)2 = ¢ implies the existence of natural num-
bers @y, y; such that (@, ;) = 1,2 | 8,9, 0 = af—4, b = 2:%,. We have
@40 = &. Hence 2f—alyi+y* = @, and one of the numbers @4, Y, I8
even. Bub @9, = b < 20d = y < xy, whence .9, < @y, contrary to the
assumption regarding the solution =,y, 2.

This proves that both the numbers @,y must be odd. Since z # y,
Wwe may suppose that z >y. Since (@2 — 9?2+ (wy)* = <* and the num-
ber #2—y*> 0 ig even, there exist natural numbers m, n such that
(myn) =1, 2|mn, 2—y? = 2mn, and xy = mi—nt. Consequently,

2__g2\2 2 2\2

Iy S (m_z_y) _ (E;_y_)
and (m,n) =1, one of the numbers m, n being even. Butb this, as was
proved before, is impossible.

Thus we have proved the following

TEOREM 7. The equation w*— z2y24- Yyt =2 has no solutions in
natural numbers z,y,z apart from the trivial one =y, 2z =g2

The proof of the theorem presented above is due to H. C. Pock-
lington [1]. From the theorem just proved Pocklington derives the follow-
ing theorem of Fermat.

TuEoREM 8. There are no four different squares which form an arith-
metical progression.

Proof. Suppose to the contrary that @?, ¥%, %, w? are natural num-
bers and that y2—g2 =2%—y? = wi—z%. Hence 2y? = 2422, 22
=y*+w? and, consequently, 2y%w? = wPw 4 2w?, 2u%t = 2%y2 4 w2w?,
whenee 22%%—2yMw® = 2%5_2%2, The number Y2 —zfw? iy even,
therefore the numbers sy and 2w are either both even or both odd. Let
U =22, v=yw, = (zy+a0)[2, s = (wy—2w)[2. Clearly all Uy V, T, 8§
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are natural numbers. It is easy to check that u2—v? = 2rs, uo =
Consequently, w*—u2p?4 ot = (#2+¢%)2, which, in virtue of
theorem 7, implies « = v. Since the terms a2, y2, 22, w? of the arithmeti-
cal progression are supposed to be all different, we may assume that
@ <y <z<w, whence zz < yw, i.e. u < v, which is a contradiction. #
Theorem 8 is thus proved.

r2— g2,

§ 13. The equation o*+ 9222+ 27y* = 22, We present here a proof,
due to Antoni Wakulicz [1], that the above equation is not solvable in
natural numbers x,y, 2. Suppose to the contrary that the equation is
solvable in natural numbers and that , y, 2 denotes a solution in which
2 takes the least possible value.

If 3|« then, clearly, we would have 27 |22, whence 9|z. Hence
© = 3wy, 2 = 92, @;,%; being natural numbers. Substituting in the
equation 3z, and 9z, for » and #, respectively, we infer that 81 | 2744,
whence 3 |y, 80 ¥ = 3w;. Thus dividing the equation throughout by 81,
we would obtain ai- 92lyi-+ 27yt =2 with 2, <2, contrary to the
assumption regarding the solution z,y, 2.

‘We then have (z, 3) = 1. It ig easy to verify that also (z,y) =1,
since in case (x,y) =d>1 we would have 2 = da,, ¥ = dy,, Whemﬁe
in view of the equation, d'|<*, so 2z = &% and ai-+92iyi4-2Ty} = 2,
where 2, <z, which is impossible. We also have (#,2) = 1. To show
this let us suppose on the contrary that (z,2) = d > 1; consequently
© = dw,, 2 = dz;, whence d2 | 27y% Since (,3) =1, (d,3) = 1, whence
a2 | y*. If p denotes a prime divisor of the number d, then p | ¥ and p | #,
whence, in view of the equation, p*|2* and consequently ?2 | 2. Thus,
putting & = px,, ¥ = p¥Y,, & = p%,, we would obtain a solution w,, y,, 2,
of the equation with &, <2, which is impossible.

The equation can also be written in the form

Then the positive rational numbers 22/z and y2/z satisfy the equation
(62) 24 9tu - 2Tu? = 1.

Let ¢, % form a solution of equation (52) in positive rational
numbers. We set w = (¢+1)/u. Consequently, ¢ = wuw—1, whence,
in virtue of (52)

w[w (w24 9w+ 27)—2w—9] = 0.

Since % # 0, we see that

2w+ 9 w2— 27 B
[l R 1; b =—
= I owlaT and, consequently, PN
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Since w = (#4-1)/u is a positive rational number, we have w = r/s, where
7y ¢ are natural numbers and (r,s) = 1. From this we infer that

(53 z? o rR—27s? Y2 2rs4-9s?
58) 2 ik Ors271st’ o 724 Opg 4 27s2

where 7,s are natural numbers and (r,8) =1.
We set

(54) (r*—27s2, 12 9rs 1 2752) = d.

Since (z,2) =1 and thus (2, z) =1, by (53) we see that »2_—27s2
= dz?, 2+ Ors4-27s% = de, whence, in virtue of (y2,2) =1 and by the
second formula of (53), 2rs49s® = dy?. Therefore

(55) (2rs-9s2, r2+9rs-275%) = g,

Put r = 8%, where (3,v) =1 and « is a non-negative integer. In virtue
of (54) and (55) we have )

(56) (80" —27s%, 3%%2 | 9-3%s5 4 2757

= (2-8%s 4 95%, 3*v’ 4 9-3%s - 27s%),

In the case of a =1 we would have 3 | 7; consequently, by (r,s) =1,
(¢, 3) = 1 and therefore the left-hand side of equation (5) would be divis-
ible by 9 and the right-hand side would not be divigible by 9, which
is a contradiction. In the case of o > 2, the left-hand side of equation
(56) would be divisible by 27 and the right-hand side would not bé divis-
ible by 27, which is again a contradiction. From this we conclude that
either @ = 0, and thus (ry8) =1,0ra=2.

If a were equal to 2, then r = 9v, where (v, 3) = 1 and, consequently,
8192 —27s2 = dg?, 81v%4-8lvs27s% = dz, whence 27 | dw?, 27 | de and,
in virtue of (a?,2) =1, 27|4d. Consequently d = 27d,, 3p2—s2 — dy o2,
3v2+8vs 152 = dyz, Justs? = 3d,y*, whence d, | 3vs-2s2, dy | dvs 4252
and further d,|vs, d,]| 3v—s*, d,|3v+s2, whence dy | 692, d, | 2s2.
Since, in virtue of 9 [# and (ry8) =1, we have (s, 3) =1, then d, | 202
and d, | 2s*, whence, by (v, 5) =1, d;|2. By d, | vs, where (v,8) =1,
we would have either d, | », whence d, | s* and, by (v,s) =1, d, =1,
or d, | s, whence d, | 3v2 and, since d, | 2, d, | v?, which would also give
d; =1.

From this we conclude that d; =1 and thus 3v® = s2 %, which
is imposgible, since if the sum of two squares both different from zero
is divisible by 3% where a (= a+1) is 0dd, then it is also divisible by
3%+, Thus we see that o cannot be equal to 2; consequently a = 0 and
(r,3)=1.

21

13. Equation x4 9uw?y® 427yt = 22 7

From (b4) and (55) we infer that

d|2rs+9s%,  d|r—27s%,  d|r249rst 272,

whence & |2r2+9rs, &|6rs+r2. Consequently d|r24-3rs, d|3r2--9rs
and d | 7% Therefore, by (r,3) =1, we have (d, 3) = 1. But, since 4 | 2
and & |r2—27s%, we have d|27s®. From this we conclude that d|s2.
The formulae ¢ |2 and d | s® imply, by (r, s} = 1, that d = 1. We then
have

2% = r2—27s2,

Y2 = 2rs--98%, & =724 Ors-}-27s2,

where (r,3) = (r,s) =(r, o) =(s,2) =1.

The first of the above equations implies (r2fz)—27(s/w)2 =1.
The positive rational numbers »/z and s /o satisty the equation 12— 2742 =1.
Putting w = (¢-+1)/u, we obtain ¢ = ww—1, whence, in virtue of the
last equation, u[u(w?—27)—2w] =0, whence, since % >0, we have
u = 2w|(w?—27), and consequently ¢ = ww—1 = (w24 27)/(w—27).
Since w is a positive rational number, we have w = 7, /s;, where s, 7,
are natural numbers and (ry,s,) = 1. Hence
r 2278 s

- 7
z  ri—21s @

27,8,

(67) ri—27s8

We set (ri+27si, 1 —27s}) = d;. Hence, since the left-hand side of
each formula of (57) is irreducible, we have

(88) 114278 =dyr, r—27s} =dy», and,consequently, 27, = ds.

We put r; = 3%,, where (ry,3) =1.If § = 0, then (r,, 3) = 1. It follows
from (54) that d; | 2] and d, | 54s}. Since (r;, 3) = 1, we have (d;, 3) = 1.
Therefore d, | 257, whence, by d, | 2r} and (+%, s?) = 1, we obtain d, | 2.
If d, =1, then

N 2
@ =11—278}, r=11+27s}, s =2rs,.

Consequently,
¥ = 2rs+9s* = 47,8, (r} -+ 2752+ 9rysy),

(ri,8) =1 and (ry,734+27si+9758) =1, since otherwise we would
have (ry, 27s}) >1, contrary to (r;,s) =1 and (r,3) =1. Hence
Ty =07, 8 = b, r{+27s]+ 978 = ¢* and, consequently, al+9a2b®4
+27b* = ¢2, where a,b,c are natural numbers. Since y? = 4r;s,0?,
and also 27y* < 2%, we have ¢ < y < 2z, whence ¢ < z, contrary to the
agsumption regarding the solution #,y, 2.

I d =2, then

2 = 1ri—278}, 2r =7i4-27s%, 28 = 2rs,.
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Consequently, y2 = 2rs+9s2 = rys, (12 427534 9r.8;) and arguing as
above we find 7, = a2, s =02, PI4+275240rs, = ¢?, whence the
contradiction is obtained in complete analogy to the previous case. Thus
we have seen that the assumption f = 0 leads to a contradiction. Sup-
pose, that § > 0. If § were equal to 1, then, by r, = 3%r,, where (75, 3) = 1,
the number 7, would be divisible by 3 but would not be divisible by 9.
Consequently, hiumber d; would be divisible by 9 and in virtue of (58)
the equality 2,5, = d;s would imply that s, is divisible by 3, contrary
b0 (ry, 8;) =1. Consider the case § 3= 2. If § were equal to 2, then the
number 7, would be divisible by 9 and it would not be divisible by 27.
Therefore the number d;, would be divisible by 27 and, in virtue of the
equality 2r,8; = d;s, the number s, would be divisible by 3, which is
impossible.

Finally, we consider the cage f > 3. Then r, = 27r, and (81,3) = 1.
Therefore, by (57)

b
r o 2Tritg g 248y

where (rs,s;) =1 and (s;,3) =1. The above formulae are analogous
to formulae (57), and a contradiction is obtained in complete analogy
to the case g = 0.

The fact that the equation a*-4 9w*y* 4 27y* = 22 has no solution in
natural numbers z,y, 2 is thus proved. We note here that C. E. Lind
has devoted his doctorate thesis (Lind [1]) to the Diophantine equations
ot ba*yi+ oyt = de?.

§ 14. The equation %4 y5 = 2. Suppose that this equation has
a solution in integers =, y, # such that » = y and 2 7 0. We may suppose
that (,y) =1, since in the ¢ase of (@, y) =d>1 we set o = dm,,
Y = dy,, whence 3|2, which implies d | # and consequently z = dz,.
Therefore #j44] = 24%, where (ay, y,) = 1.

In virtue of 2%+ y® = 23, the numbers #+y and z—y are even;
80 % = (2+y)/2 and v = (z—y)/2 are integers. Moreover, z = U+,
Y =u—wv, and eonsequently, since (z,y) =1, we have (#,0) =1. We
also have (u4-v)3+4 (w—v)® = 225, Hence % (U*+30%) = 2% and, in virtue
of 2 # y and 2 # 0, we conclude that uve — t@*—y%e £ 0. I (u,3) = 1,
then, by (u,%) =1, we have (u, u2+3v2) = 1. Moreover, there exist
integers z; and #, such that » = 2% and w28y = 2. Hence 23 —2f — 3p2
and consequently (2,—=23)[(2,—2%)2+ 32,25] = 802,

We seti ¢ = 2,—2]. Then, in virtue of (z,, 2,) — 1, we have (¢,2,) =1
and ¢ (24-3tef+321) = 3v2. It follows that 3 |%; s0 ¢ =3t, and t;(98+
+9t,41+ 34) = 9%, whence 3 | ?;thus v = 3p, and, in virtue of (z,, 3) — 1,
the number 94+ 9¢,23 432 is not divisible by 9, whenee, by 9 |2, we
obtain 3 |#, and thus # = 8t,, Thus 42(276 496,24 4-2) = o2, where,
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by (t, 21)' =1, we have (f,2;) =1 and (f,, 2754 9,2, 44} = 1. More-
over, t, = b? and 27b*+4-9bf 12} = ¢2. The numbers b and [¢] are
natural since, if b = 0, then also ?, =0 and, consequently, ¢ =0,
whenee 2, = #} and, in virtue of (¢,,2,) =1, 2, = +1, 2, =1, which
proves that » = 0, whence # = y, contrary to the assumption rega;rdi.ug
2,Y,%. On the other hand, if 2, = 0, then 4 = 0, whence 3v? = 2; and
consequently v = 0, which is impossible. Thus we arrive at the conclu-
gion that the equation x*+4 952y®+ 27y* = £?is solvable in natural numbers,
which, as we know, is impossible.

If 3 | u, then, by (u, v) = 1, we have (v, 3) = 1, 50 w = 3u;, whence,
in virtue of wu(u?+3v%) =23, we have 2z = 3z, and u,(3ui-+v2) = 32},
whence, by (v,3) =1, we conclude that 3 |u,. Consequently u, = 3u,
and u,(27u;+2?) = 2{. But sinee (u,, v) = 1 and thus (u,,27u;+02) =1,
we have 4, = a3, 2Tus -+ v2 = b3, where (a, b) = 1 and, in virtue of (v, 3) = '1,
(b,3) = 1. We then have 27a°+v2 = b3. Putting ¢ = b—34° we obtain
(¢, 3) = 1 and, as can easily be verified, #(t*-+ 9a*¢+ 27af) = v%. But henefe,
in virtue of (a4, b) = 1, we have (a,#) = 1. Then by ({,3) =1, we obta.lzl
(t, 2+ 9a%+27a*) = 1. Consequently, t = a; and 24 9a%--27at = b;,
whence af-+9a2a’+27a* = b} with a; %20, a %0, beeause if a, =0
then # = 0, contrary to (f,3) =1, and if @ = 0 then w =0 and conse-
quently # = 0, contrary to 2 0. Thus again we arrive at the conclusion
that the equation o'+ 9x2y2-+ 27y* = ¢* is solvable in natural numbers,
which, as we know, is impossible. This completes the proof of

THEOREM 9. The equation x*-+y® = 22% has no solution in inlegers
@, y, 2 for which @ £y and 2 # 0.

It follows that there are no cubes of three different natural numbers

which form an arithmetical progression.
Putting y =1 or y = —1, we see that the equation 5°—22° =1 has

no soluttons in integers m,z different from ¢ =2 = —1 a%.dm =1,z= f),
and that the equation 33— 22% = —1 has no solutions in iniegers x,z dif-
ferent from v =2 =1 and = —1, 2 =0.

COROLLARY 1. There is no iriangular number > 1 that is the cube of
a natural number. '

Proof. Suppose that there exists a triangular number >1 which
is the cube of a natural number. Then there exist natural numbers m > 1
and n such that m(m-+1) = 2n3. If m is even, then m = 2k, &k being
& natural number, and %k(2k-+1) = »®, whence, by (k,2k+1) =1, we
infer that there exist natural numbers x, 2 such that ¥ = 2%, 2k+1 = o*,
whence #°— 228 = 1, which, as we proved above, is impossible. If m is
odd, then m = 2k—1, where k is a natural number > 1 (since m > 1)
and (2k—1)k = n®, whence, by (2k—1,%) =1, we infer that there
exist natural numbers #, z such. that 2k —1 = 2%, k = 2°. Thus #°—2¢° =
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-1, which, in virtue of what we have proved above, is impossible.
This completes the proof of corollary 1.

COROLLARY 2. The equation x*—y® =1 has no solution in natwral
numbers apart from & =3, y =2,

Proof. Suppose that there exist natural numbers « 54 3 and y such
that #2—y® = 1. If © were even, then we would have (x—1,s+1) =1
and, in virtue of (v—1)(w+1) = 4%, there would exist natural numbers
@ and b such that #—1 = a?, 41 = b%, whence (b—a)(b2+ adb+-a?)
= bh*—¢a® = 2 and, consequently, b2+ ab-+a?|2, which is impossible.
Thus # must be odd, and so # = 2k-+1, where % is a natural number
>1 (for,if ¥ = 1, then s = 3, contrary to the assumption). Since #*—1
= 43, the number y must be even, and so y = 2n, whence k(k-+1) = 22,
where % is a natural number > 1, contrary to corollary 1. Thus corollary
2 has been proved.

‘With reference to corollary 2 we quote the well-known conjecture
of Oatalan that the only solution of the equation #°—y' =1 in natural
numbers #,y,#,t each greater than 1 is # =3, y =2, 2 =2, t = 3.

A, Makowski [7] using a theorem of J. W. S. Cassels [3] proved
that there are no three consecutive natural numbers such that each of
them is a non-trivial power of a natural number. It is, however, easy to pro-
ve that there are no four consecutive natural numbers of this kind; in fact,
among any four consecutive natural numbers there is & number which di-
vided by 4 yields the remainder 2, and so it cannot be a non-trivial power
of an even natural number, We note here 8.8 Pillai’s conjecture that if u,,
Ug, ... 18 aninfinite sequence of natural numbers which are consecutive natu-
ral numbers, each of them being a power of a natural number with exponent
greater than 1, then lim (w,,;—u,) = +-co (Pillai [8]). This conjecture

N—>00

is clearly equivalent to the following one: for each natural number m the
number of all the systems @,y,2,¢ of natural numbers, each greater
than 1, satisfying the equation 2’ —# = m is finite. It seems interesting
to know for which natural number m there exist natural numbers =, ¥,
%, t greater than 1, satisfying the above equation. It is easy to prove that,
in fact, this property applies to every natural number which is not of the
form 4k -2, where k = 0,1, 2, ... In this connection one ean ask whether
for every natural number n there exists a natural number m such that
the equation 2¥—# =m has at least » different solutions in natural
numbers z, ¥, 2, ¢, each being greater than 1. The answer to this question
is positive. For, if k=1,2,...,n, and m = 2", then

m = 2 (2n—k-l+2k—1)2__(27&«7&'—1“27:——1)2.
‘We also have
3N _2¥ = 3FpF gy for  k=1,2,...,n.

icm
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In the sequence u, mentioned above the terms that are less than
or equal to 400 are the following: 1, 4, 8, 9, 16, 25, 27, 32, 36, 49,
64, 81, 100, 121, 125, 128, 144, 169, 196, 216, 225, 243, 256, 289, 324,
343, 361, 400.

The corresponding terms of the sequence u,,,—u, are 3, 4, 1, 7,
9, 2, 5, 4, 13, 15, 17, 19, 21, 24, 3, 16, 15, 27, 20, 9, 18, 13, 33, 35,
19, 18, 39.

COROLLARY 2%. The equation x2—y® =1 has no solutions in rational
numbers apart from the following ones: =0, y =1, 3= 41, y =0,
o= +3, 9y =2.

Proof. Suppose that rational numbers x,y satisfy the equation
x*—y® =1. Let & = hfg, y = /s, where g, s are natural numbers and
h,r are integers such that (h,g) = (r,s) =1. Since 2*—y® =1, we
have his3—gr? = g%%. Hence h%® = g2(r®4-s%). Consequently, by
(g, h) =1, we have g*| s%. On the other hand, g** = (h*—g?*)s®, whence,
in virtue of (r,s) = 1, we obtain s3 | g% From this we infer that g* = s%
Consequently, for a natural number m we have g = m? s = m?, whence
h2—g3 = ;5. Therefore 78 = (h-+m3)(h—m?), where (m,h) =1.

If one of the numbers i and m is even and the other is odd, then
(h+m?, h—m?) = 1 and, consequently, there exist integers a and b
such that h-+m® =a®, h—m® = b®, whence a3+ (—0)® = 2m?. But,
since m # O in virtue of what has been proved above, we must have
o = —b, whence h =0 and, consequently, 2 =0, y =1.

h—{—:)m’h;m) —1 and 27,

If both m and % are odd, then (

3\ [F 03
50 7 = 2r, and 27} = (ﬁ%) (h 2m ) Consequently, there exist inte-

gers ¢ and b such that h+-m3 = 4a°, hT m?® = 2b°. Hence b3 (m)® =2ad.
If ¢ =0, then h = Fm® =Fg, whence 2 =F1, y =0. If a 0,
then, as we know, b must be equal to +m = a. Therefore h = 46°F m?
= 4+3m® = +3¢g, whence # = £3, y =2.
Thus corollary 2* is proved.
COROLLARY 3. If n is a natural number greateq' than 1, then the num-
ber 18--234 ...+nd is not the cube of a matural nwmber.
n(n+1) 2
Proof. As we know 134+23+4...+4nf = (——~) =1t;. If the

number £ were the cube of a natural number, then also %, would be the
cube of a natural number, contrary to corollary 1.

To see this it is sufficient to recall the theorem of the preceding
chapter (corollary to theorem 16) which states that, if natural numbers
a,b,l, m satisfy the conditions (I, m) =1, a = b'" then there exists

2 natural number n guch that a = #™ and b = #".

Elementary theory of numbers 6
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It is much more difficult to prove that for # > 1 the number 12422
-«}-...—}-7(;12 i3 the square of a natural number only in the case where
n = 24 (1), »

A somewhat related problem, whether the equation 1"-}-2"+
+...+(m—1)" = m™ hag a solution in natural numbers m, n>1, ig
not yet solved. P. Erdds conjectures that the answer is negative. L. Mo-
ser [2] has proved that this is indeed the case for m < 10™° (cf. Schit-
fer [1]).

Lastly we note that it can be proved that the equation #3--y3 = 23
has no solutions in integers @, y, 2 5 0. It follows that the number 1is
not the sum of the cubes of two non-zero rational numbers (ef. Chapter

XI, §10).

§ 15. The equation z°4-y® = az® with a > 2.
) ToEoREM 10. If a s a natural number greater than 2 and is not divis-
ible by the cube of any natural number greater than 1 and if the equation

(59) @3- y% = qes

Rhas a solution in integers v, y, 2 with (@,9) =1, 2+ 0, then it has infini-
tely many such solutions (cf. Nagell [5], p. 246).

Proof. Suppose that integers «, v, 2, (w, y) =1, satisty equation (59).
We have (z,2) = 1; for, putting d — (#,2), we have d*| az®—a® = y3,
whence d |y, which, in virtue of (z,y) = 1, proves that & = 1. Simil-
arly (y,2) = 1. Let

(60) 8 = (2(s°+2¢°), —y (2w 4°), 2(@*—y°)).
‘We have

(61) z(a* 4 2¢°) = éw,,

(62) —y(22°+9°) = oy,

(63) 2(0°—y°) = oy,

where @,, y,, 2, are integers and (#1591, 21) = 1. In virtue of the identity
(6" + 20" —(y (26" + 9")f = (@ +9") (@*—9?Y,

from (59) we infer that the numbers Byy Yy, %1

+91 = a4,

o=y, then, by (z,9) =1 we have o =y = L1, and, conse-
quently, l?y (59), a2®* = 42, which is impossible, sinee @ > 2. Thus
@ # y, which by (63) proves that z 5= 0, whence 2, == 0.

satisfy the equation a}+

(}) This pr?blfsm Was'formu]a.ted by E. Lucas [1]. The first solution based on
the theory of elliptic functions was given by G. N. Watson [1]. The solution based
on the theory of number fields was given by Ljunggren [5]. See also Trost [1].

icm
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I d=(z,%), then &laltyi=0ad. I d>1 and (d,2)=1,
then we would have (d°,2}) =1, and, consequently, since @ |ael, we
would obtain @3 | @, contrary to the assumption that a is not divisible by
the cube of any natural number greater than 1. Thus eitherd =1 ord > 1
and (d,z)>1, whence (2y,%;,#;)>1, which iz impossible.

Hence we conclude that d =1, and so (2, ;) =1, and further,
since @ + 95 = a2}, we see that also (21, 2;) = (¥, #,) = 1. Since (z, y) =1,
we have (v,%*) =1 and, in virtue of (62), (dy,,x) =1 (for, if d, | dy, -
and d, | z, then, by (62), d,|y%) and a fortiori, (6, #) = 1. Similarly, in
virtue of (61), we bave (dx;,y) =1, whence (d,y) =1. Since (z,?)
= (y,2) =1, we have (zy%,2) =1. If d|J and d |2, then by (59) and
(61) we have d|23+y3|a*+2y® and d | #*4-2y«®, whence d | 2y3. Con-
sequently, in virtue of 4 | z and (xy®, 2) = 1, wehave d = 1,i.e. (d,2) =1.
Hence (6, x) = (8, y) = (3,2) =1, and by (61), (62), (63) we conclude
that & is a divisor of each of the numbers 2% 2y3, 223442, #®*—y3, and
go it is a divisor of the number #3- 2y3+ 2(x2—y3) = 32°. Therefore,
since (J,2) =1, we see that 6|3, Thus 6 =1 or 6 =3, and so in any
case we have 6 < 3. If ¢ = 0, then, by (#;%) =1, we have y = +1,
contrary to (59) since a > 2. Similarly we find that also y 5 0. Each of
the numbers # and y is then different from zero and, since also # #y,
we have |[#—y| >1. If 2,y are both positive or both negative, then
#*4-zy+y* = (@—y)+8oy > 1432y > 4and |o°—y° | = lo—y|(z—y)'+
+3zy| >4. If one of the numbers =,y is positive and the other
negative, then oy < 0 and #*+ sy*—y® = (24 y)2— 32y > 4; for, clearly,
x4y # 0, since otherwise 2 = —y, which by (59) and & > 2 would imply
z =0, contrary to the assumption. Thus in any case [#3—y3| > 4.
Since 6 < 3, formula (63) implies |2,] > |2|. This shows that, if the num-
ber a satisfies the conditions of the theorem, then from each solution of
equation (59) in integers «, ¥, 2 with (z, y) =1 and 2 == 0 we obtain ano-
ther solution of the equation in integers x,, y,,#, with (#;,¥,) =1 and
|21] > |z|, which proves that there are infinitely many such solutions.
Theorem 10 is thus proved.

The equations

234y = 328, m3+y3_ = 428, oyt = B2s
are insolvable in integers x,y,2 with # 5= 0 (cf. Selmer [1], [2]).

On the other hand, it follows from theorem 10 that each of the
equations

pP4ys =623, a3tyd =7Te, P4yt =92

has infinitely many solutions in integers z, v, 2 with (z,y) =1 and 2 % 0.
In fact, we use theorem 10 and note that the numbers 17, 37, 21 satisfy the
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first equation, the numbers 2, —1, 1 satisfy the second omne, and the
numbers 2, 1, 1 the third one (¢f. Nagell [5], pp. 247-248). From this
we will deduce some corollaries in Chapter XTI §9.

§ 16. Triangular numbers. As we know from §4 the number 1,
= n(n+1)/2 is called the nth triangular number. The list of the first
20000 triangular numbers was published in 1762 by E. de Joncourt. [1].
K. Zarankiewicz [1] has noticed that all the numbers 21, 2211, 222111, ...
are triangular.

‘We have

6:7 66-67 666667
M=, W=, 2=

We leave the simple proof of this fact to the reader.
The following examples of similar sequences are due to T. J6ze-
fiak [1]:
55, 5050, 500500, 50005000, ...
5151, 501501, 50015001, 5000150001, ...
78, 8778, 887778, 88877778, ...
45, 4950, 499500, 49995000, ...
45, 2415, 224115, 22241115, ...

It is easy to prove that there exist infinitely many pairs of trian-
gular numbers such that the sum of the numbers of each pair is a trian-
gular number. In fact, it is easy to check that for natural numbers %
we have #_;+k =1, (where ¢, = 0). Hence, for k =t, (n =1, 2, ae)y
we obtain 4, _;+1, =% . In particular, f,4-1, =15, t,-+1, =&, to+1, =
=110y b+t =1;5. As found by M. N. Khatri, [1], it is aesy to verify
that also g+t = bapas Tspa T bisers = Franrnos Topyattises = bimgpa0
for & =0,1,2... In particular, s+t =1y, fott15 = by, fo-tyr = fag,
bigttoy =ty We also have #y2,,.,, = b2 yse -+t for B =1,2,...

‘We prove even more: there exist infinitely many pairs of natural
numbers z,y that satisfy the system of equations

(64) bty =1y  and  f—ty, =1, .

It is easy to prove that each of the two equations of (64) is equivalent
to the equation

(65) 2?43 = 5y?4-y.

Consequently, it is sufficient to prove that equation (65) has infinitely

many solutions in natural numbers x,y. By the identity
(16124 360y +116)2+ 161w+ 360y + 116 — 5 (72 161y 52)2—
—(7206+160y+ 52) = #*+4-0—sy2—y

21
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it follows that, if numbers %, y form a solution of equation (65) in natural
numbers, then the numbers 4 = 161z 360y4-116 and » = 7254161y 52
are solutions of (65) in natural numbers u,v greater than z,y, respec-
tively. Since the numbers # =2 and y =1 satisfy equation (65),
this shows that (65) bas infinitely many solutions in natural numbers
x,y. (Cf. Sierpinski [31].) J. Browkin [1], using the results of P. F.
Teilhet [1], has presented a method for finding all the pairs of triangular
numbers such that the sum and the difference of the numbers of each
pair are triangular numbers. For & <100 these are the pairsi;,?, with
(@,9) = (6,5), (18, 16), (37,27), (44, 39), (86, 65), (91, 54).

As we already know (compare I, §4) there exist infinitely many
triangular numbers which are squares.

It is worth noticing that, as has been known since Euler, for each
((38+2V2r—(3—2V2)Y
4V2

and its square is a triangnlar number. (Cf. Sierpiriski [29].)

On the other hand, it has been proved by W. Ljunggren [4] that
there are only two triangular numbers whose squares are also triangular,
namely ¢, and .

‘We now prove

natural » the number is a natural number

THEOREM 11. There is mo triangular number which is the fourth power
of & natural number.

Proof. Suppose to the contrary that, for some natural numbers m
and n> 1, the equality in(n-+1) =m* holds. Then also n(n-1) = 2m4.
Suppose that n is an even number, and so n = 2k and, consequently,
k(2k+1) = m*. Since (k,k+1) =1, there exist natural numbers »,y
such that k¥ = ¢4, 2k+1 = 2, whence 2y*+1 = «*. If » is odd, then
n = 2k-+1 and, consequently, (2k—1)%k = m*. This, in virtue of (2k—1,
k) =1, implies the existence of natural numbers %,y such that 2k—1
=%, k = y*. From this we infer that 2y*—1 = z* and, since 2k—1
=mn>1, we have y > 1. Hence y* =F > 1.

Thus all that remains to complete the proof is to show that

1) there are no natural numbers x,y such that 2y*+1 = 2*,

2) there are no natural numbers # and y >1 such that 2y*—1
= gt

In order to prove 1) we note that if 2y*+1 = 2¢, then we have
(y2)t+a* = (y*+1)*, contrary to corollary 2 of § 6. To prove 2) we
suppose that 2y*—1 = *, whence (y2)*—a* = (y*—1)2. But since 4 > 1,
y*—1 is a natural number, contrary to corollary 1 of § 6. Theorem 11
is thus proved. .

However, it may happen that for rational numbers ¢ and u, $#(i+1)
= w4, for instance, for ¢ = 3, we have }i(t+1) = (5)°.
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We note here that the equation 2¢t+1 = 22 is insolvable in natural
numbers y,z, but 2-13¢—1% = 2392,

It can be proved that the equation 2y*~1 = 22 has only two solu-
tions in natural numbers y, 2, namely y =2 =1 and y =13, z = 239
(Ljunggren [1]).

It can be deduced from the well-known results about the equation
#"+y" = 2" (Dénes [1]) that a triangular number cannot be the mth
power of a natural number, where 2 < n < 30.

It is easy to see that for a natural number » the mumber n(n-++1)
cannot be the square of a natural number. In fact, if it were, i.e. if
n(n+1) = a?, (¢ being a natural number) then, by (n,n-+1) = 1, the
numbers n and n--1 would be squares. Hence n = k2, n--1 = 2 » Whence
(I—k){(1+%) =1*—%* =1, which is impossible. For n — %, however,
we have }(34-1) = (§).

The proot that the product of two consecutive numbers cannot be a power
with exponent greater than 1 of a natural nwmber is analogous.

The proof of a theorem of Chr. Goldbach stating that the product
of any three consecutive natural numbers cannot be the square of a natu-
ral number is also easy.

In fact, we easily prove a theorem which is even slightly more gen-
eral, namely that the product of any three consecutive natural numbers
cannot be a power with ewponent greater tham 1 of a natural number.
In fact, suppose that for natural numbers n,k and ¢ >1 we have
#(n+1)(n+2)= . Since (n-+1, n{n42)) =1, in virtue of theorem 8
of Chapter I there exist natural numbers a » b such that n+1 = a° and
n(n-+2) = b°. Consequently, 1 = (n+1)2—n(n+2) = (a?)’—b°, which
is impossible.

As proved by P. Erdos [5], [6] the product of k consecutive natu-
ral numbers with % > 1 cannot be the square of a natural number; neither
can the product of % consecntive odd natural numbers with & > 1be a power
with exponent >1 of a natural number.

Another result of P. Erdss closely related to this group of problems
is that for natural numbers m > 1 and @ sufficiently large % the product

of k& eonsecutive natural numbers cannot be the mth power of a natural

number (Brdés [14], of. Pillai [8], [6]). :

We note here that for natural numbers % = 3 and n > 2k the number
(;2) cannot be a power with the exponent greater than 1 of a natural num-
ber, as was proved by P. Erdos [12].

A number of the form T, = %n(n+1)(n—|— 2), where n is a natural

number, is called a tetrahedral number. The name refers to the number

]c;f spheres of the same radius which can be packed together in a tetra-
edron.
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The {first ten tetrahedral numbers are the following 1, 4,
10, 20, 33, 56, 84, 120, 165, 220. For n = 1, 2, 48 we obfain
the tetrahedral numbers 12, 22, 140%, which are squares. It can
be proved that these are the only tetrahedral numbers with this
property.

This theorem results, as has been proved by A. Meyl [1], from the
fact that the number s, = 124-224 ., . {02 ig g square only in the case
where either n = 1 or n = 24 (cf. §14). Conversely, suppose that for a nat-
ural number » we have s, = m?2, where m is a natural number. Then,
a8 we can easily verify, 4s, = T,. Consequently we have T,, = (2m)2.
Thus, by the assertion regarding tetrahedral numbers which are squares,
we infer that 2n must be equal to 2 or 48, and so n — 1, or n = 24,
as required.

There exist natural numbers which are both tetrahedral and trian-
gular numbers. According to B. B. Escott [1] the only numbers of this
kind which are less than 5309116 are the numbers n = 1, 10, 20, 120,
1540, 7140. For these we have n = }z(x+1) ——~§y(g/+1)(y+2) with
=1, 4, 15, 85, 119; y =1, 3, 8, 20, 34, respectively. As verified
by H. Sulisz (cf. Sierpiriski [34]), there are no other numbers of this
kind up to 10°. It can be proved (cf. Skolem [24], p. 100) that there
is only a finite number of smeh numbers.

It is easy to prove that T,—T, , =1, and To4Tp, =124224..,
oot (n41)2.

It can be proved that there ewist infinitely many pairs of tetrahedral
numbers such that the sum (or the difference) of the nuwmbers of each pair
is a tetrahedral number (Sierpinski [32], of. Wunderlich [1]). I do
not know whether there is any pair of tetrahedral numbers such that
both the sum and the difference of the numbers of each pair are tetra-
hedral numbers. H. E. Salzer [1] has conjectured that every square is
the sum of at most four tetrahedral numbers. He has verified this for
the squares <10°% In particular 1* = Ty, 22 =15, 32 =T,+T,+T,,
42 =T+ T 4T 4Ty, 5° =T+ T+ T, = Ty -+ Ty -+ To+- Ty, 62 = T,+Ts,
72 =T+ Ty+T;, 8 = Tyt+-Ty+Ts, 92 = T +T+Ty+1T5, 102 = T+
+ T+ Tt T ,

It is easy to prove that every natural number is the algebraic sum
of four tetrahedral numbers. In fact, we have 1 =T+T,—T;—T,,
2 =T,—T3;—T,—T,, and for natural numbers n greater than 2 we have
n = Tn+Tn—2_Tn—l_Tn—1'

It is more difficult to prove that each natural number is the sum of
at most eight tetrahedral numbers (Watson [2]).

The natural numbers < 107 are the sums of at most five tetrahedral
numbers (Salzer and Levine [17).
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§ 17. The equation 22—Dy? =1. In this section we consider the
equation

(66)

and its solutions in integers, provided D is a natural number. Equation
(66) is called alternatively the equation of Fermat or the equation of Pell,
though the latter had nothing to do with it.

Apart from the trivial solutions # =1,y = 0and s = —land y = 0,
the solutions of equation (66) in integers #,y, both different from zero,
can be arranged in classes of four solutions in each such that any two
solutions of the same class differ in the signs at the #’s and y’s respee-
tively. Clearly, in every class there exists exactly one solution in natural
numbers. These we call simply natural solutions. It is clear that in order
to find all the solution of equation (66) in integers it suffices to find its
natural solutions.

The case where D is the square of a natural number is of no interest.
In fact, equation (66) can then be written in the form

z?—Dy? =1

(@—ny)(@tny) =1,

whence z+ny |1, which is impossible since #,y are natural numbers.
‘We conelude that

If D is the square of a natural number, then equation (66) is not solvable
. natural numbers x,y.

In order to show that if D is not the square of a natural number
then equation (66) does have solutions in natural numbers, we prove the
following .

Lemya. If o natural mumber D is not the square of a natural number,
then there exist infinitely many different pairs of integers w,y satisfying
the inequalities

(67) y#0 and |[2—Dy? < 2VD+1.

Proof. Let » denote a natural number. For each of the numbers

k=0,1,2,...,n we denote by I, the greatest natural number < k)/ﬁ—l—l.
We then have

L <WD+1 and IL+1>k/D+1.

Hence

(68) 0<L,—WD<1.

n+1 numbers I,—kV/D (k=0,1,2,...,n) are

m} /I all different, since
if L,—kD =1, —kVD, then we would have

bl = (k— kWD,
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which for % s %’ is impossible; for, otherwise VD would be a rational
number and consequently D would be the square of a rational number
and therefore, by theorem 8 of Chapter I, it would be the square of a
natural number, contrary to the assumption.

In virtue of (68), each of the numbers u = I,— &V D (=0,1,2,...
...y n) must satisfy one of the inequalities:
1 2

1
I<u<—, <u<

2 n—1 n
% 7 n

<u<;@-.

3 veny n

It follows that at least two different values %’ and u' satisfy the same
inequality, i.e.

j—1 g1 J
L L wt < =
PR ! PR S’
where j is one of the numbers 1,2, ..., n. Since by assumption ' u'’,

we may assume that, for instance, «' > u'. The inequalities u’ < k/n
and %' > (k—1)/n imply together that

1
O<u —u" <=
"

Since «’ =lk~kl/5, u'’ =li—'il”5, where %,¢ are taken from the
sequence 0,1, 2,...,n, then, putting » = l,—1;, y =i—k, we obtain

— 1
(68%) 0 <z—yVD < o

Obviously, #,y are integers and y = i—%. Hence y, as the difference
of two different terms of the sequence 0,1,2,..., n, is different from
zero and the module of y is not greater than =, i.e.

(69)

In virtue of (68*) we have

0 <yl < m.

— — 1
WD <z < yVD+ -
Since, by (69), —n <y < n, we have
1 — — 1
— (mfﬁ—}“ﬁ) < —n¥D < 5 <nVD+ =
and comnsequently

2| < nl/—ﬁ—i— —71;
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Hence, by (69),

lz+9VD| < |al+ VD < 2m/—D—+%-

This multiplied by the number ]m—-gﬂ/ﬁl which is less than 1/n (cf. (68))
gives

j2*—Dy?| < 2VD+1.

Thus we have proved that for each natural number n there exigts
a pair of integers «,y satisfying inequalities (67) and (68%).

Using this fact we now prove that there exist infinitely many pairs
of integers 4,y satisfying inequalities (67) and

(70) 0 < o—yVD.

Suppose, on the contrary, that there are only finitely many such
pairs and let -

(71) @y @ %)y ey (@, Ys)
be all of them. Plainly each of the numbers
(72) v'”l“‘?h@; ”z—yzl/ji: seey wa—?/al/ﬁ

is positive. Let o denote the least of them. Further, let #» be a natural
number such that

1
(73) —<a.
n

In virtue of what we have proved before there exists at least one
pair of integers z, y satisfying inequalities (67) and (68). By (68) and
(73) we have 0 < m—yl/D < a. But since a is the least among the num-
bers of (72), then the number z— ylfﬁ cannot be any of them, which means
that the pair (z,y) is different from all the pairs (71) and also satisfies
inequalities (67) and (68%) and hence inequality (70). This contradicts
the definition of pairs (71), and proves that there are infinitely many
pairs qf integers #, y satisfying (67 ) and (70) and hence, & fortiori, ine-
qualities (67). This concludes the proof of the lemma. ‘

THEOREM 12. If & natural number D is not the square of a natural
number, then the equation z*—Dy? =1 has infinitely many solutions in
natural numbers z, y.

_ Proof. Since the number of integers whose modules are less than
2V D41 is finite and, by the lemma, there are infinitely many pairs (z, ¥)
safisfying inequalities (67), then there are infinitely many pairs of inte-
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gers @, y for which #2—Dy? is equal to a fixed number &, obviously differ-
ent from zero, gince the case D = #%fy? is excluded. Denote by Z the
set of all such pairs x,y.

For an integer ¢, denote by () the remainder obtained by dividing
the number ¢ by %. For x,y both running over the set Z, we consider
the pairs 7(2), r(y). Clearly, there are at most %2 different ones among
them.

‘We now divide the set Z into classes, putting two pairs z,y and
@', y’ into the same class if 7 (#) = 7(2') and r(y) = r(y'). In virtue of what
we have said above, the number of different pairs r(z), r(y) is finite,
and so, since Z is infinite, at least one of the classes is infinite. ITn that
class then there exist two pairs a, b and ¢, d for which at least one of the
equalities |a| = |¢|, [b] = [d| fails, because for a given pair a,b there
are at most four pairs ¢,d for which both equalities hold.

Bach of the differences a*—Db? and ¢®—Dd? is equal to % (since
both a, b and ¢, d belong to the set Z). But sinee, moreover, a, b and ¢, d
belong to the same class, we see that (a) = r(c) and 7(b) = r(d). There-
fore, thcre exist integers ¢ and v such that a—ec¢ = %f and b—d = kv.
Consequently,

(74) a=ctki, b=d+ko,
where ¢ and v are integers. Multiplying the equalities
(75) a?—Db* =k, c2—Dd* =%
and applying the identity
(a®—Db*) (2 —Dd?) = (ac—Dbd)2—D (ad— cb)?

we obtain -
(76) (ac—Dbd)2—D (ad — cb)> = k2,

In virtne of (74) and (75) we have
ac—Dbd = (e-+kt)e—D(d+kv)d = ¢*—Da*+ k(ct—Ddv) = k(1+ ct—Dod)

" and also

ad—cb = (¢4 kf)d— c(d+Fv) = k(dt— cv).

Therefore, if we divide equation (76) by %% throughout, we obtain

(1+ct—Ddv)2—D(dt—cv)? =1,
from which, putting
x = [1+ct—Ddv|, y = |dt—ocv]|,

we derive the equality
w2—Dy2 =1.
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We are now going to prove that y % 0. If y = 0 we would have |2| = 1,
50
1+et—Ddv = +1, di—cv =0.

Now, multiplying the first of these equalities by ¢ and the second
by —Dd and then adding them up, we would have

¢+ (c2—Dd?*)t = 4c,

whenece, in virtue of formulae (74) and (75), we would obtain ¢ = +e,
ie. la] = |e|. Similarly, multiplying the first of the equalities by d, the
second by —e¢ and then adding them up, we would have

a4+ (2—Dd¥v = +d,

whence, by (75) and (74), we would obtain b = +d, i.e. |b| =|d|. But
this and the equality |a| = |¢] obtained above contradict the definition
of the pairs a, b and e, 4.

Thus we have proved the existence of at least one pair z, y of integers
such that 2*—Dy? =1 and y 5 0 (which clearly shows that also & == 0).
Changing, if necessary, the signs of the integers  and y, we obtain a
natural solution of equation (66).

If the equality #2—Dy® = 1 holds for natural numbers z,y then,
clearly, (24*—1)*—D(2zy)* =1 with 2zy > 4. Thus from any solution
of equation (66) in natural numbers @,y we derive another solution of
(66) in natural numbers #', ' with &’ > » and Y’ > y. This proves that
equation (66) has infinitely many solutions in natural numbers.

Theorem 12 is thus proved.

In order to find effectively a solution of equation (66) we may apply
the following procedure: In 1+Dy? we substitute successively for y
the natural numbers 1, 2, 3, ... and denote by u the first y for which 1 +Dy?
is the square of a natural number. Then we set 1+Du? = 2. We assert
that the pair (¢, u) is the solution of equation (66) for which ¢, u are the
least natural numbers. In fact, for any other solution of equation (66)
in natural numbers z,y we have y > u and, consequently, # = V1 +Dy?
>V14-Du? =t, whence also z > t.

In some particular cases it is very easy to find the least solution of
equation (66). This is for instance the case when D is of the form a2—1,
where ¢ i a natural number (>1). (It is easy to see that then the least
solution of (66) in natural numbers is § — @, 4 =1.) Similarly, this is
also the case when D — a(a-+1), where @ is a natural number. Then the
least solution is ¢ = 2a-+1, u = 2. Namely we have (2a+1)2—D-22 = 1,
and, on the other hand, if for a natural number %, 22—D-12 =1, then
we would have z® = a*+a-+1, whence 22 > a2, 50 2 > g ; consequently,
¢ > a-+1, and therefore 22 > a2+ 2041 > a*4-a+41, which iz a con-
tradietion. It is more difficult to prove that if D — a*-2, where a iy
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a natural number, then the least solution of (66) in natural mumbers is
t=a*+1, u =a; and also if D =a2+41, then ¢ = 2a*+1, u = 2a.
Exsampres. 1. For D = 2 equation (66) assumes the form z%— 2y = 1. Sub-

stituting 1 and 2 for y in 1+ 2y successively, we obtain the numbers 3 and 9 respec-
tively, the latter being square. Therefore the least solution is here z = 2, y = 3.

2. For D = 3 equation (66) becomes 22— 3y? = 1. Substituting 1 for y in 1-+ 342,
we obtain a square (of the number 2). Thus the least solution is here ¢t = 2, u — 1.

3. For D = 5, i.e. for the equation #*— 5y% = 1, one has to substitute 1, 2, 3, 4
for y in 14 5y® successively in order to obtain the values 6, 21, 46, 81, the last of
which is a square. Consequently the least solution is here ¢ = 9, u = 4.

4. For D = 11, ie. for the equation z*— 11y> = 1, we substitute 1, 2, 3 for
y in 1+ 1132 successively and obtain the values 12, 45, 100 respectively. Consequently
the least solution is here &= 10, u = 3.

Although the above method of finding the least solution of equa-
tion (66) is very simple, it eannot be regarded as useful in practice. In
fact, for some comparatively small numbers it requires a large number of
trials. B.g. in order to find the least solution of the equation #*—13y* = 1
in natural numbers, which are ¢ = 649, 4 = 180,. one needs 180 trials.
A very striking example of this kind is the equation

(17) F—991y* =1

whose least solution in natural numbers is
i = 379516400906811930633014896080,
% = 12055735790331359447442538767.

This is very instruective example, showing that it is (sometimes)
impossible to deduce the general theorem even from a very long sequence
of trials. Substituting 1,2, 3,...,10%® for y in equation (77) we do not
obtain a solution, though the conclusion drawn from this, namely that
equation (77) is insolvable in natural numbers, is false.

In Chapter VIIL, § 5, we present another, more convenient, method
of finding the least solution of equation (66) in natural numbers; it gives
the least solution of equation (77) without long calculations.

‘With regard to theorem 12 we note here that for D which is not the
square of a natural number (and hence not the square of a rational number)
one can eagily find all the solutions of equation (66) in rational numbers
@,y. In point of fact, for an arbitrary rational number » we put
% = (r?4-D)[(r*—D), y = 2r[(r?*—D), then

or )2 _ (r*—D)*+ 4Dy _(72+D)2_m2
»—D|] — (?—D) ri—p| 7’

14Dy = 1—|—D(

and so #?—Dy? = 1. It is easy to prove that all the solutions of equation
(66) in rational numbers can be obtained in this way.
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The task of finding all the solutions of equation (66) in rational
numbers , y is equivalent to that of finding the solutions of the equation
22—Dy? = 22 in integers s, vy, 2.

‘We now turn to the problem of finding all the solutions of equation
(66) in natural numbers.

THEOREM 13. AT the solutions of the equation x*—Dy* =1 in natural
numbers are contained in the infinite sequence

(78) (o %o)y  (ty U1)y (hay Ua)y «ooy

where (ty, uy) 15 the least natural solution and (i, u.) are defined inductively
by the formulae

(79) Yory = TobpFDUg Uy, Uy = Ul loux, Ek=1,2,...

Proof. To see that the solutions of sequence (78) indeed satisfy equa-
tion (66) we note that (t,, u,) does satisfy (66) and, if for an integer £ = 0
the pair (f, u;) satisfies (66), then numbers (79) are natural and, in vir-
tue of the equality

tlzc-)—l_Dui«]-l = (“'otlc“l'lma"l'k)z—D('“’ntk.‘l‘to'“lc)2 = (t;—Duj) (i —Du3),

also the pair (%, 4z, satisfies equation (66).

Thus all that remains in order to complete the proof is to show
that every solution (z,y) of the equation #2—Dy® = 1 is contained in
sequence (78). To this end we prove the following

Levma. If (z, y) 98 & solution of the equqtion x?—Dy? =1 in natural
numbers such ithat u, <y, then for

(80) & =10—Dugy, 1= —uw+ty

&, n are both natural numbers, n <y and £2—Dn? =1.
Proof of the lemma. In virtue of {80) we have

£ =Dy = (lew—Duy) —D(—upa+10y)* = (f—Dud) (¢*—Dy?),
and consequently, by §—Dui = 1 and #*—Dy* =1, we find &—Dy* = 1.
Therefore it is enough to show that, if & and » are natural numbers
and 5 <y, then the inequalities
0 <tz—Duyy and 0<—uwtiy <y
hold. In order to do this we note first that

DPuyy® = (§—1)(#*—1) < #2°, whence Duy < tow,
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and that, since u, <y, we have

2 2
(f) =D+—1—<D+ %—:(i") .
y s u \t
Consequently #/y << #,/u,, which implies u,x < {,y, whence 0 < —u,z+
+ %Y.

To verify the inequality —u,z+1t,y <y we note that, in virtue
of # =Duj+1, we have f >1, whence #*(2—24) <0 < ({,—1).
Then adding 2*(t;—1) to each side of the last inequality we obtain
P(E—26+1) < #* (£ —1)+(,—1)?, whenee (2*—1)(t,—1) < o (i5—1),
and consequently Dy*(t, —1)* < x2Du; whence y’(f,—1)® < x%up; there-
fore y(t—1) < @u,, that is —au,+1,y < v, as required. The lemma is
thus proved.

Now suppose that there exist solutions of the equation #*—Dy? =1
in natural numbers which are not contained in sequence (78). Ampng them
there exists a solution (z,y) for which y takes the least possible value.
However, y must be still greater than u,, since the solution (ty, u,) is the
least solution and consequently the equality y = u, implies # = {,, con-
trary to the assumption that (z,y) does not bclong to sequence (78).
In virtne of the lemma, taking for &, the numbers of the form (80)
defined with the aid of the solution z,y, we see that they satisfy the
equation z2—Dy? =1 and 7 < y. It follows from the definition of the
solution (w,y) that the solution (&, %) belongs to sequence (78). There-
fore for some integer k > 0 we have & = #;, n = u;,. Then, by formulae
(79) and (80) and the fact that f;—Du; = 1, we obtain

teer = o E+Dugy = bty @ —Drtgy) +Dutg (—uom+ 1Y) = (l—Dug)w = @,
Upry = U EF Ty = U (L@ —DUgy) +ho( — % B+ 1Y) = (ti—Dug)y =y,

which proves that (z, y) is one of the solutions of sequence (78), contrary
to the assumption. Thus the assumption that there exists a solution
of the equation z*—Dy? =1 which does not belong to sequence (78)
Jeads to a contradiction. This completes the proof of Theorem 13.

In particular, for the equation #2—2y? =1, where {, = 3, 4, = 2,
by formulae (79) we find that each of the remaining solutions of the
equation is one of the scquences 1, = 32+2-22 =17, u; = 2-34-3-2=12,
1, = 99, u, = 70, 13 = 577, uy =408, ...

As has been observed by Antoni Wakulicz, formulae (79) imply the
following equalities:

Yeyr = gly— Ty, U = 2hwp—uw,_, for k=1,2,...
Now we are going to prove that

(81) ty 1ty VD = (+uVDy* for n=1,2,...
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Formula (81) is trivial for » = 1. Suppose it is true for a natural num-
ber n. Applying (79) with & =n—1, we find that

b+ UV D = Gyt_y Dty thy_y (U bp_y AL Un_y VD

= (to‘l"“'o]/ﬁ) (tast+ un_ﬂ/ﬁ);
whence, by (81), we obtain

tatuVD = (ty+uV DY+,

which proves formula (81) for n+1, and hence, by induction, for an
arbitrary natural number.
Thus, theorem 13 and formula (81) imply the following theorem:
TeEOREM 14. If 14, u, 45 the least solution of the equation x*—Dy? =1
in natural numbers, then in order that a patr of natural numbers t, u be
a solution of this equation it is necessary and sufficient for the equality

(82) t+uVD = (i,+2,/ D)

to hold for a natural number n.

For arbitrary natural numbers a,b,¢,d the equality a-bVD
= ¢++aV'D implies a =¢, b = d (because the number VD is irrational).
Therefore, expanding the right-hand side of equality (81) according to
the binomial formula and then reducing it to the form ¢--dVD , Where
¢,d are natural numbers, we obtain %, ; = Cy Up_1=04d.

We note that from formula (82), which gives all the solutions
of equation (66) in natural numbers, we can easily obtain a formula giv-
ing all the solutions of this equation in integers.

In'fact, if ¢, w is a solution of equation (66) in natural numbers, then
in virtue of theorem 14 equality (82) holds for a suitable natural number 7.
But this, in virtue of an easily verifiable equality

t— /D = 1/(t+uVD)
(for the proof we observe that #2—Du? = 1) implies
t—uVD = (ty+ u/ DY".

The numbers ¢, —u are obtained from the numbers t, u by a simple
change of sign and the remaining two solutions belonging to the same class
are (—1, —u), (—t, u).

This leads us to the following

TrroRrEM 15. Every solulion of equation (66) in integers 1, u is ob-
tained from the formula

t+uVD = +(ty+u/ DY,

where &k is o suitably chosen integer, and u,, t, denote the least solution in
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natural numbers. Conversely, every pair of integers i, u obtained from the
above formula is a solution of equation (66).

It is worth-while to note that even the solution ¢ = 41, 4 =0
is obtained from this formula, namely for %k = 0.

The solutions of equation (66) supply us with a method of approxi-
mating the square root of a natural number by rational numbers. In
fact, it follows from (66) that

m——y@ :1/(m+y@),
whence N
m/y—l/l—) = 1/y(a:—|—yl/5) < 1/y2l/D < 1/y2.

Therefore, if »,y s a solution of equation (66) in natural numbers z,y,
then the fraction z[y approzimates the (irrational) number VD with a better
accuracy than the reciprocal of the square of the denominator. (It follows imme-
diately from equation (66) that x/y is an irreducible fraction.)

In particular, the fourth of the listed solutions of the equation #*—
— 292 = 1 in natural numbers yields the fraction 577 /408, which approx-
imates the number V2 with an accuracy to five deeimal places (since
4082 > 10°).

In order to obtain a better accuracy in a smaller number of steps
we use the following formulae, which enable us to pass from the solutions
tn_1y Un_y t0 the solution ty,_,, Uy, ; immediately. In virtue of (81) one has

th—1+u2n—ll/E = (t“-{-uﬂl/_—ﬁ)?‘" = (tn—1+un—1l/5)2,
whence, sinee t,_,—Dui_; =1, one obtains

o1 =t +Dup y =t (1 —1) =26 =1, Uy g = 2p_ytn_y.

Thus we pass from the fraction £, ;/u,_, to the fraction

Yan1[Ugn1 = (2ln_1—1)[(2tp_ytU_1).

In particular, from the fraction #,/u, = 99/70, which is an approxi-
mation of number V2, we pass to the fraction #s/u; = 170601/13860,
which approximates V2 with an accuracy of eight decimal places. With
regard to number V2 we note here that in 1950 R. Coustal found its

decimal expansion with 1033 digits (1), and in 1951 H. 8. Uhler pres-
ented the decimal expansion of this number with 1543 digits ().

(1) Cf. Coustal [1]. Compare also the remarks of E. Borel [2] concerning

this expansion. N
(2) Cf. Thler [1]; ibidem the decimal expansion with 1301 digits of the num-

ber V3 can be found.

Elementary theory of numbers
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Returning to the equation #2—2y? = 1 we prove that it has no solu-
tion in natural numbers #, ¥ for which & is the square of a natural number.
In fact, if there were a solution #, ¥, with # = %2, then 4 would be an odd
number greater than 1. Consequently 4? = 8% -1, where k would be a natu-
ral number. Further, in virtue of the identity (%*—1)(u2+1) = ut—1 =2y2,
we would have 8k(4k-+1) = y3*, which by (2k, 4k+41) = 1 would imply
2k = a?, o being a natural number. Therefore %?—1 = 8k = (2a)2,
which is impossible, since two consecutive numbers cannot be squares of
natural numbers. It follows that the equation x*—2y* =1 4s insolvable
in natural numbers ,y. ‘

It is easy to prove that also the equation ut—2v2 = —1 45 insolvable
in natural numbers u,v different from u =0 = 1.

To see this we note that, if > 1 and v satisfies the equation %*—

—2v* = —1, then we would have u*—¢* = (u2—1)2, where %, v, 42—1
would be natural numbers. But this contradicts corollary 1 of theorem 3,
§ 6, p. 54,

It can be proved, however, that each of the equations
=2yt =22,  wt—20t = —w?

has infinitely many solutions in natural numbers. In particular, (3,2, 7)
and (113, 84, 7967) are solutions of the first equation, (1, 13, 239) and
(1343, 1525, 2165017) are solutions of the second one.

All the Diophantine equations of second degree with two unknowns
can be reduced to the equation of Pell (¢f. Skolem [1], p. 46). For instance,
this is the case with the equation

(83) (2417 —a® =42,

In fact one sees that equation (83) is equivalent to the equation (2y)2—
—3(2z+1)* = 1. Consequently, in order to solve equation (83) in inte-
gers it is sufficient to find the solution of the equation u2—3¢2 =1 in
integers u, v such that « is even and v is odd. Apart from the trivial solu-
tion % =1, » =0, all the other integer solutions are defined by the
natural numbers %, v satisfying our equation. Since the least solution
in natural numbers u, v is u, =2, v, =1, according to theorem 13 all
the natural solutioms are contained in the infinite sequence (uy, vg),
k=1,2,..., where

Uppy = 2up+3v,  and vy = w20, E=0,1,2,...

It follows that, if u;, is even and 7, 0dd, then u,; is 0dd and Vrq1
1s even; conversely, if u; is odd and vy is even, then u; +1 18 even and vy,
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is odd. From this we easily conclude that all the solutions of the equa-
tion #2—3v? =1 in natural numbers %, with % even and v odd are
(%agy o) Where b =0,1,2,...

It can also be easily proved (but this we leave to the reader) that
all the solutions of equation (83) in natural numbers @,y are contained
in the infinite sequence (my,y;), ¥ =1,2,..., where B =0, y,=1,
and o = Top_1+4yr1+3, Y = 122 1+ Tyr_+6, E=1,2,...

It has been proved that, if natural numbers x,y satisfy equation
(83), then the number y is the sum of the squares of two consecutive natu-
ral numbers. In particular, we have 85—73% = (224 32)2, 105%—1048
= (924 102)2.

As noticed by A. Rotkiewicz [4] the problem of solving the equation

(84) (u—v)’ = u?— gt

in natural numbers «, » with u > v reduces to that of solving equation
(83) in natural numbers z, y.

To prove this we observe that, on the one hand, if natural numbers
%,y satisfy equation (83), then, putting w = y(z+ 1), v = ¥z, we obtain
u—ov =y and ¥*—v* =y [(z4+1)*—a°] =9° = (u—0)°, ie. formula
(84). On the other hand, if natural numbers %,» with » < satisfy
equation (84), then, denoting y = (u,v), z =v/y, t =uly, Wwe have
(#,t) =1 and, in virtue of % > v, t > x. Therefore, by (84), we have
Y (t—x)° = y3(13—4a°), whence Y2 (t—a)* = (1*—a°)/(t—x), which, in vir-
tue of the identity (1*—2%)/(t— ) = (t— )2+ 3z, proves that (t—ax)? | 3iz.
Hence, since (, ) = 1, we obtain t—z = 1, and consequently ¢ = x-4-1,
% = y(z+1) and y* = (+1)°>—43, which gives equality (83). Thus all
the solutions of equation (84) in natural number u,» with u > v are
obtained from the solutions of equation (83) by putting % = y(x+1),
v = yz.

§18. The equations 2% —y3, where % is an integer. These
equations have long been investigated by many authors, but for some
of &, even small, not all the solutions in integers «, ¥ have been found.

We start with a number of general theorems, which can be applied
to the equations with various values for % (cf. Mordell [1]).

TEEOREM 16. If a is an odd integer and b an even integer not divisible
by 3 and having no common divisor of the Jorm 4143 with o and, lastly,
if &k =b2—a® and k is not of the form 8t—1, then the equation x4k = y?
has no solutions in integers m,y.

Proof. Suppose to the contrary that %,y are integers such that
@+ & = y°. Since b is even and a is odd, the number &k = b2— g® is odd.
Then, if y were even, then # would be odd and consequently 8 | #2—1,
8 | 4%, whence, since k+1 = y*— (#2—1), we would have 8 |k+1, con-
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trary to the assumption that % is not of the from 8¢—1. Therefore y must
be odd, and consequently # is even. So # = 2u and, since b = 20, we have
224 b2 = 4(ut+c?) = y°+a® = (y+a)(y*—ay+a?). Since y—a is even
and o is odd, s2—ay-+-a® = (y—a)y-+a?. Consequently 4 |y-+a and
y+a =4v. Hence y—a = 4v—2a, y = 4v—a and (y—a)y = 4w+ 2a?;
therefore 92— ay+ a* = 4w--3a%. Since g is odd, the right-hand side of
the last equality must be of the form 45+3.

Consequently (1), it has a prime divisor p of the same form, such
that the maximal exponent s for which p° divides the number 4w 3a2
is an odd number. Let s = 2a—1. Therefore, since p™*~!|y*—ay -+ a?
and y*—ay--a® | 22+ b2, we have p* ' | &'+ V. Let d = (z, b), & = du,,
b = db,. Then (@, b)) =1 and p**~* | d*(#i -} b}). Since, a3 we know and
as can be found in Chapter XTI, the sum of the squares of two numbers
such that at least one of them is not divisible by a prime p of the form
41+ 3 cannot be divisible by p, we have p*'|d*, whence p™ | @ and
p°| d. Consequently p°®|# and »°|d, whence p™ | (¥*+ a)(y*—ay+ a?).
Therefore, since the maximal exponent s for which p° |9’ —ay+a® is
odd, we have p |y+a. Since also p | y*—ay+a® = (y+ a)(y —2a)-+ 342,
we find p | 3a2, which, in virtue of p | b and the fact that b is not divisible
by 3, implies p | a, contrary to the assumption regarding o and b. Theo-
rem 16 is thus proved.

CorOLLARY. The equation 24k = y® has no solution in integers
@,y for k=3, 5,17, —11, —13, since 3 =22—13, 5 = 2'—(—1)3,
—11 =433, 17 = 42— (—1)3, —13 = 702—175.

TeworeM 17. If a is an integer of the form 4t-+2 and b an odd imte-
ger mot divisible by 3 and having no common divisor of the form 4+ 3 with
&, and if & = b2— a3, then the equation 2k = y3 has no solution in inte-
gers z,y.

Proof. Suppose to the contrary that z,y are integers such that
#*+k = y°. Since k¥ = b2—a® and in virtue of the assumptions on @ and b,
we see that the number & is of the form 8¢41. Consequently, if y were
an even integer, then #® = 9*—% would be of the form 8t—1, which is
impossible. Thus ¥ must be odd and hence # is even. If y were of the form
4i+1, then y+a would be of the form 41+ 3 and would also have a prime
divisor p of this form such that the exponent u of p in the factorization
into prime numbers of y+a would be 0dd, ie. u = 20~—1. Further,
since o'4-b" = y*+4°, we would have p*~'|a*+1?, whence, as in the
proof of theorem 16, we would conclude that 2%|b and p° | # and hence
that p | 3a®. But since p | b and b is not divisible by 3, we have p = 3; this
would imply that p | a, contrary to the assumption regarding the numbers

(*) The argument is to be found in Chapter V, p. 204.
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a and b. Thus all that remains to be considered is the case where yis of
the form 4¢+-3. Then y— a is of the form 4141 and y(y—a) is of the form
4t+ 3. Therefore y2—ay+a? is of the form 4t+3, whence, in analogy
to the proof of theorem 16, we infer that the number 22+ b2 = y31-ad
= (y+a)(y*—ay+a?) has a prime divisor p of the form 4143 the expo-
nent of which in the factorization into prime numbers is odd. But this,
as we have secn, leads to a contradiction. The proof of theorem 17 is thus
completed.

COROLLARY. The equation a2k = y3 has no solution in integers x,y
for k=9 and k= —17, since 9 =12—(—2)* and —7 =12—23(1),

THEOREM 18. The equation x2--12 = y3 has no solution in integers
T, Y.

Proof. Suppose to the contrary that integers z, y satisfy the equation
2°+12 =y°. If the number # is even, then ® = 2z, and the number Y
is also even, and so y = 2y,. Hence 2743 = 2¢% and =, is an odd number;
consequently #; is of the form 8t--1, and therefore 2% = 248 is of the
form 8t-+4, whence 4} is of the form 4{--2. But this is impossible, gince
the cube of an even number is divisible by 8. From this we conclude that
« and hence y must be odd. We have

a2+4 = 9" —8 = (y—2)(y2 -2y - 4).

Since y is odd, the number %24-2y--4 must be of the form 41+ 3. There-
fore the number #*-+-22, where (z,2) =1, has a divisor of the form
4k+3, which, as we know, is impossible. Thus the assumption that the
equation #2--12 = y3 is solvable in integers leads to a contradiction, and
this proves theorem 18.

We note here that, as has been proved by Mordell, a more general
theorem holds: If % = (2a)?—(2b)%, where & is an odd integer not divis-
ible by 3 and b is an integer of the form 4¢3 and moreover (@, b) has
no divisor of the form 4¢+4 3, then the equation #*+% = y% hag no solu-
tions in integers =, .

In particular, since 12 = 2:—(—2)3, —20 = 142—62, the last
assertion implies that the equation #2+% = y® has no solutions in inte-
gers @,y for k =12, &k = —20.

THEOREM 19. The equation 22416 = y® has no solution in integers
@, Y.

Proof. If 2 were even, then y would also be even, and 50 z = 22,
Y = 2y, @, and y, being integers. Hence #}-+4 = 2y%, and consequently
@, would be even, and 80 @; -+ 225, Whence 24542 = y*. Therefore y, = 2y,,

() The proof for & = —7 was found by V. A. Lebesgue [2] in 1869.
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whence a2+1 = 4y3, which is impossible. Thus # must be odd, and con- for & — —17 precisely 16 solutions. These are (z,y) — (=3, —2),
sequently 4 is of the form 8¢+1. But this implies that y is also of the (k4, —1), (£5,2), (£9,4), (£23,8), (+282,43), (+373, 52),
form 8¢+1; consequently y—2 is of the form 8t—1. Since y—2 [y°*—38 (378661, 5234).
= 228, the number #2--8 has a divisor of the form 8 —1. It follows To the equation z2++% = y2, O. Hemer has devoted his thesis (He-
that @*+ 8 has a prime divisor p either of the form 8k+5 or of the form mer [1]). Some corrections of it as well as additional information are to
8%+ 7. Therefore p | 2248, which is known to be untrue for prime p either be found in his subsequent note (Hemer [2]) and in Ljunggren [6]). He-
of the form 8%-+5 or of the form 8%k-7 (*). Theorem 19 is thus proved. mer has found all the solutions of the equation #2-+k = y* in integers , y
TEEOREM 20. The equation 2*—16 = y® has no solution n integers for all ¥ with —100 <% < 0. Among the integers % with 0 < %k < 100
different from o = +4, y =0. there are 20 different values of % for which the number of the solutions
Proof. Suppose that integers x, y satisfy the equation z*—16 = y°. is unknown, but at least one solution has been found. In particular,
If the number # were odd, then we would have (z-44,2—4) =1, and for & = 18 we know the solution # = 43, y = 3, for & = 23 the solution
hence, since (z--4)(z—4) = y8, there would exist odd integers 4, b such =12, y =238 and for ¥ =100 the six solutions # = +5, y =5,
that #+4 = a%, s—4 = b3, whence a3—b® = 8; but thisis impossible, since = +30, y =10; 2= +198, and y = 34, but, as in the preceding
the number 8 has no representation as the difference of the cubes of odd cases we do not know whether there are any other solutions. For k& = —100,
integers, which is easy to see. Therefore # must be even. Hence # = 2z, however, we do know all the solutions, which are 12 in number. These are
which implies that y is also even; consequently y = 2y,. Hence af—4 2= 46,y =4;0= 410,y =0;2 = £+15,y =5; 2 = £90, y = 20;
= 2y}, which proves that #, is even, and so #, = 2z,. It follows that also o= 4118, y = 24; » = 4137190, y = 2660.
¥, must be even, and 5o y, = 2y,; consequently #;—1 = 4y;. The last The equation @2k = 3, where 2 < |k| < 20, is solvable in inte-
equality implies that @, is odd, and so #, = 2m,+-1. Hence 434w, gers ¢,y # 0 for k=4, 7, 11, 13, 15, 18, 19, 20, —3, —5, —8, —9,
= 4y3 and therefore z;(z,+1) = y3, which, in virtue of (,, 25+1) =1, —10, —12, —15, —17, —18, —19; since 2'+4 =23, 1247 = 23, 434
implies that there are integers & and b such that o3 = a®, @,+1 = b°. +11 = 3%(also 582411 = 153), 702+ 13 = 173,72+15 = 43,3218 = 33
But two consecutive integers are the cubes of integers only in the case 182419 =78, 22—3 =19, 22—5 = (—1)%, 42—8 = 2%, 129 = (—2)3,
where they are either —1, or 0 and 1, respectively. From this we conclude 32—10 = (—1)3, 2°—12 = (—2)%, 42—15 = 1° (also 11382—15 = 109?),
that ¥ = 0, whence y; = 0 and y = 0 and consequently # = +4. Theo- 42—17 = (—1)* (also 32—17 =(—2)°, 19218 =173, 122—19 = 53,
rem 20 has thus been proved. For all the other %, where 2 < [k] < 20, the equation is insolvable even
L. J. Mordell [2] (cf. Thue [2]) has proved that for every integer in rational numbers , y 7 0; except that for &k = —11 there is no solu-
k # 0 the equation @4k = y* has finitely many solutions in integers. tion in integers but there are rational solutions, e.g.
Corollary 2 to theorem 9 furnishes a complete solution of the equation 19\ 73
22—1 = y*. The equation 221 = y® has no solution in integers %,y # 0 (?) —11 = (Z)

and, more generally, in rationals z,y # 0. The equation 22+ 2 = y3 has . .
a unique solution in positive integers # = 5, ¥y = 3. Although this fact By the identity

has been known since Fermat (*) its proof is difficult. It is to be found 27y° — 3607y° + 8a*\? s s 9yt — 82y \*
in Uspensky and Heaslet [1]. The proof presented there is based on the 8 Tyt = Tamr

theory of the field K (¥ —2). It is still more difficult to prove that the . . N 5 . .
every solufion of the equation #°+% =y’ in rational numbers z,y % 0

equation #2—~2 = y* has no solutions in integers except # =1, y = —1. X . 5 .
The proof was found by A. Brauer [1]in 1926 and is based on the theory yields another solution, and, in fact, it has been proved by R. Fueter [1]
of ideals. that, if there is one such solution, then for % s —1, 432 there are in-

finitely many.
It is worth-while to note that the solutions of the equation 22k = y3
in rational numbers are obtained from the solutions of the equation
() This will be shown in Chapter IX, p. 320. '+ kw® =* in integers u,v and w # 0 by putting & = u/w’, y = v/w
(*) Fermat [1], pp. 345 and 434. The first rigorous proof was given by In fact, it is easy to verify that then #24-% = 43; on the other hand, sup-
T. Pépin [1]. pose that z, y are two arbitrary rational numbers satisfying the equation

The number of integral solutions of the equation #*4-% = 4* can be
arbitrarily large. It was proved by T. Nagell [3] in 1930 that there exist
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22+k =y2. Let 5 = m[n, y = r[s, where m, r are integers and », s natu-
ral numbers. Then, putting « = mn2s®, v = ra%, w = ns, we see that
the numbers u,v,w are integers, w s 0; they satisfy the equation
u+kw® = o3 and ujw® = m/n, vjw? =7rfs.

The solutions of the equation 2% = g3 in rational numbers have
been investigated by J. W. 8. Cassels [1], [2] and B. S. Selmer [3].
J. W. S. Casscls [1] has presented the so-called basic solutions of the
equation u?-+kw® = o* in integers u, v, w for all values of % absolutely
< 50 for which non-trivial solutions exist (on page 268), as well as a long
list of rcferences to literature (pages 271-273). Selmer has given a conti-
nuation of Cassels’ table for |k] between 50 and 100.

We note here that the theorem stating that the equation us--¢% = gt
bas no solutions in integers u,v,w, with www = 0 is equivalent to the
theorem stating that the equation z®+ 432 = y* is insolvable in rational
numbers z,y other that # = £ 36, y = 12.

The argument for this purpose proceeds as follows. Suppose that
rational numbers z,y satisfy the equation 22--432 =43, @ % -136.
Obviously we must have y > 0. Numbers #/36 and y/[12 are rational,
9/12 > 0, and, after reducing them to the same denominator, we get
/36 = k/n, ¥/12 = m/n, where k is an integer and m,n are natural
numbers. Without loss of generality we may assume that each of the
numbers k and n is divisible by 2, since we can replace n, k, m by 2n,

2k, 2m respectively, if necessary. We set u = n———, V=—, W =m.

Plainly, u, v, w are integers and, moreover, w > 0. We have w3+ 93— 3

n—}—k)3 (n—lc )3 n3 3nk2 nw n

="} L —m = — —m3 = — =M,

( 5 t P m 4-}- 1 m.Butk—%,m__lz’
n®  3nfr  nlys n3

therefore %3+ 93— w3 = —

4 T4-3627 128 1728
This leads us to the conclusion that if the equation 24432 = y3
has a solution in rational numbers «, y and @ 5 -- 36, then the equation
u*+® = w® is solvable in integers u, v, w with wow # 0. On the other
hand, suppose that integers %, v, w With uow # 0 satisfy the equation
w4 p® = w3, Since w? = ud4 93 = (v+v)(u—uv+92) and w 0, we
have 4+ 5 0. Therefore, putting # = 36 (u—0)[(u=-9), y = 12w/(u-+v),
we geb rational numbers @,y such that

(43222 —y3) — 0.

128(u? - ?) 36 (u—w)®

ys_mz —
(u+v)® (u+0)2

_ 123(u2—uv—|-11”)—362(u2—-2'Lw+02)
- (u+o)

= 432.
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Consequently #°--432 = y%. We have thus proved that the equation
%%+2° = w® has a solution in integers «, v, w with wvw % 0 if and only
if the equation #2--432 = y? is solvable in rational numbers #, 5, where
@ % £36. It can be proved similarly (ef. Cassels [1], p. 243) that the
equation %*+4-0® = Aw?®, where 4 is a natural number, is solvable in
integers 4, v, w with w % 0 if and only if the equation #z*-43242 = g3
is solvable in rational numbers =, y.

In order to prove that the equation %43 = 2% is insolvable in
integers # 0 it suffices to show that the equation #*—16 = y® has no
solutions in rational numbers #, y different from zero. To see this we simply
observe that if integers u, v, w different from zero satisfied the equation
u34-v% = w?, then the rational numbers & = 4 (v3-+w?®)/u’ and y = 4vw/2
would both be different from zero and would satisfy the equation x2—
—16 = y® (cf. Bendz [1]).

‘We note that, as shown by H. Kapferer [1], the theorem called Fer-
mat Last Theorem, which states that the equation #"+4" = 2" is in-
solvable in positive integers #, ¥, 2 for # > 2, is equivalent to the thcorem
stating that for even mnatural numbers m >2 the equation 23—y?
= 332™z™+? has no solution in integers z, ¥, # such that any two of them
are relatively prime. To conclude this section we note that according to
theorems of V. A. Lebesgue [1], W. Ljunggren [2], [3] and T. Nagell
[2], [8], [9], [10] none of the equations x4k = y™, where &k =1, 2, 3,
4, 5, 8 or 9 has a solution in integers #,y for n > 3.

EXERCISES. 1. Prove the theorem of V. Bouniakowsky [1] (of 1848) stating
that for given coprime natural numbers m and n the equation

(i) M +ymun = Myt

has infinitely many solutions in natural numbers z,y,z,t,u,v.

Proof. Let m, n be given natural numbers such that (m,n) = 1. In virtue of
theorem 16 of Chapter I there exist matural numbers r, s such that mr—ns = 1.
Let a, b be arbitrary natural numbers and let ¢ = a-+b. It is easy to verify that the
numbers
z=d, 2z=0% u=a®, o=ab°
satisfy equation (i).

2. Prove that the equation

a? = 3148

has infinitely many solutions in natural numbers.

Proof. This is immediate: the numbers x = n'%(n+1)%, y = 2" (n+1)%, z =
= n*(n+1)%, where n = 1,2, ..., satisfy the equation.

3. Prove that for each natural number n > 1 the equation z™+4y™ ="~
has infinitely many solutions in natural numbers z,y, 2.

1
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Proof. This follows from the identity
((1+kn)n—2)n+(k(1_l_kn)n-Z)n —_ ((1+kn)n—1)n-—1

which holds whenever %, n are natural numbers, n > 2.

4. Prove that for each natural number u the equation ™ +y® = 2"+! hag infi-
nitely many solutions in different natural numbers %, 3, 2.
Proof. This follows from the identity

(A+E*+ R+ = (14 E7"+.
n
Remark. The equations 4™ By"™ =27 and, more generally, Y Ai:v;.’i =0
i=1
bave been investigated by several authors, cf. Tchacaloff et Karanicoloff [1], Vi-
jayaraghavan [1], Georgiev [1], Schinzel [14].
5. Prove, in connection with the Fermat Last Theorem, the following statement:

If n is a natural number greater than 2, then the equation z™ - (@+1)" = (z-}2)
has no solution in natural number .

Proof. Suppose that = is an 0dd number > 2; if for some natural & the equality
"+ (x4 1)" = (z+2)" holds, then, for y = z-+1, we have y" = (y+1)"— (y—1)",

whence
n
ynﬂg(l) ym1_g (g) yi— . 2(1»” 2) ¥ = 2.

This proves that y? is a divisor of the number 2, which, by y = #+1 > 1, is impos-
sible.
If n is an even number greater than 2, then, putting y = z+1, we obtain

n__ n n—-1__ n n—3__ —_ % —
Yy Z(I)y 2(3)1/ 2(n_1)y_0,

Y-l 2('1’) y"i—2 (;)y""”"'—- o= 2 = 0.

whence

The first equality shows that ™ > 2ny"—1, whence Y > 2n; the second equality shows
that y is a divisor of 2n; this is a contradiction.

Remark. B. Leszezyfiski [1]has proved that the only positive integers u, z, , 2,
with y > 1 for which 2%+ (n+1) = (n+2)° are: n = 1, % arbitrary, y = 3, 2 = 2
andn =3, 2=y =2z=2.

§ 19. On some exponential equationis and others.

1. Equation 4’ = 4". We are going to find all the solutiong of this
equation in positive rational numbers #,y sueh that x # Y. Suppose
that @,y is such a solution and that y > z. Then r = @/(y—=) is a posi-
tive rational number and y = (1-4-1/r)z. Therefore @¥ — gl+l/ne and,
since ¥ = 4", we have also 20*™* — 4% which proves that z'*+F" — y
=(1-+1/r)s. Hence & =1-1jr and consequently

1 r 1 r+1
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Let r =mn/m, where (m,n) =1, and @ =1tfs, where ({,s) = 1.

1\ “tn \ m
Since s = (1—[——) , we have (m T mtn? _
7

n n" s™”

Each side of this equality is an irreducible fractions; for, in virtue of
(m,n) =1, we have (m-+mn,n) =1, whence ((m+n)",n.”) =1, and,
in virtue of (t, 5) = 1, we have (i", s™) = 1. It follows that (4 n)" = ™
and n* = s™. From this, in virtue of Corollary 1 to Theorem 16 of Chapter I,
by (m,n) =1, we infer that there exist natural numbers % and I such
that m+n =%k", ¢t =1%" and n =1™, s =1". Therefore m-I" — j™,
From this we deduce that k >1+1. If m >1, we would have k">
-+ > 1"+ mI™ 1 > ™+ m = k™, which is impossible. Consequent-
ly m =1, whence r = n/m = n. This leads us to the conclusion that

njm
‘ t
) = whence

1 n 1 n+1
(85) m=(1+;) ; y=(1+;) ;

where 7 is a natural number.

Conversely, it is easy to verify that the numbers #,y defined by
(85) satisfy the equation &¥ = y® Therefore all the solutions of the equation
@’ =y in rational numbers z,y with y >z > 0 are given by formula (85),
where n 8 ¢ natural number.

It follows that # =1 is the only value for which the equation has
a solution in natural numbers. In this case the solution is # = 2, y = 4.

Thus we arrive at the conclusion that the equation ¥ = y° has pre-
cisely ome solution in natural numbers z,y with y > .

(This particular result can also be obtained in another way. It fol-

3 ,— 2, 4 - 5,— 6 ,— 1,
lows, e.g. from the fact that V3>V2 =V4>V5>V6>... >V1)
The equation #' =y, however, has infinitely many solutions in
rational numbers z,y with ¥ > =.

For n = 2 we find
2 9
(2)% - (2_7)
4 8

2. Equation 4’—y" = 1. In virtue of the theorem of Moret-Blanc
[1] the equation

(86) #—y* =1

has precisely two solutions in natural numbers. These are z =2, y =1
and @ =3,y = 2.
‘We present here the proof of this theorem due to A. Schinzel.
Suppose that natural numbers =,y satisfy equation (86). Then,
necessarily, Y > 1, and therefore # > 1.If 2 = 2, then, by (86), 2 =4*+-1,
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which proves that y is odd and consequently 4 |y*—1. This implies that
412'—2 and 2|2Y"'—1. We infer hence that y =1.

We have

3, 2, 4,— 5, 6, 1 —
V3>V2=Va>V5>V6>..>V1.

In virtue of (86), 4 >4°, 4" > y'. The numbers # = 3, ¥ =1 do not
satisfy equation (86) but the numbers z =3, y =2 do. Therefore, if
%,y is a solution of equation (86) different from (2,1) and (3,2), then
either # =3, y >4 or, by 2 >y and (87), s > 4, ¥ > a+1. Thug
in either case we have y > z-+1. Let y—z = a. Obviously ¢ is a natu-
ral number and the equalities

a~+e I'ad

(m+af (1 +g)“
&,

hold. But, as we know, ¢ > 1+4¢ whenever £ > 0, which implies that

for ¢t = afz we have (1+a/z)® < ¢% Therefore, in virtue of (88) and by
o > 3> e, we obtain

(87)

(88)

L
v

£>w““(w>“>m>3 11
¥ & \e o=
yz 3
Hence z¥—y" >ﬁ >1—0>1, contrary to the assumption that the

pair (z,y) is a solution of equation (86). This leads us to the conclusion
that equation (86) has no solution different from g =2, y=1 and
2=3,9=2.

3. BEquation s™Y = This equation has infinitely many solu-
tions in natural numbers different from 1. As hag been found by Chao
Ko [2], for a natural number # the numbers

2"+ _n1)p2 _

L =2 7-1) (2" — 12D
2+ len_py 2(27—

y =2 )(2"w1) 2 D+

2 = 22"+1(2”—n—l)+n+1 (27»_1)2(2"—1)-}—1.

satisfy the equation o = #*. Thus, in particular, for n = 2 we obtain
@ = 27-3% = 2085984, y = 2°-3° — 1679616, » — 2-37 — 4478976. Chao
Ko has also proved that the equation #"y” = 2 has no solution in natu-
ral numbers «, y, z each greater than 1 and such that (#,y) = 1. A. Schin-
zel [9] has proved that if @,y are natural numbers greater than 1 and
S’l‘l(‘:h that the equation &™y¥ = #° ig satisfied, then either every prime
divisor of the number & is a divisor of the number g, or, conversely, every

icm
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prime divisor of the number y is a divisor of . He has asked whether
the numbers #, y must have the same sets of prime divisors. We do not
know whether the equation #°” = 2° has a solution in odd numbers great-
er than 1.

4. We conclude this paragraph with the equation
zlyl =zl

It is not difficult to prove that the equation has infinitely many solutions
in natural numbers z, ¥,z each greater than 1. To do this we observe
that, if » is a natural number greater than 2, then the numbers » = n!—1,
y =n, 2 =n! satisfy the equation. Thus, in particular, for n = 3, we
obtain 513! = 6!. There is another solution of the equation which is not
given by the formulae presented above.

Namely, we have 6!7! = 10!. We do not know whether there exist
any other such solution.

On the other hand, it is easy to find all the solutions of the equation
#!+4y! =2! in natural numbers. In fact, if #,y,2 is such a solution,
then we may assume that # <y and then 2z >y, i.e. 2 > y-+1, whence
2! = (y+1). But 2! =zl4y! <y!2, whenee ¥!2 > (y+1) = y!(y+1)
and consequently y+1 <2, i.e. ¥y =1, whence 2z =1 and 2 =2. We
conclude that the equation x!4-y! = 2! has precisely one solution in
natural numbers %, ¥, 2, namely 2 =1, y =1, 2z = 2. Some other equa-
tions involving factorials have been investigated by P. Erddos and R.
Oblath [1].
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